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Abstract: Hydantoins and their hybrids with other molecules represent a very important group of
heterocycles because they exhibit diverse biological and pharmacological activities in medicinal and
agrochemical applications. They also serve as key precursors in the chemical or enzymatic synthesis
of significant nonnatural α-amino acids and their conjugates with medical potential. This review
provides a comprehensive treatment of the synthesis of hydantoins via the Bucherer–Bergs reaction
including the Hoyer modification but limited to free carbonyl compounds or carbonyl compounds
protected as acetals (ketals) and cyanohydrins used as starting reaction components. In this respect,
the Bucherer–Bergs reaction provides an efficient and simple method in the synthesis of important
natural products as well as for the preparation of new organic compounds applicable as potential
therapeutics. The scope and limitations, as well as a comparison with some other methods for
preparing hydantoins, are also discussed.

Keywords: hydantoins; aldehyde; ketone; multicomponent reaction; Bucherer–Bergs reaction

1. Introduction

The Bucherer–Bergs reaction is one of the most convenient general methods for the
preparation of 5-substituted and 5,5-disubstituted hydantoins (imidazolidine-2,4-diones,
2,4-dioxoimidazolidines). Although the reaction was first discovered by Bergs [1] (but
the first formation of 5,5-dimethylhydantoin from a mixture of acetone and hydrocyanic
acid exposed to sunlight for a period of 5–7 months was observed by Ciamician and Silber
in 1905 [2]), it is usually credited to Bucherer, who elaborated most of the experimental
conditions and applications [3–5]. Generally, in this multicomponent reaction, the aldehyde
or ketone in aqueous ethanol is heated at 60–70◦ with potassium (or sodium) cyanide and
ammonium carbonate to produce directly hydantoins 1 (Scheme 1).

Scheme 1. General reaction scheme of the Bucherer–Bergs reaction. R and R1 varied alkyl or
aryl substituent.

This reaction works well for aliphatic and aromatic aldehydes or ketones and for
cyclic ketones despite some reports concerning the failure of this reaction. For such difficult
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cases, the use of acetamide (formamide as well as dimethylformamide) as a solvent has
been recommended [6,7]. It was found that ultrasonication could also accelerate hydantoin
formation [8]. Alternatively, better yields of hydantoins offer the Hoyer modification [9].
In this case, the standard reaction mixture is heated in the atmosphere of CO2 in a closed
system at elevated pressure. Because of the wide applicability of the Bucherer–Bergs
reaction, it has formerly been proposed as an analytical method for identifying ketones [10].

Hydantoins may be regarded as cyclodehydrated hydantoic acids (α-ureido acids),
and this is reflected in their properties because both these compounds are readily inter-
convertible. Several natural or synthetic hydantoins themselves or their conjugates with
other molecules exhibit diverse biological and pharmacological activities in medicinal,
such as antimicrobial [11–15], antiviral [16–18], antitumor [19–22], antiarrhythmic [23–26],
anticonvulsant [27–34], antihypertensive [35], antidiabetic [36–39], and agrochemical, such
as herbicidal and fungicidal [40–45], applications. The studies on the biological activi-
ties of hydantoins has made great progress during the last three decades, and hydantoin
derivatives have been therapeutically applied or are in the stage of investigation (Figure 1).
For example, Phenytoin (Phenytek®, Dilantin®, Epanutin®, Diphenin®)—an antiepileptic
drug—is still the drug of choice for the treatment of generalized tonic–clonic seizures
(grand mal epilepsy) and focal motor seizures [29,46–49]; today, Phenytoin has found new
applications because of the neuro- and cardioprotective properties [50,51]; Mephenytoin
(Mesantoin®; it is no longer available in the US or the UK) and Fosphenytoin (Cerebyx®,
Prodilantin®) are also effective anticonvulsants, the latter is used only in hospitals for
the short-term (five days or less) treatment of epilepsy [52]; Nitrofurantoin (Furadantin®,
Macrobid®, Macrodantin®) and Nifurtoinol (Urfadyn®)—produces antibacterial activ-
ity effective for the treatment of urinary tract infections [53–55]; Nilutamide—produces
an antiandrogenic effect in the treatment of an advanced stage of the carcinoma of the
prostate [19,20,22]; Sorbinil—an aldose reductase inhibitor that blocks the formation of
sorbitol from excess glucose and thus may prevent many diabetic neuropathies [56–58];
Dantrolene (Dantrium®)—used to treat malignant hyperthermia, neuroleptic malignant
syndrome, ecstasy intoxication, and muscle spasticity (stiffness and spasms) caused by
conditions such as a spinal cord injury, stroke, cerebral palsy, or multiple sclerosis and is cur-
rently the only specific and effective treatment for malignant hyperthermia [59]; Azimilide—
an investigational class III anti-arrhythmic drug that blocks fast and slow components of the
delayed rectifier cardiac potassium channels (until now, it has not been approved for use in
any country but is currently in clinical trials in the United States) [60]. Iprodione (Rovral®,
Kidan, Glycophene) is an example of a commercially used fungicide [61]. Because of their
unique features, some glycofuranosylidene- and glycopyranosylidene-spiro-hydantoins
have received wide attention. For example, (+)-hydantocidin (D-ribofuranosylidene-spiro-
hydantoin) [62,63] possesses significant herbicidal and plant growth regulatory activi-
ties [41,64–66]; glucopyranosylidene-spiro-hydantoin [36,67,68] is among the most potent
inhibitors of rabbit muscle glycogen phosphorylase known to date (Ki = 3–4 µM).

Additionally, hydantoins also serve as key precursors in the chemical or enzymatic
synthesis of significant nonnatural α-amino acids and their conjugates with medical po-
tential. In this respect, the Bucherer–Bergs reaction provides an efficient method in the
synthesis of important natural products as well as for the preparation of new organic
compounds applicable as potential therapeutics.

