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Heyting Almost Distributive Fuzzy Lattices
Berhanu Assaye Alaba and Derebew Nigussie Derso

Abstract—In this paper, we introduce the concept of Heyting
almost distributive fuzzy lattices (HADFL) using the concepts of
Heyting almost distributive lattices (HADL), almost distributive
fuzzy lattices, fuzzy partial order relation and fuzzy Heyting
algebra. Using the properties of fuzzy Heyting algebra, we also
give a necessary and sufficient condition for an HADFL to be
fuzzy Heyting algebra (FHA).

Index Terms—Almost distributive fuzzy lattices, fuzzy Heyting
algebra, fuzzy partial order relations, Heyting Almost distributive
fuzzy Lattices.

I. INTRODUCTION

THE concept of an almost distributive lattice (ADL)
was introduced by U.M. Swamy and G.C. Rao as a

common abstraction to most of the existing ring theoretic
generalizations of a Boolean algebra and distributive lattices
[1]. Heyting Algebra is a relatively pseudo complemented
distributive lattice. It arises from non classical logic and was
first investigated by Skolem T. It is named as Heyting Algebra
after the Dutch Mathematician Arend Heyting [2].

Heyting almost distributive lattice was introduced by G.C.
Rao, Berhanu Assaye and M.V. Ratna Mani as a generalization
of a Heyting algebra in tha class of almost distributive lattices
[2]. According to Zadeh [3], a fuzzy relation, which is a
generalization of a function, has a natural extension to a fuzzy
set and plays an important role in the theory of such sets
and their applications. Similarly to an ordinary relation, a
fuzzy relation in a set X is a fuzzy set in the product space
X×X . Thus, fuzzy binary relations A are fuzzy sets of X×Y
defined as a fuzzy collection of ordered pairs characterized by
a membership function µA which associates with each pair (x,
y) a membership degree µA(x,y) [4].

Using the concepts of bounded fuzzy lattices, fuzzy Heyt-
ing algebra(FHA) was introduced by [5]. In this paper, we
introduce the concept of a Heyting almost distributive fuzzy
Lattice (HADFL) using concepts of a fuzzy Heyting algebra
and HADLs. We also characterize an HADFL in terms of
the set of all of its principal ideals and give necessary and
sufficient condition to become FHA. In the following, we give
some important definitions and results that will be useful to
the study of HADFLs.

II. PRELIMINARIES

Definition 2.1 ([6]): A Heyting algebra is a lattice with 0
such that for any elements a, b there is an element a→ b such
that a∧ x≤ b if and only if x≤ a→ b.

Manuscript received October 12, 2017; accepted December 29, 2017.
B.A. Alaba is with the Department of Mathematics, College

of Science, Bahir Dar University, Bahir Dar, Ethiopia. E-mail:
berhanu_assaye@yahoo.com

D.N. Derso is with the Department of Mathematics, Woldia University,
Woldia, Ethiopia. E-mail: nderebew@gmail.com

Definition 2.2 ([2]): An ADL (H,∨,∧,0) with a maximal
element is said to be a Heyting almost distributive lattice
(HADL) if to each a ∈ H, the interval [0,a] is a Heyting
algebra.

Theorem 2.3 ([2]): The following are equivalent.
1) H is a Heyting algebra
2) The poset (H,≤) is directed above
3) (H,∨,∧) is a distributive lattice
4) ∨ is commutative
5) ∧ is commutative
6) ∨ is right distributive over ∧
7) The relation θ := {(a,b) ∈ H ×H : b∧ a = a} is anti-

symmetric.
Definition 2.4 ([7]): Let X be a set. A function A:X×X →

[0,1] is called a fuzzy relation in X. The fuzzy relation
A in X is reflexive iff A(x,x) = 1, for all x ∈ X . The
fuzzy relation A in X is anti symmetric iff A(x,y) > 0 and
A(y,x) > 0 ⇒ x = y. The fuzzy relation A in X is transitive
iff A(x,z)≥ Supy∈X (min(A(x,y),A(y,z))). A fuzzy relation A
is fuzzy partial order relation if A is reflexive, symmetric and
transitive. A fuzzy partial order relation A is fuzzy total order
relation iff A(x,y)> 0 or A(y,x)> 0, for all x,y ∈ H. If A is
a fuzzy partial order relation on a set X, then (X,A) is called
a fuzzy partially ordered set or a fuzzy poset. If A is a fuzzy
total order relation in a set X, then (X,A) is called a fuzzy
totally ordered set or a fuzzy chain.

