
antioxidants

Perspective

The Interaction of the Endogenous Hydrogen Sulfide
and Oxytocin Systems in Fluid Regulation and the
Cardiovascular System

Nicole Denoix 1,2, Oscar McCook 2,* , Sarah Ecker 2, Rui Wang 3, Christiane Waller 4,
Peter Radermacher 2 and Tamara Merz 2

1 Clinic for Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center,
89081 Ulm, Germany; nicole.denoix@uni-ulm.de

2 Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center,
89081 Ulm, Germany; sarah.ecker@uni-ulm.de (S.E.); peter.radermacher@uni-ulm.de (P.R.);
tamara.merz@uni-ulm.de (T.M.)

3 Faculty of Science, York University, Toronto, ON M3J 1P3, Canada; ruiwang@yorku.ca
4 Department of Psychosomatic Medicine and Psychotherapy, Nuremberg General Hospital, Paracelsus

Medical University, 90419 Nuremberg, Germany; christiane.waller@klinikum-nuernberg.de
* Correspondence: oscar.mccook@uni-ulm.de

Received: 6 July 2020; Accepted: 11 August 2020; Published: 14 August 2020
����������
�������

Abstract: The purpose of this review is to explore the parallel roles and interaction of hydrogen sulfide
(H2S) and oxytocin (OT) in cardiovascular regulation and fluid homeostasis. Their interaction has
been recently reported to be relevant during physical and psychological trauma. However, literature
reports on H2S in physical trauma and OT in psychological trauma are abundant, whereas available
information regarding H2S in psychological trauma and OT in physical trauma is much more limited.
This review summarizes recent direct and indirect evidence of the interaction of the two systems and
their convergence in downstream nitric oxide-dependent signaling pathways during various types of
trauma, in an effort to better understand biological correlates of psychosomatic interdependencies.
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1. Introduction

The gasotransmitter hydrogen sulfide (H2S) (endogenously produced by cystathionine γ-lyase
(CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate-sulfurtransferase (3MST) (as depicted
in Figure 1)) and the neuroendocrine oxytocin (OT) system have been recently shown to not only
possibly play parallel roles in the heart and the brain in response to trauma, but also to influence one
another. Trauma can lead to cardiovascular impairments and disease which worsens the outcomes of
intensive care patients and increases morbidity and mortality [1,2]. Trauma is either a consequence of
a deep emotional pain or a physical injury. Psychological trauma is due to a strong emotional response
to a life-threatening event. In contrast, physical trauma can be defined as physiological injury or
an impact against the body. Current research underscores the fact that physical and psychological
trauma share physiological correlates [3]. OT and H2S are relevant in models of both psychological
and physical trauma, displaying cardio-protective, anti-oxidative and anti-inflammatory effects [4–7].
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Figure 1. H2S biosynthesis and oxidation pathways. H2S can be produced in the vasculature, heart, 
brain, placenta, colonic tissue, liver, kidney and other mammalian tissues [8]. L-cysteine and 
homocysteine are the essential substrates for enzymatic endogenous H2S production by CSE, CBS or 
3MST. L-Cysteine can be directly used as a substrate for H2S generation via the enzymes CSE or CBS. 
Homocysteine is converted to cystathionine by CBS and then converted to H2S by CSE. Cysteine-
aminotransferase (CAT) can metabolize L-cysteine to 3-mercaptopyruvate, which is then converted 
to H2S by 3MST. CSE, CBS and CAT require the cofactor pyridoxal 5′-phosphate (PLP) [8]. Non-
enzymatic H2S generation can take place during hypoxic events, for example, via thiosulfate 
utilization. Thiosulfate is an oxidation product of H2S, which is part of the stepwise enzymatic sulfide 
oxidation pathway within the mitochondria and can be reduced, e.g., with glutathione (GSH), to H2S 
[8,9]. Sulfide quinone oxidoreductase (SQR) oxidizes H2S to glutathione persulfide (GSSH); that is 
followed by oxidation of GSSH to sulfite by persulfide dioxygenase (SDO); and finally, sulfite is 
oxidized to either sulfate by sulfite oxidase (SO) or to thiosulfate by rhodanese. 

