

Supplementary Materials

Vicariance and monsoon as drivers of diversification of nemacheilid loaches (Teleostei: Cypriniformes) around the Hengduan Mountains of China

Rui Min¹, Ya-Hui Zhao⁵, Bin Kang⁶, Xiao-Yong Chen^{2,*}, Jun-Xing Yang^{3,4,*}

¹ Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China

² Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar

³ State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China

⁴ Yunnan Key Laboratory of Plateau Fish Breeding, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China

⁵ Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China

⁶ Fisheries college, Ocean University of China. Qingdao, Shandong 266003, China

*Corresponding authors, E-mail: chenxy@mail.kiz.ac.cn; yangjx@mail.kiz.ac.cn

Supplementary Materials and Methods

Data collection

In total, 82 species from 18 genera of Nemacheilidae were examined as ingroups. Sample information is provided in Table S2 and Fig. 1A and overall sample distribution is shown in Table S3 and Fig. 1A. The selection of outgroup species, including *Vaillantella maassi, Botia lohachata, Jinshaia abbreviata, Sinogastromyzon sichangensis, Beaufortia szechuanensis*, and *Gyrinocheilus aymonieri*, was based on the molecular phylogeny of Cobitoidea in Liu et al. (2012) and Chen et al. (2019) (Table S3).

After fixing the "voucher specimens" in a solution of 10% formalin or 95% alcohol, they were preserved in 75% alcohol and stored at the Kunming Institute of Zoology (KIZ). The left pelvic fin was cut and stored in 99% alcohol to allow for future molecular laboratory analysis.

DNA extraction, amplification, sequencing, and alignment

We studied five molecular markers, including two mitochondrial genes (cytochrome oxidase subunit 1 (COI) and cytochrome b (cyt b)) and three nuclear genes (recombination-activating gene 1 (RAG1), inverted repeat binding protein 2 (IRBP2), and rhodopsin (RH)). DNA was extracted from fin tissues preserved in absolute ethanol using standard phenol-chloroform extraction (Sambrook et al., 1989). Polymerase chain reaction (PCR) (50-µl volume) was completed using the following protocols: initial denaturation step at 95 °C for 5 min, 35 cycles at 94 °C for 30 s, 52–56 °C (depending on primer, Table S4) for 45 s, and 72 °C for 1 min, with a single final extension at 72 °C for 10 min. Fragments were sequenced by the Shanghai DNA Biotechnologies Company (China). DNA sequences of the five loci were aligned individually using default settings in MAFFT v7 (http://mafft.cbrc.jp/alignment/server/) (Katoh & Standley, 2013), and, if necessary, adjusted by eye. All protein-coding gene sequences were translated into amino acids to check for stop codons.

Molecular phylogenetic analysis

Bayesian inference (BI) analysis was first performed on single-gene datasets to test conflicting positions of major lineages. As no such case was observed, the concatenated dataset was analyzed. The five gene fragments were concatenated and partitioned based on codon position using SequenceMatrix v1.7.8 (Vaidya et al., 2011) and PartitionFinder v1.1.1 (Lanfear et al., 2012). BI analysis was performed in MrBayes v3.2.6 (Ronquist et al., 2012). Four incrementally heated Markov chains (default heating value of 0.1) were run for 10×10^7 million generations, with the chains sampled at intervals of 1 000 generations. Two independent runs were carried out and the first 25% of samples were discarded as burn-in. We used the best substitution model for each partition based on the partitioning strategy selected using PartitionFinder.

Divergence time estimation

To estimate the ages of the major clades, we employed three calibration points in our analysis. The calibration points utilized in our analysis were identical to those described by Bohlen et al. (2020): (1) we set the age of Nemacheilidae in analysis with uniform distribution to 60–0 Mya (Bagley et al., 2018; Cavender, 1991); (2) we set the isolation of the Indian freshwater fauna from the Southeast Asian fauna in analysis with uniform distribution to 45–24 Mya (Ali and Aitchison, 2008; Clark et al., 2004; Klaus et al., 2010; Wang, 2004); (3) we set the minimum age of the genus *Triplophysa* in analysis to 5.3 Mya (Böhme and Ilg, 2003; Prokofiev, 2007). This approach ensured consistency and allowed us to compare our results with those of previous studies.

The dataset with one specimen of each species was analyzed to estimate divergence times using Beast v2.6.2 (Bouckaert et al., 2014). The species-tree prior assumed a Yule process. Markov chain Monte Carlo (MCMC) analyses (20×10^7 generations) were run independently twice, with sampling every 2 000 generations. LogCombiner v2.6.2 was used to combine the two results. Chain convergence was determined using Tracer v1.6 (Rambaut et al., 2014), with target effective sample size (ESS) >200 for all parameters. A maximum clade credibility (MCC) tree was built in TreeAnnotator v.2.6.2 (Zhang et al., 2020) after discarding the first 30% of trees as burn-in.

Ancestral range estimations

We used the pruned Beast tree to extimate ancestral geographical ranges in BioGeoBEARS package (Matzke, 2013). Because the program uses the species tree to infer biogeographical history and cannot consider multiple samples from the same species (Matzke, 2014). Distribution units were set based on freshwater ecoregions (Abell et al., 2008), with several ecoregions (e.g., different parts of the same basin, neighboring basins, regions far from the main study areas) linked to avoid overpopulation of units. In detail, distribution units 'A', 'C', 'D', 'I', 'J', 'L', and 'P' each contained two or three ecoregions from Abell et al. (2008). In total, 18 biogeographic units were obtained: A. Middle & Lower Yangtze; B. Upper Yangtze; C. Balkash-Alakul, Dzungaria & Western Mongolia; D. Sitang-Irrawaddy; E. Ganges Delta & Plain, Middle Brahmaputra, Chin Hills-Srakan Coast; F. Lower & Middle Salween; G. Upper Salween; H. Upper Lancang (Mekong); I. Honshu-Shikoku-Kyushu, Eastern Yellow Sea Drainages; J. Western Ghats, Sri Lanka Dry Zone; K. Song Hong; L. Lower Lancang (Mekong), Dratie-Stung Treng; M. Xi Yiang; N. Hainan; O. Upper Huang He, Upper Huang He Corridor; P. Central & Western Europe, Middle Amur; Q. Chao Phraya; R. Southern Anatolia (Fig. S6c). These biogeographic units are marked by colours according to their position in India (yellow), western of Indochina (blue), eastern of Indochina (red), Southern China (green) and norther areas of China and Asia

(purple).

