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Abstract: Timely evaluation and reperfusion have improved the myocardial salvage and the
subsequent recovery rate of the patients hospitalized with acute myocardial infarction (MI).
Long waiting time and time-consuming procedures of in-hospital diagnostic testing severely affect
the timeliness. We present a Poincare pattern ensemble-based method with the consideration of
multi-correlated non-stationary stochastic system dynamics to localize the infarct-related artery
(IRA) in acute MI by fully harnessing information from paper-based Electrocardiogram (ECG).
The vectorcardiogram (VCG) diagnostic features extracted from only 2.5-s long paper ECG recordings
were used to hierarchically localize the IRA—not mere localization of the infarcted cardiac tissues—in
acute MI. Paper ECG records and angiograms of 106 acute MI patients collected at the Heart Artery and
Vein Center at Fresno California and the 12-lead ECG signals from the Physionet PTB online database
were employed to validate the proposed approach. We reported the overall accuracies of 97.41% for
healthy control (HC) vs. MI, 89.41 ± 9.89 for left and right culprit arteries vs. others, 88.2 ± 11.6 for
left main arteries vs. right-coronary-ascending (RCA) and 93.67 ± 4.89 for left-anterior-descending
(LAD) vs. left-circumflex (LCX). The IRA localization from paper ECG can be used to timely triage
the patients with acute coronary syndromes to the percutaneous coronary intervention facilities.

Keywords: electrocardiogram; nonlinear dynamic systems; computer-aided diagnosis

1. Introduction

Rapid assessment and timely reperfusion therapy have shown to improve the recovery rate in
patients with acute myocardial infarction (MI) [1]. The National Heart Attack Alert Program (NHAAP)
guidelines recommend fibrinolysis and intervention within 30 and 90 min of an acute MI onset to
maximize the restoration of the jeopardized myocardium [2]. However, according to Heart Disease
and Stroke Statistics (2017) [3], only 50% of acute MI patients are treated with thrombolytic agents and
65% undergo percutaneous coronary intervention within the recommended golden hour at Veterans
Health Administration’s (VHA) hospitals, the largest integrated health care system in the United States.
The guidelines are often not followed in over-crowded hospitals due to the significant amount of delay
between para-clinical first response to conclusive intervention [4]. Such a delay is incurred due to
waiting and queuing at the overloaded emergency and the time consumed during various stages of
elaborate lab diagnostic tests [5,6]. Many efforts have been devoted to reduce the door-to-device’s
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period lasting from the time the patient with ongoing ischemia receives the first response till the
patient’s admission to the catheterization laboratory [4,6]. Accurate stratification of the coronary
lesions and assessment of the infarct-related artery (IRA) in acute MI would significantly reduce such
reperfusion delay.

Even though coronary angiography has been widely utilized for the localization of IRAs,
prehospital 12-lead ECG print out has been highly recommended in ongoing ischemic patients supposed
to be admitted to the revascularization facilities. Coronary angiography procedure uses a radio-opaque
contrast agent and x-ray imaging via an arterial catheter to visualize the coronary arterial occlusions.
Despite its accuracy, the radiation risk and invasive procedure hinder angiography from being the
first choice of the doctors [7,8]. Its associated invasive procedure, time-consuming process and costly
investment have prompted an intensive search for alternatives [8,9]. Recent non-invasive angiography
technologies, such as electron beam angiography (EBA), computed tomography angiography (CTA)
and magnetic resonance angiography (MRA), are the possible replacements for catheter-based
angiography [10,11]. However, these methods are constrained by low temporal-resolution, high
noise susceptibility and capital-intensive equipment [11,12]. American Heart Association national
guidelines [13] and other consensus and scientific statements [14] have recommended the use of
prehospital 12-lead ECG paper printout that can be rapidly recorded using portable equipment on
first responder’s emergency vehicles to evaluate the patients with suspected acute coronary syndrome
(ACS) to decrease delays in reperfusion therapy. Despite that 90.6% of emergency medical services
(EMS) serving the 200 largest US cities are equipped with 12-lead ECG in the ambulance system,
prehospital ECG has been only used in 15% of patients with acute MI [15]. Thus, even though the
equipment is available, it is mostly underutilized. One of the challenges is the derivation of statistically
consistent features from the reconstructed VCG using paper ECG that can provide direct confirmation
of MI to urgently facilitate the activation of the reperfusion facilities [16].

