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Abstract
The occurrence of various species of Brassicaceae with indehiscent fruits in the cold

deserts of NW China suggests that there are adaptive advantages of this trait. We hypothe-

sized that the pericarp of the single-seeded silicles of Isatis violascens restricts embryo

expansion and thus prevents germination for 1 or more years. Thus, our aim was to investi-

gate the role of the pericarp in seed dormancy and germination of this species. The effects

of afterripening, treatment with gibberellic acid (GA3) and cold stratification on seed dor-

mancy-break were tested using intact silicles and isolated seeds, and germination phenol-

ogy was monitored in an experimental garden. The pericarp has a role in mechanically

inhibiting germination of fresh seeds and promotes germination of nondormant seeds, but it

does not facilitate formation of a persistent seed bank. Seeds in silicles in watered soil

began to germinate earlier in autumn and germinated to higher percentages than isolated

seeds. Sixty-two percent of seeds in the buried silicles germinated by the end of the first

spring, and only 3% remained nongerminated and viable. Twenty to twenty-five percent of

the seeds have nondeep physiological dormancy (PD) and 75–80% intermediate PD.

Seeds with nondeep PD afterripen in summer and germinate inside the silicles in autumn if

the soil is moist. Afterripening during summer significantly decreased the amount of cold

stratification required to break intermediate PD. The presence of both nondeep and interme-

diate PD in the seed cohort may be a bet-hedging strategy.

Introduction
In the context of gaining a better understanding of seed germination of desert species whose
diaspores are dry indehiscent fruits, we have focused on the cold deserts of central Asia, in
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particular the Gurbantunggut Desert in the Junggar Basin of Xinjiang Uyghur Autonomous
Region of northwest China. In this desert, there are at least eight genera and 31 species of
annual ephemerals in five tribes of Brassicaceae, 11 of which produce dry indehiscent silicles or
siliques [1,2]. The occurrence of various Brassicaceae species with indehiscent fruits suggests
that there are some adaptive advantages of this trait in arid zones with unpredictable rainfall,
such as the Gurbantunggut Desert. But what are they? One possibility is that the pericarp plays
an important role in delaying seed germination, which may be a hedge against the risk associ-
ated with germination in a temporally unpredictable environment [3,4].

According to the Nikolaeva-Baskin classification system, there are five classes of seed dor-
mancy [5,6]. Physiological dormancy is caused by low growth potential of the embryo, physical
dormancy by a water-impermeable seed or fruit coat, combinational dormancy by a water-
impermeable seed (or fruit) coat and low growth potential of the embryo, morphological dor-
mancy by an underdeveloped embryo that needs to complete growth (the dormancy period)
within the mature seed before the radicle emerges (i.e. seed germinates) and morphophysiolo-
gical dormancy by an underdeveloped embryo that also is physiologically dormant. Of these,
the only one known for Brassicaceae species is physiological dormancy (PD). PD occurs in
three increasing degrees or depths (intensities) of dormancy as follows: nondeep
PD< intermediate PD< deep PD.

In fresh (nontreated) seeds with nondeep PD and intermediate PD, isolated embryos give
rise to normal seedlings, although compared to embryos from treated (nondormant) seeds
there may be a bit of a lag in time in beginning of growth of the embryo into a seedling. In con-
strast, embryos isolated from fresh (nontreated) seeds with deep PD either do not grow or if
they do the seedling is abnormal [7]. Nondeep PD is broken in seeds of many species by 2–8
weeks of warm stratification (or sometimes by 8–12 weeks of afterripening in dry storage), but
it is broken in seeds of other species by 2–10 weeks of cold stratification [6,7]. Seeds of temper-
ate/arctic-zone species with intermediate or deep PD require a minimum of 4–24 and 8–25
weeks, respectively, of cold stratification, depending on species, for dormancy to be broken [6].
However, a pretreatment period of afterripening or of warm stratification may reduce the
length of the cold stratification period required to break intermediate PD [7]. Gibberellic acid
(GA3) will break nondeep PD, may or may not break intermediate PD, depending on the spe-
cies, and does not break deep PD [7].

Previous research has shown that the pericarp can prevent germination via mechanical
restriction [8–11], chemical inhibition [12,13] or both mechanical restriction and chemical
inhibition [14–16], all of which are components of PD [5]. This diversity of mechanisms indi-
cates that the effect of the pericarp on dormancy and germination is complex. However, with a
few exceptions [10,16] little information on the role of the pericarp in seed dormancy/germina-
tion is available for cold desert species of Brassicaceae. In Diptychocarpus strictus, one dispersal
morph is a winged and mucilaginous seed, and the other is an indehiscent silique [10]. In Lach-
noloma lehmannii, the silicles are indehiscent and thickly-covered with long trichomes [16]. In
both of these Brassicaceae species, the pericarp strongly inhibits seed germination. After 2
years of burial in soil, no seeds of L. lehmannii inside the pericarp (silicles) had germinated,
although they were viable [16]. Seeds inside siliques of D. strictus did not begin to germinate
until they had been buried for 14 months, and some germinated in the fifth autumn after burial
[17]. To increase our knowledge of the germination ecology of cold desert Brassicaceae, we
investigated seed dormancy/germination of Isatis violascens Bunge, whose silicles are
indehiscent.