There is a dearth of information regarding the direct interaction between the H2S and OT 
systems: in human myometrial strip biopsies, sodium hydrosulfide (NaHS), a H2S releasing salt, 
decreased the frequency of oxytocin-induced myometrial contractions, mediated by ATP-sensitive 
potassium channels (KATP-channels) [10]. You et al., reported an inverse correlation between CSE and 
oxytocin receptor (OTR) expression patterns in the myometrium in pregnant women at term before 
or after the onset of labor [11]. They also showed that both H2S produced locally and exogenously 
administered NaHS were able to suppress OTR expression and activate phosphatidylinositol 3-
kinase (PI3K), extracellular signal-regulated protein kinase (ERK) and KATP-channels in pregnant 
human myometrial cells [11]. Finally, in a CSE knock out (CSEko) model, Akahoshi et al. were able 
to show that pregnant mice presenting with preeclampsia-like symptoms displayed dysfunctional 
contraction of the mammary myoepithelial cells, which was attributed to decreased OTR, and also 
had impaired uterine contraction responses to OT [12]. The paucity of literature on this subject is a 
limitation, which led us to investigate parallel roles for the two systems, in the heart and brain, which 
may suggest their interaction. Specifically, this review explores the literature on both H2S and OT 
systems to help to shed light on their interaction in the regulation of fluid balance, blood volume 
[4,13], blood pressure [14–17] and heart rate [18,19]. 

Figure 1. H2S biosynthesis and oxidation pathways. H2S can be produced in the vasculature,
heart, brain, placenta, colonic tissue, liver, kidney and other mammalian tissues [8]. L-cysteine and
homocysteine are the essential substrates for enzymatic endogenous H2S production by CSE, CBS
or 3MST. L-Cysteine can be directly used as a substrate for H2S generation via the enzymes CSE
or CBS. Homocysteine is converted to cystathionine by CBS and then converted to H2S by CSE.
Cysteine-aminotransferase (CAT) can metabolize L-cysteine to 3-mercaptopyruvate, which is then
converted to H2S by 3MST. CSE, CBS and CAT require the cofactor pyridoxal 5′-phosphate (PLP) [8].
Non-enzymatic H2S generation can take place during hypoxic events, for example, via thiosulfate
utilization. Thiosulfate is an oxidation product of H2S, which is part of the stepwise enzymatic
sulfide oxidation pathway within the mitochondria and can be reduced, e.g., with glutathione (GSH),
to H2S [8,9]. Sulfide quinone oxidoreductase (SQR) oxidizes H2S to glutathione persulfide (GSSH);
that is followed by oxidation of GSSH to sulfite by persulfide dioxygenase (SDO); and finally, sulfite is
oxidized to either sulfate by sulfite oxidase (SO) or to thiosulfate by rhodanese.

There is a dearth of information regarding the direct interaction between the H2S and OT systems:
in human myometrial strip biopsies, sodium hydrosulfide (NaHS), a H2S releasing salt, decreased
the frequency of oxytocin-induced myometrial contractions, mediated by ATP-sensitive potassium
channels (KATP-channels) [10]. You et al., reported an inverse correlation between CSE and oxytocin
receptor (OTR) expression patterns in the myometrium in pregnant women at term before or after the
onset of labor [11]. They also showed that both H2S produced locally and exogenously administered
NaHS were able to suppress OTR expression and activate phosphatidylinositol 3-kinase (PI3K),
extracellular signal-regulated protein kinase (ERK) and KATP-channels in pregnant human myometrial
cells [11]. Finally, in a CSE knock out (CSEko) model, Akahoshi et al. were able to show that
pregnant mice presenting with preeclampsia-like symptoms displayed dysfunctional contraction of the
mammary myoepithelial cells, which was attributed to decreased OTR, and also had impaired uterine
contraction responses to OT [12]. The paucity of literature on this subject is a limitation, which led
us to investigate parallel roles for the two systems, in the heart and brain, which may suggest their
interaction. Specifically, this review explores the literature on both H2S and OT systems to help to shed
light on their interaction in the regulation of fluid balance, blood volume [4,13], blood pressure [14–17]
and heart rate [18,19].
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2. The Neuroendocrine Control of Fluid Hemostasis

