Exploring the Utility of Partial Cytochrome c Oxidase Subunit 1 for DNA Barcoding of Gobies

Hyung-Bae Jeon¹, Seung-Ho Choi², Ho Young Suk^{1,*}

¹Department of Life Sciences, Yeungnam University, Gyeongsan 712-749, Korea ²Institute of Biodiversity Research, Jeonju 561-211, Korea

ABSTRACT

Gobiids are hyperdiverse compared with other teleost groups, with about 2,000 species occurring in marine, freshwater, and blackish habitats, and they show a remarkable variety of morphologies and ecology. Testing the effectiveness of DNA barcodes on species that have emerged as a result of radiation remains a major challenge in evolutionary biology. Here, we used the cytochrome *c* oxidase subunit 1 (COI) sequences from 144 species of gobies and related species to evaluate the performance of distance-based DNA barcoding and to conduct a phylogenetic analysis. The average intra-genus genetic distance was considerably higher than that obtained in previous studies. Additionally, the interspecific divergence at higher taxonomic levels was not significantly different from that at the intragenus level, suggesting that congeneric gobies possess substantial interspecific sequence divergence in their COI gene. However, levels of intragenus divergence varied greatly among genera, and we do not provide sufficient evidence for using COI for cryptic species delimitation. Significantly more nucleotide changes were observed at the third codon position than that at the first and the second codons, revealing that extensive variation in COI reflects synonymous changes and little protein level variation. Despite clear signatures in several genera, the COI sequences did resolve genealogical relationships in the phylogenetic analysis well. Our results support the validity of COI barcoding for gobiid species identification, but the utilization of more gene regions will assist to offer a more robust gobiid species phylogeny.

Keywords: cytochrome c oxidase subunit 1, barcoding, phylogeny, Gobiidae, Gobioidei

INTRODUCTION

Gobies (family Gobiidae; suborder Gobioidei) are incomparable among vertebrates in their capacity to adapt and diversify, which has led to adaptive radiation and rapid speciation (Zander, 2011). Gobiid fishes are hyperdiverse compared with other teleost groups, with approximately 2,000 species in 210 genera occurring in marine, freshwater, and blackish habitats. These fish show remarkable morphological and ecological variety (Nelson, 2006; Zander, 2011). Gobiid fishes are globally distributed (Nelson, 2006) and frequently represent a dominant component of coral reefs and coastal fish communities throughout much of their range, accounting for > 50% of the energy flow in some coral reef habitats (Herler et al., 2011). Despite their evolutionary and ecological importance, the phylogenetic relationships among species within Gobiidae and their location within Gobioidei are still poorly understood (Murdy, 1989; Parenti and Thomas, 1998; Thack-

pISSN 2234-6953 eISSN 2234-8190

er and Schaefer, 2000; Larson, 2001). To date, the classification of gobies still remains largely reliant on external morphology (Pezold, 1993; Akihito et al., 2000; Nelson, 2006), and diagnostic characters separating species are subtle and problematic.

Molecular biology has contributed to addressing taxon identification and phylogenetic relationship questions. Mitochondrial DNA (mtDNA) markers have historically formed the core of most molecular systematic analyses and are still the most widely used for reconstructing phylogeny (Brown et al., 1979; Moore, 1995; Johns and Avise, 1998); this is probably due to their single copy nature and relative ease of sequencing (Moore, 1995). Genetic divergence is also enhanced by the higher rate of sequence evolution in vertebrate mtDNA compared to that of nuclear coding regions (Johns and Avise, 1998). However, the choice of a suitable gene is crucial for identification and phylogenetic reconstruction among closely related species (Brown et al., 1979; Moore,

[©] This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

^{*}**To whom correspondence should be addressed** Tel: 82-53-810-2379, Fax: 82-53-810-4618 E-mail: hsuk@ynu.ac.kr

1995; Johns and Avise, 1998), because different parts of the mtDNA genome evolve at different rates (Avise and Ellis, 1986; Roques et al., 2006).

Mitochondrial cytochrome oxidase subunit I (COI) could serve as a rapid and reliable barcoding marker for identifying species and for discovering new species across the entire animal kingdom (Hebert et al., 2003). Although skepticism has frequently been expressed (Ebach and Holdrege, 2005; Will et al., 2005), DNA barcoding based on COI has been successful to identify species across a wide array of taxa over the last decade (e.g., Hebert et al., 2004; Clare et al., 2007; Hubert et al., 2008; Feng et al., 2011). A clear gap should exist between intra- and interspecific COI sequence divergence with about a 20-fold difference for DNA barcoding to be perfectly effective in delimitating species (Hebert et al., 2003). A standard sequence threshold can be projected to outline species boundaries by employing this barcoding gap. However, utilizing such a threshold value may be challenging, particularly when attempts do not include numerous specimens, such as for critically endangered taxa.

Only a few studies have addressed gobioid interrelationships based on molecular data (e.g., Akihito et al., 2000; Wang et al., 2001; Thacker, 2003, 2009; Thacker and Hardman, 2005). These studies used different taxon and nucleotide sampling methods. Yet, testing the effectiveness of COI DNA barcodes on species that have emerged as a result of radiation, such as gobies, remains a major challenge in evolutionary biology. Here, we sequenced the COI of 48 species collected from South Korea (Table 1) to evaluate the performance of distance-based DNA barcoding for phylogenetic analyses. We specifically aimed to provide novel data on a comparison of pairwise divergence levels among species in the same genus vs. species in different genera. GenBank sequences were also included in the analyses to use a dataset with large taxonomic coverage (n=144 species) (Table 2).

MATERIALS AND METHODS

Sample collection

Fish were collected using seine and dip nets from January to November 2011 from 21 sites across freshwater systems, coastal areas, and the ocean near South Korea (Table 1). Specimens were identified based on morphological characters. Entire bodies of all individuals were preserved in 95% ethanol, and 44 nominal species were sequenced for COI gene fragments.

