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Aim: The identifi cation and evaluation of lichen metabolite production by the epiphytic lichenized ascomycete 
Ramalina lacera collected from diff erent substrates: Crataegus sinaicus, Pinus halepensis, and Quercus calliprinos.

Methods: Chemical constituents were characterized by GC-MS, HPLC, HR-TLC, and other chemical methods.
Results: The most abundant fatty acids were α-linolenic acid, oleic acid, and palmitic acid but a considerable variabil-

ity of the ester composition from one to another was found. A comparison of neutral lipids, glycolipids, polar lipids and 
fatty acid composition of the tree-growing lichen Ramalina lacera was done. Diacylglyceryl-N,N,N-trimethylhomoserine, 
diaclyglycerylhydroxymethyl-N,N,N-trimethyl-β-alanine, phosphatidylcholine, and phosphatidylinositol were found as 
major components among polar lipids. Diff ractaic, lecanoric, norstictic, protocetric, and usnic acids were isolated as 
major aromatic compounds in all samples of R. lacera.

Conclusions: We evaluated a diversity of fatty acids, lipids, and aromatic compounds produced by the samples of 
Ramalina lacera growing on diff erent tree-substrates, Crataegus sinaicus, Pinus halepensis and Quercus calliprinos.

INTRODUCTION

Lichens are symbiotic associations between certain 
types of fungi (usually ascomycetes) and various green 
algae or cyanobacteria1, 2. Lichens have been used for a 
number of years as natural bioindicators for various heavy 
metals and as sources of information for environmental 
monitoring3, 4. These organisms have both algal and fungal 
properties and produce n-alkanes5, unusual betaine ether 
glycerols6, glyco- and phospholipids7, 8, and saturated, 
unsaturated, branched8, 9, and halogenated fatty acids10. 
Many diff erent bioactive secondary metabolites have also 
been isolated from lichen species11–13 which have been 
used in pharmaceutical and biotechnological sciences and 
industry14–16.

Some Ramalina species are usually used as food in 
some Central and South Eastern Asian countries. Thus, 
lichens are used as traditional food by Rai and Limbu 
communities of East Nepal. Lichens Ramalina farina-
cea, R. conduplicans, R. sinensis, and R. subfarinacea are 
cooked mixed with various foods17. Ramalina farinacea 
and R. conduplicans are usually used as traditional food 
by Rai and Limbu communities of East Nepal. Lichens 
are cooked mixed with various foods17. Since the begin-
ning of the 20th century hair powder of Ramalina cali-
caris, and Ramalina spp. Have been used in cosmetics in 
Europe18, and India19 respectively. Extracts from the lichen 

Ramalina farinacea were evaluated against fi fteen clinical 
isolates of Staphylococcus aureus20. The aqueous extract 
of the Ramalina farinacea has folkloric reputation for the 
treatment of mental disorders in Africa; and tinctures 
have also been used for treatment of ringworm tinea in 
Nigeria21. In southwestern province Yunnan (China), the 
Yi, Dai, and Han ethnic peoples cook these two species 
of Ramalina (R. conduplicans and R.sinensis) to prepare a 
traditional cold dish served at marriage banquets22. 

The lichen substances are unique as they are unknown 
in other plant sources. Lichens contain many characteris-
tic aromatic compounds with known antiviral, antimicro-
bial, antiproliferative, antimitotic, antioxidant activities23. 
Lichens may be a good potential source of bioactive phy-
tochemicals7, 13, 24. 

In this study, we evaluated which fatty acids, lipids, 
and aromatic compounds are produced by the samples 
of Ramalina lacera growing on diff erent tree-substrates, 
Crataegus sinaicus, Pinus halepensis and Quercus callipri-
nos.