The hypothalamus is the central integrative structure for the regulation of blood and body
fluid volume and osmolality [20]. In response to changes of the peripheral fluid homeostasis,
the hypothalamus regulates the blood pressure and heart rate [4]. The supraoptic (SON) and
paraventricular nuclei (PVN) are of particular interest with regard to the interaction of the H2S and OT
systems in the regulation of fluid homeostasis [4]. In trans-ascending aortic constriction rat models of
heart failure, chronic selective activation of PVN neurons producing OT was effective in increasing
cardiac parasympathetic tone and ameliorating the loss of heart function and myocardial injury [21,22].
H2S has been reported to depolarize magnocellular neurons of the PVN in a dose–response fashion,
hinting at its possible role in regulating autonomic and endocrine functions [23]. Moreover, in
water deprived (24 h) rats, an intracerebroventricular injection of sodium sulfide (Na2S), another
H2S-releasing salt, led to increases plasma concentrations of OT and a decrease of hypothalamic
nitrate/nitrite [4]. The authors concluded that H2S regulates the roles of both the behavioral and
neuroendocrine responses to water deprivation independently of nitric oxide (NO) and stimulates
OT secretion by inhibiting the NO system [4]. In a more recent study, in rat hypothalamic explants
H2S was also shown to be a (positive) regulator of OT in response to acute osmotic stimulus, whereas
NO played a key role as a negative neuroendocrine modulator of OT [24]. Additionally, Coletti et al.
localized constitutive expression of CBS in the rat hypothalamic SON and PVN, but an important
omission in this model which may limit their findings was that they did not look for the interaction
of CSE [24]. This omission assumes importance when considering the complex interaction of CSE
and CBS, which were found to be expressed in an inverse fashion after cerebral injury [25]. A further
word of caution is warranted regarding the translational value of the above experiments [4,22–24]:
they were all performed in rat models, and some of them on tissue explants. Ex vivo studies in general
are a limited representation of the in vivo situation, and rats may not be the most appropriate model
organism to study the effects of NO interactions, considering their much higher NO levels. Endogenous
NO production in rats is at least an order of magnitude greater than in pigs and humans [26], suggesting
that the results here may only be applicable to the rat.

In a clinically relevant porcine hemorrhagic shock study [27], variable expressions of OT, OTR,
CSE and CBS were also identified immunohistochemically to be co-localized in the hypothalamic SON
and PVN regions in magnocellular neurons, parenchyma, arteries and microvasculature (see Figure 2A).
Hemorrhagic shock has been shown to induce hypothalamic OT release [28] and H2S can also stimulate
hypothalamic OT release [4]. Thus, the colocalization of CSE, CBS, OT and OTR in the hypothalamus
may be indicative of H2S stimulating the release of OT as a consequence of the dramatic fluid shifts
generated by the hemorrhagic shock (see Figure 2B). Finally, it is tempting to speculate that endogenous
H2S is involved in the hemorrhagic shock-induced OT release, although it is not yet clear how
hemorrhagic shock affects the cerebral expression levels of the H2S-producing enzymes (CSE and CBS).
Recently, in a porcine model of acute subdural hematoma-induced acute brain injury with resuscitation
and neuro intensive care maintenance, Denoix et al. characterized the spatial expression pattern for the
OT/OTR and the endogenous H2S-producing enzymes [25]. The authors found OT/OTR, CSE and CBS
to be present in neurons, the vasculature and the parenchyma at the base of sulci. This finding might
assume particular importance for translational purposes, because the base of the sulci is exactly where
pressure-induced edema formation is reported to be found in the gyrencephalic human brain, which is
not possible to investigate in the lissencephalic rodent brain [25]. Interestingly, the parenchyma and the
cortical neurons in the gyri were positive for CSE but its expression was reduced with injury [25]. CBS,
OT and OTR displayed an opposite pattern of expression to CSE and were upregulated with injury.
The differential regulation of these enzymes suggests a much more complex relationship between the
OT and H2S systems in osmotic regulation than what was reported previously [4,24].
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Figure 2. H2S can stimulate hypothalamic OT release. (A): OT, OTR, CSE and CBS co-localize (in red) 
in the magnocellular neurons (open arrow heads) of the porcine hypothalamus. Black arrows are 
pointing to the same blood vessel in consecutive brain sections of the porcine hypothalamus (10X). 
Brain sections were obtained from an atherosclerotic pig model of resuscitated hemorrhagic shock 
[27]. Hypothalamic immunohistochemical pictures have been previously published in an abstract in: 
39th International Symposium on Intensive Care and Emergency Medicine. Crit Care 23, 72 (2019). 
https://doi.org/10.1186/s13054-019-2358-0 (http://creativecommons.org/licenses/by/4.0/). The used 
antibodies have been verified for their specificity previously by Denoix et al. [25]. (B): H2S can 
stimulate OT release in the hypothalamus, including the PVN and SON, in response to osmotic 
balance stress and fluid shifts. H2S is endogenously enzymatically produced by CSE, CBS and 3MST. 
Hypothalamic OT is released via the posterior pituitary into the circulation, where it contributes to 
the maintenance of cardiovascular homeostasis. Illustrations of the heart, brain, neurons and the 
circulatory system were taken from the Library of Science and Medical lllustrations (somersault18:24, 
https://creativecommons.org/licenses/by-nc-sa/4.0/). 