DNA isolation, amplification, and sequencing

We used the Wizard Genomic DNA purification kit (Promega,

Madison, WI, USA) to extract genomic DNA from the right pectoral fin of each fish specimen. The COI was amplified using gobiid-specific primers: GOBYF7558 (forward) 5'-TTT GCW ATT ATG GCW GGA TTT G-3' and GOBYB 8197 (reverse) 5'-ATT ATT AGG GCG TGG TCG TGG-3' (Thacker, 2003) and COI fish universal primers, FF2d (forward) 5'-TTC TCC ACC AAC CAC AAR GAY ATY GG-3' and FF1d (reverse) 5'-CAC CTC AGG GTG TCC GAA RAA YCA RAA-3' (Ivanova et al., 2007). Each polymerase chain reaction (PCR) amplification was carried out in a 50 µL reaction volume composed of ~75 ng DNA extract, 0.25 mM of each deoxynucleotide, 0.25 mM of each forward and reverse primer, 3 mM MgCl₂, 1 × PCR buffer, and 0.25 units of Tag DNA polymerase (Solgent, Daejeon, Korea). GenePro (BIOER) was used to amplify the COI with the following program: 94°C for 10 min, 35 cycles of 30 s at 94°C, 30 s at 54°C (for GOBYF7558-GOBYB8197) and 52°C (for FF2d-FF1d), 30 s at 72°C and final elongation at 72°C for 10 min. PCR products were loaded on 1% agarose gels containing 0.003% ethidium bromide and visualized using the GelDoc-It TM Imaging System (UVP). Amplifications were considered successful when a expected sized band was observed on the agarose gel. PCR products were cleaned using a PCR purification kit (Solgent). The COI was sequenced directly using the BigDye-Terminator V3.1 kit (Applied Biosystems, Foster City, CA, USA) and an ABI3730XL sequencer at Genotech (Daejeon, Korea).

Sequence data analyses

Complementary DNA sequences were assembled using the Bioedit 5.0.9 sequence-editing software (Hall, 1999). Sequences were aligned using Clustal X 2.0 default settings (Larkin et al., 2007). Alignments were translated to amino acids under the vertebrate mitochondrial option using MEGA 5 (Tamura et al., 2011) to detect frameshift mutations and premature stop codons, which may indicate the presence of pseudogenes. The Genbank accession numbers of newly determined sequences were JX679021-JX679066 and are listed in Table 1. Genetic distances were calculated to quantify sequence divergences among species using both p distance and Kimura two-parameter (K2P) models (1,000 bootstrapping) (Kimura, 1980), as implemented in MEGA. Rates of synonymous and nonsynonymous substitutions were also calculated with MEGA using both standard and modified (at 1.4 standard errors with 1,000 bootstrapping samples) Nei-Gojobori models (Nei and Gojobori, 1986; Nei and Kumar, 2000). Genetic distances were calculated at intrageneric, intrasubfamilial, intrafamilial, and interfamilial levels. Altogether, 10,296 pairwise distances were compared in this study. The degree of sequence conservation per site, R_{seq} , was defined as $R_{seq}=2-(-\sum p \log_2 p)$ (Ward and Holmes, 2007),

species name, voucher number, locality, GPS coordinate, collection date, and GenBank accession number;	n such as freshwater, estuary and ocean, respectively
Table 1. Details of gobioid fish species analyzed; data comprised of species name,	F, E and O in bracket on each location indicates habitat information such as freshwa

