
����������
�������

Citation: Ben-Tabou de-Leon, S. The

Evolution of Biomineralization

through the Co-Option of Organic

Scaffold Forming Networks. Cells

2022, 11, 595. https://doi.org/

10.3390/cells11040595

Academic Editors: Maria Ina Arnone,

Paola Oliveri and Roberto Feuda

Received: 16 January 2022

Accepted: 8 February 2022

Published: 9 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cells

Review

The Evolution of Biomineralization through the Co-Option of
Organic Scaffold Forming Networks
Smadar Ben-Tabou de-Leon

Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa,
Haifa 31905, Israel; sben-tab@univ.haifa.ac.il

Abstract: Biomineralization is the process in which organisms use minerals to generate hard structures
like teeth, skeletons and shells. Biomineralization is proposed to have evolved independently in
different phyla through the co-option of pre-existing developmental programs. Comparing the gene
regulatory networks (GRNs) that drive biomineralization in different species could illuminate the
molecular evolution of biomineralization. Skeletogenesis in the sea urchin embryo was extensively
studied and the underlying GRN shows high conservation within echinoderms, larval and adult
skeletogenesis. The organic scaffold in which the calcite skeletal elements form in echinoderms is a
tubular compartment generated by the syncytial skeletogenic cells. This is strictly different than the
organic cartilaginous scaffold that vertebrates mineralize with hydroxyapatite to make their bones.
Here I compare the GRNs that drive biomineralization and tubulogenesis in echinoderms and in
vertebrates. The GRN that drives skeletogenesis in the sea urchin embryo shows little similarity to the
GRN that drives bone formation and high resemblance to the GRN that drives vertebrates’ vascular
tubulogenesis. On the other hand, vertebrates’ bone-GRNs show high similarity to the GRNs that
operate in the cells that generate the cartilage-like tissues of basal chordate and invertebrates that do
not produce mineralized tissue. These comparisons suggest that biomineralization in deuterostomes
evolved through the phylum specific co-option of GRNs that control distinct organic scaffolds
to mineralization.

Keywords: generegulatorynetworks;evolution;biomineralization; tubulogenesis; skeletogenesis;vascularization

1. Introduction

The evolution of diverse life forms is one of the most complex natural phenomena that
had fascinated scientists from many fields utilizing different approaches [1–7]. Molecular
and genomic studies in the last decades revealed that instructions for the body plan are
encoded in the genome in form of gene regulatory networks (GRNs), with the initial
conditions dictated by molecular and cellular information present in the egg [1–4,6–13].
Recent studies begin to illuminate how the genomic instructions are translated into cell
specification and morphogenesis during embryogenesis [12–16], but deciphering how these
genomic instructions evolve is still a major challenge.

A compelling approach to unravel the evolution of novel body plans is to compare
the GRNs for cell fate specification and morphogenesis between different species [16–19].
These GRNs are not simple, but at least the regulatory interactions are well defined:
transcription factors activate or repress the expression of other genes, including genes
that encode transcription factors, signaling molecules and regulatory RNAs [20]. The
feedback and feedforward regulatory circuitries define the set of transcription factors that
is present in a cell nucleus and this set defines the gene expression profile within the
cell, including the expression of differentiation genes [21]. Differentiation genes, in this
context and throughout the manuscript, are genes that are expressed in a specific cell type,
are important to its function and are not regulatory genes. In principle, if we want to

Cells 2022, 11, 595. https://doi.org/10.3390/cells11040595 https://www.mdpi.com/journal/cells

https://doi.org/10.3390/cells11040595
https://doi.org/10.3390/cells11040595
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0001-9497-4938
https://doi.org/10.3390/cells11040595
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells11040595?type=check_update&version=2


Cells 2022, 11, 595 2 of 23

understand how cell types evolved, we can compare the GRNs that drive them and track
evolutionary progression.