Until now, five relevant reviews [69–73] and one book chapter [74] have appeared
regarding the chemistry of hydantoins covering, inter alia, some aspects of the Bucherer–
Bergs reaction. This review provides a comprehensive treatment of the synthesis of hy-
dantoins via the Bucherer–Bergs reaction including the Hoyer modification but limited
to free carbonyl compounds or carbonyl compounds protected as acetals (ketals) and
cyanohydrins used as starting reaction components (i.e., the “classical” Bucherer–Bergs
reaction starting from carbonyl compounds). The synthesis of hydantoins starting from
corresponding amino nitriles (prepared from carbonyl compounds in a separate reac-
tion step) or imines (prepared separately from carbonyl compounds or cyanides) were
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not included because, in this synthetic modification, only two reaction components are
comprised, so these reactions are not multicomponent. Analogously, the other synthetic
methods affording hydantoins were not reviewed in this review.

Figure 1. Therapeutically applied hydantoin derivatives.

2. Mechanism and Stereochemistry

Since the action of ammonium carbonate on cyanohydrins 2 and α-amino nitriles 3
under identical reaction conditions also yields hydantoins, Bucherer himself proposed [3]
that they are probably the first intermediates of this reaction. The last intermediates,
prior to ring closure, may be either an N-substituted carbamic acid 4 or a corresponding
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carbamide 5, although this has not been established experimentally. The last step would
then involve either the formation of a 5-iminooxazolidin-2-one ring 6 affording hydantoin
via isocyanate intermediate 7 (Scheme 2) or the addition of an amino group to the nitrile in
carbamide 5 to closure of the 4-imino-2-oxoimidazolidine ring 8 followed by hydrolysis to
the corresponding hydantoin (Scheme 3).

Scheme 2. Mechanism of hydantoin formation. R- and R1-varied alkyl or aryl substituent.

Scheme 3. Alternative hydantoin formation via 4-imino-2-oxoimidazolidine ring. R- and R1-varied
alkyl or aryl substituent.

Treatment of α-amino nitriles with carbon dioxide also provided the disubstituted
ureas 9, which underwent cyclization in water at room temperature followed by hydrolysis
of the imine 10 to the corresponding 3-N-substituted hydantoin 11 (Scheme 4) [75,76].
However, α-amino nitriles 2 are generally accepted as intermediates in the Bucherer–
Bergs synthesis producing 1,3-unsubstituted hydantoins 1 instead of products like 11.
The participation of intermediary α-amino nitrile is supported by the fact that carbon
disulphide also ring-closes such compounds to corresponding 2,4-dithiohydantoins [77,78].

Scheme 4. Alternative hydantoin formation via disubstituted ureas. R- and R1-varied alkyl or aryl substituent.

According to the general stereochemical outcome of the Bucherer–Bergs reaction [71],
the thermodynamically controlled spiro products are obtained with the C-4 carbonyl group
of the imidazolidine-2,4-dione ring in the less hindered position. Thus, Munday [79] found
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that the Bucherer–Bergs reaction of 4-tert-butylcyclohexanone (12) (Scheme 5) predomi-
nantly afforded one isomeric hydantoin 13 (designated α) and only a trace of a second
isomer 14 (designated β).

Scheme 5. Stereochemistry of the spiro products.

Although Cremlyn and Chisholm [80] reversed this assignment, it was later estab-
lished [81] by unequivocal chemical evidence that the major isomer of two isomeric 4-
benzoyloxycyclohexane-1-spiro-5′-hydantoins (16 and 17) (Scheme 5) obtained by the
Bucherer–Bergs reaction from 4-benzoyloxycyclohexanone (15) had the structure of 16
(designated α) thus supporting, by analogy, Munday’s assignment. More direct evidence
for this assignment came from 13C-NMR and UV spectra as well as from acetylation of α-
and β-hydantoins 13 and 14 [82]. Additionally, mechanistic considerations of the Strecker
and Bucherer–Bergs reactions enabled an explanation of how the same amino nitrile can
yield either the α- or the β-hydantoin, according to the reaction conditions. On mechanistic
grounds, it seems reasonable that, during the Strecker reaction, various equilibria are
established rapidly in alkaline solution (via the intermediacy of 19 and 20) (Scheme 6) but
not in acidic solution.

Scheme 6. Equilibria during amino nitrile formation in alkaline solution.
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Even in the weakly alkaline solution produced by dissolving the crude amino nitrile
in aqueous ethanol, the rates of interconversion 21↔ 22 (Scheme 6) are very fast. It was
confirmed [80,82] that the amino nitrile reacts with cyanic acid in acetic acid to form a urea
derivative 23, which can be cyclized to the β-hydantoin 14 via possible intermediates 24
and 25 (Scheme 7).

Scheme 7. Formation of β-hydantoin under acidic conditions.

The important fact is that under acidic reaction conditions the interconversion 21↔
22 does not take place and the β-isomer 14 is the main reaction product. However, if the
same amino nitrile is treated with carbon dioxide in aqueous ethanol, the α-hydantoin
13 is obtained because the interconversion 21↔ 22 is rapid under these conditions. The
possible mechanism of its formation (Scheme 8) is analogous with the general mechanism
formerly proposed by Bucherer [3].

The preferential formation of the α-hydantoin indicates that the reaction route from
reactants to the rate-determining step leading to its formation involves a lower overall
energy barrier than does the route for hydantoin of β-series. It seems very likely that the
rate-determining step on the path to 14 is 27↔ 29. According to the Hammond principle, if
this step is endothermic, the transition state will resemble 29, which is, however, subject to
considerable steric hindrance because of the compression between the 3,5-axial hydrogen
atoms and the formation of C=NH group. Consequently, this path is a highly disfavored
one. On the other hand, the path leading to the α-hydantoin (22→ 21→ 26→ 28→ 30
→ 13) is less favored in its earlier, pre-equilibrium steps. Particularly, because of steric
reasons, the conversion 21→ 26 is less favored than 22→ 27. However, the relative rates
by both the α- and β-paths depend upon the overall energy barrier between 22 and the
intermediate after the rate-determining step (Hammett–Curtin principle), and this is, for
steric reasons, larger on the β-path and, therefore, despite the abovementioned disfavoring,
the α-hydantoin is formed preferentially.
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Scheme 8. Possible mechanism of formation of isomers 13 and 14.