(Sub)family	Species	Voucher	Location	GPS coordinate	Date	Genbank accession no.
Microdesmidae	Parioglossus dotui Micropercone evitabonie	GB11111 GB11111	Jeju-si, Jeju-do (O) Soochoon-aun Chunachoonana-do (E)	N33° 28'23", E126° 20'58" N3E° 06'57" E126° 45'07"	21 Feb 2011	JX679048
<u>ממוונטממומפ</u>	odontobutis interrupta	GB11113	Gyeongiu-si, Gyeongsangbuk-do (F)		7 Dec 2010	JX679045
	Odontobutis obscura	GB11114	Geoje-si, Gyeongsangnam-do (F)	48′51″,	20 Jun 2011	JX679046
	Odontobutis platycephala	GB11115	Gyeongsan-si, Gyeongsangbuk-do (F)	51'23",	23 Dec 2010	JX679047
Amblyopinae	Odontamblyopus rubicundus	GB11116	Yeonggwang-gun, Jeollanam-do (O)		5 Aug 2011	JX679044
Cobiidoo	Ctenotrypaucnen microcepnalus Ictionhine campbolli	GB1111/	Yeonggwang-gun, Jeonam-do (U)	N35 ⁻ 25 ⁻ 44 , E126 ⁻ 25 ⁻ 41 N32 ⁻ 3 ⁻ 16 ⁻¹ 5 ⁻ , E126 ⁻ 35 ⁻ 52 ⁻	TIUZ GUL C	1X6/9U31
שפוווומה	isugubius callipbelli Leuronsarion nefersii	GB11125	Seugwipu-si, Jeju-uu (U) Gijang-nim Bijsan (N)		4 Anr 2011	1206707L
	Bathvaobius fuscus	GB11127	Secomipo-si. Jeiu-do (O)		21 Feb 2011	JX679026
	Trimma grammistes	GB11128	Seogwipo-si, Jeju-do (O)		9 Jun 2011	JX679066
Gobionellinae	Acanthogobius elongata	GB11129	Boryeong-si, Chungcheongnam-do (O)		15 May 2011	JX679021
	Acanthogobius flavimanus	GB11130	Boryeong-si, Chungcheongnam-do (O)	_	15 May 2011	JX679022
	Acanthogobius lactipes	GB11131	Boryeong-si, Chungcheongnam-do (O)	~	15 May 2011	JX679023
	Acantnogobius luriaus Amhlychaeturichthys hevanema	GB11132 GR11133	ытро-si, Gyeonggi-ao (U) Seocheon-aun Chunacheonanam-do (O)	N3/ 42'0/', E120 39'45 N36°00'77'/ E126°30'01'	13 UCT 2011 9 1 2011	JX679025
	Gymnaaobius breuntiaii	GB11134	Goseona-aun, Ganawon-do (E)		20 Aug 2011	JX679032
	Gymnogobius mororanus	GB11135	Boryeong-si, Chungcheongnam-do (E)		20 May 2011	JX679033
	Gymnogobius urotaenia	GB11136	Pohang-si, Gyeongsangbuk-do (E)	~	19 Apr 2011	JX679035
	Gymnogobius petschiliensis	GB11137	Seogwipo-si, Jeju-do (E)	~	25 Aug 2011	JX679033
	Gymnogobius opperiens	GB11138	Pohang-si, Gyeongsangbuk-do (E)		19 Apr 2011	JX679036
	Chaeturichtnys stigmatias	GB11139	Boryeong-si, Chungcheongnam-do (U)	N36 [°] 21'06″, E126 [°] 33'36″ N32° 28'32″ E126° 33'36″	14 May 2011	0CUU237L
	Chaenogobius uviicitogriautus Chaenogobius gulosus	GB11140 GB11141	Jeju-si, Jeju-uo (O) Jeiu-si, Jeiu-do (O)	~ .	21 Feb 2011 21 Feb 2011	0706707L
	Clariger cosmurus	GB11142	Gijang-gun, Busan (O)		4 Apr 2011	JX679030
	Lophiogobius ocellicauda	GB11143	Gimpo-si, Gyeonggi-do (O)		13 Oct 2011	I
	Luciogobius platycephalus	GB11146	Gijang-gun, Busan (O)	~	4 Apr 2011	JX679040
	Luciogobius elongatus	GB11148	Gijang-gun, Busan (O)	N35° 17'30", E129° 15'37"	4 Apr 2011	JX679039
	Luciogobius saikaerisis Murailogohius ahai	GB11149 GR11150	Borveong-si Chungcheongnam-do(O)	N36°21'06'/ E126°33'36" N36°21'06'/ E126°33'36"	4 APC 2011 14 May 2011	1X679043
	Pseudoaobius masaao	GB11152	Borveona-si, Chunacheonanam-do (O)		14 Mav 2011	JX679051
	Pterogobius zacalles	GB11154	Sinan-gun, Jeollanam-do (O)		13 Jul 2011	JX679052
	Pterogobius zonoleucus	GB11155	Gijang-gun, Busan (O)		5 Apr 2011	JX679053
	Rhinogobius brunneus	GB11156	Pohang-si, Gyeongsangbuk-do (F)		15 Mar 2011	JX679054
	Rhinogobius brunneus CB	GB11157	Goheung-gun, Jeollanam-do (F)		4 Jun 2011	JX679055
	Rhinogobius brunneus CO	GB11158	Seogwipo-si, Jeju-do (F)	N33°14′38″, E126°20′30″ N23°14′4″″ E126°20′30″	6 Jul 2011	JX679056
	Dhinocohius giurrinus A	CE11160	Jeogwipu-si, Jeju-uu (r) Wanii-aiin Jeollahiik-do (F)		22 Aug 2011	1006707L
	Svnechogobius giumus p	GB11161	Wanyu-gun, Jeonapuk-uo (F) Borveong-si- Chungcheongnam-do (F, O)	-	14 May 2011	020670XL
	Tridentiger barbatus	GB11162			8 Nov 2011	090679XL
	Tridentiger brevispinis	GB11163	ш,		14 May 2011	JX679062
	Tridentiger bifasciatus	GB11164	Boryeong-si, Chungcheongnam-do (E, O)	~	14 May 2011	JX679061
	Tridentiger nudicervicus	GB11165			14 May 2011	JX679063
	Iridentiger obscurus Tridentiger trigeneocoholus	GB11160	Longyeong-si, Gyeongsangnam-do (E, U)	N34 ⁻ 48 ⁻ 35 ⁻ , EL28 ⁻ 14 ⁻ L5 ⁻ N30 ^o 20 [,] 40 ^{,//} E120 ^o 26 ^{,1} 1 ^{,//}	28 UCT 2011	JX6/9064
Oxudercinae	nuenciger ungonocephalus Boleonhthalmus pectinirostris	GB11168	Boseong-gun, Gangwon-uo (E, O) Boseong-ann Jeollanam-do (O)	~	15 Aug 2011	2006/0VL
	Periophthalmus magnuspinnatus	GB11169	Boryeong-si, Chungcheongnam-do (O)		25 Aug 2011	JX679049
					,	

Table 2. List of reference	species used in this study
----------------------------	----------------------------