However, the reality is more complicated, as GRNs can change quite rapidly within
the phylum and even more so between different phyla [16–19,22]. This makes it challeng-
ing to detect the evolutionary trajectory of cell specific GRNs and conclude whether the
diversification of the GRNs occurred before or after the diversification of phyla. Having
said that, GRN comparison is a good starting point, and with the required caution, can
reveal surprising evolutionary links that would otherwise be difficult to infer [17,22]. Here
I focus on the GRNs that drive biomineralization in deuterostomes and compare relevant
GRNs in echinoderms and vertebrates. This comparison portrays a possible scenario for the
evolution of biomineralization by the co-option of ancestral GRNs that drive the formation
of the organic scaffold wherein mineralization occurs.

2. Biomineralization and Its Evolution

Biomineralization is the process in which organisms use minerals to generate hard
structures like teeth, skeletons and shells that protect and support them [23–25]. The first
animal skeletons are found in the late Ediacaran and early Cambrian periods and are related
to the immense diversification of body plans at this time [7,26,27]. Except the siliceous
skeletons found in sponges of the basal Porifera phylum [28], the skeletons of the rest of
Metazoans, i.e., the Eumetazoa, are calcareous, made of calcium carbonate (CaCO3) or
apatite (calcium phosphate, CaPO4, Figure 1A, [7,26,27]). Eumetazoa includes the basal
phylum, Cnidaria and the clade, Bilateria and within both Cnidaria and Bilateria there are
classes that produce calcified skeletons and classes that do not (Figure 1A). For example, the
Cnidaria clade, Medusozoa, includes only soft-body organisms such as Jellyfish and Hydra;
while the class Anthozoa contains subclasses such as Hexacorallia that includes both soft-
body orders like the Actiniaria (sea anemones) and calcifying orders such as Scleractinia
(stony corals, Figure 1A). The mineral used by Cnidaria is calcium carbonate in its various
polymorphs of calcite, aragonite and vaterite [7,26,27]. Bilaterians use calcium carbonate
and apatite, sometimes in the same clade, e.g., the Brachiopoda consists of the Chileata
class that generates calcite shells and the Linguliformea subphylum that includes mostly
apatite forming species (Figure 1A, [27]). Thus, within Eumetazoa, biomineralization was
rapidly gained using various calcium related minerals and polymorphs.

Figure 1. Partial Eumetazoan phylogenetic tree containing phyla and species discussed in this paper
and their biomineralization programs. (A), calcification in cnidarian and protostome phyla. Numbers
in red is the estimated time of divergence in million years (MA) based on [27,29]. Light blue indicates
the usage of different CaCO3 polymorphs including but not limited to calcite, aragonite or vaterite.
Dark blue indicates the usage of calcite, and purple indicates the usage of apatite. Black indicates
non-mineralizing species. (B), skeleton formation in deuterostomes. Color code as in (A), with the
addition of green, indicating the usage of cartilage by the skeletogenic tissue. Squares indicate the
evolutionary origin of a specific skeletal tissue.
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Within the diverse mineral usage and biomineral shapes, in all studied biomineral-
izing organisms, the mineral is secreted into an organic scaffold, sometimes called “the
biomineralization compartment” [25,27]. The organic scaffolds show a significant diversity
between different phyla, but within the phylum they are largely conserved (see in [26,27]
and examples below). Furthermore, the organic scaffold can be shared between mineraliz-
ing and non-mineralizing organisms within the same clade, as in vertebrates (Figure 1B).
The bony vertebrates generate apatite skeletons by the mineralization of a bone matrix
mold that replaces a cartilage mold made by chondrocytes [30–32]. The cartilage scaf-
fold makes the skeleton of the non-calcifying cartilaginous fishes and jawless vertebrates
(Figure 1B, [33,34]). The cartilage scaffold is probably the ancestral structure adapted for
biomineralization in the bony vertebrates by the evolution of calcifying cells [33,34]. Thus,
the organic scaffold makes the mold in which biominerals are formed and is apparently
inherited from a non-biomineralizing ancestor.