Isatis violascens is an annual ephemeral that occurs in central Asia. In China, the species is a
component of the spring ephemeral flora of fixed sand surfaces in the interidge zone and mid-
dle-lower slopes of sand dunes in the southern part of the Garbantunggut Desert in Xinjiang
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[18–20]. It has been suggested that this species be considered as a synonym of I. emarginata
[21]. Ma and Tan [22] reported that I. violascens germinates in late March, fruits are fully
mature in late May and early June and the length of the life cycle is about 70 d. Each silicle has
a wing and contains one seed (Fig 1). Based on results from other studies of indehiscent fruits
of cold desert Brassicaceae [10,16], we hypothesized that the silicle pericarp of I. violascens
restricts embryo expansion and thus prevents germination until the second (or some later)
year after maturation, thereby allowing time for the pericarp to soften and release mechanical
and/or chemical restriction of germination. To test this hypothesis, we compared the dor-
mancy-breaking effects of (1) afterripening, (2) the plant growth regulator gibberellic acid
(GA3) and (3) cold stratification (see [6]) on seeds in intact silicles and isolated seeds in the lab-
oratory and (4) monitored their germination phenology in an experimental garden.

Annual species that grow in unpredictable habitats and flower in spring and set seeds before
the onset of summer drought may behave as obligate winter annuals or as facultative winter
annuals. Seeds of obligate winter annuals germinate only in autumn, whereas those of faculta-
tive winter annuals can germinate in autumn and in spring. Plant from autumn-germinating
seeds behave as winter annuals, whereas those from spring-germinating seeds behave as spring
ephemerals [6]. The series of experiments designed to test the hypothesis that the pericarp of I.
violascens delays germination also provides insight into how the seed stage of this species dif-
fers from that of other facultative winter annuals studied thus far.

Material and Methods

Ethics approval
No specific permits were required for the described field studies. The location is not privately-
owned or protected in any way, and the field studies did not involve endangered or protected
species.

Field site description and silicle collection
The field study site is a cold desert sand dune in Fukang city in the southern part of the Junggar
Basin of Xinjiang Province (44°220N, 88°080E, 458 m a.s.l.), China. This area of the Junggar
Basin has a temperate continental climate. Mean annual temperature is 7.9°C, and the mean
temperature of the coldest (January) and hottest (July) months is -17.0°C and 26.0°C, respec-
tively. Average annual precipitation (including rain and snow) is 202.2 mm, about two-thirds
of which falls in spring and summer. The snow that falls in winter begins to melt in March or
April (data from Fukang weather station, 2001–2013). Annual potential evaporation is> 2000
mm [23].

Freshly-matured silicles were collected on 8 June 2013 from dry infructescences of I. violas-
cens plants growing in three natural populations, each consisting of several hundred plants.

Fig 1. Morphology of silicle (A), seed (B) and embryo (C) of Isatis violascens. a (inset), trichomes. W1,
W2, W3 andW4, wing width. W1 is left side of silicle; W2 right side of silicle; W3 upper end of silicle; andW4

peduncle end of silicle. P, seed covered by pericarp.

doi:10.1371/journal.pone.0140983.g001
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The number of silicles ranged from 15–200 per individual, depending on plant size. The silicles
from the three populations were pooled and stored in paper bags at room conditions (16–30°C,
10–40% RH) until used.

Morphological characteristics of silicles and seeds
Color, shape, size and mass were determined for silicles and seeds that had been stored in labo-
ratory conditions for about 2 mo (Fig 1). Such information would be useful for researchers
comparing the seed biology of I. violascens with that of other species. Length and width of sili-
cles, thickness of pericarp and width of wings were measured for 30 silicles using digital cali-
pers. Seeds were removed from silicles using a razor blade, being careful not to damage the
seed coat or embryo. The length and width of seeds and morphology and color of embryos
were determined and recorded. In addition, four replications of 100 intact silicles were weighed
individually using a Sartorius BS210S electronic-balance (0.0001 g), after which the pericarps
and seeds for each replication were weighed separately to determine the relative mass of both
components of the dispersal unit.

Germination ecophysiology
Effect of pericarp on imbibition and dehydration of seeds. To determine the amount

and rate of water uptake, each of 270 2-mo-old intact silicles and each of 15 isolated seeds were
weighted (time 0) and placed in individual 9-cm-diameter Petri dishes on filter paper moist-
ened with distilled water and kept on a laboratory bench at room conditions. After 0.5 h and
then at 1-h intervals (until mass was constant), 15 silicles and 15 isolated seeds was removed
from the dishes, blotted dry with filter paper and weighed individually. After weighing, isolated
seeds were returned to the dishes, and the 15 silicles were cut open and their seeds removed
and weighed.

Dehydration of fully imbibed silicles/seeds was monitored. Ninety silicles and 15 isolated
seeds that were fully imbibed were weighted (time 0) and placed on dry filter paper at labora-
tory conditions. After 0.5 h and then at 1-h intervals (until mass was constant), each of 15 sili-
cles and each of 15 isolated seeds was removed from its dish and weighed. Also, at each time
interval 15 silicles were weighed, cut open and their seeds removed and weighed.