3. Scope and Limitations

The scope of the Bucherer–Bergs synthesis is such that all reaction components includ-
ing organic aldehydes and ketones are readily accessible, thus providing entry into a wide
variety of 5-substituted and 5,5-disubstituted hydantoins. In addition, most of the final
hydantoins are crystalline products and their isolation and purification is very simple. In
most cases, one crystallization from a suitable solvent affords pure products. Despite the
relative ease of execution and good yields, which make the Bucherer–Bergs reaction one
of the most practical and suitable route to prepare hydantoins, several disadvantages and
limitations to its applicability were found. One of the limitations is that it only has one
point of diversity. Only changes in the structure of the starting ketone can affect variations
of the final hydantoin.
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In principle, the aldehyde or ketone parts R and R1 (Scheme 1) may be represented by
a hydrogen atom, an alkyl, or a cycloalkyl, as well as an aryl, group. Generally, ketones
are more suitable substrates to afford hydantoins unambiguously. However, the presence
of functionality in the R and R1 of the starting aldehyde or ketone can complicate the
formation of desirable products dramatically. Although the reaction is tolerant of a diverse
array of functional groups, because of a strong basicity of the reaction mixture, the Bucherer–
Bergs reaction is intolerant of alkali labile functional groups that may be present on the
starting carbonyl substrate. Depending on their character, this intolerance may lead to
simple deprotection (like deacylation if acylated hydroxyl groups are present), restoring
unprotected functionality, or the present functionality may be changed to a new group
(e.g., hydrolysis of nitrile, ester, amide, etc.) or to a reactive intermediate (e.g., carbanions
in the case of nitroalkyl functionality). Moreover, the aqueous reaction conditions limit
the application of starting ketones or aldehydes only to those which are stable under
these conditions.

Similarly, the presence of powerful nucleophiles (amino and cyano groups) in the
reaction mixture excludes the presence of readily substituted functionalities (like triflate,
tosylate, or mesylate and halogen atoms) in the R and R1 of the starting aldehyde or ketone
unless especially cyano- or amino-substituted final derivatives are desirable.

An unusual obstruction to the preparation of hydantoins is seen when an unprotected
hydroxyl group is present in the α-position of the starting ketone (Scheme 1, R = not
H, R1 = CH2OH). It was found that, in such cases, starting from sugar ketone 32, the
corresponding 4-carbamoyl-2-oxazolidinone 33 is formed preferentially instead of the
expected hydantoin (Scheme 9) [83]. To obtain hydantoin products, appropriate protection
of hydroxyl group (e.g., tritylation) prior to the Bucherer–Bergs reaction is necessary.

Scheme 9. Unusual Bucherer–Bergs reaction—formation of 4-carbamoyl-2-oxazolidinone derivative.

The anomalous Bucherer–Bergs reaction was observed when some carbohydrates
with the free aldehyde group and O-isopropylidenated in the α-position were used
as a starting material [84]. In these cases, the expected hydantoins were not formed,
but a mixture of unsaturated hydantoin derivatives with the Z configuration and 5,5-
dimethylhydantoin were obtained indicating that the 1,3-dioxolane ring (acetal group)
vicinal to the aldehyde group is opened via an elimination reaction under formation of a
double bond and that the liberated acetone undergoes the normal Bucherer–Bergs reaction
to afford 5,5-dimethylhydantoin. Although the proportions of 5,5-dimethylhydantoin
and unsaturated hydantoins formed are similar, as isolation of latter compounds is dif-
ficult, 5,5-dimethylhydantoin is always isolated as a major product, and the yields of
unsaturated hydantoin derivatives depend very much on the structure of the starting
material. Scheme 10 is illustrative for starting 2,3:4,5-di-O-isopropylidene-D-arabinose
(34) and 2,3:4,5-di-O-isopropylidene-D-ribose (35). Because the chirality of C-2 is de-
stroyed during the elimination reaction, the same products—5-(D-erythro-2-hydroxy-3,4-
isopropylidenedioxybutylidene)imidazolidine-2,4-dione (36) and 5,5-dimethylhydantoin
(37) resulted from both the starting D-arabino and D-ribo isomers 34 and 35.
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Scheme 10. Anomalous Bucherer–Bergs reaction starting from di-O-isopropylidene-pentoses.

Similarly, 2,3:5,6-di-O-isopropylidene-D-xylose, 2,3:5,6-di-O-isopropylidene-α-D-man
nofuranose (38), 1,2:3,4-di-O-isopropylidene-α-D-galacto-hexodialdo-1,5-pyranose (39), 2,3:4,5-
di-O-isopropylidene-β-D-arabino-hexosulo-2,6-pyranose (40), and 1,2-O-isopropylidene-3-O-
methyl-α-D-xylo-pentodialdo-1,4-furanose (41) also undergo anomalous reactions. Starting
from 38, a mixture of D-glycero-D-galacto- and D-talo-heptonic acid δ-lactone derivatives
42 (isolated in the form of acetates 43) was obtained as a major product, together with a
minority of unsaturated derivative 44 and 5,5-dimethylhydantoin (37) (Scheme 11).

Scheme 11. Anomalous Bucherer–Bergs reaction starting from 2,3:5,6-di-O-isopropylidene-α-D-mannofuranose.

Compound 39 afforded, in addition to the major product 5,5-dimethylhydantoin (37),
the hydantoin derivative 45, which is the product of the normal reaction, the diastereomeric
6-ureidohepturonamide 46, and instead of the expected unsaturated hydantoin derivative,
only a very low yield of saturated compound 47 (Scheme 12).