The rapid acquisition of biomineralization in different phyla is proposed to have
evolved independently through the co-option of pre-existing developmental programs
and the evolution of specialized biomineralization proteins [7,26,27]. Co-option is the
redeployment of pre-existing molecular traits for a new function, and is believed to be a
major driver of the evolution of novel traits [35,36]. One of the most studied examples
for protein co-option is the re-use of heat-shock proteins as the crystallins that make the
vertebrates’ lens [35]. Here the proteins are used for a completely novel function, possibly
due to their optical and stress resisting properties. There are also instances of a co-option of
entire regulatory programs, e.g., beetles use a gene regulatory circuit that regulates limb
development of other insects to generate the new structure of the beetle horns [37]. Hence,
GRN co-option is the activation of an ancestral GRN in a new embryonic location and
modification of some of the GRN linkages and downstream targets, so the co-opted GRN
drives the morphogenesis of a new organ.

Possibly, the GRNs that drive the formation of the organic scaffold were co-opted
for biomineralization by the insertion of a GRN module that controls the expression of
newly evolved specialized biomineralization genes (Figure 2A). In this case, we would
expect to see similar regulatory circuits that control the organic scaffold formation in the
biomineralizing and non-biomineralizing species that evolved from a common ancestor
that had the organic scaffold. Alternatively, biomineralization could have evolved by
the incorporation of an ancestral GRN that drives the expression of mineral binding and
homeostasis proteins into a different scaffold generating GRNs (Figure 2B). In that case,
we would expect to see common regulatory circuits that control biomineralization related
processes in the two branches. These two models are not necessarily mutually exclusive,
and the biomineralization GRN could be composed of calcification GRN modules and
organic scaffold modules that are shared between the branches. Below I examine these
possibilities by comparing the GRNs that drive the organic scaffolds and those that drive
biomineralization in echinoderms and vertebrates.
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Figure 2. Possible models for the evolution of biomineralization GRNs from ancestral GRNs. (A), a
model where an ancestral GRN that drove the formation of an organic scaffold was co-opted for
biomineralization by activating regulatory and differentiation genes that assist in calcification. In this
model we expect to see a strong similarity between the biomineralization of GRN to the GRN that
drive the formation of the organic scaffold in non-biomineralization species. (B), a model where an
ancestral GRN that drove the activation of genes that participate in calcification was co-opted for
biomineralization through the activation of phylum specific regulatory and differentiation genes that
control organic scaffold formation. In that case, we expect to see a similarity between the regulatory
and differentiation genes that drive calcification in the two phyla.

3. Skeletogenesis in Echinoderms and the GRNs That Control It

The echinoderm phylum shares a close ancestry with the vertebrate phylum and
provides an excellent platform for studying the structure and evolution of biomineralization
GRNs [15,17,18,38–41]. All echinoderm classes generate calcite endoskeleton in their adult
form [39,42,43]. Two echinoderm classes, the brittle stars (Ophiuroids) and sea urchin
(Echinoids) develop a full larval skeleton early in embryogenesis, and a degenerate skeleton
develops in the sea cucumbers (Holothuroids, Figure 1B) [39,42,43]. The GRNs that control
skeletogenesis were studied in the both larval and adult skeletons in multiple echinoderm
classes, which provides a unique opportunity for intra-phylum comparison. In this section,
I first describe the biomineralization process in adult echinoderms and in the larva of the
sea urchin, then I review the structure of the GRN that drives larval skeletogenesis in the
sea urchin embryo. Finally, I discuss the conservation of this GRN within echinoderms
while refereeing to relevant mesodermal GRNs.

3.1. Adult and Larval Skeletogenesis in Echinoderms

The adult echinoderm skeleton is made of porous calcite ossicles, arranged in plates
and spines [44–46]. The ossicles are formed within multinucleated syncytia of sclerocytes
placed in the dermal layer of the body wall [44,45]. The adult skeleton of the sea urchins was
the focus of intensive research in the biomineralization field, which led to major discoveries
regarding the crystallization pathway [47,48]. Nevertheless, the larval skeleton of the sea
urchin embryo provides a more accessible model for studying GRN structure [15,41] and
mineral growth [49–51].