A one-way ANOVA was used to determine significant differences (p = 0.05) in percentages
of increase in mass after imbibition among the three treatments. Tukey’s HSD test was per-
formed for multiple comparisons to determine significant differences (p = 0.05) among the
treatments. All data analyses were performed with SPSS version 16.0 (SPSS Inc., Chicago, Illi-
nois, USA) [24].

Effect of dry storage (afterripening) on germination. To determine if dormancy-break
occurs during dry storage (afterripening), silicles and isolated seeds stored in laboratory condi-
tions (16–30°C, 10–40% RH) for 0 (fresh), 1, 2, 3, 6, 9 and 12 mo were tested for germination.
Silicles and seeds were incubated at daily (12/12 h) temperature regimes of 5/2, 15/2 and 30/
15°C in light (12 h of� 100 μmol m-2 s-1, 400–700 nm, cool white fluorescent light each day)
or in constant dark (Petri dishes with seeds in them placed in light-proof black bags) for 28 d.
For each combination of treatments [seven storage periods × three temperature regimes × two
light treatments × two pericarp treatments (i.e. silicles and isolated seeds)], four replicates of 25
silicles or of 25 seeds were incubated on two layers of Whatman No.1 filter paper moistened
with 2.5 mL of distilled water in 9-cm-diameter Petri dishes. The 5/2°C regime represents late
and early winter, 15/2°C spring and autumn and 30/15°C summer [25]. A seed was considered
to be germinated when the radicle had emerged. Germination in light was examined daily for
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28 d; germinated seeds were removed at each counting. Seeds incubated in dark were checked
only after 28 d; therefore, they were not exposed to any light during the incubation period.

After the germination trials were complete, the nongerminated seeds were tested for viabil-
ity. Seeds were cut open and the embryo observed. Seeds with white, firm embryos were
counted as viable, and those with tan, soft embryos were considered nonviable and excluded
from the calculations of germination percentages. Only a very few seeds were nonviable. The
tests of fresh seeds (0 mo old) were initiated on 13 June 2013, using seeds collected on 8 June
2013.

Germination data were analyzed using generalized linear models (GLMs). A binomial linear
model was fitted with a logit link to germination as the response variable. The models included
four fixed effects, i.e. light, storage time, temperature and treatment (intact silicles and isolated
seeds) and the interactions between treatment and the other effects (i.e. light, storage time and
temperature). Tukey’s HSD test was performed for multiple comparisons to determine signifi-
cant differences (p = 0.05) within silicles and within seeds in final germination percentages
among light conditions and storage time.

Effect of GA3 on dormancy break. To test the effects of gibberellic acid (GA3) on dor-
mancy break of silicles and of isolated seeds, four replicates of 25 silicles and of 25 isolated
seeds were incubated in 0 (distilled water control), 0.1, 1.0 and 10 mmol L-1 GA3 solutions at
daily temperature regimes of 5/2 and 15/2°C in light and in constant dark for 28 d. This experi-
ment was conducted on fresh isolated seeds and intact silicles and on those that had been
stored dry at room conditions for 1 and 12 months.

A one-way ANOVA was used to determine significant differences (p = 0.05) in germination
percentages among light conditions and GA3 treatments of seeds within silicles and of isolated
seeds stored for 0, 1 and 12 months. Tukey’s HSD test was performed for multiple comparisons
to determine significant differences (p = 0.05).

Effect of cold stratification on germination of seeds inside silicles. The purpose of this
experiment was to determine if cold stratification is required to break seed dormancy. Four
replicates each of 25 0- and 6-mo-old dry-stored silicles were cold stratified on moist filter
paper at 4°C in constant dark for 0, 4, 8 and 12 weeks. After each cold stratification period, sili-
cles were incubated in light at 5/2 and 15/2°C for 28 d.

Final germination percentages between the two temperature regimes (i.e. 5/2 and 15/2°C) of
0- and 6-mo-old dry-stored silicles cold stratified for 0, 4, 8 and 12 weeks were compared with
the chi-square test to determine significant differences (p = 0.05). A one-way ANOVA was
used to determine significant differences (p = 0.05) within 5/2°C and within 15/2°C in final ger-
mination percentages of 0- and of 6-mo-old dry-stored silicles among cold stratification peri-
ods. Tukey’s HSD test was performed for multiple comparisons to determine significant
differences (p = 0.05).

Effect of storage in soil in the field on germination and viability. The purpose of this
experiment was to determine when silicles and isolated seeds germinate under field (experi-
mental garden) conditions. Five days after collection on 8 June 2013, 200 silicles were placed in
each of 20 fine-mesh nylon bags, and 200 isolated seeds were placed in each of another 20 bags.
Each bag with silicles and each with seeds (with silicles and seeds in a single layer) was buried
at a depth of 0.5 cm in soil in plastic pots (23 cm deep and 27.5 cm diameter with drainage
holes at the bottom) filled with a mixture of 50% grey desert soil and 50% desert sand. The pots
were placed on the soil surface in the experimental garden on the campus of Xinjiang Agricul-
tural University in Urümqi, near the southern edge of the Junggar Basin. Seeds were subjected
to natural temperature and soil moisture conditions; temperature data were recorded by an I-
button DS1923 buried at a depth of 0.5 cm in a pot of soil.