Definition 2.5 ([5]): The fuzzy poset (H,A) is said to be
directed above if ∀a,b,c∈H,A(a,c)> 0 and A(b,c)> 0, then
∃x ∈ H such that A(x,c)> 0.

Definition 2.6 ([7]): Let (X,A) be a fuzzy poset and B ⊆ X.
An element u ∈ X is said to be an upper bound for a subset B
iff A(b,u) > 0,∀b ∈ B. An upper bound u0 for a subset B is
least upper bound of B iff A(u0,u)> 0 for every upper bound
u for B. An element v ∈ X is said to be an lower bound for a
subset B iff A(v,b)> 0,∀b∈ B. A lower bound v0 for a subset
B is the greatest lower bound of B iff A(v,v0) > 0 for every
lower bound v for B. We denote the lub of the set {x,y}= x∨y
and glb of the set {x,y}= x∧ y

Definition 2.7: (H,A) is a bounded fuzzy lattice if for any
x ∈ H, we have that A(0,x)> 0 and A(x,1)> 0.

Definition 2.8 ([5]): Let (H,A) be a fuzzy lattice and let
x,y,z ∈ H. If A((x∧ y)∨ (x∧ z),x∧ (y∨ z))> 0 and A(x∨ (y∧
z),(x∨ y)∧ (x∨ z)) > 0.. Then (H,A) is a distributive fuzzy
lattice.

Definition 2.9: Let (H,A) is distributive fuzzy lattice.Then
(H,A) is bounded if for any x ∈ H, we have that A(0,x) > 0
and A(x,1)> 0.

Definition 2.10 ([6]): A bounded distributive fuzzy lat-
tice(H,A) is said to be a Fuzzy Heyting Algebra if there exists
a binary operation→ such that, for any x,y,z ∈H,A(x∧z,y)>
0⇔ A(z,x→ y)> 0
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Definition 2.11 ([5]): A bounded distributive fuzzy lat-
tice(H,A) is said to be a Fuzzy Heyting Algebra if there exists
a binary operation→ such that, for any x,y,z∈H,A(x∧z,y)>
0⇔ A(z,x→ y)> 0

Example 2.12: Let H be a Heyting algebra. Then for all
a ∈ H, [0,a] is fuzzy Heyting algebra

Theorem 2.13 ([5]): Let H be a Heyting algebra.Then the
following are equivalent:

1) (H,A) is a fuzzy Heyting algebra
2) The fuzzy poset (H,A) is directed above
3) (H,A) is a distributive fuzzy lattice
Definition 2.14 ([8]): Let (H,∨,∧,0) be an algebra of type

(2, 2, 0) and (H, A) be a fuzzy poset. Then we call (H, A) is
an almost distributive fuzzy Lattice (ADFL) if the following
axioms are satisfied:
(F1)A(a,a∨0) = A(a∨0,a) = 1
(F2)A(0,0∧a) = A(0∧a,0) = 1
(F3)A((a∨ b)∧ c,(a∧ c)∨ (b∧ c)) = A((a∧ c)∨ (b∧ c),(a∨
b)∧ c) = 1
(F4)A(a∧ (b∨ c),(a∧ b)∨ (a∧ c)) = A((a∧ b)∨ (a∧ c),a∧
(b∨ c)) = 1
(F5)A(a∨ (b∧ c),(a∨ b)∧ (a∨ c)) = A((a∨ b)∧ (a∨ c),a∨
(b∧ c)) = 1
(F6)A((a∨b)∧b,b) = A(b,(a∨b)∧b) = 1 for all a,b,c ∈H.