The larval skeleton of the sea urchin embryo consists of two calcite spicules generated
by the skeletogenic lineage. Like the adult sclerocytes, the skeletogenic cells fuse to each
other and form a syncytium (Figure 3A, [52,53]). The skeletogenic cells generate the spicules
inside a tubular cavity that they form through the secretion of mineral bearing vesicles
(Figure 3A, [50,51,54,55]). The thin organic matrix within the tubular cavity includes
glycoproteins but no trace of collagen [56,57]. The collagen made by skeletogenic cells is
secreted into the blastocoel [58], possibly to support their adhesion to the ectodermal cells
(Figure 3A). Thus, the organic scaffold in this case is the tubular compartment that the
skeletogenic cells form in which the calcite spicules grow.
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Figure 3. Sea urchin skeletogenic GRN and the evolution of echinoderm skeletogenic GRN. (A), a
scheme showing larval skeleton formation in the sea urchin embryo. The skeletogenic cells (red)
form a ring with two lateral skeletogenic clusters where the spicule form. Enlargement, showing the
mineral (gray) concentrated in vesicles and transported to the spicule tubular compartment where it
is engulfed within a thin layer of extracellular matrix. (B), sea urchin larval skeletogenic GRN and
differentiation genes with various functions. (C–E), embryonic territories in the different echinoderm
clades. Color codes are explained in the figure and in the text. C, embryonic territories in the sea urchin
(SU) and the pencil sea urchin (PU). D, embryonic territories in the sea cucumber (SC) and brittle
star (BS). (E), embryonic territories in the sea star (SS). (F), expression of the skeletogenic regulatory
genes in the mesoderm of embryos of different echinoderm clades. Color code explained in figure.
(G), expression of skeletogenic regulatory genes in adult skeletogenic cells in three echinoderm clades.
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3.2. The GRN and Differentiation Genes That Control Sea Urchin Larval Skeletogenesis

The GRN that drives skeletogenesis in the sea urchin embryos was extensively studied
in the last two decades, resulting in one of the most comprehensive models of develop-
mental GRN [15,40,59–63]. The GRN contains about 20 transcription factors that control
a sequence of morphogenetic processes, including epithelial to mesenchymal transition,
cell migration and cell fusion [15,40,64,65]. Some of the early transcription factors regulate
these early morphogenesis events [64] but shut down before mineral deposition [15]. Here
I focus on the GRN circuits that regulate biomineralization, therefore I include only the
regulatory genes whose skeletogenic expression is maintained during mineral deposi-
tion (Figure 3B). Relatedly, since biomineralization and scaffold formation are driven by
enzymes and other cellular proteins, I enlist key skeletogenic differentiation genes that
participate in biomineral formation.

Despite the importance of the regulatory links between the genes to GRN function,
I chose not to show these links since they change throughout development, and most of
them were only studied during early skeletogenesis [15,18]. Furthermore, the regulatory
links are less conserved within the phylum than the set of genes in the GRN, and even more
so between phyla [17,66–73]. Therefore, throughout this manuscript, I list the regulatory
and differentiation genes that are part of a GRN and not the links between them, in order
to allow the comparison of the basic structure of the GRNs between diverse cell types
and species.

A set of transcription factors including Ets1/2, Tbr, Alx1, Hex and Erg, is expressed
in the skeletogenic cells from the early stages of skeletal specification and throughout
skeletogenesis (Figure 3B, [15,18,74,75]). Perturbing the expression of each of these tran-
scription factors results in significant skeletogenic phenotypes [15,59]. Together, they
turn on downstream biomineralization genes as well as other regulatory genes, including
the transcription factors Jun, FoxO and Tel as well as signaling genes, such as the Vas-
cular endothelial growth factor Receptor (VEGFR) and Fibroblast Growth Factor (FGF)
ligand and Receptor (FGFR) (Figure 3B, [15,75,76]). VEGF signaling is essential for spicule
formation [61,75], and FGF signaling is important for skeletal elongation [61,76]. The
transforming growth factor beta (TGFβ), whose receptor, TGFβR2, is expressed in the skele-
togenic cells, is also important for skeletal elongation [77]. At the time of spicule formation,
VEGF signaling activates the expression of the transcription factors, MyoD1 and Pitx1, in
the lateral skeletogenic cell clusters [18]. Bone morphogenetic protein (BMP) signaling
drives the expression of the transcription factors Tbx2/3 and GataC in dorsal skeletogenic
cells [78]. Thus, a set of transcription factors and signaling pathways is expressed in the
skeletogenic cells and controls skeletal formation and elongation through the activation of
regulatory and differentiation genes.