Figure 2. H2S can stimulate hypothalamic OT release. (A): OT, OTR, CSE and CBS co-localize
(in red) in the magnocellular neurons (open arrow heads) of the porcine hypothalamus. Black arrows
are pointing to the same blood vessel in consecutive brain sections of the porcine hypothalamus
(10×). Brain sections were obtained from an atherosclerotic pig model of resuscitated hemorrhagic
shock [27]. Hypothalamic immunohistochemical pictures have been previously published in an
abstract in: 39th International Symposium on Intensive Care and Emergency Medicine. Crit Care
23, 72 (2019). https://doi.org/10.1186/s13054-019-2358-0 (http://creativecommons.org/licenses/by/4.0/).
The used antibodies have been verified for their specificity previously by Denoix et al. [25]. (B): H2S can
stimulate OT release in the hypothalamus, including the PVN and SON, in response to osmotic
balance stress and fluid shifts. H2S is endogenously enzymatically produced by CSE, CBS and 3MST.
Hypothalamic OT is released via the posterior pituitary into the circulation, where it contributes to
the maintenance of cardiovascular homeostasis. Illustrations of the heart, brain, neurons and the
circulatory system were taken from the Library of Science and Medical lllustrations (somersault18:24,
https://creativecommons.org/licenses/by-nc-sa/4.0/).
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Furthermore, H2S has been reported to improve the integrity of the barrier and attenuate cerebral
edema, and the reduction of CSE expression close to injury sites coincided with increased Alb
extravasation and barrier dysfunction [29–31]. Denoix et al. reported that OTR and CSE were also
expressed in the arteries and microvasculature, suggesting that they might play a role in blood–brain
barrier integrity [25]. The presence of OT/OTR in areas of acute subdural hematoma-induced injury
reported by Denoix et al. is in line with OTR upregulation observed in humans, as an adaptive stress
response in “vascular profiles” associated with perivascular swelling and around micro-infarcts [25,32].