Computer-aided diagnostic methods have been proposed to detect and localize MI, yet very few
works focus on using ECG readings to localize the infarcted cardiac artery. Automated diagnostic
methods focus on novel features extraction techniques or machine learning algorithms to detect and
classify MI cases. Arif et al. [17] used T-wave inversion, Q-wave and ST-level elevation, reporting
accuracy of 98.3% on ten classes of MI with a KNN classifier. Sadao and Senya [18] utilized
purpose-oriented feature extraction to separate three classes of myocardial and normal subjects with
the reported sensitivity of 86% for normal, 93% for anterior, 80% for inferior and 93% for flat T wave
MI. O’Dwyer et al. [19] used several feature sets including wavelet-based and standard morphological
ECG features to detect various types of MI with the overall accuracy ranged between 60% and
75%. Le et al.’s [16] approach to localize MI based on representing the complex spatio-temporal
patterns of cardiac dynamics as a random-walk report the sensitivity of 88% and specificity of 92%.
Strodthoff et al. [20] utilized a deep neural network detecting the MI from ECG signals with the
sensitivity and specificity of 93.3% and 89.7%, respectively. Despite the efficacy in classification and
localization of MI using ECG related features, very few of the previous works’ methods focus on
localizing the culprit infarct-related arteries (IRAs), which primarily cause the acute MI.

Towards addressing the challenges in identifying IRAs using paper ECG, we developed a method
to reconstruct the diagnostic-quality vectorcardiogram (VCG) signals from paper ECG recordings to
localize the IRA of acute MI. Several challenges need to be addressed for the utilization of paper ECG
to localize the IRA in acute MI. Due to the selected representative display and uneven resolution of the
waveforms on the paper ECG, the diagnostic ECG’s intervals are usually underestimated. In addition,
the waveform amplitudes in the simultaneous lead presentation of the paper ECG are systematically
greater than those in the corresponding measurements made from the single lead [21]. Furthermore,
the 2.5-s ECG signals from the paper printouts were not sufficient enough to obtain statistically
consistent estimates for the machine learning algorithm to localize IRA [16]. These diagnostic errors
hinder the use of paper-based ECG signals for the precise localization of the IRA [21,22]. We proposed
a nonlinear dynamic signal reconstruction method using Poincare sectioning to generate statistically
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consistent features from paper ECG for the MI localization. A Poincare pattern ensemble reconstruction
method based upon our previous work [23] on the Karhunen–Loeve (KL) representation of the ECG
signal was proposed to estimate the missing heartbeats and subsequently reconstruct the full 10-s
length of the 12-leads ECG. The missing ECG signals were derived from the KL basis functions with
the accurate time alignment from the 10-s ECG lead. The full 10-s length of 12-lead ECG signals
constructed using Poincare pattern ensemble reconstruction method provided statistically consistent
VCG features to classify various infarcted related arteries including left anterior descending (LAD),
left circumflex (LCX), right coronary ascending (RCA) and exact location not discernible (E). In the
absence of the signal’s realization, this reconstruction can account for the nonlinear and stochastic
dynamic characterizations attributed to the complex behaviors of the underlying cardiac system [23,24].
This method outperformed the simultaneous lead format in augmenting the time-coherent data
and reconstructing representative template complexes which are critical to feature extraction for the
localization of IRA.

The organization of this paper is as follows: Section 2 describes the method to derive the diagnostic
ECG and VCG from the paper recordings and the model to hierarchically localize the IRA in acute
MI, Section 3 reports the results on the validation of ECG signal reconstruction, feature extraction
and hierarchical classification of IRA and Sections 4 and 5 discuss the findings and conclude the
proposed method.

2. Methods

The key contributions of the present work are in (1) a Poincare sectioning ensembles method
to reconstruct missing ECG signals from the compressed paper recording that can preserve the
multi-correlated non-stationary stochastic characteristics of the missing signals and (2) a computational
framework to using angiographical-based hierarchical classification model with nonlinear features
from the reconstructed signal to localize IRA. As summarized in Figure 1, we utilize a full strip of a
paper ECG to scan for the 2.5-s segment of the 12-lead ECG. A 10-s segment of each lead is reconstructed
using Poincare pattern ensemble reconstruction method. The ECG signals were transformed into
vectorcardiogram (VCG) signals from which the spatial and temporal characteristics of the electric
heart vector are extracted. A customized affine transformation that accounts for myocardial infarction
condition has been utilized for the ECG-VCG transformation [25]. Finally, hierarchical classifiers
are developed to map the extracted features into different IRA types determined by the occlusive
coronary arteries. The validations are to compare the reconstructed ECG using ground truth from the
12-lead ECG from PTB Physionet Database [26] and to evaluate the accuracy of the model with the
benchmarks to the IRA using coronary angiography of MI patient from Heart, Artery and Vein center
in Fresno, California.

