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Abstract: This review focuses on the ability of some natural antioxidant molecules (i.e., hydrox-
ycinnamic acids, coumarin-3-carboxylic acid, quercetin, luteolin and curcumin) to form Al(III)- and
Fe(III)-complexes with the aim of evaluating the coordination properties from a combined experi-
mental and theoretical point of view. Despite the contributions of previous studies on the chemical
properties and biological activity of these metal complexes involving such natural antioxidants,
further detailed relationships between the structure and properties are still required. In this context,
the investigation on the coordination properties of Al(III) and Fe(III) toward these natural antioxidant
molecules might deserve high interest to design water soluble molecule-based metal carriers that can
improve the metal’s intake and/or its removal in living organisms.

Keywords: natural antioxidants; Al(III) complexes; Fe(III) complexes; chelating ability; spectroscopic
characterization; DFT

1. Introduction
1.1. Role of Al(III) and Fe(III) Ions

Diseases related to the accumulation of metals, which play several critical roles in the
human body, are attracting increasing attention in the scientific community [1]. Under
normal conditions, some metals are considered micronutrients, being cofactors of numerous
enzymes involved in many biological processes. However, they become toxic if present in
relatively high amounts above a certain threshold, especially the first-row transition metal
ions (e.g., Fe, Cu, and Zn), which seems to be related to severe degenerative diseases such
as Alzheimer’s disease [2].

Human exposure to metals has increased over time due to their increased use, par-
ticularly with industrialization [3,4]. Toxicity due to metal exposure can also arise from
their accidental ingestion through food and beverages (drinking water) [5]. Indeed, metals
can be present naturally in many foods, but their uptake can be increased due to food
contamination arising from some methods used in the production stages. Prevention
and treatment of diseases caused by metals often occurs with the use of coordination
compounds [6]. Many organic molecules, in fact, behave as ligands and can form stable
complexes with metal ions, used as therapeutic agents for the treatment of metal accumula-
tion. In particular, some transition metal complexes have shown high therapeutic potential
in the treatment of different disorders, being used as antitumor, anti-inflammatory, and
antidiabetic agents as well as in the treatment of diseases of the nervous system [1,3,6].

In this context, the research into suitable chelating agents against toxic metal ions
overload in human tissues and the understanding of their behavior become crucial for
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the improvement of chelation therapy [1]. This is a promising strategy for reducing the
redox stress lethal for neurons aimed at removing toxic metal ions from the human body or
reducing their toxicity by transforming them into less toxic compounds or by dislocating
them from the site where they exert a harmful action [6].

This review focuses on the coordination properties of aluminum(III) and iron(III)
metal ions, potentially implicated in degenerative processes, since they can be targeted by
metal chelators to regenerate the normal trafficking of metal [3].

The source of aluminum in humans is essentially oral intake from food, drinking
water, and Al-containing drugs [1,7]. Since the 1970s, this metal has been recognized as the
cause of different diseases and as a neurotoxic agent associated with encephalopathies due
to its accumulation in brain tissues [8]. Currently, however, aluminum’s role in Alzheimer
neuropathology is still not clear, although several experimental and clinical evidences have
pointed out its implication as a primary etiological factor of Alzheimer’s disease [8–10].

Aluminum, with a crystal radius of 0.675 Å (coordination number VI) [11], is a typical
hard metal ion. In biological systems, the majority of binding sites for it are negatively
charged oxygen donors as carboxylates, phenolates, catecholates, and phosphates. The
hydrolytic chemistry of aluminum affects its solubility and its bioavailability in biological
environments. At pH ≤ 5, the main species is the [Al(H2O)6]3+ ion; the mononuclear
species Al(OH)2+ and Al(OH)2

+ are formed by the deprotonation of coordinated water
molecules with increasing pH values. Polynuclear species Al2(OH)2

4+ and Al3(OH)4
5+ are

also formed, but their concentration is strictly related to that of the total aluminum. At
neutral pH, a precipitate of Al(OH)3 is formed, while at higher pH, the species Al(OH)4

−

becomes soluble. The speciation equilibria of the soluble and insoluble forms of the hydroxo
complexes and of the complexes with other competing ligands must be considered to better
understand and describe the solution chemistry of aluminum in biological systems.

Due to the similar ionic radius of Al(III) and Fe(III) (0.675 Å for Al(III), 0.690 and
0.785 Å for low and high spin Fe(III), respectively) [11], Al(III) can compete with Fe(III) for
binding to the biological transporter systems as transferrin. Indeed, high-spin Fe(III) is
classified as a hard Lewis acid and, in analogy with Al(III), forms very stable bonds with
hard ligands. Iron overload is the most common metal toxicity disease worldwide. Under
normal conditions, body iron levels are governed by homeostatic controls of iron uptake,
distribution, and storage. Several factors may affect iron absorption: the amount of iron
present in the diet, its chemical species, the ligands coordinating iron in the intestine and
the presence of other potential iron chelators. Pathological conditions may result from
gastrointestinal iron absorption and/or multiple red blood cell transfusions [6].

In this review, experimental and computational results on the ability of some natural
antioxidant molecules (NAMs) (i.e., hydroxycinnamic acids, coumarin-3-carboxylic acid,
quercetin, luteolin, and curcumin, Scheme 1) to form Al(III)- and Fe(III)-complexes are
reported and discussed. Since the coordination chemistry background is necessary to drive
the selection of drug candidates suitable to discriminate between different metal ions, the
coordination properties of Al(III) and Fe(III) in aqueous solution toward the selected NAMs
shown in Scheme 1 were investigated. Understanding the interactions of these metals with
this class of ligands is helpful to design water soluble molecule-based metal carriers aimed
to improve the metal’s intake and/or its removal in living organisms.

1.2. Choice of the Ligands

On the basis of the structure–activity relationship, several NAMs are well known to
be effective metal chelators due to the presence of carbonyl groups as well as of phenolic
hydroxyls, and carboxylic groups that, regardless of their pKa values, can be deprotonated
upon metal interaction. Thus, their ability to bind transition metal ions make these classes
of molecules particularly interesting to counteract the metal-related damage. Among
the numerous NAMs able to exert such activity, we focused on those derivatives whose
chelating ability was investigated in aqueous solution, an environment that better mimics
the physiological one.
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Scheme 1. NAMs considered here for coordination of Al(III) and Fe(III) ions: p-coumaric (p-CA), caffeic (CA), ferulic (FA),
and coumarin-3-carboxylic (HCCA) acids, quercetin (Que), luteolin (Lut), and curcumin (Cur). All the potential binding
sites are highlighted with red circles and dashed arcs.

1.2.1. Hydroxycinnamic Acid Derivatives

Hydroxycinnamic acids (Scheme 1) and their derivatives are derived from cinnamic
acid, an unsaturated carboxylic acid. They display interesting health benefits such as an-
tioxidant, anti-collagenase, anti-inflammatory, antimicrobial, and anti-tyrosinase activities
as well as ultraviolet (UV) protective effects [12]. The pharmacological potential exhibited
by these phenolic acids and derivatives has been attributed to the presence of multiple
hydroxyl groups in their chemical structure, which make them active as free radical scav-
engers. The presence of a double bond in the side chain leads to the possible existence of
two isomeric forms: cis (Z) and trans (E). The diversity and their resultant nutraceutical
properties are derived from the nature of the bonds and that of the molecules involved [13].
They are found both covalently linked to the plant cell wall polysaccharides and in their
free soluble forms in the cytoplasm and are synthesized from either L-phenylalanine or
L-tyrosine as part of the lignin precursor pathway.

In the present work, we focused on the sequestering ability of p-coumaric, caffeic, and
ferulic acids (p-CA, CA, and FA, respectively, Scheme 1).

In p-CA, position 4 of the phenyl ring of the skeleton of cinnamic acid bears a hydroxyl
group. It is the major precursor in the synthesis of other phenolic acids such as caffeic,
chlorogenic, rosmarinic, and ferulic acids. It is widely present in fruits, vegetables, cereals,
and mushrooms. Studies on p-CA and its conjugated forms have even revealed, besides
the properties listed above, antiplatelet aggregation activity.