III. HEYTING ALMOST DISTRIBUTIVE FUZZY LATTICE

In this section, we introduce the concept of a Heyting almost
distributive fuzzy lattice and study some important properties.

Definition 3.1: An ADFL L = (H,A) with maximal element
m is said to be Heyting almost distributive fuzzy lattices if to
each a ∈ H, the interval [0,a] is fuzzy Heyting algebra.

Example 3.2: Every FHA is an HADFL since every interval
in FHA is itself FHA.

Theorem 3.3: Let (H,A) be an HADFL with a maximal
element m. Then the following are equivalent.
(1) H is an HADFL
(2) [0,m] is a Fuzzy Heyting algebra
(3) There exists a binary operation → on H such that the
following conditions hold: for all x, y, z H,

(i) A(m,x→ x)> 0
(ii) A(y,(x→ y)∧ y)> 0

(iii) A(x∧ y∧m,x∧ (x→ y))> 0
(iv) A((x→ (y∧ z),(x→ y)∧ (x→ z)) = A((x→ y)∧ (x→

z),x→ (y∧ z)) = m
(v) A((x∨ y) → z,(x → z)∧ (y → z)) = A((x → z)∧ (y →

z)),(x∨ y)→ z) = m
Proof: Let H be an HADFL with 0 and a maximal

element m. Let → be a binary operation on H. (1) ⇒ (2)
is trivial .
(2) ⇒ (3) : Assume that [0,m] is a fuzzy Heyting algebra in
which the binary operation (→) is denoted by →m. For x,y ∈
H, define x→ y = x∧m→m x∧m. Let x,y,z ∈ H.
Now (i) A(m,x→ x)=A(m,x∧m→m x∧m) = A(m,m) >0
(ii) A(y,(x → y) ∧ y)=A(y,(x ∧m →m y ∧m) ∧ y)= A(y,(x ∧
m→m y∧m)∧y∧m)=A(y,y∧m)> 0. Routinely we can show
others. (3)⇒ (1) Assume the conditions hold on H,then for
a∈H.We know that [0,a] is a distributive fuzzy lattice. Define

a binary operation→a on [0,a] by x→a y= (x→ y)∧a,∀x,y∈
[0,a].
Let x,y,z ∈ [0,a] and A(x∧ z,y)> 0.Then A(x→ (x∧ z),x→
y)> 0.
⇒ A(m∧ (x→ z),x→ y)> 0
⇒ A(x→ z,x→ y)> 0
⇒ A((x→ z)∧a,(x→ y)∧a)> 0 [by property ]
⇒ A((x→ z)∧a,x→a y)>0
⇒ A(z∧ (x→ z)∧a,z∧ (x→a y))> 0
⇒ A((x→ z)∧ z∧a,z∧ (x→a y))> 0
⇒ A(z∧ (x→ z)∧a,x→a y)> 0 [since z∧ (x→a y)≤ x→a y]
⇒ A(z∧a,x→a y)> 0
Thus, A(z,x→a y)> 0 [Since z≤ a]
Conversely, assume that z ∈ [0,a] and A(z,x→a y)> 0.
⇒ A(x∧ z,x∧ (x→ y)∧a)> 0.
⇒ A(x∧ z,x∧ y∧a)> 0.
⇒ A(x∧ z,x∧ y)> 0.
⇒ A(x∧ z,y)> 0. [Since A(x∧ y,y)> 0]
Thus, [0,a] is a fuzzy Heyting algebra.
Therefore, H is an HADFL.

Through out this section the symbol H stands for an HADFL
(H,A) unless otherwise specified. In the following lemma, we
give some important properties of HADFL.