(Sub)family	Species	Reference	GenBank accession no.	
Odontobutidae	Perccottus glenii	Thacker and Hardman (2005)	AY722171	
Rhyacichthyidae	Protogobius attiti	Keith et al. (2011)	HQ639032	
	Rhyacichthys guilberti	Keith et al. (2011)	HQ639030	
Benthophilinae	Neogobius melanostomus	Unpublished	HQ960511	
	Proterorhinus marmoratus	Hubert et al. (2012)	EU524305	
	Proterorhinus semilunaris	Unpublished	HQ961006	
Gobiinae	Amblyeleotris aurora	Unpublished	HQ561508	
	Amblyeleotris guttata	Steinke et al. (2009)	FJ582710	
	Amblyeleotris steinitzi	Steinke et al. (2009)	FJ582712	
	Amblyeleotris wheeleri	Unpublished	HQ561506	
	Amblygobius decussatus	Steinke et al. (2009)	FJ582722	
	Amblygobius phalaena	Hubert et al. (2012)	JQ431409	
	Asterropteryx ensifera	Hubert et al. (2012)	JQ431470	
	Asterropteryx semipunctata	Hubert et al. (2012)	JQ431471	
	Bathygobius coalitus	Hubert et al. (2012)	JQ431479	
	Bathygobius cocosensis	Hubert et al. (2012)	JQ431480	
	Bathygobius cotticeps	Hubert et al. (2012)	JQ431482	
	Bathygobius curacao	Weigt et al. (2012)	JQ839961	
	Bathygobius lacertus	Weigt et al. (2012)	JQ839962	
	Bathygobius laddi	Unpublished	JF492946	
	Bathygobius mystacium	Weigt et al. (2012)	JQ839963	
	Bathygobius soporator	Tornabene et al. (2010)	HM748425	
	Caffrogobius caffer	Unpublished	HQ945885	
	Coryphopterus tortugae	Weigt et al. (2012)	JQ842827	
	Croilia mossambica	Unpublished	HQ561481	
	Cryptocentrus cryptocentrus	Unpublished	HQ561467	
	Cryptocentrus leptocephalus	Steinke et al. (2009)	FJ583296	
	Cryptocentrus pavoninoides	Steinke et al. (2009)	FJ583298	
	Elacatinus evelynae	Steinke et al. (2009)	FJ583388	
	Elacatinus oceanops	Steinke et al. (2009)	FJ583389	
	Eviota afelei	Thacker (2003)	AF391391	
	Eviota disrupta	Leray et al. (2012)	JN107907	
	Eviota distigma	Hubert et al. (2012)	JQ349971	
	Eviota indica	Hubert et al. (2012)	JQ349972	
	Eviota prasina	Hubert et al. (2012)	JQ349973	
	Favonigobius exquisitus	Thacker et al. (2011)	HQ909465	
	Fusigobius signipinnis	Steinke et al. (2009)	FJ583414	
	Glossogobius aureus	Aquino et al. (2011)	HQ682689	
	Glossogobius callidus	Steinke et al. (2009)	JF493535	
	Gobiodon ceramensis	Steinke et al. (2009)	FJ583428	
	Gobiodon histrio	Steinke et al. (2009)	FJ583450	
	Gobiodon okinawae	Steinke et al. (2009)	FJ583454	
	Gobiodon quinquestrigatus	Hubert et al. (2012)	JQ431768	
	Gobiopterus lacustris	Aquino et al. (2011)	HQ682693	
	Gobius bucchichi	Unpublished	JF935258	
	Gobius cruentatus	Unpublished	JF935263	
	Istigobius decoratus	Steinke et al. (2009)	JF493692	
	Istigobius rigilius	Thacker et al. (2003)	HQ536672	
	Knipowitschia caucasica	Triantafyllidis et al. (2011)	HQ600736	
	Nes longus		-	
	-	Weigt et al. (2012)	JQ841296	
	Paragobiodon lacunicolus Pomatoschictus tortonosoi	Steinke et al. (2009)	FJ583828	
	Pomatoschistus tortonesei	Unpublished	FJ751922	
	Priolepis cincta	Hubert et al. (2012)	JQ350251	
	Priolepis compita	Hubert et al. (2012)	JQ432034	
	Priolepis eugenius	Thacker (2003)	AF391329	
	Priolepis hipoliti	Thacker et al. (2011)	HQ909484	
	Priolepis inhaca	Hubert et al. (2012)	JQ432036	
	Priolepis semidoliata	Hubert et al. (2012)	JQ432038	
	Priolepis squamogena	Hubert et al. (2012)	JQ432040	

Table 2. Continued

(Sub)family	Species	Reference	GenBank accession no
Gobiinae	Priolepis triops	Hubert et al. (2012)	JQ432042
	Pycnomma roosevelti	Unpublished	GU224480
	Rhinogobiops nicholsii	Unpublished	JN582118
	Trimma caesiura	Thacker (2009)	EU381039
	Trimma macrophthalma	Hubert et al. (2012)	JQ350401
	Trimma mendelssohni	Hubert et al. (2012)	JQ350407
	Trimma milta	Hubert et al. (2012)	JQ432200
	Valenciennea helsdingenii	Steinke et al. (2009)	FJ584201
	Valenciennea longipinnis	Steinke et al. (2009)	FJ584202
	Valenciennea muralis	Steinke et al. (2009)	FJ584203
	Valenciennea puellaris	Steinke et al. (2009)	FJ584212
	Valenciennea sexguttata	Steinke et al. (2009)	FJ584224
	Valenciennea strigata	Unpublished	HQ945877
	Valenciennea wardii	Steinke et al. (2009)	FJ584240
Gobionellinae	Awaous aeneofuscus	Unpublished	HQ945950
	Awaous melanocephalus	Aquilino et al. (2011)	HQ654674
	Ctenogobiops tangaroai	Steinke et al. (2009)	FJ583310
	Ctenogobius saepepallens	Weigt et al. (2012)	JQ840025
	Gnatholepis cauerensis	Unpublished	HQ561511
	Gnatholepis thompsoni	Weigt et al. (2012)	JQ840079
	Gobioides broussonnetii	April et al. (2011)	JN026727
	Gobionellus oceanicus	Weigt et al. (2012)	JQ841902
	Lethops connectens	Unpublished	GU440372
	Oligolepis acutipennis	Aquilino et al. (2011)	HQ654730
	Oligolepis keiensis	Unpublished	HQ945926
	Stenogobius polyzona	Unpublished	HQ945939
	Typhlogobius californiensis	Unpublished	GU440562
Dxudercinae	Scartelaos histophorus	Unpublished	FJ238032
	Taenioides sp.	Steinke et al. (2009)	FJ584167
Sicydiinae	Akihito vanuatu	Keith et al. (2011)	HQ639065
,	Cotylopus rubiripinnis	Keith et al. (2011)	HQ639038
	Lentipes armatus	Keith et al. (2011)	HQ639070
	Sicydium punctatum	Keith et al. (2011)	HQ639050
	Sicyopterus lagocephalus	Hubert et al. (2012)	JQ432152
	Sicyopterus pugnans	Hubert et al. (2012)	JQ432154
	Sicyopus chloe	Keith et al. (2011)	HQ639058
	Stiphodon elegans	Hubert et al. (2012)	JQ432172

where p is the observed frequency of each base at a particular position and the maximal degree of conservation was 2, which was achieved when all nucleotides at a particular site in the 144 species were the same.