CA is a cinnamic acid where the phenyl ring is substituted by hydroxyl groups at
positions 3 and 4. It is one of the most common phenolic acids found in fruits, vegetables,
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mushrooms, and herbs. It is biosynthesized by the hydroxylation of p-coumaric acid and
has several medicinal properties, among which antidiabetic activity.

FA, known also as 4-hydroxy-3-methoxycinnamic acid, is widely distributed in bever-
ages (coffee, beer), fruits (cabbage, potatoes, carrots), vegetables (broccoli, spinach, tomato),
cereals (wheat, corn, maize), flowers, and nuts. It is a caffeic acid derivative formed by the
action of the enzyme caffeate O-methyltransferase.

1.2.2. Coumarin Derivatives

Coumarins, a family of 1,2-benzopyrones widely diffused in plants, and their deriva-
tives have stimulated interesting research in biology and medicine due to their antioxidant,
antibiotic, anticoagulant, anticancer, and anti-inflammatory properties. Coumarins can
exist in a variety of forms due to the various substitutions possible in their basic structure,
which modulate their biological activity. Therefore, their physicochemical properties and
therapeutic applications may depend upon the substitution pattern. In addition, coumarin
derivatives can yield a wide variety of metal complexes, and their complexation with
d-block metal cations has been recognized as a promising route toward the development
of new therapeutic agents and can be used, in principle, in specific chelation therapies [14].
Belonging to this category, the coumarin-3-carboxylic acid (HCCA) here considered, has an
oxygen atom in the third position of the basic coumarin skeleton (see Scheme 1), creating a
single charged ligand that can chelate, through two O donors, metal ions. HCCA behaves
as a scavenger of the hydroxyl radical generated chemically or by gamma radiation, as a
selective inhibitor of monoamine oxidase or as an antibacterial agent.

1.2.3. Flavonoids

Flavonoids are secondary plant metabolites of the polyphenol family and form one
of the most numerous and widespread families of natural substances accumulated in
significant amounts in fruits and vegetables [15,16]. The increasing interest in flavonoids
is due to their wide biological and pharmacological effects such as anti-cancer, anti-ulcer,
anti-allergic, antioxidant, antiviral, and anti-inflammatory properties [17,18]. The anti-
radical activity of flavonoids depends on their structure, the position of OH groups, and
interaction with biological membranes.

Flavonoids are classified into six main subgroups according to their structure: flavan-
3-ols, anthocyanins, flavonols, flavones, flavanones, and isoflavones. Many health benefits
are connected with the high consumption of flavonoid-rich foods including reduced risk
for heart diseases, cancer, neurodegenerative psychic diseases, and many other chronic
diseases. It is assumed that oxidative stress plays an important role in the genesis of
these diseases, and therefore flavones may possess therapeutic effects through antioxidant
mechanisms. In addition to their antioxidant properties, flavonoids exhibit other multiple
biological effects (i.e., antibacterial, antiviral, anti-inflammatory, anticarcinogenic, anti-
ischemic, hypolipidemic, antimutagenic, and many others [19]. The present article reviews
the coordination properties of two specific flavonoids, namely quercetin and luteolin.

Quercetin (Que) is the most commonly studied flavonol, since it can chelate the metals
as a bidentate O,O-coordinating ligand. Furthermore, it is the most important and naturally
occurring cancer-preventing agent [20]. The cancer preventive and therapeutic effects
of quercetin have been demonstrated through in vitro as well as in vivo experimental
findings [21,22]. As depicted in Scheme 1, Que consists of three phenolic rings (A, B,
and C rings); it has three available sites for metal chelation including ortho-dihydroxyl
(catechol) group of the B ring (site A), 5-hydroxy-4-keto group (site B), and 3-hydroxy-4-
keto group (site C), since both hydroxyl and keto groups of Que have the ability to form
metal complexes [23–35]. Interestingly, it was observed that some biological properties of
quercetin such as antioxidant, antibacterial, and antitumor activities, change with metal
chelation.

Luteolin (Lut) is a common flavone with several biological effects [36,37] that is often
found in leaves, rinds, barks, and flowering plants. It possesses two metal ion chelating
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sites: the 3′,4′-dihydroxy group in ring B and the 5-hydroxy and 4-carbonyl group in ring
C (see Scheme 1).

Because of poor water solubility and the bioavailability of flavonoids, their use in the
food industry or pharmacy is limited. However, the formation of metal complexes may
increase solubility, hydrophilicity, and bioavailability of flavonoids and therefore enlarge
the area of new applications.

1.2.4. Curcumin

Curcumin (1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione, Cur) is a
component of the Indian spice turmeric, manufactured from the rhizome of the perennial
herb Curcuma longa that is widely cultivated in tropical countries in South and South East
Asia, especially in China and India [38]. Curcumin is a typical example of polyphenol-
rich natural remedies, and has been used for centuries in Indian traditional medicine
(Ayurveda) and traditional Chinese medicine. The medicinal activity of curcumin has
been known since ancient times. It has also been used as a photodynamic agent for the
destruction of bacteria and tumor cells. Multiple therapeutic activities have been attributed
to curcumin mostly because of its anti-inflammatory and antioxidant effects. As such,
curcumin was predominantly used to treat inflammatory conditions including bronchitis,
colds, parasitic worms, leprosy, arthritis, and inflammations of bladder, liver, kidney,
and skin, and to improve symptoms such as fever and diarrhea. In addition, curcumin
is thought to have beneficial effects in diseases of the neurological system including
Alzheimer’s disease [39]. As can be evinced from Scheme 1, Cur has three chemical
moieties in its structure: two aromatic ring systems containing methoxy and phenolic
groups connected by a seven carbon linker consisting of an α,β-unsaturated β-diketone
moiety. A keto-enol tautomeric equilibrium (as shown also in Scheme 1) characterizes the
diketo moiety, which can therefore exist in different types of tautomers, depending on the
environment. In the crystal state, it exists in a cis-enol configuration, where it is stabilized
by resonance assisted hydrogen bonding and the structure consists of three substituted
planar groups interconnected through two double bonds. In most of the non-polar and
moderately polar solvents, the enol form is generally more stabilized than the keto form by
5 to 8 kcal mol−1, depending on the nature of the solvent. Due to extended conjugation,
the π electron cloud is distributed along the whole molecule. In solution, it exists as
cis-trans isomers; the trans-form, in which the two phenolic-methoxy groups are on the
opposite sides of the curcumin backbone, is slightly more stabilized than the cis-form,
where the phenolic methoxy groups are on the same side up the backbone [40]. The bis-
keto form predominates in acidic and neutral aqueous solutions. At pH 3–7, curcumin
is an extraordinarily potent H-atom donor. In the keto form, the heptadienone linkage
between the two methoxyphenol rings contains a highly activated carbon atom, whose
C–H bonds are very weak due to delocalization of the unpaired electron on the adjacent
oxygen. In contrast, above pH 8, the enolate form of the heptadienone chain predominates,
and curcumin behaves mainly as an electron donor, a more typical mechanism for phenolic
antioxidant scavenging activity [41,42].

The ability of curcumin in free radical reactions may be due to the presence of two
phenolic groups, the enol form of the diketone moiety, and the extended conjugated
structure. Barik et al. showed that the antioxidant activity of curcumin in the β-keto-enol
form is higher than those in the β-diketone form [43]. There are three factors that influence
its antioxidant activity: (i) the redox state of the biological environment, (ii) the presence of
metal ions, and (iii) of substituents on the side chain [44]. The strong chelating ability of
diketones has been widely investigated toward some metal ions, depending on the molar
ratio between metal ions and curcumin, the solvent, the metal salt, and the pH media. Over
the past few decades, several studies have been published dealing with metal curcumin
complexes and their applications [40,45].
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2. Measurement of the Stability of Metal–Ligand Complexes in Aqueous Solution

The stability of metal–ligand complexes can be primarily described with three different
amounts: cumulative, stepwise, and conditional stability constants. Cumulative, also called
overall stability constants, are commonly indicated as β, which characterizes each complex
formed in solution. If M is the metal ion, H the proton, and L the ligand, and MmHhLl is
the complex formed according to the general equilibrium in Equation (1),

m M + h H + l L
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amounts as a replacement for the activities is usually allowed by maintaining a constant
ionic strength during the experimental measurements. The overall constants are usually
given as log β, and their knowledge is required for performing metal–ligand speciation
calculations. In order to obtain accurate results, many experimental details have to be
considered so the experimental determination of β values is complicated. β values are
affected by the acid–base properties of the metal ion and ligand, by the total metal (CM)
and ligand (CL) concentrations and by the pH. For this reason, the overall constants do not
allow us to state the effective complex stability. Moreover, log β values cannot be used to
compare the stability of complexes formed by different metal ions and ligands.