2.1. ECG Digitalization

The images of the ECG signals on the printout paper was initially digitalized. According to
the American Heart Association’s standardization, the most common form of paper ECG is the
simultaneous lead presentation, in which four 2.5-s columns are presented sequentially on the page
with no time disruption between the columns. Each column, therefore, represents successive 2.5-s
intervals of a continuous 10-s record from the limb, augmented limb and precordial leads (as shown
in Figure 2). Specifically, the first column records three rows representing simultaneous three limb
leads of I, II and III; the second column representing augmented limb leads of aVR, aVL and aVF;
the third column represents precordial leads of V1, V2 and V3; and the fourth column represents
simultaneous precordial leads of V4, V5 and V6. Additional rows may be available for 1-, 2- or 3-leads
of 10-s continuous recordings for rhythm analysis.
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Figure 2. (a) Image of a paper ECG with 2 s long signal of a representative patient showing segments
of limb (I, II and III), augmented limb (aVR, aVL and aVF) and precordial (V1-6) leads and a full 10 s of
lead II signal. (b) The digitized waveform of the 12-lead ECG signals with the X-axis represent the time
duration (ms) and the Y-axis represent the signal amplitude (mV).

In the digitalization step, the grids of the recording were initially removed by the grayscale
thresholding techniques and the signals were separated as the black pixels from the background at the
resolution of 144 dpi by the greyscale thresholding and pixel by the vector conversion method [27].
The coordinates of three points (0,0), (0,1000), and (200,0) were selected which corresponding to the
signal amplitude of 1 mV and the signal duration of 200 ms. The bounds of the red, green, and blue
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threshold to separate the waveforms and the background were selected manually by sampling the
color along the signal curves. The black pixels, representing for the waveforms, were extracted and
concatenated in the column-wise form to generate the digital signals. As a result of the digitization,
a full 10-s digitized signal from lead II of the ECG, and 2.5-s signal of 12 channels I, II and III (limb
leads); aVR, aVL and aVF (augmented limb leads); and V1, V2, V3, V4, V5 and V6 (precordial leads)
were collected. A representative sample of a paper-based record and its digitized form of a 12-lead
ECG are shown in Figure 2a,b. The WinDigData digitizer software was utilized to assist the digitization
process and the detailed steps can be found from the Digitization Workflow site [28].

2.2. Poincare Ensemble Reconstruction and VCG Transformation

Poincare sectioning ensembles of the ECG phase space trajectory were proposed to reconstruct
the representative template of the ECG signal. Since the 2.5-s signals from the digitized 12-lead ECG
were too short to obtain statistically consistent estimates for the IRA localization, a Poincare pattern
ensemble approach was developed to reconstruct a full 10 s of 12-leads ECG. Figure 3 illustrates the
ECG reconstruction for one lead of the digitized ECG signal. The nonlinear dynamic state space
of the underlying cardiac system was initially constructed from a 2.5-s segment (Figure 3a) of each
digitized ECG channels using Taken’s embedding theorem [29]. The time evolution of the state space’s
trajectories (Figure 3b) explains the nonlinear dynamics of the underlying cardiac system [30,31].
In the reconstructed state space, the collective points from πStart to πEnd—the intersections of a (dE − 1)
dimensional hyperplane also called the Poincare section and the signal trajectory—depict the returning
map (Figure 3c). Here, the segments between successive πStart and πEnd in the returning map are called
sectioning ensembles which variations characterize for the heart rate variability dynamics and dE is the
embedding dimension determined by the Taken’s embedding theorem. These Poincare sectioning
ensembles of the ECG phase space trajectory are near periodic which can effectively be utilized for the
Karhunen–Loeve (KL) representation of the ECG signal [23,32].

The KL eigenfunctions estimated from the covariance matrix of the Poincare ensembles were
utilized as the basis functions to estimate the missing heartbeats and subsequent full 10-s length
of the missing leads. The KL spectral representation of a heartbeat of ECG signal is given by

g(t) =
N∑

i=1
αiφi(t) with αi is the KL coefficients and φi(t) is the linear independent solution of the

function
∫ Te

0 K(t, T)φ j(T)dT = ϑ jφ j(t). Here φi(t) are eigenfunctions and ϑ j are the eigenvalues of
the covariance matrix K(t, T) calculated from Te Poincare section ensembles. N is the number of
dominant eigenfunctions explaining more than 95% percent of the total variance and αi are the KL
coefficients estimated from the same beat in the 10-s continuous recordings (Lead II in this paper).
Poincare section ensembles were estimated simultaneously from πStart-πEnd cut from 2.5-s signal
realization as shown in Figure 3a–c. Based on the KL spectral expansion, the 10-s ECG segment was
estimated from the ensemble sets derived from the 2.5-s signal segment such that the 7.5-s missing part
was interpolated from the KL representation of the heart beat g(t) with the R-peak aligned with the
corresponding R-peak of the full 10-s ECG lead (Figure 3d). The steps were applied to the other ECG
leads to reconstruct a full set of 10-s of 12-leads of ECG. Eventually, the reconstructed 12-lead ECG was
transformed into 3-lead VCG by using an empirical transformation matrix [25]. The spatial-temporal
dynamics and stochastic variations of the cardiac dipole vector were quantified by the Octant and
Network random-walk features extracted from the VCG [23,25].