3. H2S in Cardiac and Vascular Protection

Recently, in a mouse model of acute-on-chronic disease, Merz et al. showed that for mice with
homozygous global deletion of CSE (CSEko) (generated by [17]), the main H2S producing enzyme in
the cardiovascular system, chronically exposed to cigarette smoke prior to undergoing acute thorax
trauma, displayed decreased OTR expression in the heart, which was attenuated by the administration
of the slow-H2S-releasing compound GYY4137 [19]. Furthermore, these CSEko mice had significantly
higher heart rates and blood pressure than wild type (WT) animals, and reduced OTR expression
(see Figure 3A), supporting the important role of CSE expression in the cardiovascular system [16,17,19].
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produced by CSE in the cardiovascular system, and the OTR, stimulated by OT, can both activate the 
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Figure 3. Interaction of H2S and OT in the heart. (A): Immunohistochemical staining of OTR in heart
tissue in a CSEko heart (n = 3, top) and a wild-type heart (n = 3, bottom). Heart samples were obtained
from naïve animals, which were anesthetized with sevoflurane and buprenorphine and sacrificed via
exsanguination (as previously described in [19]). Expression of OTR was absent in CSEko heart and
clearly visible in wild-type myocardial tissue. (B): The physiological basis of the interaction of CSE and
the OTR, converging in the reperfusion injury salvage kinase (RISK) pathway. H2S, mainly produced by
CSE in the cardiovascular system, and the OTR, stimulated by OT, can both activate the RISK pathway.
RISK activation leads to PI3K, protein kinase B (Akt), ERK1/2 cascades and endothelial nitric oxide
synthase (eNOS) activation, and promotes reperfusion by stimulating cell migration, angiogenesis
and vasodilation, resulting in cardio-protection, regulation of blood pressure, blood volume and body
fluid homeostasis. The illustration of the heart was taken from the Library of Science and Medical
Illustrations (somersault18:24, https://creativecommons.org/licenses/by-nc-sa/4.0/).

https://creativecommons.org/licenses/by-nc-sa/4.0/
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There are a plethora of fairly recent reviews on H2S and its protective effects in the cardiovascular
system [7,33–39]. Endogenous H2S production or expression of H2S-producing enzymes (primarily
CSE) has been reported in the following cell types of the cardiovascular system: smooth muscle
cells, cardiomyocytes, endothelial cells and immune cells [8,19,25,40,41]. H2S has been shown to play
a decisive role in the modulation of the cardiovascular system, i.e., as an endogenous activator of
angiogenesis [8,42] via hypothalamic control [4], and a basal vasorelaxant, blood pressure and heart rate
regulator [43,44]. Downstream signaling cascades involved in mediating H2S-dependent vaso-active
effects activate KATP-channels and stimulate Akt-dependent endothelial eNOS. Furthermore, H2S
can induce antioxidant effects via the transcription factor nuclear factor erythroid 2-related factor
2 (Nrf2), which can be also regulated by OT [7,45–47]. H2S administration in rodents ameliorated
myocardial fibrosis and oxidative stress in hypertension [48], and had beneficial effects on a myocardial
infarct [15,49–52]. NaHS administration in rats significantly attenuated hemorrhagic shock-induced
metabolic acidosis and simultaneously downregulated inducible nitric oxide synthase (iNOS) expression
and NO production in the heart and aorta [53]. A murine model of combined blunt chest trauma
and subsequent hemorrhagic shock showed that administration of the slow-releasing mitochondria
targeted H2S donor AP39 during the resuscitation period and reduced lung tissue iNOS expression;
however, it aggravated circulatory shock-induced hypotension due to its vasodilator capacities [54].
The complex interaction of H2S and NO in inflammation has been reviewed previously [55]. The H2S
and OT systems share downstream signaling cascades that converge on the same NOS/NO-dependent
pathway, which is further support of their interaction/relationship [7,56].

In large animal models, in general, the effects of H2S administration have been less robust
than those seen in the rodent models. Sulfide administration in long-term porcine hemorrhage and
resuscitation reduced mortality and attenuated organ dysfunction and injury, but its effectiveness in
this model was restricted to a narrow timing and dosing window [57]. Other authors showed no benefit
at all: intravenous Na2S did not induce hypothermia or improve survival from hemorrhagic shock in
pigs [58,59]. Thus, for the clinical development of H2S-based therapies, which might potentially also
affect OT/OTR signaling, further research is warranted.