Scheme 12. Anomalous Bucherer–Bergs reaction starting from di-O-isopropylidene-hexodialdo-1,5-pyranose.
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Compound 40 provided a mixture of diastereomeric cyanohydrins 48 and hydrox-
yamides 49, together with 5,5-dimethylhydantoin (37) (Scheme 13). The high yield (78%)
of 37 indicates that 40 is converted, via the anomalous reaction, mainly into unsaturated
hydantoin derivative which, however, is unstable and decomposes.

Scheme 13. Anomalous Bucherer–Bergs reaction starting from di-O-isopropylidene-β-D-hexosulo-
2,6-pyranose.

Compound 41, which contains an aldehyde group in the α position to an acetal-linked
oxygen of an oxolane and not a dioxolane ring, yielded diastereomeric ureidohexuron-
amides 50 and 51 (the side-products of the normal reaction), 5,5-dimethylhydantoin (37),
and the pyrido-imidazole derivative 52 (isolated as diacetate 53), which can be formed
from the acyclic intermediate 54 arising from the anomalous reaction (Scheme 14).

Scheme 14. Anomalous Bucherer–Bergs reaction starting from 1,2-O-isopropylidene-pentodialdo-
1,4-furanose.

A similar anomalous reaction was also observed with starting methyl 2,3-O-isopropylidene-
α-D-lyxo-pentodialdo-1,4-furanoside (55) [85]. However, because the elimination step
involves a methoxy group at C-1, and not 1,2-O-isopropylidene-group-liberating ace-
tone, thus excluding the formation of 5,5-dimethylhydantoin, corresponding cyanohydrin
56, uronamide 57, uronic acid 58, and the pyrido[2,1-e]imidazolidine derivative 59 were
isolated as main products in this case, together with a minority of ureidouronamide 60
(Scheme 15). Analogously to the formation of pyrido-imidazole derivative 52 from 54 (see
Scheme 14), the pyrido[2,1-e]imidazolidine derivative 59 can be formed via intramolecular
cyclization of the precursory aldehyde–unsaturated hydantoin derivative 61.
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Scheme 15. Anomalous Bucherer–Bergs reaction starting from methyl 2,3-O-isopropylidene-pentodialdo-1,4-furanoside.

The presence of a group at the anomeric C-1 position capable of elimination (like
methoxyl in 55) seems to be crucial for the anomalous course of the Bucherer–Bergs
reaction (formation of the pyrido-imidazolidine products). This is because when 6-O-(t-
butyldiphenylsilyl)-3,4-O-isopropylidene-2,5-anhydro-D-allose (62) was subjected to the
Bucherer–Bergs reaction, only hydantoin 63 (i.e., the product of normal Bucherer–Bergs
reaction) was isolated in 79% yield (Scheme 16), which after deprotection afforded (±)-5-(β-
D-ribofuranosyl)-hydantoin (64) [86] a close analogue of naturally occurring biologically
active Showdomycin. Contrary to 55 having a methoxyl group at C-1 and a formyl group
at C-4 positions of the furanose ring, the C-4 position in 62 is occupied by a protected
hydroxymethyl group, and the formyl group is positioned at the C-1 atom (regarding the
compound name and atom numbering according to carbohydrate nomenclature, in the
case of compound 62, the C-4 and C-1 positions of furanose ring are, in fact, the C-5 and
C-2 positions).

Scheme 16. Normal Bucherer–Bergs reaction starting from 3,4,6-O-protected-2,5-anhydro-D-allose.

Although low stereoselectivity for simple carbonyl substrate is a general drawback
of the Bucherer–Bergs reaction, both the rate and enantioselectivity of this reaction can be
influenced by steric and electronic effects of substituents on the substrate. The suitable
choice of substitution can lead to the predominancy of one enantiomer. On the other hand,
electronic conditions and steric hindrance (due to the presence of the bulky substituents
R and R1 as well as their unfavorable steric orientation) in starting ketone or aldehyde
can even prevent successful formation of hydantoins. Thus, the resistance of 1,2:4,5-di-
O-isopropylidene-β-D-erythro-2,3-hexodiulo-2,6-pyranose to the Bucherer–Bergs reaction
may be explained, besides by unfavorable steric conditions, in terms of the interactions
between the permanent dipoles about the anomeric group with those formed during the
development of the transition state.
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Because of the presence of organic and inorganic reaction components in the reaction
mixture, the choice of the solvent is limited to very polar hydroxylic solvents like water,
ethanol, and methanol. Most commonly, a mixture of one of these alcohols with water is
used. It was established [87] that THF is also tolerated in the Bucherer–Bergs reaction but
only at low concentrations in solvent mixtures with water and ethanol. The experiments
performed on n-butyl phenyl ketone (1 mmol scale) under a standard set of reaction
conditions (three equiv. of KCN, six equiv. of (NH4)2CO3, 75 ◦C, 24 h) and varying the
reaction solvent (total volume constant at 9 mL) have shown no appreciable conversion
(<15%) to the corresponding hydantoin in a binary solvent system THF–H2O (1:1). Similar
results were obtained using the ternary solvent system THF–H2O–EtOH (2:1:1). However,
reducing the amount of THF (THF–H2O–EtOH, 1:4:4) did improve the conversion to 47%.
Complete conversion (>95%) enabling isolation of corresponding hydantoin in a 77% yield
was achieved using these later reaction conditions when a sealed tube was used to prevent
the release of the ammonia and carbon dioxide generated.

Among the disadvantages of the Bucherer–Bergs reaction, it has to be mentioned
that the reaction component KCN (or NaCN) is classified as very toxic and dangerous
for the organisms and environment and, therefore, the experiments must be performed
very carefully by qualified individuals using appropriate protective equipment and re-
specting all risk and safety precautions for working with such highly hazardous material.
Moreover, because of released toxic ammonia, the reactions should only be carried out in a
fume cupboard.