Since Ree and Sanmartin (2018) questioned the validity of biogeographic models

that rely on jump dispersal events to explain the distribution of organisms, we tested three biogeographic models (DEC, DIVALIKE, and BAYAREALIKE) in the R package of BioGeoBEARS (Matzke 2014). We set the maximum area to two and pruned the outgroup from the tree prior to analysis. Likelihood values of the three BioGeoBEARS models were compared using Akaike information criterion (AIC).

Diversification rates of Nemacheilini

To understand the evolution of the two Nemacheilini lineages, we investigated their diversification and accounted for incomplete taxon sampling. As there is no evidence to clarify species composition in each Nemacheilini lineage, we calculated incomplete taxon sampling based on the percentage of study species to all known species in Nemacheilidae. We generated BIs of the diversification rates of date-phylogeny with posterior mean branch lengths using BAMM v2.5 (Rabosky, 2014) and the BAMMtools R package (Rabosky et al., 2014). Priors for speciation and extinction were set empirically using the setBAMMpriors function. The geometric prior on the expected number of regime shifts was set to 1, as our group contained fewer than 500 species. We ran MCMC analysis for 10 million generations at a sampling frequency of 1/1 000, and checked MCMC convergence by visually inspecting the likelihood trace plots and calculating ESS after discarding the first 10% of the run as burn-in. We calculated the 95% credible set of distinct shift configurations and the best shift configuration. We also plotted the net diversification rates over time for Nemacheilidae, Nemacheilini I, and Nemacheilini II, respectively.

Reference

- Abell R, Thieme ML, Revenga C, Bryer M, Kottelat M, Bogutskaya N, et al. 2008. Freshwater Ecoregions of the World: A New Map of Biogeographic Units for Freshwater Biodiversity Conservation. *BioScience* 58 (5), 403–414. doi: 10.1641/B580507
- Ali JR, Aitchison JC. 2008. Gondwana to Asia: Plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166–35 Ma). *Earth-Science Reviews*, **88**, 145–166. doi: 10.1016/j.earscirev.2008.01.007
- Bagley JC, Mayden RL, Harris PM. 2018. Phylogeny and divergence times of suckers (Cypriniformes: Catostomidae) inferred from Bayesian total-evidence analyses of molecules, morphology, and fossils. PeerJ 2018 (6), e5168. doi: https://doi.org/10.7717/ peerj.5168.
- Bohlen J, Dvořák T, Šlechta V, Šlechtová V. 2020. Sea water shaping the freshwater biota: Hidden diversity and biogeographic history in the Paracanthocobitis zonalternans species complex (Teleostei: Nemacheilidae) in western Southeast Asia. *Molecular phylogenetics and evolution*, 148, p.106806. doi: 10.1016/j. ympev.2020.106806.

- Böhme M, Ilg A. 2003. fosFARbase, < www.wahre-staerke.com/ > (accessed 17. October 2018).
- Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu CH, Xie D, et al. 2014. BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. PLoS Computational Biology, 10(4), e1003537. doi:10.1371/journal.pcbi.1003537
- Cavender TM. 1991. The fossil record of the Cyprinidae. In: Winfield, I.J., Nelson, J.S. (Eds.), Cyprinid Fishes: Systematics, Biology and Exploitation. Chapman and Hall, London, pp. 34–54.
- Chen W, Yang J, Li Y, Li X. 2019. Exploring taxonomic diversity and biogeography of the family nemacheilinae (cypriniformes). *Ecology and Evolution*, **9**. doi: 10.1002/ece3.5553
- Clark MK, Schoenbohm LM, Royden LH, Whipple KX, Burchfiel BC, Zhang X, et al. 2004. Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns. *Tectonics*, 23, TC1006. (doi:10.1029/2002TC001402, 2004)
- Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version
 7: improvements in performance and usability. *Molecular biology and evolution*, **30**, 772–780. doi: 10.1093/molbev/mst010
- Klaus S, Schubart CD, Streit B, Pfenninger M. 2010. When Indian crabs were not yet Asian-biogeographic evidence for Eocene proximity of India and Southeast Asia. *BMC Evolutionary Biology*, **10(1)**, 1–9. doi: https://doi.org/10.1186/1471-2148-10-287.
- Lanfear R, Calcott B, Ho SYW, Guindon S. 2012. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. *Molecular biology and evolution*, **29**, 1695–1701. doi: 10.1093/molbev/mss020
- Liu S, Mayden RL, Zhang J, Yu D, Tang Q, Deng X, Liu H. 2012. Phylogenetic relationships of the Cobitoidea (Teleostei: Cypriniformes) inferred from mitochondrial and nuclear genes with analyses of gene evolution. *Gene*, **508**, 60– 72. (doi:10.1016/j.gene.2012.07.040)
- Matzke NJ. 2014. Model selection in historical biogeography reveals that founderevent speciation is a crucial process in island clades. *Systematic biology*, **63(6)**, 951–970. doi: 10.1093/sysbio/syu056
- Matzke, NJ. 2013. Probabilistic historical biogeography: new models for founder eventspeciation, imperfect detection, and fossils allow improved accuracy and model-testing. Frontiers of Biogeography. **5(4)**, 242–248. doi: 10.21425/F5FBG19694
- Prokofiev AM. 2007. Redescription of a fossil loach Triplophysa opinata (Yakowlew, 1959) from the Miocene of Kirgizia (Balitoridae: Nemacheilinae). *J. Ichthyol.* 47, 26–31. https://doi.org/: 10.1134/S0032945207010031.
- Rabosky DL. 2014. Automatic detection of key innovations, rate shifts, and diversity-

dependence on phylogenetic trees. *PLOS ONE* 9: e89543. DOI: 10.1126/sciadv.ade495

