

Medicinal value and mechanism of light adaptation in *Lepidium latifolium* in Ladakh region

Verma A. K. ⊠, Goyal Y. and Dev K.

Received: 03.09.2019

Revised: 24.10.2019

Accepted: 09.11.2019

Abstract

Medicinal plants have been used form ancient times in treatment of many diseases. These plants are the cheap source of drugs and have very fewer side effects. *Lepidium latifolium* is an invasive plant belongs to Brassicaceae family. It found in the mountainous area of Ladakh. It used as a phytofood in the Ladakh area. It is used in treatment of many diseases due to its medicinal properties. It has several natural antioxidants which suppress the biological system. From ancient times, it mainly used as stomach tonics and diuretics. Although it also used in the treatment of other diseases like kidney related diseases, hypertension, diabetes and many more. It also has anti-tumor properties. Due to the mountainous region, Ladakh has very low temperature. Due to its physiological plasticity, *Lepidium latifolium* can grow in the extremely harsh conditions of Ladakh area. In this review, we will discuss about the medicinal properties and the light adaptation of *Lepidium latifolium* in Ladakh area.

Key Words: Lepidium latifolium, Ladakh, phytofood and Brassicaceae.

Introduction

From ancient time, medicinal plants have been used to get relieve and cure many diseases. Even now for major part of world's population medicinal plants use as a cheap source of drugs. Medicinal plants also provide numerous new chemicals starting points in synthesis of new drugs having better pharmacological properties (Ballabh et al., 2008). Due to fewer side effects and cost effectiveness of medicinal plants, World Health Organization (2002) has given emphasis to consumption and development of herbal medicines. In traditional medicinal systems, crude form of specific drug or in combinations is favored over compound formulations. According to WHO, 80 percent of the developing countries population depend on the traditional medicinal systems as their primary source of health care. Traditional medicinal system in India offers great medicines for nervous, gastrointestinal and heart related diseases (Mukherjee and Wahile 2006). Ladakh is a mountainous region located in the Trans-Himalaya which located between 76°46'29" area. 78°41'34"E longitude and 31°44'57" -32°59'57" N

Author's Address

Medical Biotechnology Lab. Department of Biotechnology, Jamia Millia Islamia (Central University), New Delhi – 110025, India. **E-mail.:** averma2@jmi.ac.in latitude (Negi et al., 2019). It comprises area over 65000 km² among two districts Kargil and Leh. It also described as 'the land of Lamas', 'a piece in between earth and sky', 'the land of Buddha'. It is very famous for its high mountains, rivers (Shvok, Suru, Dras, Indus, Zanskar and Nubra), glaciers and lakes (Tsomorir, Hanle, Pangongtso, etc.). It has numerous precious remedial herbs. Among these medicinal herbs many are endemic. The main five valleys of Ladakh are Indus, Changthang, Zanskar, Suru and Nubra. Annual precipitation is extremely low in this area (mainly snowfall, followed by slight rainfall). High wind speed, very little humidity (<50%), huge difference between high and low temperature of the same day and rugged landscape are the characteristics of this area (Kala and Mathur 2002). Many works have been done on the ethnobotany of the medicinal plants of the Ladakh. The Amchis (traditional herbalists) are expert in treating with remedial plants of the Ladakh and also in combination with some exotic medicinal plants, against various diseases (Ballabh et al., 2008). Table 1 enumerates the numerous medicinal plants found in cold desert Ladakh and their uses. These medicinal plants are used in treatment of several diseases. Lepidium genus has more than 150 species across the world and it is among largest genera of family Brassicaceae

(Mummenhoff, Brüggemann, and Bowman 2001). Lepidium latifolium is also known as Peppergrass, Pepperwort and Perennial pepperweed. It is an invasive species (Reynolds and Boyer 2010) of south east Europe and west Asia (Grover et al., 2012). Lepidium is well known for its medicinal properties and widely used in the medication of stomach related diseases along with its economic, ecological and agronomic importance (Martínez Caballero et al., 2004). Leaves of Lepidium latifolium mainly consumed as salad and vegetables in Ladakh area (Gupta et al., 2012). Therefore, the aim of the paper is to review traditional use of Lepidium latifolium against various diseases, and mechanism of light adaptation in Lepidium in Ladakh region.