MATERIALS AND METHODS

Plant material
Ramalina lacera (With.) J.R. Laundon (family Rama-

li naceae) is a fruticose lichen growing on Crataegus si-



204 L. O. Hanus, M. Temina, V. Dembitsky

Table 1. Fatty acid composition of the Ramalina lacera growing on diff erent substrates

Fatty acids
S  u  b  s  t  r  a  t  e  s

Crataegus sinaicus
(sample 1)

Pinus halepensis
(sample 2)

Quercus calliprinos
(sample 3)

Saturated 26.00 29.38 18.36
12:0 1.26 0.98 0.56
13:0 0.54 0.67 0.51
14:0 1.87 1.96 2.14
15:0 0.54 0.62 0.71

iso-15:0 0.81 0.72 0.63
anteiso-15:0 0.62 0.63 0.51

16:0 12.94 11.88 8.47
iso-17:0 0.53 0.54 >0.5

anteiso-17:0 0.62 >0.5 >0.5
18:0 5.13 4.96 3.29
20:0 1.14 0.97 0.56

Monoenes 17.63 15.39 17.73
15:1(n-8) 0.88 0.72 0.76
16:1(n-9) 5.14 2.15 4.96
16:1(n-7) 1.73 2.22 1.86
18:1(n-11) 0.67 0.74 0.56
18:1(n-9) 6.98 7.23 8.14
18:1(n-7) 1.58 1.60 0.94
20:1(n-9) 0.65 0.73 0.51

Dienes 7.21 7.39 9.62
16:2(n-4) 0.72 0.62 0.55
18:2(n-6) 5.94 6.16 8.57
20:2(n-6) 0.55 0.61 0.50
Polyenes 49.16 47.84 54.28
16:3(n-6) 1.76 2.22 2.77
16:3(n-3) 2.98 2.87 3.11
18:3(n-6) 2.14 2.67 3.04
18:3(n-3) 35.87 30.19 29.70
16:4(n-3) 3.14 2.98 3.49
18:4(n-3) 1.85 1.70 2.98
20:4(n-6) 0.96 1.21 2.25
20:4(n-3) 1.34 2.11 3.66
20:5(n-3) 1.12 1.89 3.28

naicus (family Rosaceae, voucher specimen HAI-0-30521 
(MT), Pinus halepensis (family Pinaceae, voucher speci-
men HAI-0-30522 (MT), and Quercus calliprinos (fam-
ily Fagaceae, voucher specimen HAI-0-30523 (MT), in 
the forests on Mount Carmel at 800 meters above sea 
level. All samples were collected in July 2003 from Mount 
Carmel, Sekher Pool (North Israel), identifi ed and vouch-
er specimen HAI-0-30521-305023 (MT) are deposited in 
the lichen herbarium of Biodiversity and Biotechnology 
Center of Cryptogamic Plants and Fungi (Haifa).

General extraction procedures
Clearly fresh lichen (50-75 g of each sample) was 

extracted (Soxhlet) with ethanol-water-HCl (90:10:1, 
v/v; 60 °C) over 72 h (fraction 1). The ethanolic resi-
due was further extracted by light petroleum (60–80 
°C, fraction 2), and then dichloromethane (fraction 3). 

Fraction 1 was concentrated in vacuum at 35 °C, water lay-
er was lyophilized, and then dissolved in 2 ml of ethanol. 
Fraction 2 and 3 were separately concentrated to dryness 
in vacuum at 5 °C under reduced pressure, and then dis-
solved in 2 ml of a cold mixture ethanol-dichloromethane 
(1:1, v/v), which was used for separation by HPLC, TLC, 
and followed chemical analysis. 