In the digitalization step, the grids of the recording were initially removed by the grayscale
thresholding techniques and the signals were separated as the black pixels from the background
at the resolution of 144 dpi by and pixel by the vector conversion method [27]. The black pixels,
representing for the waveforms, were extracted and concatenated in the column-wise form to generate
the digital signals. As a result of the digitization, a full 10-s digitized signal from Lead II of the ECG,
and 2.5-s signal of 12 channels including I, II and III (limb leads); aVR, aVL and aVF (augmented limb
leads); and V1, V2, V3, V4, V5 and V6 (precordial leads) were collected. A representative sample of a
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paper-based record and its digitized form of a 12-lead ECG are shown in Figure 2. The WinDigData
digitizer software was utilized to assist the digitization process.

Sensors 2020, 20, x FOR PEER REVIEW 7 of 18 

 

the underlying cardiac system was initially constructed from a 2.5-s segment (Figure 3a) of each 

digitized ECG channels using Taken’s embedding theorem [29]. The time evolution of the state 

space’s trajectories (Figure 3b) explains the nonlinear dynamics of the underlying cardiac system [30, 

31]. In the reconstructed state space, the collective points from 𝜋𝑆𝑡𝑎𝑟𝑡 to 𝜋𝐸𝑛𝑑 —the intersections of a 

(𝑑𝐸 − 1) dimensional hyperplane also called the Poincare section and the signal trajectory—depict 

the returning map (Figure 3c). Here, the segments between successive 𝜋𝑆𝑡𝑎𝑟𝑡  and 𝜋𝐸𝑛𝑑  in the 

returning map are called sectioning ensembles which variations characterize for the heart rate 

variability dynamics and 𝑑𝐸 is the embedding dimension determined by the Taken’s embedding 

theorem. These Poincare sectioning ensembles of the ECG phase space trajectory are near periodic 

which can effectively be utilized for the Karhunen–Loeve (KL) representation of the ECG signal [23, 

32]. 

 

Figure 3. Summarized steps (a–d) for the reconstruction of 10-s of lead II using 2.5-s of lead II and 10-

s of lead III in a representative MI patient using Poincare pattern ensemble method. 

The KL eigenfunctions estimated from the covariance matrix of the Poincare ensembles were 

utilized as the basis functions to estimate the missing heartbeats and subsequent full 10-s length of 

the missing leads. The KL spectral representation of a heartbeat of ECG signal is given by 𝑔(𝑡) =

∑ 𝛼𝑖𝜙𝑖(𝑡)𝑁
𝑖=1  with 𝛼𝑖  is the KL coefficients and 𝜙𝑖(𝑡)  is the linear independent solution of the 

function ∫ 𝐾(𝑡, 𝑇
𝑇𝑒

0
)𝜙𝑗(𝑇)𝑑𝑇 = 𝜗𝑗𝜙𝑗(𝑡). Here 𝜙𝑖(𝑡) are eigenfunctions and 𝜗𝑗  are the eigenvalues of 

the covariance matrix 𝐾(𝑡, 𝑇)  calculated from 𝑇𝑒  Poincare section ensembles. 𝑁 is the number of 

dominant eigenfunctions explaining more than 95% percent of the total variance and 𝛼𝑖 are the KL 

coefficients estimated from the same beat in the 10-s continuous recordings (Lead II in this paper). 

Poincare section ensembles were estimated simultaneously from 𝜋𝑆𝑡𝑎𝑟𝑡-𝜋𝐸𝑛𝑑 cut from 2.5-s signal 

realization as shown in Figure 3a–c. Based on the KL spectral expansion, the 10-s ECG segment was 

estimated from the ensemble sets derived from the 2.5-s signal segment such that the 7.5-s missing 

part was interpolated from the KL representation of the heart beat 𝑔(𝑡) with the R-peak aligned with 

the corresponding R-peak of the full 10-s ECG lead (Figure 3d). The steps were applied to the other 

ECG leads to reconstruct a full set of 10-s of 12-leads of ECG. Eventually, the reconstructed 12-lead 

Figure 3. Summarized steps (a–d) for the reconstruction of 10-s of lead II using 2.5-s of lead II and 10-s
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2.3. Feature Engineering and Infarct-Related Artery (IRA) Localization