Lepidium latifolium:

Lepidium latifolium is a perennial species and belongs to Brassicaceae family. It can be up to 2m in length. It has waxy leaves and stems are woody and greyish green in color. This plant has small white color flowers arranged in groups. The fruits of these plants are ~ 1.6 mm in diameter and has 2 reddish seeds (Jouad *et al.*, 2001; Navarro *et al.*,

1994). Lepidium latifolium is found in the cold zone of Ladakh, India. It grows geographically at height of 2500 m to 4500 m above the sea level. In Leh - Ladakh area, it is also used as phytofood (Kaur, Bhat, et al., 2013). Lower cauline leaves of this plant are long 1 to 7 cm and upper cauline leaves are not stalked. Leaf blades are elliptical ovate to oblonglanceolate and 1 to 9 cm in length and 0.3 to 4.5 cm in width. Sepals are 1 to 1.4 mm in length and 0.8 to 0.9 mm in width. Sepals are white in color at apex and margin. Petals are milky white in color and 1.8 to 2.5 mm in length and 1 to 1.3 mm in width and apex rounded (figure 1). Stamens are 6 in number and having tetradynamous arrangement (2 short and 4 long). Filaments are 0.9 to 1.4 mm in length. Pistil is 2 mm in length, style is barely visible, stigma is prominent. Fruits are marginally flattened and two chambered, 1.8 to 2.4 mm in length and nearly 1.3 mm in width. One chamber of fruit contains 1 seed, light reddish brown in color, wingless, having simple but long hairs and 1 to 1.3 mm in length and 0.7 to 0.9 mm in width (Francis and Warwick, 2007).

Table 1: Remedial plants of Ladakh used against various diseases (Ballabh *et al.*, 2008; Ballabh and Chaurasia, 2007).

S N	Plant name	Family	Local name	Parts used	Uses
1	Aconitum heterophyllum	Ranunculaceae	Bona-karpo	Roots	Uses against fever
2	Achillea millefolium Linn.	Asteraceae	Chuang	Complete plant	Used in remedy of kidney related disorders, cold and cough
3	Aconogonum tortuosum	Polygonaceae	Serpalulu	Complete plant	Used in treatment of painful micturition
4	Agropyron repens	Poaceae	Zamak	Rhizomes	Promotes micturition
5	Althaea rosea	Malvaceae	Hollyhock	Roots	Used in remedy of kidney related disorders
6	Amaranthus spinosus Linn.	Amaranthaceae	Neu	Leaves	Used in remedy of kidney related disorders
7	Arctium lappa Linn.	Asteraceae	Pizums	Roots	Used in remedy of kidney related disorders
8	Arenaria bryophylla	Caryophyllaceae	Lekhum	Complete plant	Used in remedy of kidney related disorders
9	Arnebia euchroma	Boraginaceae	Demok	Roots	Used in remedy of kidney related disorders
10	Artemisia brevifolia	Asteraceae	Phur-nag	Leaves	Remedy of fever
11	Aster tibeticus	Asteraceae	Skalzangme ntok	Flowers	It is used against cold, cough and fever
12	<i>Artemisia dracunculus</i> Linn.	Asteraceae	Burtse	Complete plant	Promotes micturition
13	Artemisia. sieversiana	Asteraceae	Khamchu	Leaves	Used in remedy of kidney related disorders
14	Astragalus tribulifolius	Fabaceae	Yanglo	Complete plant	Promotes micturition