- Rabosky DL, Grundler M, Anderson C, Title C, Shi JJ, Brown JW et al. 2014. BAMMtools: An R package for the analysis of evolutionary dynamics on phylogenetic trees. *Methods Ecol. Evol.* 5: 701–707.
- Rambaut A, Suchard M, Xie W, Drummond A. 2014. Tracer v. 1.6. Institute of Evolutionary Biology, University of Edinburgh.Zhang R, Drummond A. 2020. Improving the performance of Bayesian phylogenetic inference under relaxed clock models. *BMC evolutionary biology*, 20(1), 1–28. <u>https://doi.org/:10.1186/s12862-020-01609-4</u>
- Ree, RH., & Sanmartín, I. 2018. Conceptual and statistical problems with the DEC+ J model of founder-event speciation and its comparison with DEC via model

selection. *Journal of Biogeography*, **45(4)**, 741–749. <u>https://doi.org/10.1111/jbi.13173</u>

- Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. *Systematic biology*, **61**, 539–542. doi: 10.1093/sysbio/sys029
- Vaidya G, Lohman DJ, Meier R. 2011. SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. *Cladistics*, 27, 171–180. doi:10.1111/j.1096-0031.2010.00329.x
- Wang P. 2004. Cenocoic deformation and the history of sea-land interactions in Asia. In: Clift, P., Wang, P., Kuhnt, W., Hayes, D. (Eds.), Continent-Ocean Interactions in the East Asian Marginal Seas. *Geophysical Monograph* 149, 1–22.

	LnL	numparams	d	e	AIC	AIC_wt
DEC	-278.331	2	0.004541	0.024226	560.6626	1.46E-22
DIVALIKE	-274.72	2	0.00426	0.015112	553.4398	5.39E-21
BAYAREALIKE	-299.716	2	0.007444	0.070008	603.4324	7.52E-32

Supplementary Table S1 Model comparisons of DEC, DIVALIKE, BAYARELIKE using BioGeoBears.

Supplementary Table S2 Information about study samples, including species, voucher number and Genbank accession number. Underline represents that the sequences are downloaded from GenBank.

Species name	Voucher	Genbank Accession Number					
	Number						
		COI	Cytb	RAG1	RH	IRBP	
Barbatula		<u>KP715096</u>	<u>KP738604</u>	<u>KP738565</u>	<u>FJ650476</u>	<u>KP738524</u>	
<i>barbatula</i> (n=1)							
Barbatula toni		<u>AB242162</u>	<u>AB242162</u>	EU711133	<u>FJ197030</u>	<u>FJ197079</u>	
(n=1)							
Claea dabryi	KIZ	MG23811	MG23821	MG23792	MG23801	MG23831	
(n=3)	2009003103	8	4	2	5	2	
	KIZ	MG23811	MG23821	MG23792	MG23801	MG23831	
	2009002750	9	5	3	6	3	
	KIZ	MG23812	MG23821	MG23792	MG23801	MG23831	
	2009003611	0	6	4	7	4	
Homatula	KIZ	<u>MF95318</u>	<u>HM01058</u>	<u>HM01066</u>	MG23801	MG23831	
anguillioides	20080304	<u>2</u>	<u>3</u>	<u>9</u>	8	5	
(n=3)							
	KIZ	<u>MF95318</u>	<u>HM01058</u>	<u>HM01067</u>	MG23801	MG23831	
	20080306	<u>4</u>	<u>4</u>	<u>5</u>	9	6	
	KIZ	MG23812	<u>HM01052</u>	<u>HM01067</u>	MG23802	MG23831	
	2008005993	1	<u>7</u>	<u>2</u>	0	7	
Homatula	KIZ	<u>MF95318</u>			MG23802	MG23831	
<i>change</i> (n=2)	2015005110	<u>5</u>			1	8	
	KIZ	<u>MF95318</u>			MG23802	MG23831	
	2015005111	<u>6</u>			2	9	
Homatula	KIZ 07308	MG23812	<u>HM01056</u>	<u>HM01066</u>		MG23833	
cryptoclathrata		9	<u>9</u>	<u>3</u>		2	
(n=2)							
	KIZ 07310	MG23813	<u>HM01056</u>	<u>HM01068</u>		MG23833	
		0	<u>6</u>	<u>3</u>		3	
Homatula	KIZ	MF95319	MG23821	MG23792		MG23832	
disparizona	2012000622	0	7	5		0	
(n=2)							

Species name	Voucher Number		Genbar	nk Accession	Number	
		COI	Cytb	RAG1	RH	IRBP
	KIZ	<u>MF95319</u>	MG23821	MG23792	MG23802	MG23832
	2012000626	4	8	6	3	1
Homatula	KIZ	MG23812	MG23821	MG23792	MG23802	MG23832
guanheensis (n=2)	2005014382	2	9	7	4	2
	KIZ	MG23812	MG23822	MG23792	MG23802	MG23832
	2005014383	3	0	8	5	3
Homatula	KIZ	MF95319	HM01052	HM01061	MG23802	MG23832
longidorsalis (n=4)	20060274	<u><u>6</u></u>	2	<u>8</u>	6	4
	KIZ	<u>MF95319</u>	<u>HM01055</u>	<u>HM01061</u>	MG23802	MG23832
	20060276	<u>7</u>	<u>0</u>	<u>6</u>	7	5
	KIZ	MG23812	<u>HM01050</u>	<u>HM01061</u>	MG23802	MG23832
	2008005906	4	<u>0</u>	<u>5</u>	8	6
	KIZ	MG23812	<u>HM01056</u>	<u>HM01061</u>	MG23802	MG23832
	2008005908	5	<u>8</u>	<u>4</u>	9	7
Homatula	KIZ	MG23812	JF340399	JF340420	MG23803	MG23832
potanini (n=2)	2010000233	6			0	8
	KIZ	<u>MF95320</u>	JF340385	JF340426	MG23803	MG23832
	2010000280	<u>1</u>			1	9
Homatula	KIZ	MG23812	MG23822	MG23792	MG23803	MG23833
pycnolepis (n=2)	2010002524	7	1	9	2	0
	KIZ	MG23812	MG23822	MG23793	MG23803	MG23833
	2010002525	8	2	0	3	1
Homatula	KIZ	MG23813	<u>HM01058</u>	<u>HM01062</u>	MG23803	MG23833
variegata (n=2)	200406173	1	<u>7</u>	<u>2</u>	4	4
	KIZ	MG23813	MG23822	MG23793	MG23803	MG23833
	2009002725	2	3	1	5	5
Homatula	KIZ	<u>MF95322</u>	<u>HM01051</u>	<u>HM01060</u>	MG23803	MG23833
wuliangensis (n=2)	2008008159	<u>0</u>	<u>7</u>	<u>9</u>	6	6
	KIZ	<u>MF95322</u>	<u>HM01049</u>	<u>HM01061</u>		MG23833
	2008008160	<u>1</u>	<u>6</u>	<u>2</u>		7
Lefua costata (n=1)		<u>EU670788</u>	<u>EU670788</u>	<u>KP738551</u>		<u>KP73851</u>
Lefua echigonia (n=1)		<u>AB054126</u>	<u>AB054126</u>	<u>EF458305</u>	<u>FJ197028</u>	<u>FJ197077</u>
Mesonoemacheil us guentheri (n=1)		<u>KX28931</u> <u>2</u>	<u>KP738588</u>	<u>KP738548</u>		<u>KP738508</u>