4. OT/OTR in Cardiac and Vascular Protection

In contrast to the highly-diffusible, gaseous H2S, which does not require any membrane
receptor [60], the OT system comprises a ligand–receptor (G protein-coupled) interaction. Upon OT
binding to OTR, it can stimulate pro-survival kinases such as ERK and PI3K/Akt, which can in
turn activate eNOS or CSE (H2S) [56]. OT can, furthermore, signal through calmodulin-dependent
protein kinase II (CaMK II), regulating Ca2+ homeostasis, necessary for cardiomyocyte function [56].
OTR expression has been detected in cardiomyocytes, vasculature (smooth muscle cells and
endothelium), macrophages, peripheral blood mononuclear cells and cardiac fibroblasts [19,61–67].
The role of OT in the heart has been recently reviewed [61,68], and interestingly enough OT
shares many of the properties also reported for H2S, e.g., increase of glucose uptake in cardiac
cells, anti-inflammatory and antioxidant activity [69–71], blood pressure lowering capacities via
NO-mediated vasodilation [72], negative inotropic and chronotropic effects, natriuretic effects and
effects on endothelial cell growth [14,68,73,74]. The NO-mediated vasodilatory effects of OT are also
reported to regulate blood pressure [68,75–78] and body fluid homeostasis, albeit through an interaction
with H2S [4,24].

Subcutaneous OT administration in myocardial infarct resulted in reduced inflammation, apoptosis,
and ultimately ameliorated heart function [79–82]. Finally, downregulation of the OT system
is associated with dilated cardiomyopathy [83], hypertension [84] and impaired cardiovascular
function [19,46,68,80]. In a porcine myocardial infarct model, placebo-treated animals with high
endogenous OT levels at the start of the experiment had better ejection fraction overall compared to
OT-treated animals with high basal endogenous OT levels [85]. In contrast, in the low endogenous
OT group receiving exogenous OT had no effect on cardiac function or cardiac OTR expression [85],
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yet the group with low basal OT levels without OT treatment had reduced function and larger infarct
size [85]. Thus, the potential of OT to exert its cardio-protective effects seems to be at least in part
dependent on the presence of both its basal receptor and its ligand.

5. Chronic Cardiovascular Disease

Administrations of both H2S [45,86,87] and OT [88,89] have been shown to reduce atherosclerotic
plaque formation and to decrease the pro-inflammatory response—OT specifically through the
upregulation of its receptor. Impaired endogenous H2S release is reported to be a key mediator with
regard to the development of chronic cardiovascular pathology [8]. In a clinically relevant resuscitated
model of septic shock, familial hypercholesterolemia Bretoncelles Meishan (FBM) swine, a comorbid
large animal strain characterized by a clinical phenotype resembling the human atherosclerotic
patient [90,91] with coronary artery disease, presented with elevated nitrotyrosine formation, a marker
of nitrosative and oxidative stress, and significantly lowered CSE and OTR protein expression levels
in the myocardium, which coincided with altered cardiac function [41,46]. Interestingly, already
without septic shock, the FBM pig strain displayed decreased CSE expression in the media of the
coronary artery and elevated nitrotyrosine formation [40]. The septic shock was associated with an
even more pronounced downregulation of CSE [40]. Overall, these observations agree well with the
fact that atherosclerosis and hypertension are associated with reduced levels of CSE [86]. Finally, CSE
is proposed to modulate OTR in a tissue and function dependent manner during the progression of
atherosclerosis [56]. The RISK pathway has been suggested to be the downstream molecular pathway,
where H2S and OT signaling converge in atherosclerosis and cardioprotection (see Figure 3B, [56]).
RISK activation leads to PI3K Akt, eNOS cascades and ERK 1/2 activation [56], which in turn promotes
reperfusion by stimulating cell migration and angiogenesis. The PI3K/Akt cascades are also activated
through H2S and are reported to promote myocardial protection [92]. These signaling pathways
for H2S-mediated and OT-mediated myocardial protection were identified in animal models [56,92],
but might also be relevant in human cardioprotection. Even though studies in human myocardial
tissue are still lacking, the fact that H2S and OT activate the same downstream targets in human
myometrial samples [10,11] supports this hypothesis. The RISK pathway is active in endothelial cells
and cardiomyocytes. In endothelial cells, the activation of eNOS/NO as an angiogenic and vasodilating
factor is crucial. In other cells, such as cardiomyocytes, RISK-activated pathways regulating apoptosis
and antioxidant signaling play a role.