Two Levels of Physiological Dormancy in Isatis

PLOSONE | DOI:10.1371/journal.pone.0140983 October 29, 2015 5 / 16



Except for months with a snow cover on the ground (December 2013 to February 2014),
one pot each of 200 buried silicles and of 200 isolated seeds was haphazardly selected and taken
to the laboratory at monthly intervals, starting on 19 July 2013 (seeds and silicles buried for 1
mo) and ending on 9 July 2014 (12 months). For each pot of 200 silicles and of 200 isolated
seeds, the percentage of in situ germination, dead seeds and viable seeds was determined. Non-
germinated firm seeds were tested for germination. For each combination of treatments
[retrieval eight times × two pericarp treatments (i.e. silicles and isolated seeds)], four replicates
of 25 silicles and of 25 seeds were placed in 9-cm-diameter plastic Petri dishes on two layers of
Whatman No.1 filter paper moistened with distilled water and incubated in light at 15/2°C for
28 days. Seeds were examined for germination daily for 28 d, and germinated silicles and seeds
were removed at each counting. After the germination trials were complete, the nongerminated
seeds were tested for viability, as previously described.

Data on seed fates during burial in the field and during incubation in light at 15/2°C in Petri
dishes were analyzed using generalized linear models (GLMs). A multinomial linear model was
fitted with a logit link to seed fates of the two stages. For seed burial in the field, the response
variable included three categories (germinated during burial, nongerminated but viable seeds
and dead seeds). The models included two fixed effects, i.e. retrieval time and treatment (intact
silicles and isolated seeds) and their interaction. For seed germination during incubation in
light at 15/2°C in Petri dishes, the response variable also included three categories (germinated
during incubation, viable seeds and dead seeds). The models included two fixed effects, i.e.
retrieval time and treatment (intact silicles and isolated seeds) and their interaction. Tukey’s
HSD test was performed for multiple comparisons to determine significant differences
(p = 0.05) within silicles and within seeds in percentages of germinated, viable and dead seeds
among retrieval times.

Germination phenology. The purpose of this experiment was to determine the effect of
soil moisture on germination of seeds in silicles and of those removed from silicles under natu-
ral temperature conditions. On 18 July 2013, 50 seeds collected on 8 June 2013 were sown at a
depth of 0.5 cm in eight plastic pots (23 cm deep and 27.5 cm diameter) filled with soil. Also,
on this date 50 silicles were sown at a depth of 0.5 cm in each of eight pots. All pots were placed
on the soil surface in the experimental garden, as previously described. Four pots of silicles and
four of seeds were watered, and the others were not watered. In the watered treatment, the soil
was watered to field capacity every 3 days throughout the experiment, except during the winter,
when the soil was frozen, while in the nonwatered treatment the soil received water only via
rainfall or snowmelt. Germination (seedlings) was monitored at 7-day intervals from 18 July
2013 to 9 May 2014. Temperature was recorded by an I-button DS1923 buried in soil at a
depth of 0.5 cm in one of the pots in which seeds were buried.

A one-way ANOVA was used to determine significant differences (p = 0.05) in final germi-
nation percentages among treatments. Tukey’s HSD test was performed for multiple compari-
sons to determine significant differences (p = 0.05).

Results

Morphological characteristics of silicles and seeds
Silicles are pandurate, compressed (Fig 1A), 6.2 ± 0.1 mm (mean ± 1 s.e.) in length and
3.2 ± 0.1 mm in width. Mass of 100 silicles is 0.88 ± 0.02 g. The pericarp is yellow or brown
with dense, short-unbranched trichomes (Fig 1A). The membranous wing is 0.1 ± 0.0 mm
thick. Wing width at the four locations shown in Fig 1A is 1.4 ± 0.0, 1.5 ± 0.0, 2.3± 0.1 and 3.1±
0.1 mm for W1 (on left side of silicles), W2 (on right side), W3 (on upper end) and W4 (on
lower (peduncle) end), respectively. Mass of pericarp is 53.3 ± 0.3% of that of the silicle. Seeds
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are yellow-green, oval, compressed (Fig 1B), 4.3 ± 0.1 mm in length and 1.8 ± 0.0 mm in width.
Mass of 100 seeds is 0.41 ± 0.01 g. Seed mass is 46.7 ± 0.3% of that of the silicle. The cotyledons
are incumbent (Fig 1C). Mass of 100 embryos is 0.32 ± 0.01 g.

Germination ecophysiology
Effect of pericarp on imbibition and dehydration of seeds. Silicles, seeds inside silicles

and isolated seeds imbibed water rapidly during the first 3 h, and they were fully imbibed after
6, 5 and 4 h, respectively (Fig 2). Silicles had a high capacity to take up water, and mass
increased 97% in 6 h. After 9 h of imbibition, there were no significant differences in mass of
water imbibed by seeds inside silicles and isolated seeds (p = 0.71). Isolated seeds were fully
imbibed sooner than those inside the silicles. Silicles, seeds inside silicles and isolated seeds
returned to their initial mass after 3, 3 and 2 h of drying, respectively. During dehydration,
seeds inside silicles lost water more slowly than isolated seeds.