Species name	Voucher Number		Genbar	nk Accession 1	Number	
		COI	Cytb	RAG1	RH	IRBP
Nemacheilus			<u>KP738586</u>	<u>KP738546</u>		<u>KP738506</u>
binotatus (n=2)			KP738587	KP738547		KP73850′
Nemacheilus		A P011445	KP738592	KP738552		KP73851
<i>corica</i> (n=2)				<u>III (50552</u>		
		<u>NC031640</u>	<u>KP738593</u>	<u>KP738553</u>		<u>KP73851</u>
Nemacheilus	KIZ	MG23813	MG23822	MG23793	MG23804	MG23834
longistriatus (n=3)	2015001411	3	8	6	1	2
	KIZ	MG23813	MG23822	MG23793	MG23804	MG23834
	2015001412	4	9	7	2	3
	KIZ	MG23813	MG23823	MG23793	MG23804	MG23834
	2015001414	5	0	8	3	4
Nemachilichthys ruppelli (n=2)		<u>NC031583</u>	<u>NC031583</u>	<u>KP738533</u>		<u>KP73849</u>
		<u>AP011305</u>	<u>AP011305</u>	<u>KP738534</u>		<u>KP73849</u>
Oreonectes	KIZ	<u>NC031579</u>	MG23823	MG23793	MG23804	MG23834
platycephalus	2005101504		1	9	4	5
(n=2)	2					
	KIZ	<u>AP011296</u>	MG23823	MG23794	MG23804	MG23834
	2005101504 3		2	0	5	6
Paracanthocobiti s botia (n=2)		<u>AP012138</u>	<u>KP738589</u>	<u>KP738549</u>		<u>KP73850</u>
		<u>AP012139</u>	<u>KP738590</u>	<u>KP738550</u>		<u>KP73851</u>
Paracanthocobiti	KIZ	MG23811	MG23821			MG2383
s mandalayensis (n=2)	2014005900	6	2			0
	KIZ	MG23811	MG23821	MG23792		MG2383
	2014005901	7	3	1		1
Paracanthocobiti		<u>AP012140</u>	<u>AP012140</u>	<u>KP738542</u>		<u>KP73850</u>
(n=2)						
		<u>NC033959</u>	<u>NC033959</u>	<u>KP738543</u>		<u>KP73850</u>

Species name	Voucher		Genbar	nk Accession 1	Number	
	Number	COI	Cytb	RAG1	RH	IRBP
Petruichthys		AP011442	AP011442	KP738531		KP738491
brevis (n=2)						
		<u>NC031637</u>	<u>NC031637</u>	<u>KP738532</u>		<u>KP738492</u>
Physoschistura elongata (n=2)			<u>KP738608</u>	<u>KP738568</u>		<u>KP738528</u>
			<u>KP738609</u>	<u>KP738569</u>		<u>KP738529</u>
Physoschistura	KIZ	MG23819	MG23828	MG23799	MG23809	MG23840
shuangjiangensis (n=2)	2005012418	0	4	0	6	1
	KIZ	MG23819	MG23828	MG23799	MG23809	MG23840
	2005004744	1	5	1	7	2
Physoschistura sp. (n=2)			<u>KP738600</u>	<u>KP738560</u>		<u>KP738520</u>
			<u>KP738601</u>	<u>KP738561</u>		<u>KP738521</u>
Pteronemacheilu s lucidorsum (n=2)			<u>KP738606</u>	<u>KP738566</u>		<u>KP738526</u>
			<u>KP738607</u>	<u>KP738567</u>		<u>KP738527</u>
Pteronemacheilu	KIZ	MG23813	MG23823	MG23794	MG23804	MG23835
s meridionalis (n=4)	2010001570	9	6	4	9	0
	KIZ	MG23813	MG23823	MG23794	MG23804	MG23834
	2006010387	7	4	2	7	8
	KIZ	MG23813	MG23823	MG23794	MG23804	MG23834
	2010001443	8	5	3	8	9
	KIZ	MG23813	MG23823	MG23794	MG23804	MG23834
	2006010379	6	3	1	6	7
Schistura	KIZ	MG23814	MG23824			MG23835
albirostris (n=2)	2014001499	5	1			6
	KIZ	MG23814	MG23824		MG23805	
	2014001502	6	2		5	
Schistura	KIZ	MG23817	MG23827	MG23797	MG23808	MG23838
<i>amplizona</i> (n=2)	2012004196	8	0	7	4	7
	KIZ	MG23814	MG23824	MG23794	MG23805	MG23835
	2015002065	7	3	9	6	7