Gas chromatographic-mass spectrometric analysis
A Hewlett Packard 6890 (series II) gas chromatograph 

modifi ed for glass-capillary work and a HP-GC mass selec-
tive detector (5973B MSD) were used. Fatty acid methyl 
esters were prepared and analyzed by GC fi tted with seri-
ally coupled capillary columns: the RTX 1 column (30 m, 
ID 0.32 mm, fi lm thick-ness 0.25 μm; Restek, USA) was 
coupled with a second capillary column (RTX 1701, 30 m, 
0.32 mm, 0.25 μm fi lm; Restek, USA). The instrumental 
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Table 2. Lipid composition of the Ramalina lacera growing on diff erent substrates

Lipid classes
S  u  b  s  t  r  a  t  e  s

Crataegus sinaicus
(sample 1)

Pinus halepensis
(sample 2)

Quercus calliprinos
(sample 3)

Total lipids (mg/g dry wt) 36.9 42.4 51.3
Neutral lipids (mg/g dry wt) 22.1 26.8 32.1
Free fatty acids# 2.6 ± 0.2 1.6 ± 0.1 2.9 ± 0.4
Free sterols 3.9 ± 0.4 6.6 ± 0.3 4.6 ± 0.2
Diacylglycerols 1.5 ± 0.1 2.3 ± 0.2 3.1 ± 0.3
Triacylglycerols 10.1 ± 0.6 8.5 ± 0.7 12.3 ± 0.9
Steryl esters 2.9 ± 0.2 4.2 ± 0.2 6.2 ± 0.5
Wax esters 1.6 ± 0.1 3.2 ± 0.3 3.0 ± 0.6

Glycolipids (mg/g dry wt) 9.0 8.0 11.3
MGDG 3.2 ± 0.6 2.6 ± 0.4 3.2 ± 0.3
DGDG 5.0 ± 0.8 4.7 ± 0.6 7.2 ± 0.5
SQDG 0.8 ± 0.2 0.7 ± 0.1 0.9 ± 0.1

Polar lipids (% of total polar lipids) 5.8 7.6 7.9
DGTA 14.2 ± 0.8 12.6 ± 0.9 8.9 ± 0.6
DGTS 18.6 ± 0.9 21.3 ± 1.3 25.2 ± 1.9
PC 35.6 ± 1.4 44.2 ± 3.7 34.9 ± 2.8
PE 6.8 ± 0.4 7.4 ± 0.6 14.3 ± 0.9
PI 15.3 ± 0.7 11.2 ± 0.8 16.7 ± 0.7
PA 2.2 ± 0.2 0.9 ± 0.1
X 7.3 ± 0.4 2.4 ± 0.2

# Mean ± standard deviation.
Abbreviations: MGDG, monogalactosyl diacylglycerol; DGDG, digalactosyl diacylglycerol;
SQDG, sulfoquinovosyl diacylglycerol, DGTA, diacylglyceryltrimethylalanine;
DGTS, diacylglyceryltrimethylhomoserine; PC, phosphatidylcholine; PE, phosphatidylethanolamine;
PI, phosphatidylinositol; phosphatidic acid; X, non-identifi ed polar lipid

Table 3. Identifi ed aromatic compounds of the Ramalina lacera growing on diff erent substrates

Aromatic
Compounds 
(μg/100 g dry wt)

S  u  b  s  t  r  a  t  e  s

Crataegus sinaicus
(sample 1)

Pinus halepensis
(sample 2)

Quercus calliprinos
(sample 3)

Orsellinic acid 11.4 12.5 19.2
Lecanoric acid 22.5 26.2 21.7
Protocetric acid 27.4 32.8 41.2
Diff ractaic acid 28.7 33.7 38.9
Homosekikaic acid 4.9 5.9 6.2
Usnic acid 26.8 25.3 29.4
Norstictic acid 23.5 29.9 22.8
Total 145.2 166.3 179.4

settings used were as follows: initial temperature, 40°C; 
initial time, 2.00 min; rate, 2 °C/min; fi nal temperature, 
300 °C, fi nal time, 20 min; injection port, 180 °C; carrier 
gas, He: fl ow rate, 25.0 mL/min. The MS detector oper-
ated at 194 °C; ionization energy, 70 eV. The scan range, 
30 to 700 m/z at 0.9 scan per sec. Solvent delay, 9 min. 
Fatty acid methyl esters were identifi ed using mass spec-
tral libraries search (Wiley 7th, and NIST-98).