Four groups of features were extracted from the reconstructed VCG octants with the detailed
processing steps presented in our previous work [16]. In particular, the method involves representing
the evolution of VCG signals as a dynamic network in a 3D state space and characterizing the
random-walk transition of the cardiac vector in the network to track the spatio-temporal dynamics of
the underlying cardiac system. Figure 4 summarizes the overall steps to model a directed weighted
network of the cardiac vector with the nodes and edges defined from VCG cartesian octant space.
Four feature groups extracted from the octant network consist of: (1) local octant features, (2) octant
residence features, (3) octant transition features and (4) network topology features. The local octant
group includes 48 descriptive features, such as the minimum, average, variance, maximum, azimuth
and elevation of the vector magnitudes. These features are attributed to the morphological and
temporal characteristics of the VCG signals. The octant residence group comprises 12 features which
include sojourn times in each octant and velocity of the vector magnitudes. The octant transition group
consists of 16 features including arrival and departure rates between each pair of octants. Finally,
85 features from network topology quantify the topology of the random-walk network, including
the degree of assortativity (48), density clustering (17), distances and cycles (12) and betweenness
centrality (8). A summary of these features is described in Table 1.
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3D Cartesian octant space; and (d) directed weighted network with the nodes are 8 octants and the
weighted edges are the transitions of VCG trajectory among the octants.

Principal component analysis (PCA) and bootstrapping were used to reduce the dimension
of the feature space and address the imbalance of samples among different IRA groups in the
dataset. The principal components (PCs) explaining 80% of the feature’s variance were selected for
the representation of the feature set. Due to a large number of features from the octant analysis,
a subset of significant features was selected from the feature space based on its contribution to

selected PCs. The contribution of the feature kth to the PC is defined as wk =
n∑

i=1
βi ∗ c2

ki, where

βi is the eigenvalue of the principal component i and cki is the loading of the feature kth on the
principal component i. The features with the highest contributions were selected as the feature set for
the classification of different infarct-related arteries. Borderline-Synthetic Minority Over-sampling
Technique (SMOTE) [33]—an over-sampling method in imbalanced dataset learning—was performed
to create a balanced training set to establish a stable decision boundary.

We proposed an angiographical-based hierarchical classification model on the selected features
to classify different IRA. The hierarchy of the classifier assimilates the catheter-based angiography
procedure that traces the occlusion along the branches of infarct-related arteries. This top-down
strategy utilizes pre-defined classes determined by the hierarchy of the coronary anatomy as the
predicted classes to minimize the misclassification errors in a multiclass classification problem [34].
Figure 5a illustrates the anatomical structure of the heart with the highlighted main coronary arteries:
left coronary artery (red) and right coronary artery (blue). Based on the anatomical arrangement of
the major arteries, a hierarchical structure of the classification models to stratify various IRA groups
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was proposed, as shown in Figure 5b. At the first level, classification is sought between the healthy
subjects and the MI patients. On the MI patients, the model resume to classify the occlusions on the
left or right branches. If the occlusions are on the left branches, the model specifically discerns the
occluded locations on the left circumflex artery (LCA) or left anterior descending (LAD) artery. The
hierarchical implementation of this model was similar to the sequence of the angiography catheter
being maneuvered through the coronary arteries to identify the culprit IRA in acute MI.

Table 1. Description of octant features extracted from the VCG signals.

Feature Groups Feature Name (No. of Features) Description

Local Octant (I)

OctiMin (8) Minimal vector magnitude in octant i
OctiAvg (8) Average vector magnitude in octant i
OctiVar (8) Vector magnitude variance in octant i

Octi1Max (8) Amplitude of the maximal vector in octant i
Octi1Elv (8) Elevation of the maximal vector in octant i
OctiAzm (8) Azimuth of the maximal vector in octant i

Octant Residence (II)

OctiNum (8) Sojourn time of the vector in octant i
SlowTran Minimal of octant transition rate in 10 s
FastTran Maximal of octant transition rate in 10 s

MeanTran Average of octant transition rate in 10 s
VarTran Variation of octant transition rate in 10 s

Octant Transition (III) InOctiRate (8) Arrival rate to octant i from all other octants
OutOctiRate (8) Departure rate from octant i to all other octants

Octant Network
Topology (IV)

InDgri (8) Number of inward links to octant i
OutDgri (8) Number of outward links from octant i

Degri (8) Octant i node degree
InStri (8) Sum of inward link weights to octant i

OutStri (8) Sum of outward link weights from octant i
Stri (8) Octant i node strength

Clusti (8) Clustering coefficient of octant i
Jod Number of octant with outward links > inward links
Jid Number of octant with inward links > outward links
Jbl Number of octant with inward links = outward links

Rass Assortativity coefficient of the octant network
Kden Number of octants with transitions
Nden Number of connections in the network
K_den Density of the octant network
Transi Transitivity coefficient of the network
Qmod Maximized modularity coefficient

LambdaNet Average shortest path length in the octant network
EfficiencyNet Average inverse shortest path length (Global efficiency)

Ecci (8) Greatest of all shortest path from octant i to all other octants
RadiusNet Radius of the octant network

DiameterNet Diameter of the octant network
NodeBeti (8) Node betweenness centrality of octant i
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3. Implementations and Results