Stepwise stability constants are generally indicated as K and are commonly employed
when the complexes existing in solution contain one metal ion and one or more ligands
(MLl, with l≥ 1). Stepwise and overall constants are related to each other: for the complexes
ML and ML2, log βML = log KML and log βML2 = log KML + log KML2, respectively.

Conditional stability constants may be cumulative or stepwise and are commonly
indicated with the apostrophe (i.e., β′ or K′). These constants can be used to compare
the stability of complexes formed by different metal ions and ligands. However, the
comparison is possible only when the complexes have the same stoichiometry.

The acidity constants of each ligand, the stability constants of the metal ion hydrolysis
products, and the ionic product of water have to be considered to complete the speciation
picture and allow speciation calculations.

For some metal–ligand complexes, more than one speciation profile has been reported
in the literature, and different log β values have also been proposed. However, speciation
data obtained at ionic strength as close as possible to 0.15 M and at 37 ◦C, which would
better resemble physiological conditions, are uncommon. The information arising from
these studies can be useful to identify potential complexes that can be formed in vivo;
furthermore, the overall charge of the complexes is crucial in determining their partitioning
in a biological environment: generally, a charged complex is hydrophilic, preferring to be
solubilized in aqueous solutions (i.e., in the blood), and is unable to pass cellular barriers.
In contrast, a neutral species should behave in the opposite way. Therefore, the structure
of any complex, deductible from its stoichiometry, has a central role in determining its
properties and toxicity.

Taking into account the importance of the metal cations and the ligands as the object of
this review, results obtained from measurements carried out under physiological conditions
of ionic strength and temperature (i.e., close to 0.15 M and at 37 ◦C) as well as the most
studied temperature of 25 ◦C have been considered.

Table 1 reports the selected speciation information, determined by potentiometry
and UV–Vis spectroscopy regarding Al(III) and Fe(III) with some NAMs, according to the
general equilibrium reported in Equation (3):

pM3+ + q(OH)− + rL−
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Table 1. Formation of complexes of some natural antioxidants with Al(III) and Fe(III), according to
Equation (3). Standard deviations are reported as 3σ.

Al(III)

Ligand (pqr) log β Temperature Reference

CA

(111) 13.40 ± 0.03

37 ◦C [13]
(121) 22.26 ± 0.06
(131) 30.87 ± 0.09
(142) 42.53 ± 0.09

FA
(121) 21.3 ± 0.3

37 ◦C [13](131) 30.31 ± 0.02
(142) 42.24 ± 0.02

p-CA (131) 30.21 ± 0.09 37 ◦C [13]

HCCA
(121) 25.9 ± 0.2

37 ◦C [14](131) 36.5 ± 0.3

Que
(121) 29.25 ± 0.06 37 ◦C [34]
(111) 16.1 ± 0.1 37 ◦C [26]
(101) 23.0 ± 0.5 25 ◦C [27]

Cur (111) 16.4 ± 0.1 37 ◦C [45]

Fe(III)

HCCA (122) 28.35 ± 0.06 37 ◦C [14]

Que

(121) 37.24 ± 0.06
37 ◦C [26](112) 43.9 ± 0.1

(122) 53.1 ± 0.1

(101) 5.5
25 ◦C [46](102) 9.56

Lut (101) 8.4 25 ◦C [47]

Cur (131) 41.4 ± 0.3 37 ◦C [45]

This equation takes into account the possible formation of simple (q = 0), mixed (q 6= 0),
mononuclear (p = 1), and polynuclear (p > 1) species.

The speciation profiles represent the starting point necessary for understanding the
structure of metal–ligand complexes, which can be obtained from an experimental as well
as theoretical approach using different characterization techniques and computational
methods that will be discussed in the following sections.

3. Binding Sites and Complexes Formation

The ability of chelating agents to block metal-related damage has been widely ex-
plored over the past ten years and even earlier by applying quantum mechanics-based
approaches [13,14,18,31,34,45–53]. In particular, DFT and its time dependent (TD) ex-
tension have been used to identify binding sites and complex stoichiometry, structurally
characterizing the ligand–metal complexes, and comparing the outcomes with the available
experimental data.

All the ligands considered in this review present more than one possible mono co-
ordinating or chelating site, as highlighted in Scheme 1 by red circles and dashed arcs.
Furthermore, to identify the most probable complexes in an aqueous environment, neutral
and anionic species were taken into consideration as plausible ligands depending on the
experiments or simulation conditions for complex formation [47,50,51]. From a modeling
point of view, despite the wide literature on the complex formation of different antioxi-
dants with several metal ions [18,52,53], only a few of these take into consideration the
aqueous physiological environment and thus consider the metal ion surrounded by solvent
molecules [13,14,31,34,45,47,51]. Some of these computational studies are supported by ex-
periments on the complexes’ stability [13,14,31,34,45], while others have taken into account
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only the general physiological conditions considering neutral or deprotonated antioxidant
species as a function of their pKas [47,50,51].

In the search for the most probable binding site, key outcomes can come from spectro-
scopic characterization that is often used to detect the most probable complexes. Figure 1
shows the comparison of the absorption shift in the UV–Vis region of the most sensible
band upon complex formation as revealed by experimental evidence and simulated by
TDDFT calculations, coming from those works that better fit the aim of the present review
(i.e., to describe the coordination properties of Al(III) and Fe(III) toward NAMs in aqueous
environment) [13,14,31,34,45].
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Figure 1. Bathochromic shift of the first absorption band upon complexation with Al(III) and Fe(III) metal ions of the
different NAMs. Data were taken from references collected in Table 2, with the exception of: Fe(III)-CA spectrum recorded
in aqueous solution at pH = 9 [54] and here calculated; Fe(III)-FA spectrum here calculated; Lut-Al(III) in MeOH-water (1/2
v/v) [55]; Lut-Fe(III) in EtOH [56].

Table 2. Free energy formation (∆Gf) of the complexes formed between the selected natural antioxidants and Al(III) or
Fe(III), calculated according to Equation (5).

Al(III)

Ligand (L) Complex ∆Gf Level of Theory Reference

CA [Al(H2O)3(OH)(LA)]+ −119.4 M052X/6-31+G(d) − SMD, water [13]

FA [Al(H2O)(OH)3(LA)]− −158.4 M052X/6-31+G(d) − SMD, water [13]

p-CA [Al(H2O)(OH)3(LA)]− −159.5 M052X/6-31+G(d) − SMD, water [13]

HCCA

[Al(H2O)2(OH)2(LB)] −145.3
M052X/6-31+G(d) − SMD, water [14][Al(H2O)2(OH)2(LA)] −139.5

[Al(H2O)(OH)3(LB)]− −157.7
[Al(OH)3(η1-LA)]− −159.0

Que

[Al(H2O)2(OH)2(LB)] −123.7 M052X/6-31+G(d) − SMD, ethanol [31][Al(H2O)2(OH)2(LC)] −119.0

[Al(H2O)3(OH)(LB)]+ −71.2
M052X/6-31+G(d) − SMD, water [34][Al(H2O)3(OH)(LC)]+ −68.6

[Al(H2O)4(LA)]+ −55.9

Lut
[Al(H2O)4(LA)]2+ −1.5

B3LYP/6-31G ** − CPCM, water [51] a[Al(H2O)4(LB)]2+ 2.5
[Al(H2O)2(LB)2]+ −6.8
[Al(H2O)2(LA)2]+ −1.1

Cur [Al(H2O)3(OH)(LA)]+ −135.1 M052X/6-31+G(d) − SMD, water [45][Al(H2O)3(OH)(LB)]+ −124.9

Fe(III)