Medicinal value and mechanism of light adaptation in Lepidium

15	Avena sativa Linn.	Poaceae	Yupo	Seeds	Promotes micturition
16	Berberis lyceum	Berberidaceae	Dama	Roots	It is used against cold, cough
17	Bidens pilosa Linn.	Asteraceae	Gurgur Cha	Leaves	It is used against cold, cough
18	Bergenia stracheyi	Saxifragaceae	Gatilas	Rhizomes	Used in remedy of kidney related disorders
19	Capsella bursa	Brassicaceae	Shamso	Leaves	To stop haemorrhage of kidney
20	Carum carvi Linn.	Apiaceae	Umbu	Seeds	Promotes micturition
21	Chaerophyllum reflexum	Apiaceae	Lcha-wa	Roots	Promotes micturition
22	Centaurea depressa	Asteraceae	Vashakha	Complete plant	It is used against fever, cold and cough
23	Chrysanthemum pyrethroides	Asteraceae	Sepan	Flowers	It is used against high fever
24	Chenopodium album Linn.	Chenopodiaceae	Neung	Leaves	Used in treatment of painful micturition
25	Chrysanthemum griffithii	Asteraceae	Serpan	Flowers	Used in remedy of kidney related disorders
26	Cuscuta capitate	Cuscutaceae	Deelasazin	Complete plant	Promotes micturition
27	Corydalis govaniana	Fumariaceae	Ralchhat nagpo	Roots	It is used against fever
28	Cremanthodium ellisii	Asteraceae	Ming-chen- ser-po	Complete plant	It is used against fever
29	Dactylorhiza hatagirea	Orchidaceae	Ambolakpa	Tubers	Used in remedy of kidney related disorders and used against fever
30	Dracocephalum heterophyllum	Lamiaceae	Zimthigle	Complete plant	It is used against cold, cough
31	Ephedra gerardiana	Ephedraceae	Chhapat	Stems	It is used against fever
32	Ermania lanuginose	Brassicaceae	Measlo	Leaves	To stop haemorrhage of kidney
33	Epipactis helleborine Linn.	Orchidaceae	Penginlo	Complete plant	It is used against cold, cough
34	Galium aparine Linn.	Rubiaceae	Ranche	Leaves	Promotes micturition
35	Galium pauciflorum	Rubiaceae	Phomongo	Complete plant	It is used against fever
36	Gentiana algida	Gentianaceae	Tikta	Flowers	Treat epidemic fever
37	Gentianella moorcroftiana	Gentianaceae	Spang- Gain-karpo	Complete plant	It is used against fever, cold and cough
38	Geranium pretense Linn.	Geraniaceae	Ga-dur	Leaves	It is used against fever
39	Galium serpylloides	Rubiaceae	Pimantso	Leaves	Promotes micturition
39	Gentiana squarrosa	Gentianaceae	Ziang	Roots	Promotes micturition
40	Geranium tuberaria	Geraniaceae	Yusiang	Complete plant	Used in treatment of painful micturition
41	Heracleum pinnatum	Apiaceae	sPru-ma	Roots	Used in the treatment of pain due to fever
42	Herminiummonorchis Linn.	Orchidaceae	Peo	Tubers	Promotes micturition
43	Helianthus annuus Linn.	Asteraceae	Kanglanyes her	Seeds	Used in remedy of kidney related disorders
44	Iris hookeriana	Iridaceae	Tesma	Complete plant	Promotes micturition
45	Inula racemose	Asteraceae	Manu	Roots	It is used against fever, cold and cough
46	Inula rhizocephalan	Asteraceae	Turjit	Roots	It is used against fever, cold and cough
47	Juniperus communis Linn.	Cupressaceae	Sukpa	Fruits	Promotes micturition
48	Juniperus macropoda	Cupressaceae	Sukpa	Fruits	Used in remedy of kidney related disorders
49	Lancea tibetica	Scrophulariaceae	sPa-yang rtsa-ba	Complete plant	Treat against cold, cough
50	Lavatera kashmiriana	Malvaceae	Sazposh	Complete plant	Used in treatment of painful micturition

Verma *et al*.