4. Application to Synthesis
4.1. Overview

The primary significance of the Bucherer–Bergs reaction lies in the preparation and
the many uses of the hydantoin products. Foremost among these uses is the ready access
to starting carbonyl compounds and their enormous structural diversity. The possible
transformation of hydantoins to the variety of α-amino acids under basic or acidic condi-
tions represents another significant synthetic utility and potential of the Bucherer–Bergs
reaction. Thus, a scalable process to prepare the INOS inhibitor PHA-399733, as a potential
candidate for the treatment of osteoarthritis, asthma, and neuropathic pain was reported
(Scheme 17) [88], using the Bucherer–Bergs hydantoin synthesis as the key step to introduce
the amino acid group in the final molecule.

Scheme 17. A scalable synthesis of the INOS inhibitor PHA-399733.

The Bucherer–Bergs reaction was also employed to prepare a key intermediate hy-
dantoin for the synthesis of methionine amide (LY2140023), the first drug (a clinical can-
didate) acting on mGlu receptors that has been studied in humans to treat schizophrenia
(Scheme 18) [89].

Transformation of hydantoins to α-amino acids proceeds through the intermediacy
of ureido acids or ureido amides, which, in many cases, can be isolated as useful (new
synthetic blocks, potential biological activity, etc.) individual compounds. Moreover, in
some cases, ureido acids or ureido amides may result even as the main products of the
Bucherer–Bergs reaction directly.

Furthermore, the hydantoins are accessible to further modifications applying e.g.,
N-alkylation; the Horner–Wadsworth–Emmons reaction; and aldol-type, cycloaddition
and complexation reactions, thus affording additional synthetic routes to interesting new
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compounds. In addition, they are important heterocyclic scaffolds that induce biological
effects, and they have pharmacological importance (see Section 1).

Scheme 18. Synthesis of LY2140023 via hydantoin as a key intermediate.

4.2. Applications in the Synthesis of Natural Products and Biologically Active Compounds

Hydantoin is an important heterocyclic core that exists in many naturally occurring
products, mostly of marine organisms but also of bacteria. Most of them represent rather
complicated structures with an incorporated hydantoin core. In many cases, the Bucherer–
Bergs reaction in particular has been applied for the synthesis of this core, thus providing
intermediary starting hydantoins necessary for further structural modification affording
final biologically active compounds. Several compounds with a hydantoin structural unit in
their molecules have been therapeutically applied, especially during the last three decades
(see Section 1), and the Bucherer–Bergs method has been a choice for their preparation. The
following biologically active hydantoins synthesized using the Bucherer–Bergs reaction
could be mentioned:

4.2.1. Sorbinil

This spirohydantoin aldose reductase inhibitor (for treatment of diabetic neuropa-
thy), which is, according to IUPAC, (4S)-6-fluoro-2,3-dihydrospiro[4H-1-benzopyran-4,4′-
imidazolidine]-2′,5′-dione, was first reported by Sarges in 1978 [90]. It was originally pre-
pared by a multi-step process that essentially involved condensing 6-fluoro-4-chromanone
with potassium cyanide and ammonium carbonate in ethanol under standard Bucherer–
Bergs conditions to provide the corresponding racemic precursor of sorbinil (Scheme 19),
followed by resolution of the latter (±)-compound with (–)-brucine to isolate the pharma-
cologically active S-(+)-enantiomer.

Scheme 19. Synthesis of sorbinil by Bucherer–Bergs reaction.

Sorbinil is obtained in a novel manner by optical resolution of racemic 2,3-dihydrospiro-
6-fluoro[4H-l-benzopyran-4,4′-imidazolidine]-2′,5′-dione either (a) by direct resolution via
the (–)-3-aminomethylpinane salt of sorbinil or (b) by a double resolving agent technique
via a mother liquor concentrate of either the (+)-3-amino-methylpinane or the (–)-2-amino-
2-norpinane salt of sorbinil, followed by the quinine salt of sorbinil [91].
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The Bucherer–Bergs synthesis was also used for the preparation of 14C-labelled
sorbinil, starting from 2,3-dihydro-6-fluoro-4H-1-benzopyran-4-one and 14C-potassium
cyanide, followed by brucine resolution of the racemic spirohydantoin [92]. Tritiated
sorbinil was obtained in two steps: (1) preparation of 8-chloro-sorbinil using the Bucherer–
Bergs synthesis; (2) reductive dehalogenation of this 8-chloro substituted analog using
tritium gas in the presence of triethylamine [93].

The Bucherer–Bergs reaction was also applied for the preparation of 2-methylsorbinil,
i.e., (4S)(2R)-6-fluoro-2-methyl-spiro-[chroman-4,4′-imidazolidine]-2′,5′-dione. In this case,
6-fluoro-2-methyl-4-chromanone was condensed with potassium cyanide and ammonium
carbonate in the usual manner to ultimately afford (±)-6-fluoro-2-methyl-spiro-[chroman-
4,4′-imidazolidine]-2′,5′-dione in the form of the desired diastereoisomer. Resolution of the
latter racemic compound with an aqueous quinine methohydroxide solution then finally
gave the desired (4S)(2R)-isomer [94].

Analogously, the Bucherer–Bergs reaction with/without subsequent resolution of
racemic spirohydantoins was used [93–96] for the preparation of many other sorbinil-like
structural analogs of general formula (Figure 2).

Figure 2. General formula of sorbinil derivatives prepared via Bucherer–Bergs reaction.