CA [Fe(H2O)4(LA)]2+ 5.8 M052X/6-31+G(d) − SMD, water This work[Fe(H2O)4(LA)2]+ 16.0

FA [Fe(H2O)4(LA)]2+ –49.7 M05/6-311++G(d,p) − SMD, water [50][Fe(H2O)4(LA)2]+ –85.4

HCCA [Fe(OH)2(η1-L)2]− −27.1 M052X/6-31+G(d) − SMD, water [14]
[Fe(OH)2(η2-L)2]− −19.2

Que
[Fe(H2O)2(OH)2(LA)]− −99.4

M052X/6-31+G(d) − SMD, water [34][Fe(H2O)(OH)(LA)2]− −113.7
[Fe(OH)2(LA)2]− −125.8

Cur [Fe(H2O)(OH)3(LA)]− −57.1 M052X/6-31+G(d) − SMD, water [45]
[Fe(H2O)(OH)3(LB)]− −55.5

a Optimization in vacuum, single point in solvent; ∆Gf for the reaction nAl(H2O)6
3+ + mL AlnXyLk

m + (l − (3n − k))H2O + (3n − k)H3O+,
where l is the number of water molecules detached from Al(H2O)6

3+ upon ligand complexation by using the experimental value of
-∆Gvap(H2O) as ∆Gsolv(H2O) in the calculation of the Gibbs free energy for the formation of one mole of the considered complexes.
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With the final aim of comparing the ability of the different ligands to bind Al(III)
and Fe(III) metal ions in aqueous solution, metal binding affinity was here estimated
(when possible on the basis of data available in the literature) by calculating the reaction
free energies of the complexation reaction for the substitution of water molecules in the
hexaaquo complex and considering the overall process in solution (Equation (4)):

{nL}c + [M(H2O)6]z →[MLn]z+c + (6-n-t)H2O (4)

where c is the total formal charge of the n ligands; L = ligand (neutral or deprotonated) OH−;
z is the charge of the hexaaquo complex; and t = 0, 1 takes into account the possibility that
the ligands are mono or bidentate. Therefore, the formation energies of these complexes
were calculated as:

∆G f = ∆G([MLn]
z+c) + (6− nt)∆G(H2O)− (∑n

i (L))
c − ∆G([M(H2O)6]

z) (5)

Most of the literature works considered here refer to measurements in aqueous so-
lutions with pH values within the range 3.5–5, thus the accessible species and the corre-
sponding most probable structures are of different types, depending on both the metal and
ligand (Table 1) [13,14,31,34,45].

Data collected in Table 2 from the most recent studies on the selected NAMs, support
the ability of Al(III) and Fe(III) metal ions to bind oxygen sites, essentially arranging in
octahedral complexes (see Scheme 2). However, when metal ions and ligands exist in 1:2
stoichiometric ratios, [M(OH)2(L)2]−, or the ligand is monocoordinated, [M(OH)3L]−, the
tetrahedral structure is plausible [14].
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4. Complex Characterization by Spectroscopic and Spectrometric Techniques

The structural characterization of Al(III) and Fe(III) complexes with the NAMs re-
ported in Scheme 1, is of primary importance for understanding their potential applicability.
The NAM derivatives generally form complexes with a 1:1 and 1:2 metal to ligand ratio.
However, the different number of binding sites offered by each of them (Scheme 1), which
is very intriguing, makes a straightforward identification of the structure of the com-
plexes more difficult. To this aim, several spectroscopic and spectrometric techniques have
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been used for metal-NAM complex characterization, which allows for attribution and
discrimination among the different chelation sites.

Among the spectroscopic techniques, the most useful and widespread are ultraviolet-
visible (UV–Vis), Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR),
and fluorescence spectroscopy. Mass spectrometry (MS) is also used in several instances
because it provides crucial insights into the stoichiometry of the complexes. The UV–Vis
characterization gives information on the d–d* transitions of the metal and on the possible
geometry of the coordination complex. FTIR provides information on the functional groups
of the ligand that may be involved in the complexation. The complexation is usually
accompanied by a loss of some OH protons or it may cause significant proton and carbon
resonance variation of the ligand close to the metal binding sites. In this context, 1H and 13C-
NMR are powerful tools for elucidating the interaction between metal cations and ligands.
The fluorescence emission spectra provide useful insights to identify the coordination
site from the enhancement or quenching of the fluorescence as well as from the shift
of the excitation and emission wavelength. Table 3 reports the results concerning the
metal-to-ligand stoichiometric ratio, the solvent used for the synthesis and characterization
of the complex, and the main spectroscopic and spectrometric methods used for their
characterization.

Table 3. Methods used to characterize the complexes between the selected natural antioxidants and
Al(III) or Fe(III) in the reported metal to ligand (M:L) stoichiometric ratios.

Al(III)

Ligand M:L Solvent Characterization Methods Reference

CA 1:1
1:2 water UV–Vis, 1H-NMR [13]

FA 1:1
1:2 water UV–Vis, 1H-NMR [13]

p-CA 1:1 water UV–Vis, 1H-NMR [13]

HCCA 1:1 water UV–Vis,
1H, 13C-NMR [14]

Que
1:2 methanol FTIR, 1H, 13C MAS NMR [57]

1:1 water UV–Vis, 1H, 13C-NMR [34]

Lut
1:1
2:1 methanol:water (9:1) UV–Vis, FT-IR, RAMAN [58]

1:2 ethanol UV–Vis, FTIR, fluorescence, ESI-MS [59]

Cur

1:1
2:1
3:1

methanol 1H, 13C, 27Al-NMR, MALDI-TOF [60]

1:1
1:2 water UV-Vis, ESI MS/MS, LD-MS, MS/MS [45]

Fe(III)

HCCA 1:2 water UV–Vis, 1H, 13C-NMR [14]

Que
1:2 methanol UV–Vis, FTIR, ESI MS, 1H-NMR [29]

1:2 water UV–Vis, 1H, 13C-NMR [34]

Lut
1:1 ethanol UV–Vis, FT-IR, ESI MS [56]

1:2
1:2 a water ESI MS, ESI-TOF MS [37]

Cur

1:2 water UV–Vis, ESI MS/MS, LD-MS, MS/MS [45]

1:2 methanol FTIR [61]

1:2 water:methanol (1:1) UV–Vis, FTIR, RAMAN, ESR,
1H-NMR, X-ray [62]

1:2 methanol UV–Vis, FTIR [63]

a. Fe(II)-Lut [37].

In the following section, the importance of the aforementioned characterization tech-
niques in discriminating the coordination site/sites will be highlighted, discussing the
interaction of Al(III) and Fe(III) cations with hydroxycinnamic acids, coumarinic acid,
quercetin, luteolin, and curcumin.
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5. Discussion

The combination of different approaches permitted to unravel the different affinity
of the two metal cations for a specific binding site of the selected NAMs. Indeed, while
speciation studies allowed to predict which metal and ligand species exist in solution
at a given pH, metal, and ligand total concentrations, spectroscopic, spectrometric, and
computational studies provide pivotal information for identifying the preferred binding site
of a metal for a specific ligand and thus the most probable complexes. All the experimental
methods addressed here to describe the interactions of Al(III) and Fe(III) with the selected
NAMs and information stemming from them are summarized in Table 4.

5.1. Hydroxycinnamic Acid Derivatives

Al(III) ions can form 1:1 and 1:2 stoichiometric ratio species with CA and FA, and
only a 1:1 stoichiometric ratio species with p-CA (Table 3). As can be seen in Table 1,
the sequestering ability of CA toward the aluminum cation is higher than that of FA
and p-CA as it forms complexes with four different stoichiometry. This result can be
explained considering the higher solubility of CA than the other two hydroxycinnamic
acids, which allows for working with a higher ligand to metal ratio, thus facilitating the
water substitution in the aluminum coordination sphere [13].