Lemma 3.4: Let x,y,a ∈ H and A(x,y) > 0. Then the
following hold:

1) A(a→ x,a→ y)> 0
2) A(y→ a,x→ a)> 0
3) A(m,(a∧b)→ b)> 0
Proof:

(1) Let x,y,a ∈ H and A(x,y) > 0. Since H is an HADFL,
A((a→ x)∧ (a→ y),a→ (x∧ y)) = 1
A((a→ x)∧(a→ y),a→ x) = 1. [SinceA(x,y)> 0⇔ x∧y= x].
This implies a→ x = (a→ x)∧ (a→ y)
⇒ A(a→ x,a→ y)> 0
(2) A((y→ a)∧ (x→ a),(y∨ x)→)a = 1
A((y→ a)∧ (x→ a),y→ a) = 1
⇒ A(y→ a,x→ a)> 0
(3) A(a∧b,b)> 0
⇒ A((a∧b)→ (a∧b),(a∧b)→ b)> 0
⇒ A(m,(a∧b)→ b)> 0.

IV. PROPERTIES OF HADFL

Theorem 4.1: For any x,y ∈ H ,we have the following.
(1) A(y,x→ 0)> 0⇒ x∧ y = 0
(2) A(y→ 0,x→ 0)> 0⇔ x∧ (y→ 0) = 0
(3) A(m→ x,x)> 0
(4) A(x→ m,m)> 0

Proof: (1) A(y,x→ 0)> 0
⇒ A(x∧ y,x∧ (x→ 0))> 0
⇒ A(x∧ y,x∧0)> 0. This implies x∧ y≤ 0. But 0≤ x∧ y
Thus, x∧ y = 0
(2)(⇒)A(x∧ (y→ 0),x∧ (x→ 0))> 0
⇒ A(x∧ (y→ 0),x∧0∧m)> 0
⇒ x∧ (y→ 0) = 0. Conversely, assume x∧ (y→ 0) = 0. Then
A(y→ 0,x→ 0)
= A(y→ 0,x→ (x∧ (y→ 0)))
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=A(y→ 0,m∧ (x→ (y→ 0))∧ (y→ 0))
=A(y→ 0,y→ 0) = 1 > 0
(3) A(m→ x.m∧ (m→ x))> 0
⇒ A(m→ x,m∧ x∧m)> 0
⇒ A(m→ x,x∧m)> 0.
⇒ A(m→ x,x) > 0. But A(x,m→ x) > 0.Therefore,the result
holds.
(4) A(m,x→ m)> 0
A(x→ m,m)> 0
⇒ A(m∧ (x→ m),m)> 0
⇒ A((m→ m)∧ (x→ m),m)> 0
⇒ A((m∨ x)→ m,m)> 0
Clearly, A(m,m) = 1 > 0
but A(x→ m,m)> 0
Thus, antisymmetry gives m = x→ m

Lemma 4.2: A(x∧ y,x) = 1⇔ A(x,y)> 0.
Theorem 4.3: Let m be the maximal element in H. Then for

any a,b,c ∈ H,the following holds.
1) A(b∧m,(a→ b)∧m))> 0
2) A(a∧m,b∧m)> 0⇔ (a→ b)∧m = m
3) A(a∧ b∧m,a∧ c∧m) = 1⇔ A((a→ b)∧m,(a→ c)∧

m) = 1
4) A(a∧ c∧m,b∧m)> 0⇔ A(c∧m,(a→ b)∧m)> 0
5) A(a∧m, [(a→ b)→ b]∧m)> 0
6) A(a∧m,(b→ c)∧m)> 0⇔ A(b∧m,(a→ c)∧m)> 0