A Bayesian inference (BI) tree was established using MrBayes 3.1.2 (Ronquist and Huelsenbeck, 2003) with two outgroup species from the Family Rhyacichthydae, *Protogobius attiti* and *Ryacichthys guilberti*. The best-fit model of DNA sequence evolution was chosen using ModelTest 3.8 (Posada and Crandall, 1998) and Akaike information criteria; the chosen model was GTR+I+G. The analysis was run for 10 million generations with sampling of one tree every 500 generations. Two independent Markov Chain Monte Carlo runs were conducted simultaneously. The first 1,000 trees of each run were discarded as burn-in.

RESULTS

The COI genes of each species were confidently aligned, and the equivocal bases at each end were trimmed to yield a final sequence of 542 bp. No indels were detected. Translation of the sequences did not reveal frame-shift mutations or premature stop codons, confirming that our amplified fragments were functional. Among the 542 nucleotide positions, 245 were polymorphic, and 230 were parsimony informative. The proportion of T, C, A, and G bases for all 144 sequences was 30.5%, 28.1%, 23.1%, and 18.2%, respectively. The GC content was relatively higher at the first codon base (56.3%) than that at the second (43.1%) or third (39.6%). The degree of conservation (R_{seq}) was calculated for each base of the 542 nucleotides; the most common and maximum value was 2, which was achieved when all nucleotides at a particular site

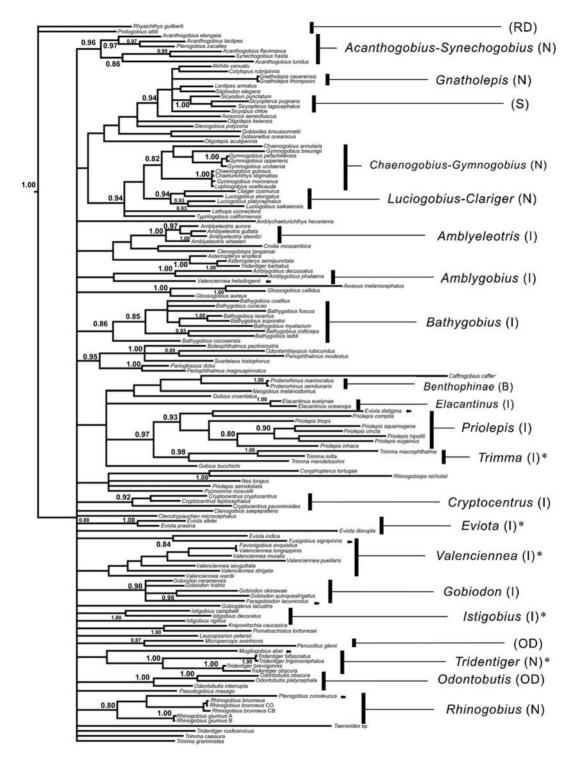
Table 3. Estimated evolutionary parameters (×100) for the nucleotide substitutions in the cytochrome oxidase c subunit 1 (COI)
barcoding region from 144 gobioid fish species

Genetic distance		All fish		Gobiinae		Gobionellinae	
		Mean	SD	Mean	SD	Mean	SD
Codon nucleotide posit	ion						
p distance	First	5.51	1.63	5.45	2.05	5.21	2.06
	Second	0.18	0.15	0.28	0.47	0.02	0.11
	Third	54.31	3.61	55.49	5.19	50.19	7.05
	Overall	19.94	1.66	20.34	2.10	18.42	2.69
K2P distance	First	6.23	2.09	6.14	2.53	5.85	2.52
	Second	0.18	0.15	0.28	0.48	0.02	0.11
	Third	403.10	439.15	499.53	552.80	240.11	145.15
	Overall	28.18	4.06	29.06	4.05	25.34	4.42
Synonymous and nons	ynonymous distances						
Nei-Gojobori (N-G)	Synonymous	71.91	6.98	73.41	6.77	66.95	9.32
	Nonsynonymous	1.64	0.94	1.72	0.99	1.29	0.83
	$d_{\rm N}/d_{\rm S}$	0.02	0.00	0.02	0.00	0.02	0.00
Modified N-G	Synonymous	62.78	6.06	64.06	5.88	58.44	8.11
	Nonsynonymous	1.73	1.00	1.81	1.05	1.36	0.88
	$d_{\rm N}/d_{\rm S}$	0.03	0.00	0.03	0.00	0.02	0.00

K2P, Kimura-2-parameter.

of the 144 species were the same. Every third codon base was highly variable with a 0.64 mean R_{seq} . The first (1.72) and the second codon bases (1.98) were nearly monomorphic. Nucleotide genetic distance parameters, *p* and K2P distance, also showed an almost zero rate of substitution for second nucleotide positions, with the first position being an order of magnitude higher and the third position being unparalleled among them (Table 3). The rate of synonymous substitutions was much higher than the rate of nonsynonymous substitutions (Table 3).