Metal coordination by the selected hydroxycinnamic acids can occur on the carboxylic
site (site A) or on the catechol-like site (site B) in the case of CA and FA (see Scheme 1),
as reported by different authors in the search for the most probable one in metal coor-
dination [13,49,52,53]. One of the first studies in an aqueous solution (pH = 5) reported
site B of CA as the preferred one for Al(III) coordination, on the basis of a comparison
between recorded and simulated UV–Vis absorption spectra of selected metal–ligand com-
plexes, identifying the three complexes of the type [M(H2O)4(L)], [M(H2O)3(OH)(L)]− and
[M(H2O)4(L)]+ (see Scheme 2) as the most plausible under such physicochemical condi-
tions [46]. However, more recently, Beneduci et al. observed the formation of Al(III)–CA
complexes by combining potentiometric measurements, UV–Vis and 1H-NMR spectra with
computational studies. The monoanionic species were considered as the only possible CA,
FA, and p-CA active species at pH within the range 3.5–5, thus taking into account the
coordination of Al(III) only on site B of CA completely protonated, which resulted in being
much more instable than the coordination on the carboxylate site, site A [13]. A similar
behavior was found for FA and p-CA, for which the most probable complex resulted for a
stoichiometric ratio (131), [Al(OH)3(H2O)(LA)]−. The formation of these complexes was
clearly indicated by the huge bathochromic shift observed (up to 60 nm) in all the UV–Vis
spectra with respect to those of the free ligands. According to the thermodynamic results,
ligand complexation is strongly influenced by pH. In particular, it occurs just at pH 3.5
for caffeic acid, while a pH higher than 4 is needed for the other two ligands. UV–Vis
spectroscopy alone cannot provide straightforward evidence on the complexation site
involved. In this case, very clear insights on the structures of the complexes were obtained
by 1H-NMR. These α, β unsaturated acids are very interesting because the doublet at
about 7.6 ppm related to the proton in β can be used as an automatic alert system for the
detection of changes in the electronic configuration on the carboxylic site. Thus, when
the Al(III) cation interacts with this functional group, a pH-dependent shielding effect is
induced, which determines a significant shift (up to 0.06 ppm) of the doublet to the lower
field (Figure 2). The reason for this sensitivity is due to the positive charge delocalization
on the β-carbon atom, following deprotonation caused by a pH increase or by the Al(III)
complexation on the carboxylic group.



Molecules 2021, 26, 2603 12 of 24

Table 4. Details of the identification and characterization methods.

Experimental
Methods Methodology Principle Analysis Results Reliability and Quality of the Results on the

Complex Formation

Potentiometry 4 Measurements in aqueous solution
The complexation equilibria are studied by measuring,
with a glass electrode, the competition of the ligand for

H+ and metal cations.

The experimental data, obtained at different metal
and ligand total concentrations, and processed by

numerical procedures, were rationalized
according to a general equilibrium, to obtain the

complexes existing in solution at a given pH.

Speciation studies allow to predict the most
probable stoichiometric coefficients of the
complexes and the corresponding stability

constants.

UV-Vis
4 Spectroscopic technique
4 No sample preparation
4 Measure in solution

Absorption of ultraviolet and visible photons by a
molecule causes a change from its fundamental

electronic state to an excited electronic state.

In a typical UV–visible spectrum the wavelength is
reported in the abscissa (190 < λ < 780 nm)

and the absorbance (or the transmittance) in the
ordinate. The recorded spectrum will be

characterized by a series of bands of variable
intensity.

Complexation leads to specific band shifts in the
spectrum of the ligand that, in several cases, can

be directly related to the involvement of a specific
complexation site of the ligand. In addition,

metal-to-ligand charge transfer transitions and d-d
transition bands may occur

1H, 13C, 27Al-NMR
4 Spectroscopic technique
4 Measure in solids and in solution

Absorption of a radio frequency radiation is measured
after immersing a molecule in a strong static magnetic

field, which causes nuclear spin transitions.

An NMR spectrum shows the frequency absorbed
and then emitted by the atoms of the nucleus

under examination, which depends on the
chemical environment around it (chemical shift).

Upon complexation huge shielding or deshielding
effects may be induced on the magnetic nuclei of
the ligand, generally placed close to the binding

site. However, significant chemical shift
displacement can occur far from the binding site
when resonance structures are involved in the

ligand. Quantitative information on the structural
properties of the complexes may also be obtained
from the spectra of magnetic metals such as 27Al.

FTIR
4 Spectroscopic technique
4 Measure in solution and in solid

Absorption of an infrared photon by a molecule, causes
its transition from its fundamental vibrational state to

an excited vibrational state.

In a typical IR spectrum, the percentage of
transmittance is plotted against the wave number

(4000 cm−1 < λ < 400 cm−1). Each peak in the
spectrum can be assigned to a specific functional

group.

Formation of a complex usually leads to the
appearance of specific peaks related to the

metal-heteroatom bond (e.g., Al-O). Moreover,
metal binding affects the bond vibrational energies
of the functional groups of the ligand involved in
the complexation, leading to related peak shifts.

Mass spectrometry
4 Spectrometric techniques
4 Measure in solution and in solid
4 Destructive technique

This technique allows separating a mixture of ions
according to their mass/charge ratio. Molecules are

ionized and fragmented into lighter ions according to
typical patterns depending on their chemical structure.

The diagram showing the abundance of each ion
as a function of the mass/charge ratio (m/z) is the

so-called mass spectrum, typical of each
compound as it is directly related to its chemical
structure and to the ionization conditions it has

been subjected.

Upon complexation, specific m/z fragments
containing the metal can be detected, indicative of

the specific binding site involved. The
stoichiometry of the complex (M:L ratio) can be

easily determined.



Molecules 2021, 26, 2603 13 of 24

Table 4. Cont.

Experimental
Methods Methodology Principle Analysis Results Reliability and Quality of the Results on the

Complex Formation

Fluorescence
4 Spectroscopic technique
4 Measure in solution
4 Non-destructive technique

An incident photon excites the fluorophore from the
ground state to a higher energy state (electronically

and vibrationally) with the same spin. In a few
nanoseconds, the excited electron returns to the ground

electronic state passing through one or more excited
states at intermediate energy. All decays except one are

usually non-radiative, while the last one emits light
with a longer wavelength than the incident radiation,

that is the fluorescence.

In a typical fluorescence spectrum, the
fluorescence intensity is plotted vs. the

wavelength of emission.

Complex formation between a metal and a
fluorophore may lead to a significant fluorescence

enhancement due to restricted intramolecular
rotations of the ligand, as well as a huge shift of

the emission maximum.

RAMAN

4 Spectroscopic technique
4 Measure in solution, solid and gas

phase
4 Non-destructive technique

This technique is based on the diffusion (scattering) of
a monochromatic electromagnetic radiation by the

analyzed sample. The diffused radiation contains the
components with different energy (Rayleigh, Stokes

and anti-Stokes) associated to molecular vibrations of
different functional groups.

In a Raman spectrum the intensity of the signals
proportional to the number of Stokes photons, are

plotted against the Raman shift (in cm−1),
corresponding to the energy difference associated

to transitions between fundamental vibrational
levels.

Upon complexation specific band shifts (i.e.,
inplane skeletal vibrations as well as stretching

vibrations) occurs in the RAMAN spectra
indicating which part of the ligand takes part in

the metal binding.

ESR
4 Spectroscopic technique
4 Measure in solution

It detects the induced transition by a microwave
radiation between the energy levels of electron spins
under a static magnetic field. It allows the study of
organic and inorganic free radicals, odd electrons
molecules, molecules in the triplet state, transition

metal complexes, etc.

The EPR spectrum is the first derivative of the
absorption spectrum obtained in the microwave

range

ESR measurements of the magnetic moment, is
indicative of low or high spin configuration

around the metal, thus providing information on
the coordination geometry

X-ray Diffraction
4 Spectroscopic technique
4 Measure on powder
4 Non-destructive technique

It allows the structural characterization of crystalline
materials. It is based on the constructive interference of

an x-ray monochromatic beam which is scattered at
specific angles from each set of lattice planes in a

sample.

The x-ray pattern is the fingerprint of the periodic
atomic arrangement in the material

X-ray diffraction provides insight on the
coordination geometry around the metal ion as

well as on the degree of crystallinity of the
complexes.
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Figure 2. 1H-NMR doublet of the b proton of caffeic acid at pH = 3.5 and the deshielding effect
caused by the formation of the complex with Al(III). Reproduced from [14] with permission from the
Centre National de la Recherche Scientifique (CNRS) and the Royal Society of Chemistry.