Interestingly, insulin receptors also act via the PI3K/Akt signaling pathway [93], and both OT and
H2S are involved in the modulation of energy homeostasis and glucose metabolism (reviewed recently
for OT [94] and H2S [95]). OT, CSE and CBS are expressed in insulin-sensitive tissues [95,96]. H2S is
endogenously released by skeletal muscle, liver, adipose and islet-β-cells [97]; the OT and OTR are also
present in islet-β-cells and skeletal muscle cells [98]. OT has been reported to increase glucose uptake
in cardiomyocytes via PI3K signaling [96]; exogenous H2S administration restored blood glucose levels
in the previously mentioned CSEko mice, and was associated with an upregulation of cardiac OTR [19].
Hyperglycemia, in turn, can reduce the expression of CSE [99] and suppress OT [68,100]. Low levels of
OT and H2S are associated with diabetes and insulin resistance [68,95]. It is striking to observe that
chronic co-morbidities in particular seem to have common ground in the interaction of H2S and OT.

6. The Role of OT/OTR in the Brain and Cardiovascular System during Psychological Stress

Psychological stress, e.g., early life stress, is well established as a risk factor for developing
cardiovascular diseases [56,101–104]. The OT/OTR system is associated with stress-related responses,
anxiolytic effects, maternal behavior, optimistic-belief updating, optimism and social reward perception,
and it has been extensively studied in psychosomatic medicine [66,105,106]. Psychological stress was
shown to increase heart rate and blood pressure, and the chemical blockade of the OTR worsens the
cardiovascular response to stress [107–110]. An intracerebral injection of OTR antagonist attenuated
the increase in heart rate after stress, but had no effect in the basal state without stress [110,111].
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This suggests that multiple factors may be at play in the regulation of the OT system, stress being one
of them, affecting endogenous receptor ligand levels and ultimately the physiological response.

OT plasma levels were positively related to improved cardiovascular and sympathetic responses
to stress [112]. In mice, early life stress led to a significant long-term reduction of both cardiac CSE
and OTR expression to the same degree [113]. Moreover, OTR knock out (OTRko) mice presented
with reduced cardiac CSE expression, providing another confirmation of the link between the OT and
H2S systems [113]. Interestingly, OTR expression was dependent on the “stress-dose”, inasmuch as
“long-term” stressed (LTSS) mice had decreased OTR protein expression, whereas the “short-term”
stressed (STSS) group displayed increased OTR expression [113]. This led the authors to conclude that
the LTSS group with reduced OTR expression reflects increased vulnerability, whereas the STSS with
higher receptor expression may indicate an adaptive response conferring resilience [113].

This provides evidence that the type of stress has an important impact on the OT ligand and
its receptor modulation. In addition to the fact that the loss of trauma-related OTR in cardiac tissue
was attenuated with administration of exogenous H2S [19], the interaction of the OT/OTR and the
H2S/CSE systems in the context of psychological trauma was highlighted by the protective effect of
exogenous H2S on early life stress-related colonic inflammation [114]. In turn, OT administration also
exerted colon-protective effects through similar anti-oxidative and anti-inflammatory properties [115].
The therapeutic potentials of H2S and OT are beyond the scope of this work, but have been reviewed
recently [56,116–118].

7. Conclusions

When reviewing the literature, it is striking that there is a disparity of studies of the H2S and OT
system: there are plenty of reports on the role of H2S in physical trauma and OT in psychological
trauma, whereas investigations of the role of H2S in psychological trauma and OT in physical trauma
are rather limited. The current knowledge is not sufficient to speculate about treatment options;
thus, this imbalance in studies should be addressed by researchers in the future. H2S and OT have
parallel effects suggesting an interaction of the two systems. Both the H2S/CSE and OT/OTR systems
assume major importance in the regulation of blood pressure and circulating blood volume. Moreover,
there is evidence for their interaction with one another in peripheral organs, particularly in the
heart. Finally, the two systems share signaling cascades that converge on the same signaling pathway.
The interaction of the two systems seems to regard both psychological disorders and cardiovascular
disease, and, hence, understanding more of the way that the H2S/CSE and OT/OTR systems work as
mediators in stress may contribute to tackling the mutual interplay between body and mind.
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