4.2.2. Phenytoin

This commonly used antiepileptic diphenylhydantoin (IUPAC name: 5,5-diphenylimid
azolidine-2,4-dione) was first synthesized from hydroxy-diphenyl-acetic acid and urea
by Biltz in 1908 [97]. Starting from benzophenone, under standard reaction conditions of
the Bucherer–Bergs synthesis [(NH4)2CO3, NaCN, 60% EtOH, 58–62 ◦C, 10 h], phenytoin
was obtained only in a 7% yield. Prolongation of the reaction time (90 h) increased the
yields to 67%. Improved yields (75%) were obtained when the reaction mixture was heated
at 110 ◦C in a closed vessel to retain the volatile components. Finally, the highest yields
(91–96%) resulted using KCN instead of NaCN and propylene glycol or melted acetamide
as a solvent in a steel bomb (Scheme 20) [98].

Scheme 20. Synthesis of phenytoin via Bucherer–Bergs reaction.
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4.2.3. Aplysinopsins

As to the chemical structure, naturally occuring aplysinopsins are, in general,
5-[heteroarylmethylidene]substituted hydantoins, more specifically, derivatives of
5-[(1H-indol-3-yl)methylidene]imidazolidine-2,4-dione or 5-[(1H-indol-3-yl)methylidene]-
2-iminoimidazolidine-4-one (Figure 3), which can be isolated from various marine organ-
isms (sponges, corals, etc.) [99–103].

Figure 3. General formula of aplysinopsins.

They have aroused considerable interest especially because of their specific cytotoxicity for
cancer cells [102] and their ability to affect neurotransmitters [103]. Among several synthetic
approaches towards aplysinopsin-type structures, the Bucherer–Bergs reaction has been applied
for the preparation of starting the hydantoin core. Thus, in a three-step synthesis of some
aplysinopsins, the basic hydantoin prepared in the first step [104] by the Bucherer–Bergs
reaction is transformed, in the next step, into (Z)-5-[(dimethylamino)methylidene]imidazolidine-
2,4-dione or (Z)-5-[(dimethylamino)methylidene]-3-methylimidazolidine-2,4-dione using
(tert-butoxy)bis(dimethylamino)methane (Bredereck’s reagent) or N,N-dimethylformamide
dimethyl acetal (DMFDMA), respectivelly. These hydantoins react in the third step with
indole to provide aplysinopsin derivatives (Scheme 21) [105].

Scheme 21. Synthesis of aplysinopsin derivatives.

4.2.4. Hydantocidin

This spironucleoside metabolite isolated from the fermentation broth of Streptomyces
hygroscopicus [66] is the first naturally occurring spiro-hydantoin-ribofuranose with strong
herbicidal and plant growth activities toward annual, biennial, and perennial weeds by
action as an adenylo-succinate synthetase inhibitor without showing toxicity to microorgan-
isms and animals (LD0 > 1000 mg/kg to mammals). Several synthetic methods affording
hydantocidin have been described [63,106–112] including application of the Bucherer–
Bergs reaction starting from suitably 2,3,5-tri-O-protected D-ribofuranose (see entries A,
B, and C in Scheme 22) [113]. However, this multistep-reaction procedure affords, like
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most of the other available synthetic methods, only low overall yields of hydantocidin and,
therefore, is not suitable for large-scale preparation utilized for practical purposes.

Scheme 22. Synthesis of hydantocidin starting from 2,3,5-tri-O-protected D-ribofuranose.

5. Comparison with Other Methods Affording Hydantoins

The importance of hydantoins in the synthesis of biologically active compounds has
led and is still leading to the development of many methods for their preparation. Although
various attractive synthetic methods are available and some of them take advantage of the
Bucherer–Bergs reaction, their applicability can differ significantly depending on the start-
ing building blocks and the required substitution or functionalities on the final products.
In this respect, the availability of starting reaction components as well as reaction outcomes
and the ease by which the Bucherer–Bergs reaction is executed distinguish this approach
from related methods leading to the formation of 5-substituted or 5,5-disubstituted N-1
and N-3 unsubstituted hydantoins.

In addition to the discussed Bucherer–Bergs reaction and its Hoyer modifications, the
most important synthetic methods suitable to generate hydantoins are (a) the Read-type
reaction of amino acids (or nitriles) with inorganic isocyanates; (b) the condensation of
ureas with carbonyl compounds (including the Beller method for monocarbonyl com-
pounds and the Biltz synthesis for α-dicarbonyl compounds); (c) reactions of α-amino
esters with amines and phosgene and, by analogy, reactions of α-amino acid amides with
ethyl chloroformate to produce urethans, followed by aqueous or alcoholic alkali-mediated
cyclization; (d) the reaction of malonamides with hypohalite; (e) multi-component Ugi/De-
Boc/Cyclization methodology; and (f) the modified Bucherer–Bergs reaction. Many other
sophisticated syntheses of hydantoins were described (like conversion of some three-, five-
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or six-membered heterocycles to hydantoins, conversion from purines, solid-phase organic
syntheses, combinatorial syntheses, cycloaddition reactions, cycloelimination release strate-
gies including acid- or base-catalyzed cyclizations and thermal cycloeliminations, separate
cyclization, and cleavage steps strategies; these and several others are summarized in a
recent review [72]) but because of their high specificities and substantial differences in
starting (or further reacting—for several-step reactions) compounds, the comparison with
the Bucherer–Bergs reaction would be quite difficult or even impossible. Therefore, this
section covers only comparisons with the first five mentioned methods, which are more
related to the Bucherer–Bergs reaction.

The Read reaction (the reaction of free α-amino acids with sodium cyanate under
acidic conditions [11,35,114,115], frequently known under the alternative name of the Urech
hydantoin synthesis [116], is used for this reaction when potassium cyanate is employed)
(Scheme 23) or its modifications (the reaction of α-amino nitriles with inorganic cyanate
or organic isocyanate; the reaction of α-amino acids or esters with isocyanates via the
intermediate ureido acids; the two-step procedure when free α-amino acids is treated with
potassium cyanate in pyridine followed by acid cyclization [117]) are very good alternative
spirohydantoin ring construction methods.