Species name	Voucher	Genbank Accession Number				
	Number					
		COI	Cytb	RAG1	RH	IRBP
Schistura		AB242172	AB242172	<u>EU711131</u>	<u>FJ197029</u>	<u>FJ197078</u>
balteata (n=1)						
Schistura			<u>KP738575</u>	<u>KP738535</u>		<u>KP738495</u>
bolavenensis						
(n=2)						
			<u>KP738576</u>	<u>KP738536</u>		<u>KP738496</u>
Schistura	KIZ	MG23814	<u>JN837652</u>	<u>JN837664</u>	MG23805	MG23835
callichroma	200401056	8			7	8
(n=2)						
	KIZ	MG23814	MG23822	MG23795	MG23805	MG23835
	2013004935	9	4	0	8	9
Schistura	KIZ	MG23815	MG23824	MG23795	MG23806	MG23836
<i>caudofurca</i> (n=2)	2015030701	1	6	2	0	1
0 ()	5					
	KIZ	MG23815	MG23824	MG23795	MG23805	MG23836
	2007002415	0	5	1	9	0
Schistura cf.	KIZ	MG23816	MG23825	MG23796	MG23806	MG23837
<i>fasciolata</i> (n=4)	2005000858	0	4	0	7	0
	KIZ	MG23816	MG23825	MG23796	MG23806	MG23837
	201000023	1	5	1	8	1
	KIZ	MG23816	MG23825	MG23796	MG23806	MG23837
	2010000366	2	6	2	9	2
	KIZ	MG23816	MG23826	MG23796	MG23807	MG23837
	2010001729	7	0	6	4	7
Schistura	KIZ	MG23815	MG23824	MG23795	MG23806	MG23836
conirostris (n=3)	2010001442	2	7	3	1	2
	KIZ	MG23815	MG23824	MG23795		MG23836
	2010001444	3	8	4		3
	KIZ	MG23815	MG23824	MG23795		MG23836
	2010001445	4	9	5		4
Schistura	KIZ	MG23815	<u>JF340401</u>	<u>JF340418</u>	MG23806	MG23836
cryptofasciata	2005014232	5			2	5
(n=3)						
	KIZ	MG23814	MG23824	MG23794	MG23805	MG23835
	2005041700	3	0	8	3	4
	8					

Species name	Voucher Number		Genbar	nk Accession	Number	
		COI	Cytb	RAG1	RH	IRBP
	KIZ	MG23815	MG23825	MG23795	MG23806	MG2383
	2015002175	7	1	7	4	7
Schistura	KIZ	MG23820	MG23829	MG23800	MG23810	MG2384
disparizona (n=3)	20150231	1	5	0	4	2
	KIZ	MG23815	MG23825	MG23795	MG23806	MG2383
	2005005189	8	2	8	5	8
	KIZ	MG23815	MG23825	MG23795	MG23806	MG2383
	DAN08.12.1	9	3	9	6	9
Schistura	KIZ	MG23816	MG23825	MG23796	MG23807	MG2383
fasciolata (n=4)	2010000795	3	7	3	0	3
	KIZ	MG23816	<u>JN837655</u>	<u>JN837667</u>	MG23807	MG2383
	2010000796	4			1	4
	KIZ	MG23816	MG23825	MG23796	MG23807	MG2383
	2012003704	5	8	4	2	5
	KIZ	MG23816	MG23825	MG23796	MG23807	MG2383
	2012003701	6	9	5	3	6
Schistura hypsiura (n=2)			<u>KP738584</u>	<u>KP738544</u>		<u>KP73850</u>
			<u>KP738585</u>	<u>KP738545</u>		<u>KP73850</u>
Schistura	KIZ	MG23819	MG23828	MG23799		MG2384
<i>implicata</i> (n=2)	20130294	5	9	5		6
	KIZ	MG23819	MG23829	MG23799		MG2384
	20130288	6	0	6		7
Schistura	KIZ	MG23816	MG23826	MG23796	MG23807	
kengtungensis (n=1)	20090106	8	1	7	5	
Schistura	KIZ	MG23816	MG23826	MG23796	MG23807	MG2383
	2000001412	0	2	0	(0

Species name	Voucher Number		Genbar	nk Accession]	Number	
		COI	Cytb	RAG1	RH	IRBP
	KIZ	MG23817	MG23826	MG23797	MG23807	MG23838
	2010001134	1	3	0	8	0
	KIZ	MG23814	MG23823	MG23794	MG23805	MG2383
	2010003114	0	7	5	0	1
Schistura	KIZ	MG23817	MG23826	MG23797	MG23807	MG2383
kongphengi (n=2)	20150129	2	4	1	9	1
	KIZ	MG23817	MG23826	MG23797	MG23808	MG23838
	20150130	3	5	2	0	2
Schistura	KIZ	MG23817	MG23826	MG23797	MG23808	MG23838
<i>latidens</i> (n=2)	20150133	4	6	3	1	3
	KIZ	MG23817	MG23826	MG23797	MG23808	MG2383
	20150134	5	7	4	2	4
Schistura	KIZ	MG23817	MG23826	MG23797	MG23808	MG23838
<i>latifasciata</i> (n=3)	2008000127	6	8	5	3	5
	KIZ	MG23817	MG23826	MG23797		MG2383
	2012001465	7	9	6		6
	KIZ	<u>MF95322</u>	MG23827	MG23797	MG23808	MG2383
	20150096	<u>3</u>	1	8	5	8
Schistura longa	KIZ 05178	MG23818	MG23827	MG23798	MG23808	MG23839
(n=2)		0	3	0	7	0
	KIZ	MG23817	MG23827	MG23797	MG23808	MG2383
	2010002364	9	2	9	6	9
Schistura	KIZ	MG23818	MG23827	MG23798	MG23808	MG23839
macrocephalus (n=2)	2010001595	1	4	1	8	1
	KIZ	MG23818	MG23827	MG23798	MG23808	MG23839
	2010003136	2	5	2	9	2

Species name	Voucher Number		Genbar	nk Accession 1	Number	
	Tumber	COI	Cytb	RAG1	RH	IRBP
Schistura	KIZ	MG23814	JN837654	JN837666	MG23805	MG23835
magnifluvis	2008008301	4			4	5
(n=1)						
Schistura	KIZ	MG23818	MG23827	MG23798		MG23839
malaisei (n=3)	2014005902	3	6	3		3
	KIZ	MG23818	MG23827	MG23798	MG23809	MG23839
	2014005903	4	7	4	0	4
	KIZ	MG23818	MG23827		MG23809	MG23839
	2014005904	5	8		1	5
Schistura	KIZ	0094695	0094505	0097329	0097330	0097330
notasileum (n=2)	2016000362	6	0	8	0	2
	V17	0004605	0004505	0007220	0007220	0007220
	NIZ 2016000356	0Q94093 7	1	0097329	1	2
	2010000330	1	1	9	1	5
Schistura		<u>AP011308</u>	<u>AP011308</u>	<u>KP738556</u>		<u>KP738516</u>
notostigma (n=2)						
		<u>NC031585</u>	<u>NC031585</u>	<u>KP738557</u>		<u>KP738517</u>
Schistura poculi	KIZ	MG23814	MG23823	MG23794	MG23805	MG23835
(n=1)	2005041700 7	2	9	7	2	3
Schistura	KIZ	MG23818	MG23828	MG23798	MG23809	MG23839
polytaenia (n=2)	2006010328	6	0	6	2	7
	KIZ	MG23818	MG23828	MG23798	MG23809	MG23839
	2006010350	7	1	7	3	8
Schistura porthos	KIZ	MG23818	MG23828	MG23798	MG23809	MG23839
(n=2)	2010003121	8	2	8	4	9
	KIZ	MG23818	MG23828	MG23798	MG23809	MG23840
	2010003122	9	3	9	5	0
Schistura pridii (n=2)		<u>AP011443</u>	<u>AP011443</u>	<u>KP738562</u>		<u>KP738522</u>