The differentiation genes activated by the skeletogenic GRN regulate sea urchin
biomineralization and, apparently, the construction of the organic tubular scaffold. Within
these differentiation genes, we can find genes that participate in calcification (generating a
calcium based mineral) in other organisms that are represented here with a few examples.
The gene that encodes the carbonic anhydrase enzyme, Caral7, is activated by VEGF
signaling in the skeletogenic cells (Figure 3B, [18]). Carbonic anhydrase catalyzes the
reversible hydration of carbon dioxide and is a key biomineralization protein in metazoans
that use calcium carbonate [79]. The gene that encodes the solute carrier bicarbonate
transporter, Scl4a10, participates in pH regulation in the skeletogenic cells [80]. Homologs
of this gene are expressed in the sclerocytes of calcareous corals and sponges, demonstrating
its ancient role in calcium homeostasis [81,82]. Genes that encode c-lectin glycoproteins
and MSP130 glycoproteins are expressed in the skeletogenic cells and are highly abundant
in the larval and adult skeleton [83]. MSP130 is also expressed in mineralizing cells in
invertebrates [84] and a c-lectin ortholog is expressed in mice osteoblasts and contributes to
the maintenance of mice adult skeletons [85]. Caral7, Scl4a10, C-lectin and Msp130 could
be a part of a conserved biomineralization tool-kit that existed in the ancestral metazoan
and adapted by echinoderms and other phyla for calcification.
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In addition to the shared biomineralization genes, there are echinoderm specific
biomineralization genes expressed in the skeletogenic cells [86,87]. The proteins en-
coded by these genes are found in the larval and adult skeletons of sea urchins and
other echinoderms [66,67,83,86,88–90]. These are the spicule matrix proteins, SM50, SM30,
SM27 and SM29, as well as other phylum specific proteins such as p16, p19, p58a and
p58b [41,66,67,83,86,90–92]. These genes are activated by the skeletogenic GRN [15,41],
participate in biomineralization process [91–94] and must have evolved specifically in the
echinoderm phylum to regulate mineral phase and shape [95].

Some of the skeletogenic differentiation genes have homologs involved in vascular
tubulogenesis in vertebrates, and could be a part of the molecular mechanism that build
the tubular spicule scaffold. Sea urchin VEGF signaling drives the expression of the
signaling molecule, Angiopoetin1 in the skeletogenic cells [18], and the vertebrate homolog
of Angiopoetin1 is essential for vascular maturation [96]. The cytoskeleton remodeling
gene, rhogap24l/2, is activated by sea urchin VEGF signaling at the skeletogenic lateral cell
clusters just before spicule formation and its expression is necessary for normal skeletal
branching [18]. A vertebrates’ homolog of this gene is enriched in endothelial cells and is
essential for vascular tube formation [97]. The membrane type metalloproteinases, Mmpl5
and Mmpl7, are activated by VEGF signaling at the skeletal growth zone at the tips of
the rods, and Mmpl7 is important for normal spicule elongation [63]. The proteolytic
activity of a vertebrates’ homolog of these genes, MT1-MMP, is essential for vascular
tubulogenesis [98,99]. Thus, genes that encode proteins that participate in vertebrate
vascular tubulogenesis are activated by the skeletogenic GRN and apparently control
different aspects of the formation of the spicule tubular compartment.