51	Lepidium latifolium Linn.	Brassicaceae	Sauson or Seoji	Complete plant	To stop haemorrhage of kidney
52	Lvcium ruthenicum	Solanaceae	Umila	Leaves	Removes blocked urine
53	Lagotis kunawurensis	Scrophulariaceae	Hong-len	Complete plant	Treat cold, cough and fever
54	Lomatogonium carinthiacum	Gentianaceae	Tikta	Complete plant	Treat cold and cough
55	Malaxis muscifera	Orchidaceae	Jeewak	Roots	Promotes kidney function
56	Malva verticillata Linn.	Malvaceae	Suchili	Complete plant	Removes blocked urine and remedy for whooping cough
57	Melilotus officinalis Linn.	Fabaceae	Ole	Complete plant	used to reduce fever
58	Nepeta podostachys	Lamiaceae	Bathse	Complete plant	Promotes kidney function
59	Nepeta floccose	Lamiaceae	Jimthegala	Leaves	Treat cold, cough and fever
60	Orobanche hansii	Orobanchaceae	Gro-shang- rtse	Complete plant	To stop haemorrhage of kidney
61	Pedicularis longiflora	Scrophulariaceae	Pennel	Flowers	Used in remedy of kidney related disorders
62	Peganum harmala Linn.	Zygophyllaceae	Sepan	Seeds, leaves	Promotes micturition and used as a remedy of fever
63	Perovskia abrotenoides	Lamiaceae	Iskiling	Leaves	Used in treatment of painful micturition
64	Podophyllum hexandrum	Berberidaceae	Ol-mose	Fruits	Remedy of fever
65	Potentilla atrosanguinea	Rosaceae	Chisheng	Complete plant	Treat fever
66	Picrorhiza kurrooa	Scrophulariaceae	Hanglang	Roots	Promotes kidney function
67	Rhodiola heterodonta	Crassulaceae	Shro-lo dkar-po	Roots	Fresh or dried roots are used against cold, cough and fever
68	Raphanus sativus Linn.	Brassicaceae	Labook	Roots	Diuretic and removes kidney stone
69	Rubia cordifolia	Rubiaceae	bTsod	Roots	Used against all kinds of kidney and urinary disorders, soothing, and controls urine discharge, inflammation and bleeding in the kidney
70	Rosa webbiana	Rosaceae	Siah-marpo	Flower, fruits	The flowers and fruits are used in preparation of tablets against the remedy of fever due to food poisoning.
71	Saussurea gnaphaloides	Asteraceae	Yuliang	Complete plant	Promotes micturition
72	Saussurea bracteate	Asteraceae	Jar-bag	Flowers	Against cold and cough
73	Saussurea lappa	Asteraceae	Kuth	Roots	Treat cold, cough and fever
74	Solanum nigrum Linn.	Solanaceae	Tsigma	Fruits Complete	Promotes micturition, Treat cold, cough and fever
75	Swertia petiolate	Gentianaceae	Tikta Kanglanyeshe	plant	Treat high fever
76	Tagetes erecta Linn.	Asteraceae	r	Leaves	Promotes kidney function
77	Taraxacum officinale	Asteraceae	Yamngi	Roots	Promotes kidney function
78	Thlaspi alpestre Linn.	Brassicaeae	Bumbuk	Seeds	Used in treatment of painful micturition
79	Tribulus terrestris Linn.	Zygophyllaceae	gZe-ma	Fruits	Promotes kidney function
80	Taraxacum officinale	Asteraceae	Han	Complete plant	Cure chronic fever
81	Urtica paviflora	Urticaceae	dZaZut	Leaves	Promotes micturition
82	Vitis vinifera Linn.	Vitaceae	Gun	Fruits	Used in the removal of kidney stones
83	Waldheimia stoliczkai	Asteraceae	Solo nagpo	Complete plant	Treatment of cold, cough and fever
84	Zea mays Linn.	Poaceae	Manmeseloto k	Inflorescence ash	Supports normal functioning of kidney