Effect of dry storage (afterripening) on germination. Analysis of germination during
dry storage by GLMs with binomial model (two categories: germinated vs. non-germinated)

Fig 2. Time course for absorption and dehydration of silicles, seeds inside silicles and isolated seeds of Isatis violascens. AF, water absorption by
silicles; AS', water absorption by seeds inside silicles; AS, water absorption by isolated seeds; DF, dehydration of silicles; DS', dehydration of seeds inside
silicles; DS, dehydration of isolated seeds. Different letters indicate significant differences in final increase in mass. Error bars are ± 1 s.e.

doi:10.1371/journal.pone.0140983.g002
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revealed significant effects of light (χ2 = 146.1, p< 0.001), storage time (χ2 = 271.9, p< 0.001),
temperature (χ2 = 153.3, p< 0.001), treatment (χ2 = 25.0, p< 0.001) and interaction between
storage time and treatment (χ2 = 16.3, p = 0.012). However, there was no significant effects of
the interaction between temperature and treatment (χ2 = 1.1, p = 0.58) or between light and
treatment (χ2 = 3.2, p = 0.07). At storage time zero, the highest germination was 1% and 3% for
seeds in silicles and isolated seeds, respectively. After 6 mo dry storage, the optimum condi-
tions for germination were darkness and 5/2°C, where 11% and 24% of seeds in silicles and iso-
lated seeds germinated, respectively (Fig 3). Additional afterripening occurred between 6 and
12 mo of dry storage, and after 12 mo highest germination of seeds in silicles and isolated seeds
was 38% and 71%, respectively.

Effect of GA3 on dormancy break. Treatment with GA3 was a very effective way to break
seed dormancy. The highest germination for fresh seeds in silicles was 73%, in dark at 5/2°C in
10 mmol L-1 GA3, and the highest germination of fresh isolated seeds was 97%, in dark at 5/
2°C in 10 mmol L-1 GA3 (Fig 4). With an increase in seed age, germination in light and in dark-
ness in 1 and 10 mmol L-1 GA3 and in darkness in 0.1 mmol L-1 GA3 increased at 5/2 and 15/
2°C.

Effect of cold stratification on germination of seeds inside silicles. None of the fresh
seeds germinated, and after 12 weeks of cold stratification only 21% of them germinated, at 5/
2°C (Table 1). A period of dry storage significantly decreased the number of weeks of cold
stratification required to break dormancy.

Fig 3. Final germination percentages of seeds in silicles (A) and isolated seeds (B) of Isatis violascens
incubated in light and in constant darkness at three temperature regimes following 0, 1, 2, 3, 6, 9 and
12mo of dry storage under laboratory conditions. Bars with different letters are significantly different in
multiple range comparison of seeds in silicles and of isolated seeds. Error bars are + 1 s.e.

doi:10.1371/journal.pone.0140983.g003
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Effect of storage in soil in the field on germination and viability. In analysis of fates of
seeds buried in the field by GLMs with multinomial model (three categories: germinated dur-
ing burial, nongerminated but viable seeds and dead seeds), the effect of retrieval time (χ2 =
269.0, p< 0.001), treatment (intact silicles and isolated seeds) (χ2 = 40.3, p< 0.001) and their
interaction (χ2 = 65.9, p< 0.001) was highly significant. For germination during incubation in
Petri dishes, analysis of seed fates by GLMs with a multinomial model (three categories: germi-
nated during incubation, viable seeds and dead seeds) revealed significant effects of retrieval
time (χ2 = 59.0, p< 0.001). However, there was no significant effect of treatment (χ2 = 0.00,
p = 0.998) or of the interaction between retrieval time and treatment (χ2 = 2.52, p = 0.96). In
June 2013, no seeds in silicles or isolated seeds germinated in light at 15/2°C (Fig 5). After 4 mo
of burial (i.e. October 2013), 33% and 17% of seeds in silicles and isolated seeds germinated at

Fig 4. Effect of GA3 on germination of seeds in silicles and of isolated seeds of Isatis violascens
stored dry for 0, 1 and 12 mo and incubated at 5/2 and 15/2°C in light and in constant darkness. Bars
with different lowercase letters for silicles and for seeds indicate significant differences in multiple range
comparison among incubation conditions. Error bars are + 1 s.e.

doi:10.1371/journal.pone.0140983.g004
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15/2°C, respectively. By March 2014 (early spring), mass of silicles, seeds in silicles and isolated
seeds had increased by 45.7%, 59.6% and 65.6%, respectively. After 7 mo of burial, 62% of
seeds in silicles and 31% of isolated seeds had germinated when bags were exhumed in May
2014. When exhumed in June, 3% of seeds in the silicles (natural dispersal unit) and 36% of iso-
lated seeds were viable.