Three species could not be separated using the COI sequence analysis, including Chaenogobius gulosus (Gobionellinae), Chaeturichthys stigmatias (Gobionellinae), and Lophiogobius ocellicauda (Gobiinae). The C. gulosus sequence was highly similar to those of other congeneric species, as expected, whereas the C. stigmatias and L. ocellicauda results were very surprising. Multiple specimens of these species should be extensively analyzed in a future study to check the genetic divergence among these species; thus, those sequences were not deposited in GenBank. The average diversity among 142 haplotypes (H_d) was 0.999 \pm 0.001 (mean \pm standard deviation), and the average nucleotide diversity (π) was 0.199 ± 0.002 . Twenty-six genera were represented by two or more species. Levels of intragenus divergence were generally high (Table 4) but varied greatly among genera. For example, the average within-genus divergence of Awaous, Eviota, and Trimma was 29.85%, 29.13%, and 28.71%, respectively, which was larger than that of overall interspecific divergence. These values were considerably larger than those of Amblygobius, Asterropteryx and Rhinogobius (9.76%, 9.87%, and


Table 4. Mean genetic divergences for the cytochrome oxidase *c* subunit 1 (COI) nucleotide sequences (*p* and Kimura-2-parameter [K2P] distances) among 144 gobioid species

Taxonomic level	<i>p</i> dist	ance (×	100)	K2P distance ($ imes$ 100)			
	Mean	Min	Max	Mean	Min	Max	
Within-genus	15.63	0.18	23.80	20.87	0.19	36.13	
Within-subfamily	19.69	9.20	26.20	27.87	0.19	41.44	
Within-family	20.05	6.83	26.94	28.35	0.94	44.53	
Among-family	20.18	10.89	25.83	28.56	13.27	41.06	

Four taxonomic levels are represented such as within-genus, within-sub-family, within-family, and among-family.

10.74%, respectively). Mean interspecific divergences at higher taxonomic levels were slightly larger than that at the intragenus level, resulting in large overlaps among levels (Table 4). As roughly 90% of all gobiid fishes are either in Gobiinae or Gobionellinae, these two subfamilies were compared for nucleotide substitution rate (Table 3). Species from Gobiinae were consistently higher than Gobionelline fishes in every parameter estimated (Table 3).

Our phylogenetic data provide little evidence to support the previous claims at the generic and higher taxonomic levels, based on phenetic analyses. Several species did not cluster into their respective groups, and the BI tree failed to correctly identify some genera or subfamilies (Fig. 1). For example, *Tridentiger barbatus* (Gobiinellinae) clustered into the *Asterropteryx* clade (Gobiinae) with high nodal support rather than with other species of *Tridentiger*. *Pterogobius zacalles* clustered with *Acanthogobius*, whereas *P. zonoleucus* formed a monophyletic group with the *Rhinogobius brun*-

Fig. 1. Molecular phylogeny of Gobioidei based on Bayesian inference from 542 bp of the mitochondrial cytochrome oxidase *c* subunit 1 (COI) gene with two outgroup species from the Family Rhyacichthyidae: *Protogobius attiti* and *Rhyacichthys guilberti*. Under the chosen model, GTR+I+G, analysis was run for 10 million generations with sampling of one tree every 500 generations. Numbers above branches indicate posterior probabilities (>0.8). Abbreviations in brackets on the right side indicate higher taxonomic names (subfamily and family) in current usage, including Amblyopinae (A), Benthophilinae (B), Gobiinae (I), Gobionellinae (N), Oxudercinae (O), Sicydiinae (S), Microdesmidae (MD), Odontobutidae (OD), and Rhyacichthyidae (RD). Asterisks immediately after the higher taxonomic names and arrows on nodes indicate taxa failing to resolve monophyletic assemblages, and species clustered into unrelated groups, respectively.

neus complex, albeit without good nodal support. The BI tree also failed to resolve monophyletic assemblages of some taxa, such as *Awaous, Eviota, Trimma*, and Ondontobutidae. Those exceptions aside, the tree largely assigned species to identical major groups.

DISCUSSION

The COI sequences did resolve genealogical relationships well at the level of genera and family in Gobioidei. As previously noted in Che et al. (2012), this was possibly due to at least two factors. Most likely, the 542 nucleotides do not provide sufficient phylogenetically informative characters to recover the true phylogeny when examining hundreds of taxa with enormous diversity. In addition, the fast mutation rate and saturation in the third codon position can be a disadvantage at deeper phylogenetic levels, and the subsequent long terminal branches may impede resolution of ancient speciation due to the chance accumulation of shared character states (Huelsenbeck, 1997). Despite the poor monophyletic resolution in several taxa, some clear phylogenetic signatures were observed in the COI sequence data. For example, several major congeneric species, Rhinogobius and Bathygobius, tended to cluster together with no exception and, in most cases, so did consubfamilial species. It is believed that the utilization of more gene regions including nuclear DNA will assist in offering a more reliable phylogeny within Gobiidae and their placement within Gobioidei. Several nuclear genes such as recombination activating genes 1 and 2 (Rag 1 and 2) and ryandine receptor 3 (Ryr3) may have slower rate of sequence evolution in gobies compared to that of mtDNA genes (Yamada et al., 2009).

Our results support the validity of COI barcoding for species identification in gobiid species, although no attempt was made to include numerous specimens for any one species. One fundamental barcoding criterion is that congeneric divergence should be significantly higher than that of conspecific divergence (Hubert et al., 2008). The average intragenus distance (K2P) for 28 genera with multiple species in the present study was 21.09%, which was considerably higher than the values obtained among fish species in previous studies (9.93% from Ward et al., 2005; 9.54% from Ward and Holmes, 2007). In addition, the interspecific divergence at higher taxonomic levels was not significantly larger than that at the intragenus level, suggesting that congeneric gobies possess substantial interspecific sequence divergence in their COI genes. Significantly more nucleotide changes were observed at the third codon position than those at the first and the second, revealing that the extensive variation shown among the COI sequences typically reflects synonymous changes and little variation at the protein level. Consequently, the proportion of nonsynonymous to synonymous changes was far less than one (Table 2). As previously noted in Ward and Holmes (2007), this result must be due to exceptionally strong purifying selection of the COI gene and confirms that the ability of COI to identify species in Gobiidae is dependent on the degenerate nature of the genetic code.