High-Performance Liquid Chromatographic Analysis 
The dried samples from fractions were reconstituted in 

200 μL of methanol and analyzed using a Hewlett Packard 
1100 HPLC system (Hewlett-Packard 1100 HPLC System 
w/ UV/VIS detector, includes: G1311A Quaternary Pump, 
G1314A UV/Vis Detector, G1313A Autosampler, G1322A 
Vacuum Degasser, Solvent Module, HP Chemstation 
with Computer System) with a photo diode array detec-
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tor set at a range of 200–450 nm; all peaks were ana-
lyzed at 254 nm. An analytical reverse phase C18 column 
(A Spherisorb 5 ODS 2 column 250 × 4.6 mm, 5 μm; 
(Kontron) was used as the stationary phase. Mobile phase 
A contained 10 % methanol and 90 % water brought to a 
pH of 2.0 with phosphoric acid, and mobile phase B was 
100% methanol. A linear gradient was applied over 30 min 
starting with 100% of mobile phase A at the start to 100% 
mobile phase B at the end. Chromatograms were analyzed 
by Hewlett Packard software; retention time and absorb-
ance spectra were used to identify compounds, and also 
pure compounds were used for spectral analysis. Orsellinic 
and usnic acids were obtained from Sigma-IL, and used 
also as standard compounds. Isolated metabolites were 
identifi ed with 13C-NMR, IR, UV, and chemical methods 
as described previously11. 

High-Performance Thin-Layer 
Chromatographic Analysis

Total lipids were separated by column chromatography 
to neutral, glycolipid, and polar lipid fractions on silica 
gel (Merck 63/200 mesh). The obtained fractions were 
further analyzed by HR-TLC as described previously25, 26. 
Neutral lipids were separated on 10 × 20 cm silica gel 
plates (Silica Gel 60, Merck) with toluene-hexane-formic 
acid (150:70:2, v/v) mixture. Glycolipids were separated 
using acetone-benzene-water (100:40:9, v/v) mixture as 
described27, 28. Polar lipids, including betaine lipids and 
phospholipids, were separated with the help of chloro-
form-acetone-methanol-formic acid-water (150:20:10:10:4, 
v/v) mixture in the fi rst direction, and acetone-benzene-for-
mic acid-water (200:30:4:10, v/v) one in the second direc-
tion as described previously29.

RESULT AND DISCUSSION 

Ramalina lacera is a moderately xeric epiphytic fru-
ticose lichen that grows in the Mediterranean areas on 
diff erent shrubs and trees. These epiphytic species belong-
ing to the family Ramalinaceae were chosen for a com-
parative examination of their fatty acid, polar lipids, and 
aromatic compounds. The GC-MS analysis of fatty acids 
in R. lacera, which grows on Crataegus sinaicus, Pinus ha-
lepensis, and Quercus calliprinos, revealed a high polyenoic 
content in species which grows on the Palestine oak Q. 
calliprinos (54.28 %, Table l), but much lower amounts of 
such acids in two other ones, viz. 49.16 % and 47.84 %, 
respectively. The amounts of trienoic acids, however, were 
higher in the samples from tree-growing species, 42.75 % 
(sample 1), 37.95 % (sample 2) and 38.62 % (sample 3). A 
total of 11 saturated fatty acids were identifi ed, with n-16:0 
and n-18:0 as major ones (8.47-12.94 % and 3.29-5.13 %, 
respectively). Total saturation in various species varied 
from 18.36 (sample 3) to 26 % (sample 1). All three spe-
cies studied had almost identical monoenoic and dienoic 
acid contents. Among other interesting acids, 16:4(n-3), 
the presence of which is characteristic for green marine 
algae27, and 18:4(n-3), characteristic for brown marine 

algae28, were detected. It seems likely that the lichen pho-
tobiont synthesize these acids5. In sample 3, the total level 
of isomers of 20:4(n-6) and 20:4(n-3) was considerably 
higher than that from the rest of the examined species, 
reaching 5.91 %. These amounts of arachidonic acid iso-
mers are the highest known in the lichen literature with 
regard to the total lipid extract, although still higher levels 
have been found in individual lipid classes, for example, 
Peltigera aphthosa8. 