Germination phenology. In watered soil, seeds within silicles germinated between 6 Sep-
tember and 11 October 2013, when mean daily maximum and minimum temperatures were
24.5 and 13.5°C, respectively, and isolated seeds germinated between 4 and 11 October, when
mean daily maximum and minimum temperatures were 21.6 and 12.1°C, respectively (Fig 6).
Total germination in autumn in watered soil was 9% for seeds in silicles and 1.5% for isolated
seeds; no germination occurred in nonwatered soil. In spring 2014, most germination of seeds
in silicles and of isolated seeds in all treatments occurred from 14 March to 25 April, when
mean daily maximum and minimum temperatures were 18.3 and 2.2°C, respectively. Germina-
tion percentages of seeds in silicles and of isolated seeds in wet soil were significantly higher
than in dry soil (Fig 6). Germination percentage of seeds in silicles in nonwatered soil was

Table 1. Effect of cold stratification on germination of 0- and 6-mo-old dry-stored silicles of Isatis violascens incubated at 5/2 and 15/2°C in light
(mean ± 1 s.e.). Different uppercase letters within a row indicate significant differences between the two temperature regimes and different lowercase letters
within a column significant differences among the different treatments.

Weeks of cold stratification Final germination (%) of silicles at 5/2°C Final germination (%) of silicles at 15/2°C

0-months of storage 0 0.0±0.0 Aa 0.0±0.0 Aa

4 0.0±0.0 Aa 0.0±0.0 Aa

8 22.0±4.7 Bb 4.0±0.0 Aa

12 20.6±2.7Bb 5.3±0.9Aa

6-months of storage 0 1.0±1.0 Aa 0.0±0.0 Aa

4 56.0±8.6Bc 15.0±3.4Ab

8 77.5±6.6Bd 42.5±4.3Ac

12* -* -*

* Most seeds (98%) germinated during cold stratification at 4°C.

doi:10.1371/journal.pone.0140983.t001

Fig 5. Percentage of germinated, viable and dead seeds in intact silicles and of isolated seeds of
Isatis violascens retrieved from the soil on year andmonth indicated and incubated in light at 15/2°C.
Portions of bars (seed fates) with different lowercase letters for seeds in silicles or for isolated seeds indicate
significant differences in multiple range comparison among retrieval periods. Error bars are + 1 s.e.

doi:10.1371/journal.pone.0140983.g005
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significantly lower than that of isolated seeds in wet but not in dry soil. There was no further
germination in either wet or dry soil after 25 April 2014.

Discussion
Our hypothesis that the pericarp of the silicle of I. violascens inhibits germination was partly
supported by data from laboratory studies (Fig 3) and from the germination phenology study
in the experimental garden (Fig 6). In the laboratory, some afterripening occurred in seeds
inside the silicles and in isolated seeds, as evidenced by 18% and 24% germination, respectively,
in darkness at 5/2°C after 9 mo of storage (Fig 3). However, after 12 mo of storage seeds inside
silicles germinated to significantly lower percentages than those removed from silicles, indicat-
ing an inhibitory effect of the pericarp on germination. In spring 2014, germination percent-
ages of seeds removed from silicles were significantly higher in both watered and nonwatered
soil than those of seeds inside silicles, again showing an inhibitory effect of the pericarp on
germination.

Since seeds inside silicles imbibed water, the inhibitory effect of the pericarp is not due to
water-impermeability of the pericarp or of the seeds. A similar result was found in two other
annual Brassicaceae species, namely Raphanus raphanistrum [9] and Diptychocarpus strictus
[10], where neither the fruit nor seed coat prevented water uptake by seeds. Both isolated seeds
and those within the pericarp of D. strictus and of I. violascens became fully imbibed; however,
seeds of R. raphanistrum within the pericarp did not become fully imbibed.

Germination of seeds incubated in the presence of detached pericarps was not inhibited
(Zhou et al., unpublished data), which suggests that the pericarp does not exert its influence by
chemical means. Thus, mechanical restriction of the expansion of the embryo appears to be the
primary reason for the inhibitory effects of the intact pericarp on germination. After 12 mo of
dry storage, seeds inside silicles and those removed from silicles germinated to 38% and 71%,
respectively, suggesting that the presence of the pericarp mechanically restricted germination.
That is, the embryo in 65% of the seeds inside the silicles did not have enough growth potential
to overcome the mechanical restraint of the pericarp. The fact that germination percentages of
seeds inside the silicles increased significantly between 9 and 12 mo suggests that as dormancy
was broken the growth potential of the embryo increased enough to overcome the mechanical

Fig 6. Germination phenology of seeds within silicles and of isolated seeds of Isatis violascens on wet
(watered) and dry (natural precipitation) soil in the experimental garden.Wet soil means watered, and
dry soil means not watered. Significant differences among treatments at the end of the experiment are
indicated by different lowercase letters. Bars are ± 1 s.e.

doi:10.1371/journal.pone.0140983.g006
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constraint of the pericarp. Another possibility is that the mechanical restraint of the pericarp
and/or seed coat became less restrictive to radicle emergence (germination) during afterripen-
ing [6]. In any case, dormancy of the embryo (low growth potential) and/or mechanical restric-
tion prevented germination of fresh seeds [9–11,16]. Mekenian and Willemsen [14] and
Cheam [15] reported that the low germination percentage of seeds within intact fruits of
Raphanus raphanistrum was caused by a combination of mechanical resistance of the indehis-
cent fruit and chemical inhibitors within it. However, Cousens et al. [9] found that removing
the seed coat of R. raphanistrum seeds significantly increased the germination percentage and
concluded that the seed coat is more important than the fruit wall (pericarp) in seed dormancy.
Ohadi et al. [11] reported that seed dormancy of Rapistrum rugosum was caused by the peri-
carp. However, the pericarp is not the only cause of dormancy in distal seeds of R. rugosum,
which at least in part may be due to the seed coat and/or embryo [26].