Species name	Voucher Number		Genbar	ik Accession I	Number	
		COI	Cytb	RAG1	RH	IRBP
		<u>NC031638</u>	<u>NC031638</u>	<u>KP738563</u>		<u>KP73852</u>
Schistura savona (n=2)		<u>KJ542585</u>	<u>KP738598</u>	<u>KP738558</u>		<u>KP73851</u>
. ,		<u>KJ542586</u>	<u>KP738599</u>	<u>KP738559</u>		<u>KP73851</u>
Schistura	KIZ	MG23819	MG23829	MG23799	MG23810	MG2384
scaturigina (n=3)	20110027	7	1	7	0	8
	KIZ	MG23819	MG23829		MG23810	MG2384
	20110028	8	2		1	9
	KIZ	MG23819	MG23829	MG23799	MG23810	MG2384
	20110030	9	3	8	2	0
Schistura	KIZ	MG23819	MG23828	MG23799		MG2384
susannae (n=1)	20130314	4	8	4		5
Schistura	KIZ	MG23819	MG23828	MG23799	MG23809	MG2384
vinciguerrae (n=2)	2006004060	2	6	2	8	3
	KIZ	MG23819	MG23828	MG23799	MG23809	MG2384
	2006009576	3	7	3	9	4
Schistura	KIZ	MG23820	MG23829	MG23799	MG23810	MG2384
yingjiangensis (n=1)	2014002137	0	4	9	3	1
Sectoria	KIZ	MG23820	MG23829	MG23800	MG23810	MG2384
heterognathos (n=2)	20150177	3	7	2	6	4
	KIZ	MG23820	MG23829	MG23800	MG23810	MG2384
	2012001420	2	6	1	5	3
Seminemacheilus		<u>MT07700</u>	<u>KP738577</u>	<u>KP738537</u>		<u>KP73849</u>
lendlii (n=2)		<u>8</u>				
		MT22167	КР738578	KP738538		KP73849

Species name	Voucher Number		Genbar	k Accession 1	Number	
		COI	Cytb	RAG1	RH	IRBP
Traccatichthys	KIZ	<u>NC031581</u>	MG23822	MG23793	MG23803	MG23833
pulcher (n=2)	2005101704 2		5	3	8	9
	KIZ	<u>AP011301</u>	MG23822	MG23793	MG23803	MG23834
	2005101704 3		6	4	9	0
Triplophysa		<u>NC024597</u>	<u>NC024597</u>	<u>MG72556</u>	<u>MG72560</u>	MG72548
anterodorsalis (n=1)				<u>4</u>	<u>3</u>	<u>5</u>
Triplophysa	KIZ	MG23820	MG23829	MG23800		MG2384
bleekeri (n=2)	20130069	4	8	3		5
	KIZ	MG23820	MG23829	MG23800		MG2384
	20130070	5	9	4		6
Triplophysa	KIZ	MG23820	MG23830	MG23800	MG23810	MG23841
<i>brevicauda</i> (n=2)	050422004	6	0	5	7	7
	KIZ	MG23820	MG23830	MG23800	MG23810	MG23841
	050422005	7	1	6	8	8
Triplophysa		<u>NC029423</u>	<u>NC029423</u>	<u>MG72556</u>	<u>MG72560</u>	<u>MG72548</u>
dorsalis (n=1)				<u>9</u>	<u>5</u>	<u>7</u>
Triplophysa		<u>KX03965</u>		<u>FJ650420</u>	<u>FJ650480</u>	<u>FJ650492</u>
gundriseri (n=1)		<u>6</u>				
Triplophysa		<u>KT213594</u>	<u>KT213594</u>	<u>MG72556</u>	<u>MG72560</u>	<u>MG72548</u>
markehenensis				<u>3</u>	<u>2</u>	<u>4</u>
(n=1)						
Triplophysa	KIZ	MG23820	MG23830	MG23800	MG23810	MG23841
nanpanjiangensis (n=1)	20080361	8	2	7	9	9
Triplophysa	KIZ	MG23820	MG23830	MG23800	MG23811	MG23842
obscura (n=2)	2010000273	9	4	9	1	1

Species name	Voucher Number	Genbank Accession Number					
		COI	Cytb	RAG1	RH	IRBP	
	KIZ	MG23821	MG23830	MG23801	MG23811	MG23842	
	2010000274	0	5	0	2	2	
Triplophysa		<u>KJ631323</u>	<u>KJ631323</u>	<u>MG72556</u>	<u>MG72560</u>	<u>MG72548</u>	
orientalis (n=1)				<u>6</u>	<u>4</u>	<u>6</u>	
Triplophysa rosa (n=1)		<u>JF268621</u>	<u>JF268621</u>	<u>MG72556</u> <u>5</u>	<u>JF317227</u>	<u>JF317224</u>	
Triplophysa	KIZ	MG23821	MG23830	MG23801	MG23811	MG23842	
scleroptera (n=2)	20100076	1	7	2	3	4	
	KIZ		MG23830	MG23801		MG23842	
	20100075		6	1		3	
Triplophysa		<u>KX35497</u>	<u>KX35497</u>	<u>JN837669</u>	<u>MG69759</u>	<u>MG69882</u>	
stenura (n=1)		<u>5</u>	<u>5</u>		<u>2</u>	<u>4</u>	
Triplophysa		<u>JQ663847</u>	<u>JQ663847</u>	<u>MG72557</u>	<u>KP695752</u>	<u>KP695090</u>	
stoliczkai (n=1)				<u>6</u>			
Triplophysa		<u>KP297875</u>	<u>KP297875</u>	<u>MG72556</u>		<u>MT53672</u>	
strauchii (n=1)				<u>7</u>		<u>4</u>	
Yunnanilus	KIZ		MG23830	MG23801	MG23811	MG23842	
pleurotaenia (n=2)	2004102300 1		8	3	4	5	
	KIZ		MG23830	MG23801	MG23811	MG23842	
	2004102300		9	4	5	6	
Outgroup	2						
Regulartia		IN177231	AY62572	IN177170	IN177205	IN177281	
szechuanensis (n=1)		<u>5111//201</u>	<u>6</u>	<u>5111//1/2</u>	<u>5111//20J</u>	5111//201	
Botia dario (n=1)		<u>MK57207</u> <u>0</u>	<u>AY88779</u> <u>8</u>	<u>KP695636</u>	<u>EU409641</u>	<u>EU409673</u>	
Cobitis striata (n=1)		<u>AB054125</u>	<u>AB054125</u>	<u>EF458303</u>	<u>HM22393</u> <u>8</u>	<u>AB531282</u>	