We did not provide sufficient evidence for the utility of the COI towards cryptic species identification in several species complexes. Gobiidae taxonomy has been studied extensively for the last several decades, but confusion still exists. One typical case is the taxonomic status of the Gymnogobius species complex (G. urotaenia, G. opperiens, and G. petschiliensis) (e.g., Harada et al., 2002). In our results, overall K2P divergence within Gymnogobius was 12.74%, whereas the average value among the Gymnogobius species complex was only 1.81%, probably reflecting a short history of reproductive isolation. The Rhinogobius brunneus complex (in our analysis, Rhinogobius brunneus, R. brunneus CB, and R. brunneus CO) is also a representative example of a cryptic species complex in Gobiidae (Kawanabe and Mizuno, 1989; Kim, 1995). Overall, K2P divergence within Rhinogobius was >10%, whereas the average value among the *R*. brunneus complex was just 2%. Although more work needs to be done with multiple specimens, the COI sequence may not be a reliable tool to delineate cryptic and complex species boundaries in the family Gobiidae.

ACKNOWLEDGMENTS

We thank Mr. Seong Jang Jo and Jin Young Choo for their assistance collecting fish. We also thank Seongjun Park for logistical phylogenetic analyses support. Su Youn Baek provided assistance with the laboratory studies. This study was supported by the grant "Korean Tree of Life, 4th Year: Gobioidei Fishes (No. 211C000068)" funded by the National Institute of Biological Resources, Korean Government and awarded to H. Y. Suk.

REFERENCES

- Akihito A, Iwata T, Kobayashi T, Ikeo K, Imanishi T, Ono H, Umehara Y, Hamamatsu C, Sugiyama K, Ikeda Y, Sakamoto K, Fumihito A, Ohno S, Gojobori T, 2000. Evolutionary aspects of gobioid fishes based upon a phylogenetic analysis of mitochondrial cytochrome b genes. Gene, 259:5-15.
- April J, Mayden RL, Hanner RH, Bernatchez L, 2011. Genetic calibration of species diversity among North America's freshwater fishes. Proceedings of the National Academy of Sciences United States of America, 108:10602-10607.

- Aquilino SVL, Tango JM, Fontanilla IKC, Pagulayan RC, Basiao ZU, Ong PS, Quilang JP, 2011. DNA barcoding of the ichthyofauna of Taal Lake, Philippines. Molecular Ecology Resources, 11:612-619.
- Aquino LMG, Tango JM, Canoy RJC, Fontanilla IKC, Basiao ZU, Ong PS, Quilang JP, 2011. DNA barcoding of fishes of Laguna de Bay, Philippines. Mitochondrial DNA, 22:143-153.
- Avise JC, Ellis D, 1986. Mitochondrial DNA and the evolutionary genetics of higher animals. Philosophical Transactions of the Royal Society of London Series B Biological Sciences, 312:325-342.
- Brown WM, George M Jr, Wilson AC, 1979. Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences of the United States America, 76:1967-1971.
- Che J, Chen HM, Yang JX, Jin JQ, Jiang K, Yuan ZY, Murphy RW, Zhang YP, 2012. Universal COI primers for DNA barcoding amphibians. Molecular Ecology Resources, 12: 247-258.
- Clare EL, Lim BK, Engstrom MD, Eger JL, Hebert PDN, 2007. DNA barcoding of Neotropical bats: species identification and discovery within Guyana. Molecular Ecology Notes, 7: 184-190.
- Ebach MC, Holdrege C, 2005. More taxonomy, not DNA barcoding. BioScience, 55:822-823.
- Feng Y, Li Q, Kong L, Zheng X, 2011. COI-based DNA barcoding of Arcoida species (Bivalvia: Pteriomorphia) along the coast of China. Molecular Ecology Resources, 11:435-441.
- Hall TA, 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic Acids Symposium Series, 41:95-98.
- Harada S, Jeon SR, Kinoshita I, Tanaka M, Nishda M, 2002. Phylogenetic relationships of four species of floating gobies (*Gymnogobius*) as inferred from partial mitochondrial cytochrome b gene sequences. Ichthyological Research, 49:324-332.
- Hebert PDN, Cywinska A, Ball SL, DeWaard JR, 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences, 270:313-321.
- Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM, 2004. Identification of birds through DNA barcodes. PLoS Biology, 2:e312.
- Herler J, Munday PL, Hernaman V, 2011. Gobies on coral reefs. In: The biology of gobies (Eds., Patzner RA, van Tassell JL, Kovačić M, Kapoor BG). Science Publishers, New York, pp. 493-530.
- Hubert N, Hanner R, Holm E, Mandrak NE, Taylor E, Burridge M, Watkinson D, Dumont P, Curry A, Bentzen P, Zhang J, April J, Bernatchez L, 2008. Identifying Canadian freshwater fishes through DNA barcodes. PLoS ONE, 3:e2490.
- Hubert N, Meyer CP, Bruggemann HJ, Guérin F, Komeno RJL, Espiau B, Causse R, Williams JT, Planes S, 2012. Cryptic diversity in Indo-Pacific coral-reef fishes revealed by DNAbarcoding provides new support to the centre-of-overlap

hypothesis. PLoS ONE, 7:e28987.