Some of our results do not support our hypothesis that the pericarp inhibited germination.
In the germination phenology study in autumn 2013, seeds in silicles in watered soil began to
germinate earlier, and they germinated to higher percentages than isolated seeds sown in
watered soil (Fig 6). Also, in the burial experiment a higher percentage of seed enclosed by the
silicles germinated than did isolated seeds. One possible reason for a higher germination per-
centage of seeds inside the pericarp than of isolated seeds is that the seeds inside the pericarp
may have had a higher moisture content. At room temperatures, I. violascens seeds inside the
pericarp required 2–3 h to dry to their pre-imbibition mass (Fig 2). Presence of the pericarp
also decreased rate of dehydration of imbibed seeds of R. raphanistrum [9], L. lehmannii [16]
and D. strictus [10].

The low germination for both seeds in silicles (9%) and isolated seeds (1.5%) in autumn in
wet soil in the experimental garden may mean that only a low percentage of the seeds became
nondormant (afterripened) during summer. After 6 mo of dry storage at room conditions,
only 11% of the seeds inside the silicles and 24% of isolated seeds germinated in darkness at 5/
2°C (optimum condition). In which case, even if the soil is wet during autumn the germination
percentage would be low due to seed dormancy. Cold stratification was an effective way to
break dormancy in seeds after they had been dry stored for 6 months (Table 1), and after expo-
sure to winter temperature 62% of the seeds inside the buried silicles germinated (Fig 5). Thus,
our hypothesis that seeds enclosed by the pericarp would not germinate until the second or
some later year after the pericarp had softened, as is the case for the indehiscent silicles of L.
lehmannii [16] and the indehiscent lower siliques of D. strictus [17], was not supported. The
high germination percentage of I. violascens seeds in the intact silicles in the first spring sug-
gests that few, if any, seeds remain nongerminated until the second or a later spring germina-
tion season. Thus, it is unlikely that I. violascens forms a persistent soil seed bank, i.e. that seeds
persist in the soil for more than 1 year (sensu [27]).

The results from the series of experiments conducted to elucidate the role of the pericarp in
the germination stage of the life cycle of I. violascens provide new insight on how timing of ger-
mination can be controlled in the temporally unpredicatable (especially with regard to rainfall)
cold desert environment. Freshly-matured seeds of I. violascens were dormant, and little or no
germination occurred at any temperature in light or in darkness, even when they were removed
from the silicles (Fig 3). Silicles/seeds of I. violascens are water permeable (Fig 2), and therefore
they do not have physical or combinational (physical + physiological) dormancy. Further, the
embryo is fully developed (Fig 1); consequently, the seeds do not have morphological or mor-
phophysiological dormancy. Thus, we must conclude that the seeds have physiological dor-
mancy (PD), which is consistent with the kind of dormancy in seeds of other Brassicaceae
species [6].
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Of the three levels of PD (nondeep, intermediate and deep), nondeep and intermediate were
found in I. violascens. There are three lines of evidence that 20–25% of the seeds had nondeep
PD. (1) Some dormancy-break (afterripening) occurred both in seeds in intact silicles and iso-
lated seeds stored dry at room conditions (Fig 3). Similar afterripening in dry storage has been
documented in seeds of many species with nondeep PD, and generally the rate of dormancy-
break is faster in seeds that become nondormant during summer than in those that become
nondormant during winter. For example, in the summer annual Ambrosia trifida seeds became
nondormant after 3 mo of cold stratification but did so only after 12 mo of dry storage at room
temperatures [28]. The rate of afterripening in 20–25% of the seeds of I. violascens is consistent
with the rate of afterripening of seeds that become nondormant relatively quickly when cold
stratified. (2) There was an increase in the maximum temperature at which seeds would germi-
nate as dormancy was broken via afterripening, from 5/2°C in fresh seeds to 30/15°C in seeds
dry stored for 12 months in the laboratory (Fig 3). This increase in the maximum temperature
at which seeds will germinate as dormancy is broken is typical of Type 1 nondeep PD [6]. (3)
Promotion of germination of fresh seeds by GA3 also is an indication of nondeep PD (Fig 4).

Two observations indicate that the other 75–80% of the I. violascens seeds had intermediate
PD. (1) The effectiveness of cold stratification in breaking dormancy was increased signifi-
cantly after seeds in silicles were allowed to afterripen in dry storage for 6 mo (Table 1), which
is a characteristic of seeds with intermediate PD [6]. (2) GA3 was more effective in breaking
dormancy after seeds had afterripened for 1 or 12 mo than when they were fresh (Fig 4).