3.1. Data Descriptions

Two sources of data were employed for the validation of the presented method. The first source of
data consisted of 362 recordings (282 MI and 80 HC) from the PhysioNet PTB Database. Each recording
contained 15 simultaneous channels of signal, namely, the conventional 12-lead ECG and the 3-lead
(Frank XYZ) VCG. The signals were sampled at 1 kHz with a 16-bit resolution over a range of
±16.384 mV for at least 30 s with an average length of ∼2 min. This first source of data was used to
evaluate the consistency of the reconstructed ECG from the paper ECG and the ground truth from the
12-lead ECG. The second source of data was the paper ECG printouts and the coronary angiography
collected from the patients with the clinical symptoms of acute coronary syndrome presented to the
Heart, Artery and Vein Center at Fresno California [35]. The ECGs were obtained at the paper speed of
25 mm, gain of 10 mV and paper format of 3 × 4 using a Philips Pagewriter Touch Interpretive ECG
machine (Philips Medical Systems, Andover, MA, USA). Among the 171 patients who underwent a
12-lead ECG, 65 patients were excluded due to the poor quality of the collected signals. The excluded
ECG data had low signal-to-noise ratio and artifact caused by the poor skin-to-electrode connection or
mechanical factors such as equipment malfunctions. Nonetheless, in most scenarios, nurses are trained
to identify the sources of artifacts and can repeat to get better measurements [36]. Among the remaining
patients, those with acute MI were diagnosed by ECG tracings and confirmed by cardiac biomarkers.
Subsequently, coronary angiography was performed to classify the acute MI cases into four groups
based on the localization of the infarct-related arteries. The four culprit artery groups were annotated
as (i) LAD (left anterior descending), (ii) LCX (left circumflex), (iii) RCA (right coronary artery), (d) E
(for those patients whose MI locations are not clearly identified). The second data source was used to
cross-validate the accuracy of the IRA classification model. Table 2 summarizes the demographics of
the selected study cohort in the second data source.

Table 2. Baseline characteristics of MI subjects admitted to the Heart, Artery and Vein Center at
Fresno California.

Characteristics Value Characteristics Value

Ethnicity

Hispanic 32.1%

Systolic Blood Pressure (mmHg) 121 ± 26.59

Asian 5.7%
Caucasian 21.7%

Black 7.5%
Eastern Indian 2.8%

Unknown 30.2%

Gender
Male 66.9% Diastolic Blood Pressure (mmHg) 71 ± 16.26Female 33.1%

Age 40.02 ± 14.08 Cholesterol 167 ± 51.38

Weight (lbs) 175.58 ± 50.02 BMI 28.39 ± 6.26

3.2. Reconstruction of 12-Lead ECG Signal

The 12-lead ECG measurements collected from the online Physionet PTB database have been
used to validate the Poincare pattern ensemble reconstruction approach. Accordingly, we formulated
the digitized signals of paper ECG by getting 10 s of lead II ECG and 2.5 s of other leads from the
full 12-lead ECG. The Poincare pattern ensemble approach was applied to the formulated signals to
reconstruct the full 10-s of 12-leads of ECG. The reconstructed signals were finally compared with the
full 12-lead ECG to evaluate the performance of the reconstruction method. The correlation coefficients
R2—goodness of fit between the estimated and the measured signals—of the estimated ECGs and
the measurements from 12-lead ECG on the PhysioNet PTB Database are reported in Table 3. The R2
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statistic of 1 indicates that reconstruction is able to correctly reproduce the actual measured data every
single time. The R2 statistic in lead i is given by:

R2 = 1−

∑
Signal length in lead i [Reconstructed(sample k) −Measured(sample k)]2∑

Signal length in lead i [Measured(sample k)]2
(1)

Table 3. Correlation coefficients between the reconstructed ECG and the measurements in 12-leads of
ECG signal.

Lead R2 Value (Mean ± Std.) Lead R2 Value (Mean ± Std.)

I 0.96 ± 0.13 V1 0.95 ± 0.23
II 0.98 ± 0.08 V2 0.92 ± 0.52
III 0.97 ± 0.13 V3 0.96 ± 0.21

aVR 0.95 ± 0.31 V4 0.96 ± 0.24
aVL 0.92 ± 0.47 V5 0.95 ± 0.17
aVF 0.96 ± 0.16 V6 0.96 ± 0.08

The reported R2 in 12-lead ECG are above 0.95, indicating a highly accurate estimation of full
10-s long ECG from the 2.5-s signals from the paper recordings. The algorithm was performed on the
digitalized ECG signal for the full 12-lead of the paper-ECG. Figure 6 demonstrates a representative
record of a 2.5-s segment of the paper ECG signal, the measured and the estimated signals of the
12-lead ECG in (a) limb leads I, II and III; (b) augmented limb leads aVR, aVL and aVF; (c) precordial
leads V4, V5 and V6; and (d) precordial leads V1, V2 and V3.
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3.3. Feature Extraction and Feature Selection

PCA was performed on the extracted feature space to justify the redundancy of the extracted
features. Of all the 151 features extracted from the reconstructed signals, 22 features were selected
for further analysis. Figure 7 shows 22 selected features with their corresponding weight value w in
descending order. The total weights accounting for 80% of the variation of the feature space with the
cut-off at OutDgr3 feature was used to determine the threshold to select the features. This feature set
was used to separate the healthy subject and MI patient groups.
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Figure 7. A set of 22 features and their corresponding weight values selected from the PCA analysis
with the cut-off at the feature OutDgr3.