Medicinal value of Lepidium latifolium:

Lepidium latifolium has many medicinal properties. It is widely used as stomach tonics and diuretics (Navarro et al., 1994). Navarro et al. (1994), reported that the aqueous extract of Lepidium latifolium leaves improved the urinary excretion among rats. The leaf extract had given in 100 and 50 mg/kg doses through oral route and intraperitoneal respectively. The standard suggested dose for Lepidium latifolium for man was 3 to 5 gm/day in the form of tea (Navarro et al., 1994). Some reports also suggested that the perennial pepperweed is also used in the treatment of hypertension and it has a property of antihypertensive (Tabassum and Ahmad, 2011). Conde-Rioll et al. (2018), determined that the leaf extract of Lepidium latifolium showed antitumor activity against HT-29, a cultured human colon cancer cell line.

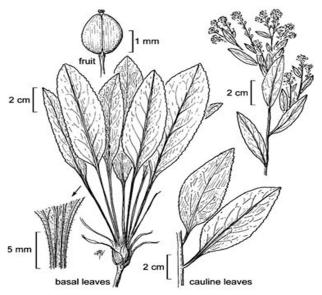


Figure1. Lepidium latifolium

This cell line was recognized to then CEPT (1cyano-2,3-epithiopropane) compound that present in leaf extract. They also found that *Lepidium latifolium* juice also exhibits in vivo high antitumor activity against various cell lines (Conde-Rioll et al. 2018). But Hanschen et al. results did not find the apoptotic effects of CEPT against human cancer cell lines. However, they suggested that the antitumor activity should be attributed to mitochondrial dehydrogenase inhibition activity of HCC (human hepatocellular carcinoma) cells (Hanschen et al., 2015). Lepidium latifolium leaves extracts also comprises many natural antioxidants. These antioxidants act as reducing agents, chelating agents, free radical scavengers and antioxidative defense enzyme systems activator which suppress the ion damages in biological systems (Kaur et al.,2013). Lepidium latifolium ethanolic leaf extract also comprises many natural antioxidants which show free radical sifting activity. These compounds are Kaemferol- 3 -O-robinoside -7- O - (2""- (E) feruloyl)- sophoroside, Quercetin $-3 - O - \beta - D - \beta$ sophoroside -7 - O $-\alpha$ - L-rhamnoside, Kaempferol -7-O- α -L rhamnopyranoside and Apetalumoside B6 (Xiang et al., 2018). Lepidium latifolium also uses traditionally against kidney related diseases and renal lithiasis (Tabassum and Ahmad, 2011). This plant also show activities against prostatic hyperplasia (Lisciani et al., 1984).

Mechanism of light adaptation in Lepidium latifolium: Lepidium latifolium plant grows in harsh environment. Temperature is less than -20°C during night which shows its biochemical adaptation. Several studies have been started to connect its low temperature surviving ability with the low temperature regulated genes from the cold desert Ladakh (Aslam et al., 2009). Ahmed et al. (2010), demonstrated that seeds of Lepidium latifolium had not germinated in dark under saline and non-saline conditions. Whereas, Bhat et al. (2016), study revealed that L. latifolium has high capability of physiological plasticity which allows it to grow in high altitude area of Ladakh? It dependent comprises light regulation of xanthophyll conversion, responses of antioxidants to environmental stresses and photosynthetic efficiency mechanism for high photosynthetic efficiency. They also found that there is no considerable photoinhibition in Lepidium latifolium in the resource limited conditions which suggest its adaptive potential. Francis and Warwick (2007), observed the germination response of Lepidium latifolium seeds against light, increasing salinity and reducing water potential. They found that seed germination was highest in light (30% after 14 days) environment and light/dark alternating environments. Seed germination was reduced to 4%

(for light/dark) and 16% (light), when seeds were *latifolium* has several medicinal uses against many exposed to salt stress. Sonnentag et al. (2011), diseases and it is tolerant to extreme temperature suggested that the appropriate amount of light and light conditions due to which it can grow in reached even to the lowest leaves of the Lepidium Ladakh area. *latifolium* plant.