3.3. Echinoderm Skeletogenic and Mesodermal GRNs

To understand the evolutionary origin of the sea urchin larval skeletogenic GRN, it is
helpful to put it in the context of the larval mesodermal GRNs and the adult skeletogenic
GRNs in the sea urchin and other echinoderms. The non-skeletogenic mesoderm (NSM)
in the sea urchin gives rise to muscles, a coelomic pouch, blastocoelar cells and pigment
cells [16,100,101]. The pigment cells originate from aboral (dorsal) NSM, have an immune
function and are an evolutionary innovation of the echinoids (Figure 3C, [17,102,103]).
The blastoceolar cells originate from the oral (ventral) NSM and are essentially hemocytes
(blood cells) that are a part of the sea urchin immune system (Figure 3C, [104]). Blastoceolar
cells are a part of the mesodermal lineage in all echinoderms, including the sea star, which
lacks a larval skeleton and pigment cells (Figure 3D,E [72,73]). In this section, I discuss the
mesodermal expression of sea urchin skeletogenic genes that were shown to be expressed
in the mesodermal GRNs in at least one more species (Figure 3F).

Some of the skeletogenic regulatory genes are exclusively expressed in the sea urchin
skeletogenic cells, while others are expressed also in other mesodermal territories
(Figure 3F [102,105]). Explicitly, the transcription factors Tbr, Alx, Jun and Tel, and
the signaling receptors VEGFR and FGFR are exclusively expressed in the skeleto-
genic cells while Ets1/2, Erg1, Hex and GataC are also expressed in the oral NSM cells
(Figure 3C,F [59,75,102,105,106]). Relatedly, when the skeletogenic cells are removed from
the sea urchin embryo, some of the oral NSM cells differentiate into skeletogenic cells and
generate a skeleton [107–109]. This trans-differentiation occurs in the blastocoelar cells
that express low levels of VEGFR which enable them to respond to VEGF signaling when
the skeletogenic cells are removed and transform into skeletogenic cells [110]. Thus, in
the sea urchin embryo, some regulatory genes are shared between the skeletogenic and
blastocoelar GRNs and the blastocoelar cells can switch into skeletogenic fate through the
activation of VEGF signaling.

The larval skeletogenic and mesodermal GRNs were studied in the pencil sea
urchin [69,71,111], the sea cucumber [73] and the brittle star [68,90,112] and show resem-
blance to the sea urchin mesodermal expression patterns (Figure 3F). The pencil sea urchin
diverged from the sea urchin about 270 million years ago, and its larval skeleton develops in
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later developmental stages relative to the sea urchin skeleton [69]. Yet, the pencil sea urchin
and modern sea urchins have similar mesodermal lineages, show similar mesodermal ex-
pression patterns and their overall skeletal morphology is comparable (Figure 3C,F [69,111]).
The sea cucumbers diverged from the echinoids about 450 million years ago [113] and
develop a small degenerate skeleton in their larval stage [39,73]. The transcription factors
Ets1/2, Tbr, Erg1 and GataC are expressed in both the skeletogenic and non-skeletogenic
mesoderm, while Alx1 is exclusively expressed in the skeletogenic cells of the sea cu-
cumber embryo (Figure 3D,F [73]). The brittle stars diverged from the echinoids about
520 million years ago and develop a full size larval skeleton [39,113]. Despite the long
evolutionary distance, the skeletogenic and mesodermal gene expression are very similar
between the brittle star and the sea urchin (Figure 3F). Importantly, Alx1, Jun, VEGFR and
FGFR are skeletogenic specific, while Ets1/2, Hex, Erg1 and GataC are also expressed in
the NSM [112]. These genes are also expressed in the skeletogenic cells of the adult sea
urchin [114,115], brittle star [45,66–68] and sea star ([114,116], Figure 3G). The similarity
of the skeletogenic regulatory states between the different species in the larval and adult
stages suggests a strong conservation and a common origin of the core biomineralization
GRN within echinoderms.