To avoid the overfitting issue and increase the interpretability of the hierarchical model, a subset
of the 22 above features was selected based on PCA analysis for the IRA localization. Figure 8 indicates
the variable importance plot of Gini’s diversity index, a statistic to represent the reduction in the
accuracy of the classification model in the absence of a specific feature. It is observed from the figure
that Oct2Var was the most significant feature and Oct1Var was the cut-off feature to separate the
feature space into two separate groups. The cut-off threshold is determined based on the significant
reduction of the Gini’s diversity index. Thus, the reduced feature set consisting of the first eight
features, including Oct1Var, was selected as the classifier inputs to separate different infarct-related
arteries. In the collected dataset, the number of samples under different classes was unbalanced as
follows: E-25, LAD-42, LCX-8, RCA-31 and HC-80 cases. Accordingly, due to the imbalance between
the IRA training classes, more weight would be given to the samples nearer to the classifier boundary,
and thus the classification model decision would be biased to the groups with more observations.
We performed the borderline-SMOTE over-sampling method to generate minority class instances on
the line segments joining each minority class instances with its nearest neighbors.
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3.4. IRA Localization and Hierarchical Model Selection

The results of the classification for different IRA types were reported. The 10-fold validation
with the repeated application of bootstrapping data was performed to handle the data unbalance and
avoid the overfitting problem. The occlusions in three major coronary arteries to supply blood to the
myocardium, including LAD (50%), RCA (25%) and LCX (25%), were investigated. From Figure 9a,
the classification tree detected HC and MI with the specificity of 97.69% and the sensitivity of 97.13%,
respectively. The octant features in group I and network features in group IV, including OctVar, OctMax
and OutStr, were selected as significant ones for the separation between MI and HC. Figure 9b shows
the decision tree to separate between E and Left-Right (LR) classes with the selected features from
the network feature (group IV) of Clust and three octant features (group I) of “Oct1Var”, “Oct3Var”
and “Oct1Elv”. An accuracy of 89.59% and 76.47% were reported for the group LR and E, respectively.
The lower accuracy of group E was attributed to the indiscernibility of this group from the LAD,
LCX and RCA groups. Four network features, including “Str3”, “Clust3”, “OutStr1” and “OutDgr1”,
were significant features in detecting the left main arteries and RCA group as shown in Figure 9c.
As opposed to the inability of electrocardiographic features in classifying left and RCA classes [16,25],
the selected features yielded the accuracies of 83.4% and 71.43% on these two classes, respectively.
The overlapping of the LCX with the RCA could be the reason for the misclassified cases of the left and
the right arteries. In the last CART as shown in Figure 9d, the model over classifies the LAD with the
accuracy of 100%, while the accuracy of LCX was reported as 66.67%. Such misclassification of LAD
over LCX results from the dominance of the LAD’s branches over the LCX’s branches.

A group of classification models was reported for the optimal classification model selection.
The candidate models used to implement the IRA classification include the classification regression
tree (CART), support vector machine (SVM), k-nearest neighbor (KNN), neural network (NN) and
bagged ensemble tree (BET). The cross-validation was performed to improve the generalization of the
model and the parameters of each model were selected optimally from the training and validation
process. Table 4 shows the average classification results at all hierarchical levels using CART, SVM,
KNN, NN and BET. It is noted that the classification accuracies for different IRA classes were consistent,
which indicates the robustness of the selected feature set. Among the classification models, CART
excelled in detecting MI condition, with an average accuracy of 97.41%; meanwhile, SVM was superior
in specifying different infarct-related arteries, with the average accuracy >88%. Among the reported
accuracy, the classification of LAD vs. LCX yielded the best overall results of 93.67% by using SVM;
however, the classification of RL vs. E produced the equivalent results by using SVM and NN. Based on
the classification accuracy, we proposed the use of the CART hierarchical classification as the optimal
model for the detection of MI vs. HC and SVM for the localization of different IRAs.
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Figure 9. Summary of CART trees and corresponding contingency matrix of various IRA localization.
All CART models are specified in terms of a trees structure with the solid lines denoting the true branch
(i.e., the condition stated at the root of the tree holds) and the dashed line denoting the false branch. The
optimized model structures are showed in (a–d). At the first level, classification was sought between
healthy subjects and MI patients (a); later, the culprit arteries were classified into in left and right
arteries (LR) vs. unspecified (E) in (b); and the specified occlusion was localized on left main arteries
or right arteries (RCA) in (c). If it was on the left, the model continues to determine whether it is left
circumflex artery (LCX) or left anterior descending (LAD) branches (d).
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Table 4. Classification accuracies of different classes using CART and SVM models.