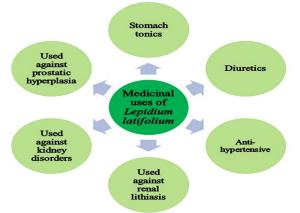


Figure2. Medicinal uses of Lepidium latifolium.

Conclusion

Several medicinal plants have grown in Ladakh area. Ladakh is mountainous region located in the Trans-Himalayan area. Lepidium latifolium (also known as Perennial pepperweed) is an invasive plant, mainly found in southern east Europe and western Asia. It belongs to the family Brassicaceae and Lepidium genera have more than 150 species. It is also found in the mountainous region of Ladakh area in India. Traditional herbalists used Lepidium latifolium in the treatment of many diseases. It is widely used as vegetable and in salads in cold desert Ladakh. It has numerous medicinal properties and used in the treatment of many diseases. Lepidium latifolium is mainly used as stomach tonics and diuretic. It is also used in kidney related diseases. At some places, it is also used in the treatment of hypertension and prostatic hyperplasia. Many studies reported the diuretic activity of Lepidium latifolium. Navarro et al. study also revealed the standard dose for human of Lepidium latifolium leaves was 3 to 5 gm/day in the form of tea for improved urinary excretion. Lepidium latifolium leaves extract and juices also exhibit the anti-tumor activities. It grows in very low temperature of Ladakh. Many studies revealed that the Lepidium latifolium has high capability of physiological plasticity due to which it grows in the high altitude and low temperature region of Ladakh. It can be concluded that Lepidium

References

- Ahmed, M. Zaheer and M. Ajmal Khan. 2010. "Tolerance and Recovery Responses of Playa Halophytes to Light, Salinity and Temperature Stresses during Seed Germination." Flora - Morphology, Distribution, Functional Ecology of Plants 205(11): 764–71.
- Aslam, Mohammad et al. 2009. "Isolation of Cold Stress-Responsive Genes from Lepidium Latifolium by Suppressive Subtraction Hybridization." Acta Physiologiae Plantarum 32(1): 205.
- Ballabh, Basant, and Chaurasia. O.P. 2007. "Traditional Medicinal Plants of Cold Desert Ladakh-Used in Treatment of Cold, Cough and Fever." Journal of *Ethnopharmacology* 112(2): 341–49.
- Ballabh, Basant, O. P. Chaurasia, Zakwan Ahmed, and Shashi Bala Singh. 2008. "Traditional Medicinal Plants of Cold Desert Ladakh-Used against Kidney and Urinary Disorders." Journal of Ethnopharmacology 118(2): 331-39.
- Bhat, Hilal A., Tarandeep Kaur, Rohini Bhat and Dhiraj Vyas. 2016. "Physiological and Biochemical Plasticity of Lepidium Latifolium as 'Sleeper Weed' in Western Himalayas." Physiologia Plantarum 156(3): 278-93.
- Conde-Rioll, María et al. 2018. "Antitumor Activity of Lepidium Latifolium and Identification of the Epithionitrile 1-Cyano-2,3-Epithiopropane as Its Major Active Component." Molecular Carcinogenesis 57(3): 347-60.
- Francis, Ardath and Suzanne I. Warwick, 2007. "The Biology of Invasive Alien Plants in Canada. 8. Lepidium Latifolium L." Canadian Journal of Plant Science 87(3): 639-58.
- Grover, Atul et al. 2012. "Random Genomic Scans at Microsatellite Loci for Genetic Diversity Estimation in Cold-Adapted Lepidium Latifolium." Plant Genetic *Resources* 10(3): 224–31.
- Gupta, Sanjay Mohan, Atul Grover and Zakwan Ahmed, 2012. "Identification of Abiotic Stress Responsive Genes from Indian High Altitude Lepidium Latifolium L. (Short Communication)." Defence Science Journal 62(5): 315-18.
- Hanschen, Franziska S. et al. 2015. "The Brassica Epithionitrile 1-Cyano-2,3-Epithiopropane Triggers Cell Death in Human Liver Cancer Cells in Vitro." Molecular Nutrition & Food Research 59(11): 2178-89.
- Jouad, H. et al. 2001. "Ethnobotanical Survey of Medicinal Plants Used for the Treatment of Diabetes, Cardiac and