The skeletogenic regulatory states in the echinoderms that produce the larval skele-
ton are quite similar to the mesodermal regulatory state in the sea star that lacks this
structure, which could explain the quick gain or loss of the larval skeletogenic program
(Figure 3E,F). The sea star mesodermal cells express the transcription factors Ets1/2, Tbr,
Hex, Erg1 and GataC, but do not express the signaling receptor VEGFR [17,72,116,117]. The
transcription factor Alx1 was observed in the embryonic mesodermal cells of the sea star
Patiria Miniata [73] but not in the species Asterina pectinifera, where it was only observed in
mesenchymal cells at the bipinnaria larval stage [118]. Thus, it seems that the regulatory
state in the sea star larval mesoderm was permissive for the activation of the skeletogenic
program through just a few regulatory changes. Overall, the skeletogenic GRN shows high
conservation within the echinoderm phylum, which makes it intriguing to compare it to
the biomineralization GRNs in the relatively close vertebrate phylum.

4. GRNs That Drive Biomineralization in Vertebrates
4.1. Biomineralization Programs in Vertebrates

The vertebrate phylum is a relatively close phylum to echinoderms, and its biomineral-
ization GRNs and their evolution were comprehensively studied (Figure 1, [31,33,119–121]).
The vertebrates’ mineralized tissues are mainly bones and teeth, and they originate from
the ectoderm (enamel), the neural crest (craniofacial bones and dentin), the paraxial meso-
derm (vertebral and craniofacial bone) and the lateral plate mesoderm (limb bone, Fig-
ure 4A [31,122]). Bone formation involves the transformation of preexisting mesenchymal
tissue into bone tissue. This transformation occurs either through direct deposition of bone
matrix by osteoblasts, termed intramembranous ossification, or through the replacement
of a cartilage template by a bone tissue termed endochondral ossification [122,123]. Since
echinoderm skeletogenic cells are mesodermal, I focus here on the mesodermal derived
biomineralization GRNs and, specifically, on the GRNs that drive endochondral ossification
in vertebrates and their evolution.

4.2. Endochondral Ossification in Vertebrates

Endochondral ossification is characteristic for vertebrae, ribs and limb formation [122].
In this process, the bone forms through the sequential calcification of cartilage and bone
matrix molds [122]. At the first stage, the mesenchymal cells that originate from the paraxial
or lateral plate mesoderm are condensed and differentiated into proliferating chondrocytes
(green cells in Figure 4B, [31,122]). The chondrocytes deposit an extracellular matrix, mainly,
collagenII (Col2), to make a cartilage mold [31]. The chondrocytes then organize into
columnar structures and differentiate into post-mitotic hypertrophic chondrocytes (blue
cells in Figure 4B, [31]). The hypertrophic chondrocytes secrete osteogenic factors, which
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leads to the differentiation of the osteoblasts from a thin layer of progenitor cells originating
from the condensed mesenchyme at the margin of cartilage (purple cells in Figure 4B, [31]).
Additionally, hypertrophic chondrocytes can transdifferentiate into osteoblasts, and this
process contributes significantly to the osteoblasts population [124].

The osteoblasts replace the cartilage with bone matrix, mainly, collagenI (Col1), and
mineralize the bone matrix [125]. Osteoblasts that are buried in the bone differentiate into
osteocytes and participate in bone remodeling in the mature bone [126,127]. Bone remodel-
ing is the resorption of the mineralized bone matrix by osteoclasts and the formation of a
new mineralized bone matrix by osteoblasts [31]. Thus, bone development and remodeling
are driven by cartilage forming chondrocytes and hypertrophic chondrocytes, bone matrix
forming and mineralizing osteoblasts, and bone resorbing osteocytes and osteoclasts.