Species name	Voucher Number	Genbank Accession Number				
		COI	Cytb	RAG1	RH	IRBP
Gyrinocheilus		<u>KY30784</u>	<u>KY30784</u>	EU292682	<u>FJ197071</u>	<u>EU409695</u>
aymonieri (n=1)		<u>4</u>	<u>4</u>			
Jinshaia		<u>JN177228</u>		<u>JN177042</u>		JN177274
abbreviata (n=1)						
Sinogastromyzon		<u>NC024534</u>	<u>NC024534</u>	<u>KP695620</u>	<u>KP695734</u>	<u>JN177275</u>
sichangensis						
(n=1)						
Vaillantella		<u>AB242173</u>	<u>AB242173</u>	<u>EU711132</u>	<u>FJ197031</u>	<u>FJ197080</u>
maassi (n=1)						

Supplementary Table S3 Geog	raphic information	tion about the analysed specimens.	
Species	Biogeogr. unit	Locality	
Barbatula barbatula	Р	Czech Republic	
Barbatula toni	Р	Russia; Amur	
Claea dabryi	AB	China, Sichuan; Jinshajiang, Yangtze	
Homatula anguillioides	Н	China, Yunnan; Mekong	
		China, Yunnan; HaixiLake, Mekong	
Homatula guanheensis	А	China, Shanxi; Yangtze	
Homatula change	K	China, Yunnan; Mekong	
Homatula cryptoclathrata	G	China, Yunnan; Salween	
Homatula disparizona	K	China, Yunnan; Red	
Homatula longidorsalis	AM	China, Yunnan; Jinshajiang, Yangtze	
		China, Yunnan; Nanpanjiang, Pearl	
Homatula potanini	А	China, Sichuan; Yangtz	
		China, Sichuan; Yangtze	
Homatula pycnolepis	Н	China, Yunnan; Mekong	
Homatula variegata	А	China, Yunnan; Jinshajiang, Yangtze	
		China, Sichuan; Yangtz	
Homatula wuliangensis	Н	China, Yunnan; Mekong	
Lefua costata	Ι	China, Liaoning	
Lefua echigonia	Ι	Japan	
Mesonoemacheilus guentheri	J	Southern India	
Nemacheilus binotatus	Q	Thailand	
Nemacheilus corica	Е	Himalaya Foothills	
Nemacheilus longistriatus	L	China, Yunnan; Mekong	
Nemachilichthys ruppelli	J	India	
Oreonectes platycephalus	М	China, Guangxi; Pearl.	
Paracanthocobitis botia	Е	India	
Paracanthocobitis mandalayensis	D	Myanma; Irrawaddy	
Paracanthocobitis zonalternans	D	Brahmaputra	
Petruichthys brevis	F	Myanmar; Salween	
Physoschistura elongata	E	India	
Physoschistura shuangjiangensis	Н	China, Yunnan; Mekong	
Physoschistura sp.	F	Salween	
Pteronemacheilus lucidorsum	D	Myanmar	
Pteronemacheilus meridionalis	GL	China, Yunnan; Salween	
		China, Yunnan; Mekong	
Schistura albirostris	D	China, Yunnan; Irrawaddy	
Schistura amplizona	L	China, Yunnan; LuousuoJiang, Mekong	
		China, Yunnan; ManlaoJiang Mekong	
Schistura balteata	F	Salween	
Schistura bolavenensis	L	Mekong	
Schistura callichroma	K	China, Yunnan; LixianJiang, Red	

Supplementary Table S3 Geographic information about the analysed specimens.

Species	Biogeogr. unit	Locality	
Schistura caudofurca	K	China, Yunnan; LixianJiang Red	
		China, Yunnan; SinanJiang, Red	
Schistura cf. fasciolata	KM	China, Yunnan; GulaHe, Pearl	
		China, Yunnan; YuanJiang, Red	
		China, Guangdong; MoyangJiang	
		China, Guangxi; Pearl	
Schistura conirostris	L	China, Yunnan; Mekong	
Schistura cryptofasciata	GL	China, Yunnan; NantingHe, Salween	
		China, Yunnan; ManlaoJiang Mekong	
Schistura disparizona	F	China, Yunnan; NangunHe, Salween	
	G	China, Yunnan; Salween	
Schistura fasciolata	KN	China, Yunnan; Red	
		China, Hainan;	
Schistura hypsiura	D	Myanmar	
Schistura implicata	L	Vietnam, Lam Dong; Mekong	
Schistura kengtungensis	Н	China, Yunnan; Mekong	
Schistura kloetzliae	Н	China, Yunnan; Mekong	
	L	China, Yunnan; Mekong	
		China, Yunnan; LuosuoJiang, Mekong	
Schistura kongphengi	L	China, Yunnan; ManlaoJiang Mekong	
Schistura latidens	Н	China, Yunnan; Mekong	
Schistura latifasciata	L	China, Yunnan; NanlaHe, Mekong	
		China, Yunnan; LuousuoJiang, Mekong	
		China, Yunnan; Mekong	
Schistura longa	G	China, Yunnan; Salween	
Schistura macrocephalus	L	China, Yunnan; LuousuoJiang, Mekong	
Schistura magnifluvis	Н	China, Yunnan; Mekong	
Schistura malaisei	D	Myanmar; Irrawaddy	
Schistura notasileum	Н	China, Yunnan; Mekong	
Schistura notostigma	J	Sri Lanka	
Schistura poculi	G	China, Yunnan; Salween	
Schistura polytaenia	D	China, Yunnan; Dayinjiang, Irrawaddy	
		China, Yunnan; Irrawaddy	
Schistura porthos	L	China, Yunnan; LuousuoJiang, Mekong	
Schistura pridii	F	Thailand	
Schistura savona	E	Brahmaputra	
Schistura scaturigina	D	China, Xizang; Yarlung Zangbo River	
Schistura susannae	К	Vietnam, Hai Duong; Red	
Schistura vinciguerrae	D	China, Yunnan; Irrawaddy	
		China, Yunnan; LongchuanJiang, Irrawaddy	
Schistura yingjiangensis	D	China, Yunnan; Irrawaddy	
Sectoria heterognathos	L	China, Yunnan; LuousuoJiang, Mekong	