Regarding the Fe(III) complexation, no experimental structural characterization is
available for CA and p-CA while the carboxylate anion was found as the most abundant
species for FA in the complexes formed under a physiological environment in a com-
putational work by Truong et al. They explored several complexes and concluded that
the most stable ones involved the coordination of Fe(III) on site A of FA and are of the
type [M(H2O)4(L)]2+ and [M(H2O)2(L)2]+ for 1:1 and 1:2 metal to ligand stoichiometric
ratios, respectively [50]. On these complexes, we performed TDDFT calculations to get an
indication of the changes in the absorption spectrum of the ligand after the complexation.
Bathochromic shifts of 64 and 47 nm were found for the 1:1 and 1:2 complexes, respectively,
the former are included in Figure 1. Though additional studies should be undertaken to
unequivocally identify the preferred metal-to-ligand stoichiometric ratios, the most plausi-
ble complex is likely to involve the coordination of FA to Fe(III) through the carboxylate
site (site A).

Interestingly, the same authors found a very similar behavior for Fe(II) metal ions,
though the energies involved were of different magnitude. Data available in the literature
for the Fe(II)–CA complex [47] were thus used here as a guide to calculate the ∆Gf and to
simulate the absorption spectrum of a plausible Fe(III)–CA complex with the metal binding
through site A. Thus, both 1:1 and 1:2 complexes with CA in its monoanionic form were
considered. The simulated electronic spectra showed a red shift of 35 and 27 nm for the two
complexes, respectively, and the former perfectly fits the experimental observation [54], as
evident from Figure 1. Similar to the outcomes of Truong et al. [50] about FA, the obtained
∆Gf suggests a higher affinity of CA for ferrous ions rather than for the ferric one [47].

5.2. Coumarin Derivatives

For the aluminum–coumarin-3-carboxylic acid system, the complexes are in stoichio-
metric ratio 1:1 and also include hydroxyl group in the coordination sphere of the metal
cation (i.e., [Al(OH)2(L)] and [Al(OH)3(L)]−). The stability of these species is relatively
high, particularly when compared to the constant’s value for the Fe(III)–HCCA complex
(see Tables 1 and 2). The sequestering ability of HCCA toward the Al(III) cation was
higher than that toward Fe(III) [14]. HCCA can form only one type of Fe(III) complex
in aqueous solution (122), which contains two hydroxyl ligands together with the two
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anionic antioxidant molecules. In this case, two coordination modes were found as the
ligand binds the metal center in η1 or η2 fashion. The former result was the most stable
[Fe(OH)2(η1-L)2]−, in accordance with the experimental evidence (see log β in Table 1),
and thus the complex arranges in a tetrahedral structure (Figure 3).
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Despite a similar hard Lewis acid nature of the ions, the coordination of HCCA to
the Al(III) metal ion leads to more stable complexes as evidenced by the calculated metal
binding affinity (Table 2), in which the ligand chelates the metal surrounded by two or three
OH− ligands, [Al(H2O)2(OH)2(L)], and [Al(H2O)(OH)3(L)]−, respectively. Such structures
have the metal coordination on site B, involving both the carboxylate and lactone moieties
and forming a six-membered cycle. Even in the case of Al(III) complexes, the formation
of a tetrahedral structure is possible, [Al(OH)3(L)]−; the ligand coordinates the metal,
surrounded by three OH−, in η1 fashion. Based on the determined binding constants
and the computed binding energies, the (131) stoichiometry is the most probable one at
the working pH of 3.5. Furthermore, the coexistence of both tetrahedral and octahedral
complexes with such a stoichiometric ratio, [Al(H2O)(OH)3(LB)]− and [Al(OH)3(η1-L)]−,
is supported by NMR measurements and by the very similar values of the calculated
formation energies (Table 2). Indeed, both 1H- and 13C-NMR highlight that the overall
effect caused by the complexation is a down-field shift of all signals with respect to the
free ligand. It is important to note that the proton adjacent to the carboxylic acid (H in
C4), is the least shifted in the 1H-NMR spectrum of the complex, whereas the hypothetic
complexation on that moiety would have led to the opposite result. In addition, the
13C-NMR highlighted that the carbon atom in C2 was the most shifted, pointing out a
strong interaction of the Al(III) cation with the oxygen atom of the aromatic ring. These
evidences indicate that the coordination occurs through site B, which involves a relatively
low electronic rearrangement of the ligand upon complex formation. Actually, the optical
absorption spectrum of the free ligand was not significantly affected by the metal binding,
with only a slight red shift for the Al(III)–HCCA system (see Figure 1). The excellent
agreement between experiments and simulations supported the implication of site B in
HCCA coordination. Overall, the HCCA prefers to bind both the metals through site B in
η1 and η2 for Fe(III) and Al(III) ions, respectively, with a major affinity for Al(III) ion [14].

5.3. Flavonoids

Data on the complexation behavior of Que and Lut by Al(III) and Fe(III) ions come
from several studies [26,33,64,65], some of which combine experimental and computational
approaches [31,34]; others have reported the calculated structures of the complexes opti-
mized under physiological conditions [51] while others have focused on their spectroscopic
characterization [26,55,56].

Among the ligands described in this review, Que has the highest number of complex-
ation sites, the 3′,4′-dihydroxyl groups (site A), the 5-hydroxychromone (site B), and the
3-hydroxychromone (site C), leading to an intricate and intriguing complexation behavior.

The structural characterization of the Al(III)–Que complexes in aqueous and in mixed
hydro-alcoholic solutions is not very easy due to the poor solubility of quercetin and the
formation of low-soluble complexes [57,66]. Useful insights on its complexation behavior
come from several studies in methanol and ethanol. Ahmedova et al. reported on the
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synthesis of the Al(III)–Que complex in methanol and its characterization by elemental
analyses, IR, and 1H-13C MAS NMR [57]. This study suggested the formation of a complex
with a metal-to-ligand ratio of 1:2. The involvement of the carbonyl group in the complexa-
tion was demonstrated by a significant shift at lower energy (>50 cm−1) of its stretching
vibration in the IR spectrum of the complex as well as by the disappearance of the broad
resonance signal assigned to the intramolecular C5-OH/O = C4 hydrogen bond in the 1H
MAS NMR. Further 13C MAS NMR data showed that the complex formation occurs by
chelation involving the oxygen atom in position 5, which is downfield shifted according to
the analysis of the electron distribution.

The complexation behavior of quercetin for iron(III) as well as the antioxidant and
anti-diabetic activity of the Fe(III)–Que complexes were also studied in methanol [24,29].
Interestingly, Raza et al. reported on a 1:2 stoichiometric metal-to-ligand ratio, where iron
chelates quercetin through site C [29]. This was confirmed by (i) a strong red shift (>65 nm)
of the longer wavelength band in the electronic absorption spectrum, associated with the
cinnamoyl system, (ii) the presence in the IR spectra of the Fe–O stretching vibration and
a significant shift of the C = O stretching vibration, (iii) the ESI-MS experiments, which
showed a peak at m/z 658.54 assigned to the [Fe(L)2]+ species, and (iv) the disappearance
of the hydroxyl proton (3-OH) signal in the 1H-NMR of the complex.

Quercetin can preferentially bind Al(III) by its chelating sites B and C, as has been
previously highlighted by Furia et al., who characterized a neutral 1:1 Al(III):Que complex
formed in ethanol/water mixture [31]. The computational study showed that this complex,
with the formula [Al(H2O)2(OH)2(Que)], had the lowest energy when 5-hydroxychromone
was involved in the complexation, though the complex involving the coordination of the
3-hydroxychromone site was only slightly less stable. UV–Vis spectroscopy investigation
showed a huge bathochromic shift of the quercetin absorption spectrum, especially of band
I (429 nm vs. 368 nm), which was attributed to the conjugation of B and C rings. Strong
experimental support on the involvement of the B ring in the coordination can be obtained
from the comparison between the FTIR spectra of the complex and of the free ligand. The
analysis of the characteristic bands of quercetin highlights a significant reduction of the
stretching vibration of the carbonyl group (ν(C = O) 1639 cm−1 vs. 1666 cm−1) and of the
C–C stretching vibration of the B ring (ν(C–C) 1598 cm−1 vs. 1611 cm−1) in the spectrum
of the complex, which also showed the characteristic Al–O stretching vibration band of the
complex at 636 cm−1. However, the experimental data did not allow for a clear discern
between the chelating sites B and C, indicating that both complexes could be populated, as
suggested by the computational results showing the kinetically possible interconversion
between the two isomers in solution [31].