Scheme 23. General reaction scheme of the Urech hydantoin synthesis.

Because of variations in preparing the intermediary α-amino nitrile in the first step,
this reaction worked even in such cases where the classical Bucherer–Bergs reaction failed.
For example, attempts to form spirohydantoin from starting 1,2:5,6-di-O-isopropylidene-
α-D-glucofuranos-3-ulose using the conditions of the Bucherer–Bergs reaction (KCN,
(NH4)2CO3, MeOH–H2O, 75 ◦C) were unsuccessful, and the corresponding cyanohy-
drin was obtained as the exclusive product. In this case, the glyco-α-amino nitrile was
prepared in high yield by the modified Strecker reaction using titanium(IV) isopropoxide
as a mild Lewis acid catalyst and TMSCN as a cyanide source. This glyco-α-amino nitrile
can be successfully cyclized to spirohydantoin in the next step using a Read-type reaction
or the Hoyer modification [118]. However, it is necessary to have in mind that the Read
reaction, hydantoin ring synthesis via an α-amino nitrile intermediate followed by cy-
clization, provides kinetically controlled products, whereas thermodynamically controlled
hydantoins are obtained under Bucherer–Bergs reaction conditions. On the other hand, this
reaction course control might be an advantage when the kinetic products are specifically
desired. For example, sorbinil can be obtained using this method in a 67% overall yield
(three steps, without silica gel chromatography) [56,119] (Scheme 24) contrary to the 40%
overall yield (only two steps) [90] obtained by the classical Bucherer–Bergs reaction. In
this case, the catalytic enantioselective Strecker reaction of ketoimines was applied for the
preparation of the intermediate amino nitrile.

Recently, a modified method combining a catalytic reaction and the Bucherer–Bergs
and Hoyer’s reaction conditions has been described [120]. In this one-pot, three-step
procedure, an aldehyde or ketone was reacted with liquid ammonia under catalysis of
gallium(III) triflate to produce the intermediate imine. Addition of hydrogen cyanide
(generated from trimethylsilyl cyanide) to this imine afforded the corresponding amino
nitrile, which, upon addition of carbon dioxide and Hünig’s base (DIPEA) in the third step,
provided 5-substituted or 5,5-disubstituted hydantoins (Scheme 25). Although, in some
cases the yields of hydantoins are excellent and, therefore, it can be a method of choice,
there are two principal inconveniences in comparison with the classical Bucherer–Bergs



Molecules 2021, 26, 4024 18 of 33

reaction. First, this method requires more costly starting materials, and, second, the reaction
execution is more complicated because of the three-step procedure.

Scheme 24. Synthesis of sorbinil applying the Read-type reaction.

Scheme 25. Formation of hydantoins under modified Bucherer–Bergs and Hoyer’s reaction conditions.

More flexibility as to reactants and variation of reaction conditions is valuable for
the preparation of hydantoins from carbonyl compounds and ureas. Thus, the method
developed by Beller [121] (reacting different aldehydes with various ureas and carbon
monoxide under palladium catalysis) affords mono-, di-, and trisubstituted hydantoins
(Scheme 26).

Scheme 26. Synthesis of hydantoins from aldehydes and ureas.
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Similar advantages are provided by the Biltz synthesis introduced nearly a hundred
years ago. In this respect, the base-catalyzed condensation using benzil and urea (or
thiourea) is still regarded as the most straightforward synthesis of phenytoin. Several
recent improvements (including application of microwave activation instead of classical
heating and the use of DMSO or dioxane/H2O as a solvent or two-step procedure following
conversion of 2-thiophenytoin to phenytoin using hydrogen peroxide) allowed the rapid
synthesis of phenytoin and structurally related derivatives in higher than 80% yields
(Scheme 27) [122]. Additionally, the use of a two-phase system such as aqueous KOH/n-
BuOH and PEG 600 as a phase transfer catalyst drastically reduced the quantity of side
product, increasing the yield of phenytoin (87–93%) [123].

Scheme 27. Biltz synthesis of phenytoin.

Although the reaction of α-amino esters with amines and phosgene (or carbonyldi-
imidazole as a modern alternative) [16,124–127] or cyclization of urethans [128] as well as
cyclization of α-ureido esters [63] are also good alternatives for the synthesis of hydan-
toins, these methods suffer from low availability of common intermediates—α-amino acid
amides, which, in general, are prepared in several steps. However, in some cases, this
synthetic approach represents the most suitable method to obtain desirable hydantoin
derivatives in a reasonable yield. For example, the potent herbicide hydantocidin was
synthesized using this method in a 35.2% overall yield, along with 5-epi-hydantocidin in a
9.6% overall yield (Scheme 28) [63].

Scheme 28. Synthesis of hydantocidin via cyclization of α-ureido ester.
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Depending on substitution of the starting α-amino acid amide, free hydantoin or 5-
substituted, 5,5-disubstituted, as well as 3,5,5-trisubstituted hydantoins can be prepared. By
analogy, N-1- and N-3-unsubstituted hydantoin with a C-5 exo-double bond, an analogue of
naturally occurring aplysinopsin, was prepared by heating a corresponding α-methylidene-
α-amino ester with urea in DMF (Scheme 29) [129].

Scheme 29. Synthesis of aplysinopsin by the reaction of α-amino ester with urea.

Based on the α-amino acid amide cyclization via the corresponding isocyanate intermedi-
ates generated utilizing carbonyldiimidazole or triphosgene, Nefzi and co-workers [105,130]
have developed a synthetic route to the solid-phase synthesis of hydantoin and thio-
hydantoin compounds and libraries from resin-bound dipeptides (Scheme 30). Using
different amino acids (first site of diversity—R1) and different alkyl groups (second site
of diversity—R2), this method allowed preparation of a broad range of new hydantoin
derivatives. Instead of triphosgene, diphosgene was also applied in solid-phase hydantoin
synthesis [131].

