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Abstract

Background: Ammopiptanthus nanus is a rare broad-leaved shrub that is found in the desert and arid regions of Central Asia.
This plant species exhibits extremely high tolerance to drought and freezing and has been used in abiotic tolerance
research in plants. As a relic of the tertiary period, A. nanus is of great significance to plant biogeographic research in the
ancient Mediterranean region. Here, we report a draft genome assembly using the Pacific Biosciences (PacBio) platform and
gene annotation for A. nanus. Findings: A total of 64.72 Gb of raw PacBio sequel reads were generated from four 20-kb
libraries. After filtering, 64.53 Gb of clean reads were obtained, giving 72.59x coverage depth. Assembly using Canu gave an
assembly length of 823.74 Mb, with a contig N50 of 2.76 Mb. The final size of the assembled A. nanus genome was close to
the 889 Mb estimated by k-mer analysis. The gene annotation completeness was evaluated using Benchmarking Universal
Single-Copy Orthologs; 1,327 of the 1,440 conserved genes (92.15%) could be found in the A. nanus assembly. Genome
annotation revealed that 74.08% of the A. nanus genome is composed of repetitive elements and 53.44% is composed of long
terminal repeat elements. We predicted 37,188 protein-coding genes, of which 96.53% were functionally annotated.
Conclusions: The genomic sequences of A. nanus could be a valuable source for comparative genomic analysis in the
legume family and will be useful for understanding the phylogenetic relationships of the Thermopsideae and the
evolutionary response of plant species to the Qinghai Tibetan Plateau uplift.
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Data Description tral Asia. The plants in this genus play important ecological roles
by fixing moving sands and delaying further desertification [1].

Background information . . . . .
g Tribe Thermopsideae is considered to be a basal branch in

Ammopiptanthus nanus, a desert shrub and a relic from the ter-
tiary period, is one of two species in the genus Ammopiptanthus.
This genus belongs to the tribe Thermopsideae and the family
Fabaceae (Fig. 1). Ammopiptanthus is the only genus of evergreen
broadleaf shrub distributed in the desert and arid regions of Cen-

the family Fabaceae. The habitats of the ca. 45 plant species in
tribe Thermopsideae are interspersed among the Mediterranean
Basin, Central Asia, and temperate North America. Studies on
the molecular biology of these plant species will promote under-
standing of the phylogeny of family Fabaceae, as well as some
interesting biogeographical topics such as how the Qinghai-
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Figure 1: A flowering A. nanus.

Tibetan Plateau uplift and Tethys retreat affected plant evolu-
tion [2, 3]. In addition, the genus Ammopiptanthus is a unique and
isolated branch in tribe Thermopsideae. There are still some de-
bates about the evolution and phylogeny of this genus [3], and
more molecular evidence is needed to clarify these issues.

Species in genus Ammopiptanthus exhibit extremely high tol-
erance to drought and freezing and have been used in abiotic tol-
erance research in plants [4-6]. Although several transcriptome
analyses of the response to drought and cold stress have been
conducted [1, 7-9], the lack of genome sequence information im-
pedes further investigation into the molecular mechanism un-
derlying the stress tolerance of Ammopiptanthus species.

Most of the de novo assemblies of plant genomes recently
reported have been performed using next-generation sequenc-
ing technologies such as Illumina or 454 sequencing platforms
[10-12]. However, these assemblies generally contain very frag-
mented sequences, partly because of the complexity of the plant
genome. The newly developed Pacific BioSciences (PacBio) se-
quencing platform, a third-generation sequencing technology,
has started to address some of the intrinsic challenges in se-
quencing and assembling large and complex plant genomes by
producing tens of thousands of long individual reads (up to ~40
kb) [13]. Recently, several complicated plant genomes, including
those of maize [14], sunflower [15], and Chenopodium quinoa [16],
have been sequenced using the PacBio sequencing technology.
In the present study, we used single-molecule real-time (SMRT)
sequencing developed by PacBio to generate a draft genome as-
sembly for A. nanus.

Sample collection and genomic DNA sequencing

The leaf tissues of a single A. nanus tree (National Center for
Biotechnology Information [NCBI] taxonomy ID, 111851) were
collected from Xinjiang, China. After collection, tissues were
immediately transferred into liquid nitrogen and stored until
DNA extraction. DNA was extracted using the Cetyltrimethyl
Ammonium Bromide (CTAB) method according to the protocol
“Preparing Arabidopsis Genomic DNA for Size-Selected ~20kb
SMRTbell™ Libraries” [17]. The quality of the extracted genomic
DNA was checked using 1% agarose gel electrophoresis, and the
concentration was quantified using a Qubit fluorimeter (Invitro-
gen, Carlsbad, CA, USA).