More recently, a comprehensive experimental and computational study on the Al(III)–
Que and Fe(III)–Que complexes was conducted, for the first time, entirely in aqueous
solution [34]. The speciation studies showed the formation of several complexes in the
2–5 pH range, with the precipitation of neutral solid species at higher pHs. The sequester-
ing ability of Que toward Fe(III) was higher than that toward Al(III). Speciation profiles
from potentiometric titrations showed that complexation occurs at a 1:1 ligand-to-Al(III)
ratio and at 1:1 and 2:1 ligand-to-Fe(III) ratios. The stability of all these complexes was
high, particularly when the hydroxyl group was involved in the coordination [34]. Com-
putational data showed that this stability comes from the bidentate nature of the ligand.
For Al(III), the most stable complex was formed when the site B was involved, irrespective
of the charge of the systems. However, the speciation study showed the formation of a
complex with the ligand doubly deprotonated, of the type [Al(Que)]+, which must neces-
sarily involve site A in the coordination with both the hydroxyl groups deprotonated. This
complex is only slightly higher in energy than the [Al(OH)(Que)]+, where the Al ion bound
to site B, suggesting that the complex involving the catechol moiety would be kinetically
favored.

For Fe(III), instead, among the mononuclear bidentate complexes that could be
formed, the most stable was the one involving the catechol site A, with stoichiometry
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[Fe(OH)2(Que)]−. The neutral species formed during the titrations were characterized
by 1H and 13C-NMR spectroscopy after their dissolution in DMSO. Unexpectedly, the
proton spectra of the above samples showed all the OH proton signals, but with large shift
(∆δ, ppm) and intensity changes compared to the free quercetin. This suggests that the
dissolved solids were a mixture of different complexes that come into a rapid equilibrium
in solution in the NMR time scale. It was shown that the magnitude of the chemical shift
change and its sign (downfield or up-field shift) reflects a complicated electrostatic charge
distribution over the entire quercetin molecule (maps of molecular electrostatic potential,
MEP), which cannot be accounted for by the presence of only one complex in solution
(Figure 4). Therefore, the qualitative comparison between the NMR maps of the relative
chemical shift changes and the MEPs supports the hypothesis that the spectrum of the
M(III)–Que mixture is a weighted average of those of the individual complexes and free
quercetin. The simulated NMR spectra of the neutral complexes are consistent with the
presence of a mixture of more than one complex, thus highlighting the tendency of Que to
bind these metals at different coordination sites.
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To our knowledge, no experimental data on the Al(III)–Lut complexes formed in aque-
ous solution have ever been reported. Nonetheless, a comprehensive TDDFT investigation
by Amat et al. was performed on the spectroscopic properties of Al(III)–Lut complexes,
where the Gibbs free energy of complex formation in water were computed considering
the hexaaquo complex Al(H2O)6

3+ as the starting reagent in the complexation reaction [51].
According to the absorption spectra obtained in methanol [55], the authors suggested the
formation of three different complexes with increasing [Al3+]/[Lut] ratio: the 1:2 metal
to ligand complex [Al(H2O)2(LB)2]+ and the subsequent formation of the [Al(H2O)4LB]2+

complex with a 1:1 Al:Lut stoichiometry, both with Lut chelating through site B, and the
formation of two binuclear complexes with a 2:1 Al:Lut stoichiometric ratio in equilibrium
between them, both involving the bidentate sites (4–5 and 3′–4′).
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Looking at the ∆Gf values reported in Table 2, we note a scarce ability of Lut to
bind Al(III), especially when compared with the Que complexes obtained in the same
stoichiometric ratio (101), though they are calculated in a different way (see footnote of
Table 2) [34,51]. In contrast, by comparing the species with the same stoichiometry (i.e.,
101) between Fe(III)–Que [53] and Fe(III)–Lut [56] (see Table 1), it was possible to observe
that Lut formed a slightly more stable complex than Que. This behavior could be related
to the structure of the species, with a formation of five-membered and six-membered
cycles, respectively. Spectroscopic and spectrometric investigations through UV–Vis, IR,
ESI-MS, ESI-TOF MS, and spectrofluorometric determination were employed to study the
interaction of Lut and Fe(II), Fe(III), and Al(III) [58,59]. As already noted, Lut can chelate
metals by two sites: the 3′,4′-dihydroxyl group in the B ring (site A) and the 5′-hydroxy
and 4-carbonyl group in the C ring (site B). Yang at al. were able to discriminate between
these sites, defining the stoichiometry of the Fe(III)–Lut complexes and the chelating sites
involved, by UV–Vis, IR, and ESI-MS characterization. Lut has two absorption bands in the
UV–Vis region, the first one, a π−π∗ transition, assigned to the B ring system (cinnamoyl
system) and the other, at low wavelength, representing the A ring system (benzoyl system).
The UV–Vis spectra of luteolin and different Fe(III)–Lut complexes at different molar ratio
(L:M = 1:1, 1:2, 1:3) acquired in ethanol solution [56] showed that the overall effect of
iron addition is a bathochromic shift of these bands, with that related to the cinnamoyl
system highly marked (~40 nm), and the appearance of a new band clearly indicating the
complex formation. The molar ratio plot (absorbance vs. Fe(III)–Lut mole ratio) indicates
the formation of a 1:1 Fe(III)–Lut complex. Significant information was obtained in this
study by comparing the IR spectra of the free ligand and that of the Fe(III)–Lut complex,
where many characteristic signals of the Lut cinnamoyl moiety were shifted. Among these,
the most important are those assigned to the C=C stretching vibration of the benzene
ring, due to an enhancement of the conjugation after coordination (38 cm−1), and of
the C–O vibration relative to the phenolic hydroxyl groups (~13 cm−1), indicating their
involvement in the coordination. Moreover, of noteworthy importance was the peak at
639 cm−1 assigned to the stretching of the O–Fe(III) bond. The ESI-MS experiments gave
direct information on the 1:1 Fe(III):Lut stoichiometry of the complex since, irrespective of
the molar ratio investigated (L:M = 1:1, 1:2, 1:3), the same three major peaks were always
found at m/z 402.7, 431.6, and 448.8 corresponding, respectively, to the following ions:
[(Lu-2H)2− + Fe3+ + NO3− + H+], [(Lu-2H)2− + Fe3+ + 2 CH3CH2OH], and [(Lu-2H)2− +
Fe3+ + NO3− + CH3CH2OH + H+]. Thus, the above data overall indicate the formation of
the 1:1 M:L complex with coordination on site A.

Very recently, a thorough study on the interaction and coordination modes between
Lut and iron by using electrospray ionization time-of-flight mass spectrometry (ESI-TOF
MS) was reported [37]. The reaction between Lut and iron was performed in hot water
to simulate the intake of this flavonoids in the human body, which is generally found in
edible plants and is taken after boiling. The supernatant obtained after the reaction was
measured by direct injection in the ESI-TOF MS. The results highlight the presence of a
complex (m/z 626), which was assumed to be the Fe(III)–Lut 1:2 complex [37]. Moreover,
analogously to other flavonoids, luteolin can reduce Fe(III) to Fe(II) under acidic conditions,
leading to the formation of Fe(II)–Lut complexes [67,68]. Specifically, the presence of a
1:2 Fe(II):Lut complex was confirmed by the ESI experiment. As further evidence, the
presence of Fe(II) in the Fe(III)–Lut complex solution was detected by using the indicator
1,10-phenanthroline, which forms an intense red colored complex with the Fe(II) ion.