Species	Biogeogr. unit	Locality
		China, Yunnan; ManlaoJiang Mekong
Seminemacheilus lendlii	R	Southern Anatolia
Traccatichthys pulcher	М	China, Guangxi; Pearl
Triplophysa anterodorsalis	А	China, Sichuan; Yangtze
Triplophysa bleekeri	А	China, Sichuan; Yangtze
Triplophysa brevicauda	Н	China, Yunnan; Mekong
Triplophysa dorsalis	С	China, Xinjiang
Triplophysa gundriseri	C	Rassia
Triplophysa markehenensis	В	China, Qinghai
Triplophysa nanpanjiangensis	М	China, Yunnan; Pearl
Triplophysa obscura	0	China; Yellow
Triplophysa orientalis	0	China, Sichuan; Yellow
Triplophysa rosa	А	China; Yangtze
Triplophysa scleroptera	0	China, Qinghai; Yellow
Triplophysa stenura	В	China, Yunnan; Yangtze
Triplophysa stolickai	0	China, Gansu
Triplophysa strauchii	C	China, Xinjiang
Yunnanilus pleurotaenia	А	China, Yunnan; Pearl

Locus	Primer	Primer sequences (5' - 3')	Annealing Temp.	Reference	
Cytb	L14724	GAC TTG AAA AAC CAC CGT TG	52 °C	Xiao, Zhang &	
	H15915	CTC CGA TCT CCG GAT TAC AAG AC		Liu, 2001	
COI LCOI HCOI	LCOIa	CCT ACC TGT GGC AAT CAC RCG C	56 °C	Liu et al., 2012	
	HCOI	GTG AAT AGG GGG AAT CAG TG			
RAG1	RAG1F	AGC TGT AGT CAG TAY CAC AAR ATG	53 °C	Perdices, Doadrio & Bermingham, 2005	
	RAGRV1	TCC TGR AAG ATY TTG TAG AA		Slechtová, Bohlen & Tan, 2007	
2533F		CTG AGC TGC AGT CAG TAC CAT AAG ATG T	53 °C	López, Chen &	
	4090R	CTG AGT CCT TGT GAG CTT CCA TRA AYT T		Ortí, 2004	
IRBP2 1092 100	109F	AAC TAC TGC TCR CCA GAA AAR C	55 °C	C1 1 0000	
	1001R	GGA AAT GCA TAG TTG TCT GCA A		Chen et al., 2008	
RH	28F	TAC GTG CCT ATG TCC AAY GC	55 °C	Chen et al., 2008	
	233F	ATA TGC CTG CCT GGC YGC TTA C			

Supplementary Table S4 Primers used in this study. Positions with mixed bases are labeled with their IUB codes: R = A/G; Y = C/T; S=G/C; N=A/T/C/G.

Supplementary Figure S1 Phylogram of 50% majority rule consensus tree derived from Bayesian inference of COI dataset. Nodes with posterior probabilities less than 0.95 are not shown.

Supplementary Figure S2 Phylogram of 50% majority rule consensus tree derived from Bayesian inference of cyt b dataset. Nodes with posterior probabilities less than 0.95 are not shown.

Supplementary Figure S3 Phylogram of 50% majority rule consensus tree derived from Bayesian inference of IRBP dataset. Nodes with posterior probabilities less than 0.95 are not shown.

Supplementary Figure S4 Phylogram of 50% majority rule consensus tree derived from Bayesian inference of RAG1 dataset. Nodes with posterior probabilities less than 0.95 are not shown.

Supplementary Figure S5 Phylogram of 50% majority rule consensus tree derived from Bayesian inference of RH dataset. Nodes with posterior probabilities less than 0.95 are not shown.

Supplementary Figure S6 Ancestral regions of Nemacheilidae (a), the divergence time tree with 95% confidence intervals nodes and the divergence time on nodes; C1,C2,C3 are three calibration points which have been explained in Materials and Methods. Net diversification rates (b), with branch lengths set to posterior means for the datephylogeny. Red dots represent rate shifts addressed from best shift configuration, values under branch are marginal odds/marginal shift probabilities. Area map (c), A-Middle & Lower Yangtze; B- Upper Yangtze; C- Balkash-Alakul, Dzungaria &Western Mongolia; D- Sitang-Irrawaddy; E- Ganges Delta & Plain, Middle Brahmaputra, Chin Hills-Srakan Coast; F- Lower & Middle Salween; G- Upper Salween; H- Upper Lancang (Mekong); I- Honshu-Shikoku-Kyushu, Eastern Yellow Sea Drainages; J- Western Ghats, Sri Lanka Dry Zone; K- Song Hong; L- Lower Lancang (Mekong), Dratie-Stung Treng; M- Xi Yiang; N- Hainan; O- Upper Huang He, Upper Huang He Corridor; P- Central & Western Europe, Middle Amur; Q- Chao Phraya; R- Southern Anatolia. These biogeographic units are marked by colors according to their position in India (yellow), western of Indochina (blue), eastern of Indochina (red), Southern China (green) and norther areas of China and Asia (purple).

BioGeoBEARS DIVALIKE on speciestree18 M0_unconstrained ncstates: global optim, 2 areas max. d=0.0043; e=0.0151; j=0; LnL=-274.72

Supplementary Figure S7 Pie chart of biogeographic analysis for Nemacheilidae under DIVALIKE model.