Long-read sequencing was performed at Biomarker Tech-
nologies Corporation (Beijing, China) with a PacBio Sequel se-

quencer (Pacific Biosciences, Menlo Park, CA, USA). The SMRT
Bell library was prepared using a DNA Template Prep Kit 1.0
(PacBio p/n 100-259-100), and four 20-kb SMRTbell libraries were
constructed. Genomic DNA (10 pg) was mechanically sheared
using a Covaris g-Tube (Kbiosciences p/n 520079) with a goal
of DNA fragments of approximately 20 kb. A Bioanalyzer 2100
12K DNA Chip assay (Agilent p/n 5067-1508) was used to as-
sess the fragment size distribution. Sheared genomic DNA (5 pg)
was DNA-damage repaired and end-repaired using polishing en-
zymes. A blunt-end ligation reaction followed by exonuclease
treatment was conducted to generate the SMRT Bell template.
A Blue Pippin device (Sage Science, Inc., Beverly, MA, USA) was
used to size select the SMRT Bell template and enrich large frag-
ments (>10 kb). The size-selected library was quality inspected
and quantified on an Agilent Bioanalyzer 12 kb DNA Chip (Agi-
lent Technologies, Santa Clara, CA, USA) and a Qubit fluorimeter
(Invitrogen, Carlsbad, CA, USA). A ready-to-sequence SMRT Bell-
Polymerase Complex was created using a Binding Kit 2.0 (PacBio
p/n 100-862-200), according to the manufacturer’s instructions.
The Sequel instrument was programmed to load and sequence
the sample on PacBio SMRT cells v3.0 (PacBio p/n 100-171-800),
acquiring one movie of 360 min per SMRT cell. The MagBead
loading (PacBio p/n 100-125-900) method was used to improve
the enrichment of the larger fragments. A total of 13 SMRT cells
were processed yielding 64.72 G subread sequences.

For Illumina sequencing, paired-end (PE) libraries with insert
sizes of 350 bp were constructed with the standard protocol pro-
vided by Illumina (San Diego, CA, USA) and sequenced on an Il-
lumina HiSeq X Ten platform. A total of 55.97 Gb of PE (2 x 150
bp) clean sequences were generated (Supplementary Table S1).
These data were used for genome size estimation, correction of
genome assembly, and assembly evaluation.

Genome size estimation

We characterized genome size and heterozygosity using the dis-
tribution of k-mers of length 19 from the Illumina HiSeq reads
(55.97 Gb clean reads from 350 bp insert size library; NCBI SRA
accession number, SRX3286209). This analysis was performed
using “kmer_freq_stat” software (developed by Biomarker Tech-
nologies). The genome size (G) of A. nanus was estimated using
the following formula: G = k-mer number/average k-mer depth,
where k-mer number = total k-mers—abnormal k-mers (with
too low or too high frequency). The highest peak in the k-mer
distribution curve was found at the k-mer depth of 53, with a
k-mer number of 47,408,863,457 (Supplementary Fig. S1). The
peak at depth of more than 106 was a repetitive peak (k-mers
duplicated because of repetition). Finally, the A. nanus genome
size was estimated to be 888.92 Mb, the heterozygosity was ap-
proximately 0.02%, and the data used in 19-mer analysis was
approximately 53x coverage of the genome.

Genome assembly

The Sequel raw bam files were converted into subreads in
fasta format using the standard PacBio SMRT software pack-
age (read data are available at the NCBI SRA accession num-
ber, SRX3262947). Then, subreads of less than 500 bp were fil-
tered out. Finally, 7,918,322 reads and 64,538,018,400 bases (~
73x depth) were produced. The average subread length was
8.15 kb with a N50 length of 12.79 kb (Supplementary Table
S2). The genome assembly was conducted using Canu software
(v1.5) [18] (correctedErrorRate = 0.045, corOutCoverage = 70).
The draft genome was polished with Arrow (SMRT link v5.0.1,



-minCoverage 15) using all SMRT reads and polished using Pilon
v1.22 (Pilon, RRID:SCR-014731) [19] using the Illumina reads with
the default settings. Finally, we assembled a genome of 823.74
Mb with 1,099 contigs and contig N50 of 2.76 Mb (Supplemen-
tary Table S3).