- Huelsenbeck JP, 1997. Is the Felsenstein zone a fly trap? Systematic Biology, 46:69-74.
- Ivanova NV, Zemlak TS, Hanner RH, Hebert PDN, 2007. Universal primer cocktails for fish DNA barcoding. Molecular Ecology Notes, 7:544-548.
- Johns GC, Avise JC, 1998. A comparative summary of genetic distances in the vertebrates from the mitochondrial cytochrome b gene. Molecular Biology and Evolution, 15:1481-1490.
- Kawanabe H, Mizuno N, 1989. Freshwater fishes of Japan. Yamatokeikokusha, Tokyo, pp. 1-719.
- Keith P, Lord C, Lorion J, Watanabe S, Tsukamoto K, Couloux A, Dettai A, 2011. Phylogeny and biogeography of Sicydiinae (Teleostei: Gobiidae) inferred from mitochondrial and nuclear genes. Marine Biology, 158:311-326.
- Kim JB, 1995. The studies of speciation and systematics on the fishes of the genera *Rhinogobius* and *Tridentiger* (Perciformes, Gobiidae) in Korea. PhD dissertation, Inha University, Incheon, Korea, pp. 1-158.
- Kimura M, 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16: 111-120.
- Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG, 2007. Clustal W and Clustal X version 2.0. Bioinformatics, 23:2947-2948.
- Larson HK, 2001. A revision of the gobiid fish genus *Mugilogobius* (Teleostei: Gobioidei), and its systematic placement. Records of the Western Australian Museum, Supplement 62:1-233.
- Leray M, Boehm JT, Mills SC, Meyer CP, 2012. Moorea BIO-CODE barcode library as a tool for understanding predatorprey interactions: insights into the diet of common predatory coral reef fishes. Coral Reefs, 31:383-388.
- Moore WS, 1995. Inferring phylogenies from mtDNA variation: mitochondrial-gene trees versus nuclear-gene trees. Evolution, 49:718-726.
- Murdy EO, 1989. A taxonomic revision and cladistic analysis of the oxudercine gobies (Gobiidae: Oxudercinae). Records of the Australian Museum, Supplement, 11:1-93.
- Nei M, Gojobori T, 1986. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Molecular Biology and Evolution, 3:418-426.
- Nei M, Kumar S, 2000. Molecular evolution and phylogenetics. Oxford University Press, Oxford, pp. 1-352.
- Nelson JS, 2006. Fishes of the world. 4th ed. John Wiley and Sons, Hoboken, NJ, pp. 1-601.
- Parenti LR, Thomas KR, 1998. Pharyngeal jaw morphology and homology in sicydiine gobies (Teleostei: Gobiidae) and allies. Journal of Morphology, 237:257-274.
- Pezold F, 1993. Evidence for a monophyletic Gobiinae. Copeia, 1993:634-643.
- Posada D, Crandall KA, 1998. Modeltest: testing the model of

DNA substitution. Bioinformatics, 14:817-818.

- Ronquist F, Huelsenbeck JP, 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19:1572-1574.
- Roques S, Fox CJ, Villasana MI, Rico C, 2006. The complete mitochondrial genome of the whiting, *Merlangius merlangus* and the haddock, *Melanogrammus aeglefinus*: a detailed genomic comparison among closely related species of the Gadidae family. Gene, 383:12-23.
- Steinke D, Zemlak TS, Hebert PDN, 2009. Barcoding nemo: DNA-based identifications for the ornamental fish trade. PLoS ONE, 4:e6300.
- Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S, 2011. MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28:2731-2739.
- Thacker CE, 2003. Molecular phylogeny of the gobioid fishes (Teleostei: Perciformes: Gobioidei). Molecular Phylogenetics and Evolution, 26:354-368.
- Thacker CE, 2009. Phylogeny of Gobioidei and placement within Acanthomorpha, with a new classification and investigation of diversification and character evolution. Copeia, 2009: 93-104.
- Thacker CE, Hardman MA, 2005. Molecular phylogeny of basal gobioid fishes: Rhyacichthyidae, Odontobutidae, Xenisthmidae, Eleotridae (Teleostei: Perciformes: Gobioidei). Molecular Phylogenetics and Evolution, 37:858-871.
- Thacker CE, Schaefer SA, 2000. Phylogeny of the wormfishes (Teleostei: Gobioidei: Microdesmidae). Copeia, 2000:940-957.
- Thacker CE, Thompson AR, Roje DM, 2011. Phylogeny and evolution of Indo-Pacific shrimp-associated gobies (Gobiiformes: Gobiidae). Molecular Phylogenetics and Evolution, 59:168-176.
- Tornabene L, Baldwin C, Weigt LA, Pezold F, 2010. Exploring the diversity of western Atlantic Bathygobius (Teleostei: Gobiidae) with cytochrome c oxidase-I, with descriptions

of two new species. Aqua Journal of Ichthyology and Aquatic Biology, 16:141-170.

- Triantafyllidis A, Bobori D, Koliamitra C, Gbandi E, Mpanti M, Petriki O, Karaiskou N, 2011. DNA barcoding analysis of fish species diversity in four north Greek lakes. Mitochodrial DNA, 22:37-42.
- Wang HY, Tsai MP, Dean J, Lee SC, 2001. Molecular phylogeny of gobioid fishes (Perciformes: Gobioidei) based on mitochondrial 12S rRNA sequences. Molecular Phylogenetics and Evolution, 20:390-408.
- Ward RD, Holmes BH, 2007. An analysis of nucleotide and amino acid variability in the barcode region of cytochrome c oxidase I (cox1) in fishes. Molecular Ecology Notes, 7:899-907.
- Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN, 2005. DNA barcoding Australia's fish species. Philosophical Transactions of the Royal Society of London Series B Biological Sciences, 360:1847-1857.
- Weigt LA, Baldwin CC, Driskell A, Smith DG, Ormos A, Reyier EA, 2012. Using DNA barcoding to assess Caribbean reef fish biodiversity: expanding taxonomic and geographic coverage. PLoS ONE, 7:e41059.
- Will KW, Mishler BD, Wheeler QD, 2005. The perils of DNA barcoding and the need for integrative taxonomy. Systematic Biology, 54:844-851.
- Yamada T, Sugiyama T, Tamaki N, Kawakita A, Kato M, 2009. Adaptive radiation of gobies in the interstitial habitats of gravel beaches accompanied by body elongation and excessive vertebral segmentation. BMC Evolutionary Biology, 9:145.
- Zander CD, 2011. Morphological adaptation to special environments of gobies. In: The biology of gobies (Eds., Patzner RA, van Tassell JL, Kovačić M, Kapoor BG). Science Publishers, New York, pp. 345-366.

Received September 23, 2012 Revised October 18, 2012 Accepted October 20, 2012