The number of I. violascens seeds germinating inside silicles in autumn is regulated by (1)
the proportion of the seed crop that has nondeep PD and thus can become nondormant by
autumn, and (2) adequate rainfall to moisten the soil for several continuous days. The seeds
with intermediate PD can not germinate until spring, after they have been cold stratified during
winter; seeds need to be imbibed for dormancy-break to occur by cold stratification [6]. Since
I. violascens grows in a cold desert, we might ask how seeds can be imbibed long enough for
dormancy break to occur? The answer is that part of dormancy-break occurs in seeds of I. vio-
lascens in the soil during summer, thereby greatly reducing the length of the cold stratification
period required to break dormancy. Thus, seeds with intermediate PD are nondormant in
spring. The presence of nondeep and intermediate PD in the same seed lot of I. violascens
ensures that (1) some seeds will be nondormant in autumn (Figs 3 and 6) and others nondor-
mant in spring (Fig 5); and (2) even if there is abundant rainfall in autumn, a portion of the
seed crop would be prevented from germinating until spring.

Rainfall that is highly variable among seasons and years is a characteristic feature of the cold
desert in the Junggar Basin. Depending on the amount and timing of rainfall, seeds of winter
annual/ephemeral species may germinate in autumn and/or early spring (mostly) in the Jung-
gar Basin [19,29]. Often, it is too dry in autumn for seeds to germinate. However, when there is
sufficient precipitation in autumn seeds of this ecological group of species are stimulated to
germinate. Water from snowmelt generally increases water availability in spring, and thus
seeds of the winter annuals/ephemerals are more likely to germinate in spring than in autumn.
Isatis violascens is one member of the cold desert sand dune ephemeral flora whose germina-
tion behavior allows its seeds to germinate under natural rainfall in both seasons. In any case, if
I. violascens seedlings that emerge in autumn survive the winter, the plants behave as winter
annuals. Plants from spring-germinated seeds behave as spring ephemerals (Lu et al., unpub-
lished data).

Given that I. violascens is an annual plant reproducing only by seeds and growing in a tem-
porally unpredictable (stochastic) environment, especially with regard to time and amount of
rainfall, it is likely that the two levels of PD serve as a bet-hedging strategy [4,30,31]. Such a
strategy would increase the geometric mean (the best measure of fitness in a stochastic
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environment) of the number of offspring across generations [31–33] in the unpredictable envi-
ronment of the Garbantunggut Desert. Further, although I. violascens does not form a persis-
tent seed bank (seeds live in soil for� 1 year), it does form a transient seed bank (seeds live in
soil for< 1 year) that persists until the spring germination season in the Garbantunggut Des-
ert. Regardless of timing and amount of rainfall in the autumn germination season, the pres-
ence of intermediate PD in a portion of the annual seed crop promotes continuation of the
population in years in which seeds with nondeep PD germinate in autumn and all the seedlings
die due to drought. Thus, the ecological role of seeds of I. violascens with intermediate PD is to
extend the period of persistence of the transient seed bank from autumn to spring. In autumns
with sufficient rainfall for germination and survival, individual plants from seeds with nondeep
PD would be expected to produce more seeds (and presumably to be more fit) and thus make a
higher contribution to population growth than those from spring-germinating seeds with
intermediate PD [29]. In short, an advantage to I. violascens of having two levels of PD is that
there is a possibility for some seeds to germinate in the two suitable germination seasons and
plants survive and produce seeds.

Many species of temperate-zone facultative winter annuals with water-permeable seeds
have been studied, and the seeds had only nondeep PD [6]. In these species, dormancy break
occurs during summer, and seeds are nondormant in autumn (Fig 7). The number of seeds
that germinates in autumn and percentage of seedling survival depend on amount and timing
of rainfall. If seeds fail to germinate in autumn, they lose the ability to germinate at high but
not low temperatures, i.e. they enter conditional dormancy and thus can germinate in early

Fig 7. Conceptual model comparing events in the seed stage of the life cycle of a typical temperate-zone disapore-monomorphic facultative winter
annual with those of the cold desert facultative winter annual Isatis violascens. PD, physiological dormancy; D, dormant; ND, nondormant; CD,
conditional dormancy, i.e. seeds can germinate at low but not at high tmperatures.

doi:10.1371/journal.pone.0140983.g007
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spring when temperatures are low. Long term persistence at a population site where the envi-
ronment is temporally unpredictable may require the formation of a persistent soil seed bank
[3], in which the buried seeds may undergo annual dormancy cycling [6]. On the other hand,
only 3% of the buried silicles of I. violascens contained a viable seed after the spring germina-
tion season was completed (Fig 5), suggesting that formation of a seed bank is not very impor-
tant for long-term survival of this species at a population site (Fig 7). The persistence of I.
violascens is promoted by intermediate PD, which prevents germination of a high percentage
of a seed cohort in autumn regardless of the amount and timing of rainfall. However, since
intermediate PD is broken by cold stratification seeds can germinate in spring, when soil mois-
ture is predictably favorable for seedling survival. Thus, we suggest that intermediate PD in
seeds of I. violascens is playing the same ecological role, in terms of persistence at a site, as the
persistent soil seed bank in typical temperate-zone facultative winter annuals.
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