Different photoluminescent flavonoids such as morin, luteolin, and quercetin can be used
as fluorogenic ligands for metal cation detection through a chelation mechanism [69–72]. The
fluorometric method can be used for the study of the chelation mechanism, since it can
reduce the interference from the matrix compared with other spectroscopic methods. Sun
et al. reported on the use of Lut in the spectrofluorometric determination of aluminum,
based on the complex formation. Indeed, the free ligand in ethanol solution shows only a
weak fluorescence due to the quenching mechanism associated with the proton transfer
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from the hydroxyl to the carbonyl group of the C (pyrone) ring. The formation of the Al(III)–
Lut complex upon addition of Al(III) to the solution leads to a significant increase in the
fluorescence emission due to the lack of the above quenching mechanism and the increase
in the rigidity of the molecules that minimizes the non-radiative dissipation processes.
Moreover, the emission maximum shifted considerably (>100 nm) as Al3+ concentration
increased (from 10−4 to up 10−3 M). UV–Vis and IR spectroscopy also gave clear indication
of complexation by significant signal shifts in the complex with respect to the free ligand.
ESI-MS measurements provided evidence of a singly-charged complex at a m/z 579 ([Al(III)
+ (luteolin−2H) + (luteolin−H) + H]+) ratio corresponding to a 1:2 Al:Lut molar ratio. The
authors proposed a dimeric structure in which one luteolin is coordinated through site A
and the other through site B.

5.4. Curcumin

The speciation profiles obtained by potentiometric titrations in aqueous solution up to
pH 4.5 showed that curcumin forms complexes with a 1:1 molar ratio, with a positive charge
in the case of Al(III) and a negative one for Fe(III). At higher pH values, the formation of
neutral insoluble species with a 1:2 stoichiometry occurs. The binding modes of curcumin
with metal cations were evaluated combining UV–Vis and MS characterizations with
computational studies [45,60]. Beneduci et al. found a different propensity of the two
metal ions in the complexation with curcumin. Indeed, while Al(III) preferred the diketo
moiety (by about 10 kcal mol−1), Fe(III) formed two almost equally stable complexes for the
coordination to the keto-enolic and guaiacol sites. The UV–Vis spectrum of free curcumin
showed two absorption bands, one in the UV region ascribed to the phenolic moiety and
the other in the visible region (λmax = 434 nm), with a shoulder at lower wavelengths.
More specifically, this band reflects the equilibrium between the keto and enol forms
of the curcumin and is strongly dependent on the pH value and on the type of solvent
(polarity and protic/aprotic) [62,73,74]. The absorption spectra of the investigated Al–Cur
complexes showed significant spectral changes with the shoulder of the Vis-band that
seemed to disappear. In order to better clarify this point, the experimental Vis band of the
free ligand and of the complexes were fitted with multiple Gaussian functions (Figure 5a).
Indeed, this structured absorption in the free curcumin can be well deconvoluted by two
bands, centered at 358 nm (assigned to the keto form) and at 434 nm (assigned to the
enol form) (R2 > 0.999, χ2 < 1.3 × 10−4). The band deconvolution of the spectra of the
complexes highlights that the enol band remained almost peaked at 434 nm, while a red
shift of 30 nm was calculated for the diketo band (R2 > 0.998, χ2 < 3 × 10−4). This analysis
revealed that the most important spectral changes could be detected in the keto-enol
absorption band, thus indicating the involvement of the keto-enol site in the complexation.
To support these hypotheses, a full characterization of the complexes was carried out by
mass spectrometry (ESI MS/MS, LD-MS, and MS/MS). The mass spectrum, obtained by
direct infusion into an electrospray mass spectrometer, clearly indicates the formation
in solution of a 1:1 Al:Cur complex (signal at m/z 429), which also coordinates a water
molecule and a hydroxyl moiety, as indicated by the fragmentations. The high resolution
(HR) laser desorption (LD) MS and MS/MS experiments provide insight on the neutral
complex obtained during titrations. Direct and consecutive fragmentations of the complex
did not show specific peaks associated with the keto-enol moiety, suggesting that the
coordination of the aluminum occurs via the enol oxygen with the assistance of the oxygen
lone pairs of the ketonic group (Figure 5f).

The above reported spectroscopic and spectrometric characterization was also ex-
tended to investigate the ability of Fe(III) to coordinate curcumin and to study the relative
coordination site. The UV–Vis spectra of the Fe(III)–Cur complexes showed significant
changes in the keto-enol absorption band, which appeared much more structured than
in the spectrum of free curcumin, with the appearance of a new band at around 500 nm,
usually associated with a metal-to-ligand-charge transfer transition (MLCT) [62]. Gaus-
sian deconvolution analysis showed a red shift (15 nm) of the diketo band and a relative
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intensity increase of this band at the expense of the enolic one with respect to the free
curcumin. The increased intensity of the band assigned to the keto tautomer indicates
that iron, unlike aluminum, stabilizes the keto form of curcumin. The ESI MS/MS of
the neutral Fe(III)–curcumin complex (m/z 790) showed a very rich profile and many
fragments could be identified to give useful insights such as those at m/z 423, probably
due to the loss of a curcumin ligand, which also involves the reduction of Fe(III) to Fe(II);
at m/z 177, arising from the formation of the feruloyl moiety; and at m/z 572, which is
very interesting because it supports the hypothesis that the site of complexation is on the
guaiacol moiety. From the LD/MS and MS/MS study, the most abundant signal resulted
from the overlap of the complexes with a stoichiometry of 1:2 (M:L) containing the species
[Fe(II)(Cur)2]+ (m/z 790.17) and [Fe(III)(Cur)2]+ (m/z 791.18), indicating that two molecules
of curcumin chelate iron via the hydroxyl oxygen with the assistance of the oxygen lone
pairs of the methoxyl groups. In addition, the formation of a fragment at m/z 599.1, due
to the cleavage of the bond among the diketone functionalities, and loss of the neutral
1-aryl-3-hydroxy-1,3-butadiene moiety, confirms the results obtained by ESI MS/MS that
iron coordination occurs on the guaiacol moiety (Figure 5f).
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Other studies on the complexation between curcumin and iron (Fe(II) and Fe(III)) in
methanol or methanol/water mixtures have been reported in the last few decades, showing
the formation of complexes with a 1:2 M:L molar ratio where the ligand behaves as a
bidentate by chelating the metal ion with the keto-enol moiety [61–63,75,76]. Generally, this
coordination mode is accompanied by a hypsochromic shift in the UV–Vis spectrum of the
complex with respect to the free curcumin [63] as well as by a significant shift (~40 cm−1)
in the IR spectrum of the complex of the following vibrations: ν(CO)keto, δ(CO)enol, and
ν(C=C) aromatic [62].

6. Conclusions

In this review, experimental and computational results on the ability of some natural
antioxidant molecules, NAMs, to form Al(III)– and Fe(III)–complexes are collected. The
chelating ability of selected NAMs (i.e., hydroxycinnamic acids (p-coumaric, caffeic and
ferulic acids), coumarin-3-carboxylic acid, quercetin, luteolin and curcumin), well known
to be effective metal chelators, was investigated in aqueous solution, an environment that
better mimics the physiological one. Data collected here evidence that:

- hydroxycinnamic acids (pCA, CA, and FA) are able to form more stable complexes
with Al(III) than with Fe(III) coordinating the metal ion through the carboxylate site
in all cases.

- coumarin-3-carboxylic acid, similarly, prefers to bind Al(III) rather than Fe(III), form-
ing 1:1 and 1:2 M:L stoichiometric ratio complexes, respectively. Consequently, octa-
hedral complexes with Al(III), involving both carboxylate and lactone moieties, and
tetrahedral complex with Fe(III) in a η1 ligand’s coordination were analyzed.

- flavonoids (Que and Lut) formed 1:1 and 1:2 M:L complexes with both metal ions,
though they showed a more intricate behavior, as more than one coordination mode
was found plausible with both metal ions, making the identification of the preferred co-
ordination site and thus the most probable complex in a water environment, especially
in the case of Que, difficult.

- Curcumin discriminates well between the two metal ions since it prefers to coordinate
Al(III) through the diketo site while the Fe(III) results most probably bound to the
guaiacol site.

The excursus of data available for the selected NAMs toward bioavailable Al(III) and
Fe(III) metal ions confirms the ability of phenolic compounds to trap metals preventing
their accumulation and their harmful action to human health.
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