Total lipid content was studied in all collected lichen 
species, having common climatic peculiarities. Table 2 
shows total lipid compositions in lichens collected during 
July; total lipid content in such lichens show variations 
from 36.9-51.3 mg/g dry wt. Neutral lipids make up the 
highest percentage among of total lipids (Table 2) and 
vary from 22.1-32.1 mg/g dry wt. Examination of neutral 
lipids using HR-TLC revealed the domination of TAG 
and diacylglycerols over the rest of neutral lipids thereby 
representing more than 50% in the majority of lichen spe-
cies. Free fatty acids, free sterols and its esters were also 
detected. The amount of glycolipid is comparatively lower 
than that of neutral lipids and varies between 8-11 %.

Examination of the lichen polar lipids, including 
betaine lipids (DGTA and DGTS) and phospholip-
ids showed phosphatidylcholine (PC) to be the major 
phospholipids with concentrations varying from 34.9 to 
44.2 % of total polar lipids (Table 2). The PC content in 
various fungal species is known to vary from 20 to 55%, 
whereas PC contained in red algal species varies from 
61.6 to 77.8 % (ref. 23). Phosphatidylethanolamine (PE) 
was detected in all lichen species studied; its level was low 
in the fi rst two species (ca 6.8 %), but reached 14.3 % in 
sample 3. Phospatidylinositol was also found in all spe-
cies studied; its level was highest in sample 3 (16.7 %). 
Both betaine lipids were detected in all samples; their level 
varies from 8.9 to 14.2 % for DGTA, and 18.6–25.2 % for 
DGTS. 

DGTS, one of the three known betaine lipids, has 
been the object of many studies24. Betaine lipids occur in 
bacteria30, fungi31, 32, moss species33, and in a number of 
brown, green and red algae26, 29, 34 as well as in lichens7, 35, 36. 
As for higher plants, betaine lipids have been found in 
bryophytes31, 37, in ferns38, and other plants39. DGTA was 
detected in fungi24, marine brown algae27, and microalgal 
species34. 

HPLC has become more widely used as an eff ective 
analytical tool for the separation and identifi cation of 
lichen substances40. Feige and co-workers41 used HPLC 
with reversed-phase columns and gradient elution for 
separation of 331 lichen compounds. We used HPLC 
for separation aromatic compounds from three lichen 
samples. Seven aromaric acids were identifi ed (Table 3). 
Total aromatic compounds varies from 145.2 (sample 1) 
to 179.4 μg/100 g dry wt (sample 3). Examination of the 
lichen aromatics showed lecanoric, protocetric, diff racta-
ic, usnic, and norstictic acids to be the major metabolites 
(Table 3).

Earlier, aromatic compounds were isolated from the 
genus Ramalina. Thus, norstictic and salazinic acids 
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were isolated from Ramalina subfarinacea42, and from 
Ramalina farinacea (Hawaii)43; usnic and sekikaic acids 
were isolated from Indian R. tayloriana growing on sandal 
trees44; and orsellic, lecanoric, diff ractaic, protocetraric, 
usnic and norstictic acids were isolated from R. lacera45. 
Usnic acid was detected in Ramalina yasudae46. Trivaric 
and divaric acids are the major products of the Ramalina 
americana, and lecanoric and gyrophoric acids were iden-
tifi ed as minor metabolites47. Chilean native Ramalina 
species: R.chilensis, and R. farinacea contains lecanoric, 
divaricatic, salazinic, usnic, norstictic, and ramalinolic 
acids48, 49. New Zealand’s Ramalina species contains: 
R. arabum – norstictic and salazinic acids; R. geniculata 
– salazinic and sekikaic acids; R. glaucescens – homo-
sekikaic, lecanoric, and sekikaic acids; R. infl aca and R. 
unilateralis – divaricatic acid; R. pacifi ca – protocetraric 
acid; and R .peruviana – homosekikaic, ramalinolic, and 
sekikaic acids50. Diff ractaic, orsellinic, and usnic acids 
were isolated from R. subcomplanata (Nepal)51. 