Scheme 30. Synthesis of hydantoins by the cyclization of α-amino acid amide using triphosgene.

Hydantoins can be obtained by the application of the Hofmann degradation reaction
(Hofmann rearrangement) of malonamides [132,133]. In this case, the ring closure occurs
via isocyanates, the indermediates involved in the reaction of amides with hypohalite
(Scheme 31). Although this method, like the Bucherer–Bergs reaction, is specific for the
preparation of 5-substituted and 5,5-disubstituted hydantoins, this procedure is much
less convenient than the Bucherer–Bergs reaction especially because of the more difficult
availability of starting malonamides.

Scheme 31. Formation of hydantoins via Hofmann degradation reaction of malonamides.
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Recently employed Ugi/De-Boc/Cyclization methodology [134] is suitable for the
preparation of fully functionalized hydantoins in good yield. Aldehydes (or ketones),
amines, isonitriles, methanol, and carbon dioxide act as starting materials in this five-
component reaction and corresponding carbamates result as intermediates, followed by
their cyclization under alkaline conditions in the next step (Scheme 32).

Scheme 32. Synthesis of hydantoins employing five-components Ugi/De-Boc/Cyclization methodology.

In a very similar and experimentally simple methodology described as a Ugi four-
component condensation (U-4CC) combined with a base-induced cyclization [135], the
acid component, trichloroacetic acid, acts as a carbonic acid equivalent. In this case, the
synthesis of 1,3,5-trisubstituted hydantoins can be performed by a simple one-pot, two-step
procedure. Although these two methods allow the facile synthesis of arrays of hydantoins
with three diversity points, the preparation of 5-mono- and 5-disubstituted hydantoins
unsubstituted at N-1 and N-3 is not possible and, therefore, its application, in comparison
with Bucherer–Bergs reaction, is more restricted.

A recently reported [87] modified Bucherer–Bergs reaction is based on the reaction
of a nitrile with an organometallic reagent such as RMgX or RLi to generate an inter-
mediate imine, which in a subsequent reaction with KCN and (NH4)2CO3 affords the
corresponding hydantoin (Scheme 33). This method is practical for the one-pot synthesis
of 5,5-disubstituted hydantoins and the preferential selection of this strategy should be
based on the following: (i) a very large number of nitriles are commercially available or
readily accessible; (ii) a variety of common organometallic reagents including RMgX and
RLi add to alkyl-, aryl- and heteroaryl-substituted nitriles in high yields; (iii) protonation
of the intermediate metallated imine directly leads to the NH imine, an intermediate in the
Bucherer–Bergs reaction.

Scheme 33. Synthesis of hydantoins by modified Bucherer–Bergs reaction via intermediate imine.

Although the aminobarbituric acid-hydantoin rearrangement is not related to the
Bucherer–Bergs reaction, this synthetic strategy described recently by Gütschow [136,137]
should be mentioned because it represents an easy access to 1,5- and/or 5,5-disubstituted, 1,3,5-
and/or 1,5,5-trisubstituted, and/or 1,3,5,5-tetrasubstituted hydantoins (Schemes 34 and 35).
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Scheme 34. Synthesis of hydantoins via rearrangement of intermediate aminobarbituric acid.

Scheme 35. Aminobarbituric acid-hydantoin rearrangement.

6. Experimental Conditions
6.1. General Comments

Despite the progress that has been made in the synthesis of hydantoins, one of the most
attractive aspects of the Bucherer–Bergs reaction is its experimental simplicity and reliability. A
wide variety of aldehydes and ketones can be used as a relatively easily available starting mate-
rial. Because of aqueous reaction conditions, there is no need for dry solvents. Most commonly,
a mixture of water with ethanol (or methanol) or methanol itself is employed [138–220] as a
solvent, and the one-step reaction products—5-substituted and 5,5-disubstituted hydantoins
(unsubstituted on N-1 and N-3)—are typically formed under thermal conditions (∼=50 ◦C
to reflux) or under pressure (sealed vessel) [98,203,221–255]. In some cases, amides like
fused acetamide, formamide, and dimethylformamide are used as a solvent [6,250,251,256].
Occasionally, the reactions are performed under ultrasonication [8,252,257–264] or under
mechanochemical ball milling using a ZnO catalyst [265]. Zinc cyanide and Fe3O4-chitosan
catalyst instead of KCN [266] as well as pulsed Fe electro-oxidation [267] were applied for
catalytic synthesis of hydantoin derivatives. A recent review article deals with the green
synthesis of hydantoins [268].

Usually, the prepared hydantoins are stable solids easily isolated and purified by
simple crystallization from the suitable solvent. Chromatographical separation (if possible)
is necessary only in the case when the isolation of pure enantiomers is required.

6.2. Note

Potassium and sodium cyanides are violent poisons. They are highly toxic by in-
halation, in contact with skin, and if swallowed and must be handled using appropriate
personal protective equipment. KCN and NaCN should only be handled in a fume cup-
board by qualified individuals. These cyanide salts should be properly disposed of in
specially designated containers. Further information can be obtained from the Material
Safety Data Sheet (MSDS) available from the supplier. Ammonia gas is also very toxic by
inhalation or skin contact (may be fatal if inhaled). Handling this material requires consid-
erable caution because it is extremely harmful to the eyes. Additionally, it is corrosive and
may cause serious burns.
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7. Conclusions

Although several synthetic methods for the preparation of hydantoins have been
described so far, the Bucherer–Bergs reaction represents the simplest and very effective
approach, in particular to 5-substituted and 5,5-disubstituted hydantoins (unsubstituted
on N-1 and N-3). Therefore, this synthetic method is still current and often used for the
synthesis of biologically and pharmacologically active compounds applicable in medicine,
pharmacy, or agro-industry. In this respect, the presented review covered in depth the
knowledge gained during the almost century-old history of hydantoin synthesis via the
Bucherer–Bergs reaction.
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