Proof: (1) Since A(b,a→ b)> 0 A(m,m)> 0. Then, A(b∧
m,(a→ b)∧m)> 0.
(2) A(a∧m,b∧m)> 0
⇒ A(a→ (a∧m),a→ (b∧m))> 0
⇒ A((a→ a)∧ (a→ m),(a→ b)∧ (a→ m))> 0.
⇒ A(m∧ (a→ m),a→ (b∧m))> 0
⇒ A(m,a→ (b∧m))> 0 [Since a→ m = m,Theorem 3.1]
But A((a→ b)∧m,m)> 0. Anti symmetry property gives (a→
b)∧m = m Conversely, A((a→ b)∧m,m) = 1,A(a,a)> 0.
⇒ A(a∧ (a→ b)∧m),a∧m) = 1
⇒ A(a∧b∧m,a∧m) = 1.
⇒ A(a∧m∧b∧m,a∧m) = 1.
⇒ A(a∧m,b∧m)> 0. [ lemma 1.1.2]

(3)Assume that A(a∧b∧m,a∧ c∧m) = 1 > 0.
By (2) A(a→ (a∧b∧m),a→ (a∧c∧m))> 0. Hence A((a→
b)∧m,(a→ c)∧m.)> 0
Conversely, assume that A((a→ b)∧m,(a→ c)∧m)> 0.
A(a∧(a→ b)∧m,a∧(a→ c)∧m)> 0. Hence A(a∧b∧m,a∧
c∧m)> 0.
(4). Assume A(a∧ c∧m,b∧m)> 0.
⇒ A(a→ (a∧ c∧m),a→ (b∧m))> 0.
⇒ . A( a→ (c∧m),(a→ b)∧ (a→ m))> 0.
⇒ A((a→ c)∧m,(a→ b)∧m)> 0 [Theorem 3.1]
⇒ A(c∧m,(a→ b)∧m)> 0 [By 1 above]
This gives A(a ∧ (c ∧m),a ∧ (a → b) ∧m) > 0, and hence
A(a∧ c∧m,a∧b∧m)> 0. Thus, A(a∧ c∧m,b∧m)> 0.
(5) Now A(a∧ (a→ b)∧m,a∧b∧m)> 0
⇒ A(a∧ (a→ b)∧m,b∧m)> 0
⇒ A((a→ b)∧a∧m,b∧m)> 0
⇔ A(a∧m, [(a→ b)→ b]∧m)> 0 [ By definition ]
(6) Assume that A(a∧m,(b→ c)∧m)> 0.
⇒ A(b∧a∧m,b∧ (b→ c)∧m)> 0
⇒ A(b∧a∧m,b∧ c∧m)> 0 and A(b∧ c∧m,c∧m)> 0

⇒ A(b∧a∧m,c∧m)> 0
Therefore, A(b ∧ m,(a → c) ∧ m) > 0. Conversely, assume
A(b∧m,(a→ c)∧m)> 0
⇒ A(a∧b∧m,a∧ (a→ c)∧m)> 0
⇒ A(a∧b∧m,a∧ c∧m)> 0
⇒ A(a∧b∧m,c∧m)> 0
⇒ A(b∧a∧m,c∧m)> 0
Thus, A(a∧m,(b→ c)∧m)> 0.

V. CHARACTERIZATION OF HADFL

Definition 5.1: Let (H,A) be an HADFL a ∈ H, then the
principal ideal generated by a is denoted by (a]A and is equal
to {x ∈H : A(x,a∧x)> 0}. We denote the set of all principal
ideals of H by PI(H).

Lemma 5.2: If (a]⊆ (b], then (a]A ⊆ (b]A, for all a,b ∈ H.
Lemma 5.3: a ∈ (b]⇔ A(a,b∧a)> 0.
Lemma 5.4: Let a,b ∈ H and (H,A) be an HADFL be an