Models
Level in the Hierarchy Model

HC vs. MI LR vs. E LCA vs. RCA LAD vs. LCX

CART 97.41 ± 2.44 83.03 ± 9.71 77.42 ± 5.18 83.34 ± 0.0
SVM 91.07 ± 4.46 89.41 ± 9.89 88.2 ± 11.6 93.67 ± 4.89
KNN 88.4 ± 0.75 84.57 ± 2.96 84.58 ± 3.52 88.89 ± 1.65
NN 85.75 ± 2.89 89.5 ± 4.37 76.13 ± 15.08 87.57 ± 6.92
BET 91.3 ± 0.69 77.73 ± 2.66 64.01 ± 6.59 84.49 ± 3.88

4. Discussion

The interpretation of the octant features and the location of the occlusive coronary arteries are
discussed. Since in MI cases, the mean electrical axis of depolarization deviates from the normal range
by 20–90 degrees [37], most of the octant transitions characterized by ischemia changes shift from the
left side in octants 5–8 to the right side in octants 1–4, as shown in Figure 4c,d) and in our previous
work [16]. As a result, most octant features in octants 1–4 were selected for the separation between
healthy from MI as well as coronary arterial occlusions. The vector transition shifting among octants
was manifested by the T-wave inversion (the sign of ischemia and infarction evolution), ST segment
(the indication of an on-going injury) and the known characteristics of Q-wave (manifestation of
long-term necrosis) in traditional 12-lead ECG. The loss of positivity in the infarcted areas after the
depolarization is responsible for these vector transition shifting. In particular, for the classification
of MI from normal cases, features from octants 1, 2 and 4 were used. The vector amplitude was also
higher in octant 4 (Oct4Max), due to the inverted T-wave resulting in MI cases. More transitions to
octant 3 imply more activities on the right side due to the ischemia areas on the left side. If there are
fewer activities around octant 3 (which is indicated by low clustering coefficient), then more activities
in octant 1 show the indication of occlusion in the right arteries.

5. Conclusions

One of the most important clinical questions after an acute MI is the culprit arteries and the
inducible extension of the ischemic myocardium. The timely confirmation of the ischemic locations and
the IRA in an acute MI allows the patient to be directed to the catheterization laboratory, even bypassing
the emergency department. In this paper, we developed a method to estimate the missing heartbeats
and reconstruct the full 10-s length of the 12-leads ECG for timely classification and localization of the
culprit infarct-related arteries. The proposed method was to reconstruct the VCG signals from the paper
ECG, which can preserve the dynamic characteristics of the missing signals, as well as a computational
framework to utilize paper-based ECG records for the detection and localization of IRA. Taken’s
theorem-based reconstruction method, using the Poincare session on the state space, was proposed
to extract fiducial patterns and recurrent structures of the signal pattern without losing the dynamic
characteristics of the original ECG signals. The KL eigenfunctions estimated from the covariance matrix
of the Poincare ensembles were utilized as the basis functions to estimate the missing heartbeats. By
using the Poincare pattern ensemble reconstruction method, a full length of 10-s of 12-lead ECG signals
was constructed from a 2.5-s long signal of the paper ECG recordings. This full length of 10-s ECG
signal and its derived VCG signals provided asymptotic consistent estimators for a machine learning
localization model. The reconstructed ECG signals were found to be highly correlated (R2 > 92%)
to the benchmark 12-lead ECG signals collected from the online Physionet database. A hierarchical
classification model, mimicking a catheter-based angiographic procedure, was developed for the
localization of the IRA. The features extracted from the constructed signals were employed as the
input of the classification model to determine different IRAs with an accuracy of 97.41% for healthy
control (HC) vs. MI, 83.03% for E vs. others, 77.42% for LAD and LCX vs. RCA and 83.34% for LAD vs.
LCX. One of the limitations of the model is the ability to localize multiple culprit arteries present in
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approximately 1% of angioscopy studies of acute coronary syndromes. Overfitting of rare IRA cases,
especially LCX and E, can be addressed by analyzing larger retrospective pooled data with appropriate
bootstrapping techniques. Our future research direction is to gain access to a larger dataset so that
multiple IRAs can be simultaneously diagnosed. The proposed computational framework can be
helpful to obviate critical complications and guide MI patient management at overcrowded emergency
departments. The proposed method will enhance the development of advanced and cost-effective
solutions for clinical diagnosis and cardiac care to the vast majority of healthcare settings across the
world where capital investment to upgrade the current paper-ECG cardiac monitoring system to the
digital Holter ECG has been limited.
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