All samples of R. lacera produced the same aromatic 
acids but in diff erent amounts. Some biological activities 
of isolated aromatic compounds from R .lacera have also 
been reported. Thus, we recently reported that orsellic, 
lecanoric, diff ractaic, protocetraric, usnic and norstictic 
acids from R. lacera possess antibacterial and antifungal 
activities45. Diff ractaic acid exhibited antifungal activ-
ity against the phytopathogenic fungus Cladosporium 
sphaerospermum52. Potent antiproliferative agents, usnic 
and diff ractaic acids showed inhibitory activities against 
the human keratinocyte cell line HaCaT, with IC50 values 
of 2.1 and 2.6 μM, respectively53. Diff ractaic acid also 
showed strong inhibitory activity against tumor promot-
er-induced Epstein-Barr virus54. Orsellic acid revealed 
antibacterial activity against Escherichia coli, Ralstonia 
solanacearum, Staphylococcus aureus, and Xanthomonas 
campestris vesicatoria55. Protocetraric acid showed activ-
ity against yeasts Candida albicans and C. glabrata56, and 
norstictic acid was active against Aeromonas hydrophila, 
Bacillus subtilis, Listeria monocytogenes, Proteus vulgaris, 
Staphylococcus aureus, Streptococcus faecalis, Candida 
albicans, and C. glabrata56. (+)-Usnic acid and (-)-usnic 
acid isolated from the lichen Ramalina farinacea showed 
cytotoxic and genotoxic activities against V-79 (Chinese 
hamster lung fi broblast-like) and A549 (human lung car-
cinoma epithelial-like) cell lines57. Usnic acid exhibited 
antiviral, antiprotozoal, antiproliferative, anti-infl amma-
tory and analgesic activities as reported in recent review 
article58. 

Thus, the analyses of fatty acids, lipids and aromatic 
compounds from three samples of the R. lacera showed 
the presence of rare fatty acids: 16:4(n-3) and 18:4(n-3). 
Such acids were found in some marine algal species59. As 
the photobiont component may form the main part of 
lichens, the presence of the above acids is to be expected 
for lichens. Hexadeca-4,7,10,13-tetraenoic acid 16:4(n-3), 
octadeca-6,9,12,15-tetraenoic acid (stearidonic acid), 
18:4(n-3), and α-linolenic acid were isolated from marine 
green alga Ulva fasciata (family Ulvaceae)60. These poly-
unsaturated fatty acids (PUFAs) showed potent algicidal 

activity against microscopic high toxic alga Heterosigma 
akashiwo (LC50 1.35 μg/mL, 0.83 μg/mL, and 1.13 μg/mL 
for (16:4, 18:4, and α-linolenic acid, respectively), and 
the result demonstrated the potential of these PUFAs for 
practical harmful algal bloom control. These polyunsatu-
rated acids isolated from the diatom Navicula delognei f. 
elliptica, showed signifi cant antibacterial activity against 
Staphylococcus aureus, S.epidermidis, Salmonella typhimuri-
um, and Proteus vulgaris61. α-Linolenic acid [18:3(n-3)] 
and oleic acid [18:1(n-9)] were found as major unsaturat-
ed fatty acids. α-Linolenic acid showed anti-infl ammatory 
activity62. Among polar lipids, both betaine ether lipids 
(DGTA and DGTS) as well as PC, and PI were found as 
major lipid components. 
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