HADFL,then the following are equivalent.
1) (a]A ⊆ (b]A
2) A(a,b∧a)> 0
3) A(a∧ x,b∧ x)> 0,∀x ∈ H
Theorem 5.5: Let (H,A) be an ADFL with 0 and a maximal

element m,then (H,A) is an HADFL iff (PI(H),A) is a FHA .
Proof: Suppose (H,A) be an HADFL. Then (PI(H),A)

is a distributive fuzzy lattice. For any x,y ∈ H, define (x]→
(y] = (x→ y]. If (a] = (b], and (c] = (d]. Then A(b,a∧ b) >
0,A(a,b∧a)> 0,A(d,c∧d)> 0,A(c,d∧ c)> 0.
Consider A(b→ d,(b→ c)∧ (b→ d))
= A(b→ d,(b∨a)→ c)∧ (b→ d))
= A(b→ d,(b→ c)∧ (a→ c)∧ (b→ d))
> 0. Again A((b→ c)∧ (a→ c)∧ (b→ d),(a→ c)∧ (b→
d))> 0
⇒ A(b→ d,(a→ c)∧ (b→ d)) > 0 and A((a→ c)∧ (b→
d),b→ d))> 0.
⇒ A(b→ d,(a→ c)∧ (b→ d)) > 0. By lemma 5.3 we have
(a→ c] ⊆ (b→ d], by symmetry, (b→ d] ⊆ (a→ c]. Thus,
(a→ c] = (b→ d] Therefore, ”⇒ ” is well defined on PI(H).
By theorem on FHA, a bounded distributive fuzzy lattice is
a FHA. Conversely, assume PI(H) is a FHA. For a,b ∈ H,
define a→ b = c∧m, where (a]→ (b] = (c] for some c ∈ H.
Let (s] = (t] for some s, t ∈H. Then A(s∧ t, t)> 0,A(t,s∧ t)>
0,A(s, t ∧ s)> 0 and A(t ∧ s,s)> 0
⇒ A(s∧m, t ∧ s∧m)> 0
⇒ A(s∧m,s∧ t ∧m)> 0.
But A(t ∧ s∧m,s∧m)> 0
⇒ t ∧ s∧m = s∧m [since antisymmetry]
⇒ s∧ t ∧m = s∧m
⇒ t ∧m = s∧m
Thus the binary operation ”→ ” is well defined. Let a,b,c∈H.
We prove that (H,A) is HADFL.
(1) since (a]→ (a] = (m].Then ew get a→ a = m∧m
⇒ a→ a = m
⇒ A(m,a→ a)> 0
(2) Let (a]→ (b] = (c]. Then (a→ b)∧b = c∧m∧b = c∧b =
b.Thus,A((a→ b)∧b,b)> 0.
(3) since (a]→ (b] = (c]. Then (a]∧ (c] = (a]∧ ((a]→ (b])
⇒ (a∧c] = (a∧b]. Now (a∧ (a→ b)) = a∧c∧m = a∧b∧m
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⇒ A(a∧(a→ b),a∧b∧m)> 0. and A(a∧b∧m,a∧(a→ b)>
0
(4) Let (a]→ (c] = (t] and (b]→ (c] = (s]. Then a→ c = t∧m
and b→ c = s∧m.Consider,(a∨ b]→ (c]=((a]∨ (b])→ (c] =
((a]→ (c])∧ ((b]→ (c])=(t]∧ (s] = (t ∧ s].
⇒ (a∨b)→ c = t ∧ s∧m = t ∧m∧ s∧m = (a→ c)∧ (b→ c)
A((a∨ b)→ c,(a→ c)∧ (b→ c)) > 0 and A((a→ c)∧ (b→
c),(a∨b)→ c)> 0
(5) similar to (4) we can prove that A(a→ (b∧ c),(a→ c)∧
(a→ c))> 0 and A((a→ c)∧ (a→ c),a→ (b∧ c))> 0.
Thus,(H,A) is an HADFL.

Now ,we give another characterization for an HADFL to
become a FHA.

Theorem 5.6: Let (H,A)be an HADFL.Then (H,A) is a FHA
iff for any a ∈ H,θa = {(x,y) ∈ H×H : A(a,(x→ y)∧ (y→
x)> 0} is a congruence relation on H.