For repeat detection, four software packages, i.e., LTR-FINDER
(v1.0.5) [20], MITE-Hunter (v1.0.0) [21], PILER (v1.0) [22], and Re-
peatScout v1.0.5 (RepeatScout, RRID:SCR_014653) [23], were used
to build a de novo repeat library on the basis of our assembly
with the default settings. Then, the predicted repeats were clas-
sified using PASTEClassifier (v1.0) [24] and merged with Repbase
(19.06) [25]. Finally, using the resulting repeat database as the
final repeat library, RepeatMasker v4.0.5 (RepeatMasker, RRID:
SCR-012954) [26] was used to identify repetitive sequences in
the A. nanus genome with the following parameters: “-nolow
-no.is -norna -engine wublast.” Overall, approximately 610.25
Mb of repetitive sequences (74.08% of the assembly) were de-
tected, containing 440.18 Mb (53.44% of the assembly) long ter-
minal read elements (Supplementary Table S4).

Ab initio-based, homolog-based, and RNA-sequencing (RNA-
seq)-based gene prediction methods were used in combination
to identify the protein-coding genes in the A. nanus genome
assembly. Genscan [27], Augustus v2.4 (Augustus, RRID:SCR_
008417) [28], GlimmerHMM v3.0.4 (GlimmerHMM, RRID:SCR.0O
02654) [16], GenelD (v1.4) [29], and SNAP v2006-07-28 (SNAP,
RRID:SCR-002127) [30] with the default parameters were used
for the ab initio- based gene prediction, and all of these soft-
ware packages were trained using the Arabidopsis gene model
before gene prediction. For gene prediction using Augustus,
in addition to the Arabidopsis’s gene model, the Program to
Assemble Spliced Alignments (PASA’'s) gene model was also
used as the initial gene model for training. Finally, the best
gene model with higher accuracy and specificity was used.
The quality of the gene models was evaluated by aligning
transcriptome sequences to the whole genome assembly us-
ing Tophat (Supplementary Table S5). GeMoMa (v1.3.1) [31]
was used in homolog-based gene annotation, and the protein
databases of Cicer arietinum (GCA_000331145.1), Phaseolus vulgaris
(GCA_000499845.1), Glycine max (GCA_000004515.3), and Arachis
duranensis (GCA-000817695.2) from GenBank were used as the
references. For the RNA-seq-based method of gene prediction,
TransDecoder (v2.0, [32]), GeneMarkS-T v5.1 (RRID:SCR_011930)
[33], and PASA v2.0.2 (RRID:SCR_014656) [34] were used, and the
A. nanus transcriptome data were assembled in a previous study
(NCBI SRA accession numbers, SRX1409432 and SRX1406652)
[35]. Finally, the results from the three methods were integrated
using EVM (v1.1.1, RRID:SCR_014659) [36]. Higher weights were
assigned to the PASA-predicted transcripts from unigenes and
GeMoMa-predicted homologous transcripts than to the ab initio-
predicted transcripts when conducting the EVM integration. In
total, a gene set with 37,144 protein-coding genes was predicted
from the A. nanus genome assembly (Table 1, Supplementary
Table S6, Supplementary Fig. S2). These genes were scattered
over 1,099 contigs, averaging 33.80 genes per contig. The genes
were annotated by aligning to the Non-redundant protein se-
quences; Nt: Nucleotide collection (NR, Nt), eukaryotic ortholo-
gous groups of proteins (KOG) [37], Kyoto Encyclopedia of Genes
and Genomes (KEGG) (KEGG, RRID:SCR-001120) [31], Swissprot
(Swissprot, RRID:SCR-002380) [38], and TrEMBL [39] databases us-
ing the Basic Local Alignment Search Tool (BLAST) with an e-
value cutoff of 1E-5 and also aligned to the Pfam (Pfam, RRID:

Table 1: Summary of A. nanus genome annotation

Software and gene

Method set Gene number
Ab initio based Genscan 26,702
Augustus 43,844
GlimmerHMM 42,368
GenelD 45,561
SNAP 55,094
Homology based GeMoMa
Arachis duranensis 27,630
Cicer arietinum 29,229
Phaseolus vulgaris 27,554
Glycine max 31,559
RNA-seq based PASA 43,810
TransDecoder 68,687
GeneMarkS-T 44 944
Integration EVM 37,173

Table 2: Summary of functional annotation for the predicted genes

Annotated gene

Annotation database number Percentage (%)

GO 20,177 54.28
KEGG 10,130 27.25
KOG 18,237 49.06
Pfam 26,727 71.90
Swissprot 21,401 57.57
TYEMBL 34,946 94.01
NR 34,909 93.91
Nt 34,041 91.57

All Annotated 35,950 96.71

SCR-004726) database [40] using hmmer V3.0 (-E 0.00001 -domE
0.00001 —cpu 2 —noali —acc) [41]. Gene Ontology (GO) terms were
assigned to the genes using the BLAST2GO pipeline [42]. In all,
96.71% of the predicted genes could be classified into families
according to their putative functions (Table 2).