Medicinal value and mechanism of light adaptation in Lepidium

Renal Diseases in the North Centre Region of Morocco (Fez–Boulemane)." *Journal of Ethnopharmacology* 77(2): 175–82.

- Kala, Chandra Prakash and Vinod B. Mathur, 2002. "Patterns of Plant Species Distribution in the Trans-Himalayan Region of Ladakh, India." *Journal of Vegetation Science* 13(6): 751–54.
- Kaur, Tarandeep, Khadim Hussain, et al. 2013. "Evaluation of Nutritional and Antioxidant Status of Lepidium Latifolium Linn.: A Novel Phytofood from Ladakh." *PLOS ONE* 8(8): e69112.
- Kaur, Tarandeep, Hilal A. Bhat, et al. 2013. "Glutathione Regulates Enzymatic Antioxidant Defence with Differential Thiol Content in Perennial Pepperweed and Helps Adapting to Extreme Environment." *Acta Physiologiae Plantarum* 35(8): 2501–11.
- Lisciani, R. et al. 1984. "Anti-Inflammatory Activity of Eryngium Maritimum L. Rhizome Extracts in Intact Rats." *Journal of Ethnopharmacology* 12(3): 263–70.
- Martínez Caballero, S., C. Carricajo Fernández and R. Pérez-Fernández, 2004. "Effect of an Integral Suspension of Lepidium Latifolium on Prostate Hyperplasia in Rats." *Fitoterapia* 75(2): 187–91.
- Mukherjee, Pulok K. and Atul Wahile, 2006. "Integrated Approaches towards Drug Development from Ayurveda and Other Indian System of Medicines." *Journal of Ethnopharmacology* 103(1): 25–35.

- Mummenhoff, Klaus, Holger Brüggemann and John L. Bowman, 2001. "Chloroplast DNA Phylogeny and Biogeography of Lepidium (Brassicaceae)." *American Journal of Botany* 88(11): 2051–63.
- Navarro, Eduardo et al. 1994. "Diuretic Action of an Aqueous Extract of Lepidium Latifolium L." *Journal of Ethnopharmacology* 41(1): 65–69.
- Negi, Ranjana et al. 2019. "Checklist of Family Poaceae in Lahaul and Spiti District (Cold Desert), Himachal Pradesh, India." *Plant Science Today* 6: 270.
- Reynolds, Laura K. and Katharyn E. Boyer, 2010. "Perennial Pepperweed (Lepidium Latifolium): Properties of Invaded Tidal Marshes." *Invasive Plant Science and Management* 3(2): 130–38.
- Sonnentag, Oliver et al. 2011. "Carbon Dioxide Exchange of a Pepperweed (Lepidium Latifolium L.) Infestation: How Do Flowering and Mowing Affect Canopy Photosynthesis and Autotrophic Respiration?"
- Tabassum Nahida and Ahmad Feroz, 2011. "Role of Natural Herbs in the Treatment of Hypertension." *Pharmacognosy Reviews* 5(9): 30–40.
- Xiang, Yuan, Wang Haixia, Mei Lijuan and Tao Yanduo. 2018. "Isolation, Purification and Identification of Antioxidants from Lepidium Latifolium Extracts." *Medicinal Chemistry Research* 27(1): 37–45.