Proof: Assume that (H,A) is a FHA and a ∈ H.
1) θa is reflexive. sinceA(a,(a→ a)∧(a→ a)) = A(a,m)>

0 [ as m maximal in H].
Thus, (a,a) ∈ θa

2) θa is symmetric. Let (x,y) ∈ θa.
Then A(a,(x→ y)∧ (y→ x))> 0
⇒ A(a,(y→ x)∧ (x→ y))> 0 [ By hypothesis]

3) θa is transitive. Let x,y,z∈H such that (x,y)∈ θa,(y,z)∈
θa, then A(a,(x→ y)∧ (y→ x))> 0 and A(a,(y→ z)∧
(z→ y))> 0.
⇒ A(a,(x→ y)∧ (y→ x)∧ (y→ z)∧ (z→ y))> 0. *
θa is transitive Since , x∧(x→ y)∧(y→ z) = x∧y∧z≤
z, we have A(x∧ (x→ y)∧ (y→ z),z)> 0.
⇒ A((x→ y)∧ (y→ z),x→ z) > 0. **[From definition
of FHA]
Similarly, Again z∧(z→ y)∧(y→ x) = z∧y∧x≤ x, we
have A(z∧ (z→ y)∧ (y→ x),x)> 0.
⇒ A((z→ y)∧ (y→ x),z→ x)> 0 ***
From ** and ***, we have A((x→ y)∧ (y→ z)∧ (z→
y)∧ (y→ x),(x→ z)∧ (z→ x))> 0. **** Thus, from *
and **** we have A(a,(x→ z)∧(z→ x))> 0. Therefore,
(x,z) ∈ θa From (1), (2) and (3) θa is an equivalence
relation on H.

4) θa is a congruence relation.
Since A(x ∧ d,x) > 0 and A(y ∧ d,y) > 0, we have
A(x→ y,(x∧d)→ y)> 0 and A(y→ x,(y∧d)→ x)> 0.
⇒ A((x→ y)∧ (y→ x),(x∧ d)→ y)∧ (y∧ d)→ x)) >
0.But A(a,(x→ y)∧ (y→ x)) > 0. This gives A(a,(x∧
d)→ y)∧ (y∧d)→ x))> 0. Thus,(x∧d,y∧d) ∈ θa. By
similar argument, we can show that (x∨ d,y∨ d) ∈ θa.
Now, A(x ∧ (x → y) ∧ (y → d),d) > 0. This implies
A((x→ y)∧ (y→ d),(x→ d))> 0.
⇒ A((x → y),(y → d) → (x → d)) > 0. Also by
symmetry,A((y→ x),(x→ d)→ (y→ d))> 0
⇒ A((x→ y)∧ (y→ x),((y→ d)→ (x→ d))∧ ((x→
d)→ (y→ d)))> 0.... *1
Using A(a,(x → y) ∧ (y → x)) > 0 and *1 we have
A(a,(y → d) → (x → d)) ∧ ((x → d) → (y → d))) >
0.Thus,(x→ d,y→ d)∈ θa. Similarly one can show that
(d→ x,d→ y) ∈ θa. Hence the result.

Conversely, assume that H is an HADFL in which θa is a
congruence relation on H for all a ∈ H. Now for any a ∈

H,(a,a) is θa, we get A(a,a→ a)> 0. This implies A(a,m)>
0
(H,A) is a distributive fuzzy lattice and hence it is a FHA (by
Theorem 2.7). Finally summing up all the characterization of
an HADFL (H,A) to become a FHA.

We state the following theorem.

Theorem 5.7: In an HADFL (H,A),the follwing are equiva-
lent

1) (H,A) is FHA.
2) (H,A) is Distributive fuzzy lattice.
3) The fuzzy poset (H,A) is directed above
4) For a,b,c ∈ H,A(a∧ c,b)> 0⇔ A(c,a→ b)> 0
5) A(b,a→ b)> 0,for all a,b ∈ H
6) θa = {(x,y) ∈ H×H : A(a,(x→ y)∧ (y→ x))> 0} is a

congruence relation on H,∀a ∈ H.
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