For pseudogene prediction, GenBlastA [43] was used to scan
the A. nanus genome for sequences homologous to the known
protein-coding genes it contained. Then, GeneWise (GeneWise,
RRID:SCR_015054) [44] was adopted to search the premature stop
codons or frameshift mutations in those sequences and, con-
sequently, to identify pseudogenes. In total, 7,891 pseudogenes
were identified from the A. nanus genome (Supplementary Table
S7).

First, the 55.97 G Illumina sequencing reads (NCBI SRA acces-
sion number, SRX3286209) used for k-mer analysis were aligned
to the A. nanus genome assembly using bowtie [45]. The re-
sults showed that all Illumina reads were mapped and 98.45%
PE reads were mapped concordantly (Supplementary Table S8).
Using these short reads, the estimated quality value (QV) of
A. nanus genome was calculated according to a previously de-
scribed method [46, 47], and the erroneous bases in the genome
assembly were identified using the variant calling software Free-
Bayes v0.9.14 (FreeBayes, RID: SCR-010761) with default param-
eters. The QV of the A. nanus genome was estimated to be 38.95,
which means that the accuracy of the assembly in base level is
fine after base correction.
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Table 3: Alignment of the unigenes to the A. nanus genome assembly

Range of Aligned

length Total number  number Percentage
>500 81,429 81,429 100

>1000 54,385 54,385 100

Second, the A. nanus unigenes assembled in a previous study
(NCBI SRA accession numbers, SRX1409432 and SRX1406652) [35]
were aligned to the A. nanus genome using the BLAST-like align-
ment tool v0.36 (BLAT, RRID:SCR_011919) [48] with default pa-
rameters. The alignment indicated that 100% of unigene (=500
bp in length) assemblies were mapped to the A. nanus genome
assembly (Table 3).

We also evaluated the completeness of the genome assem-
bly of A. nanus using Benchmarking Universal Single-Copy Or-
thologs (BUSCO) v2.0 (BUSCO, RRID:SCR.015008) [49]. The re-
sults showed that 9,215% (1,327 out of 1,440 BUSCOs) of plant
sets (embryophyta_-odb9, download from [50]) were identified as
complete in the A. nanus assembly (Supplementary Table S9).
Together, the results indicated that our dataset represented a
genome assembly with a high level of coverage.

In summary, the draft genome sequence of A. nanus that we ob-
tained demonstrated that third-generation sequencing technol-
ogy, such as the PacBio platform, could be useful in deciphering
complex plant genomes. The availability of the A. nanus genome
sequence should facilitate de novo genome assembly of other
species in this genus. The datasets from the present study could
not only provide a valuable source for further comparative ge-
nomics analysis in the legume family and help to answer some
important questions related to the biogeography in the ancient
Mediterranean region but also could facilitate our understand-
ing of how plants adapt to the stressful conditions in temperate
deserts in Central Asia.

Raw genomic sequence reads are available in the NCBI Sequence
Read Archive under project number PRJINA413722. Supporting
data are available from the GigaScience GigaDB database [51].

Figure S1. Distribution of k-mers of length 19 from the Illumina
Hiseq reads

Figure S2. Venn diagram plot using UpSetR showing the over-
lap of the gene annotation results of the three gene prediction
methods

Table S1. Illumina sequencing reads used for genome size esti-
mation and correction of genome assembly

Table S2. Size distribution of the PacBio subreads

Table S3. Statistics of the A. nanus assembly

Table S4. Statistics of the identified repeat sequences

Table S5. Statistics of mapping the transcriptome data to
genome assembly

Table S6. Statistics of the genome annotation

Table S7. Statistics of the predicted pseudogenes

Table S8. The alignment of the Illunima reads to the A. nanus
genome assembly

Table S9. BUSCO assessment of the A. nanus genome assembly

BLAST: Basic Local Alignment Search Tool; BUSCO: Benchmark-
ing Universal Single-Copy Orthologs; GO: Gene Ontology; KEGG:
Kyoto Encyclopedia of Genes and Genomes; KOG: eukaryotic or-
thologous groups of proteins; PacBio: Pacific Biosciences; PASA:
PE: paired-end; QV: quality value; RNA-seq: RNA sequencing;
SMRT: single-molecule real-time.
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