4.3. GRNs That Drive Endochondral Ossification in Vertebrates

The transition between the secretion of Col2 in chondrocytes to Col1 in osteoblasts
is regulated by a switch from a GRN dominated by Sox transcription factors to a GRN
dominated by Runx’s (Figure 4C, [34,125,128]). In the proliferating chondrocytes the
transcription factor, Sox9 is expressed in high levels together with Sox5, Sox6, Cart1 (ho-
molog of Alx1 [129]) and the signaling receptor FGFR3 [34,121,130]. These regulatory
genes drive the expression of Col2, as well as the expression of the cartilage proteoglycan,
aggrecan (ACAN) and proteins from the small leucine-rich repeat proteoglycan (SLRP)
family, Decorin and Biglycan [31]. During the differentiation of the proliferating chon-
drocytes into hypertrophic chondrocytes, the expression of the Sox transcription factors
decreases and transcription factors Runx1 and Runx2 are activated (Figure 4C, [34,121,125]).
Other regulatory genes that turn on during this transition encode the transcription factor
AP-1 (Jun-Fos) and FGFR1 [34,121,125,131,132]. The activation of Runx transcription fac-
tors in the hypertrophic chondrocytes drives the expression of osteogenic factors such as
the fibrillar collagen binding protein, SPARC, the acidic secreted phosphoprotein, SPP1,
the bone Gla protein, BGlap and MMP13 that specifically degrades Col2 and ACAN
(Figure 4C, [30,31,34]). Thus, the differentiation of hypertrophic chondrocytes is regulated
by the downregulation of Sox and the upregulation of Runx transcription factors, which
induce the activation of osteogenic factors and Col2 degrading enzymes.

The regulatory state of the osteoblasts is dominated by Runx1 and Runx2 and the tran-
scription factors Dlx, Msx and Sp7, while the transcription factors Sox9, Sox5, Sox6 and Alx1
are turned off [34,125,133]. As mentioned above, many of the hypertrophic chondrocytes
differentiation genes are also expressed in osteoblasts, yet there are some clear differences.
First, osteoblasts express Col1 instead of Col2, and, accordingly, the Col2 binding protein,
ACAN, is not expressed in osteoblasts (Figure 4C, [34]). The osteoblasts express other bone
matrix proteins such as the secretory calcium-binding phosphoproteins (SCPP, [31]) and
the membrane type metalloprotease, MMP14 (MT1-MMP). MMP14 regulates the apoptosis
of chondrocytes and the remodeling of unmineralized cartilage necessary for postnatal
skeletal remodeling [134,135]. Thus, the osteoblasts’ GRN drives the expression of proteins
that drive chondrocytes apoptosis, degrade the cartilaginous matrix, and replace it with a
bone matrix that they mineralize.

4.4. The Evolutionary Origin of the Endochondral Ossification GRNs

Chondrocytes, hypertrophic chondrocytes and osteoblasts originate from the same
mesenchymal progenitors and their GRNs show a clear transition from cartilage forming
to bone matrix forming, which could recapitulate the evolution of the bone [34,128,136].
Indeed, the bone GRNs were proposed to have evolved from an ancestral cartilage forming
GRN that was co-opted for biomineralization in the vertebrate phylum [34,128,136]. Thus,
we could imagine two clear processes in the evolution of the bone: First is the evolution
of the vertebrate cartilage GRN and the second is its co-option for biomineralization. The
evolution of cartilage and the evolution of vertebrate biomineralization were extensively
reviewed by others [31,34,121,128,136–139], so here I briefly summarize the main points.
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Figure 4. Bone biomineralization and vascular tubulogenesis GRNs in vertebrates. (A), schematic
diagram showing a cross section of the dorsal part of a vertebrate embryo and the different embryonic
territories that contribute to skeletal and vascular tissues. (B), tissues and cell types that participate in
endochondral ossification in vertebrates. Immature cartilage (green) is generated by proliferating and
resting chondrocytes. Mature cartilage (blue) is generated by hypertrophic chondrocytes, bone matrix
and mineralization (gray) are generated by osteoblasts, maintained by osteocytes and reabsorbed by
osteoclasts (purple). (C), GRN and differentiation genes in the different bone forming cells. Color code
matches the territories and cells in (B,D), schematic diagram of vertebrate blood vessel showing the
different cell types that constitute it. Blood cells occupy the lumen which is engulfed by endothelial
cells. The endothelial cells are bound to the basement membrane from the inner side of the vessel
and pericytes from the outside. Image courtesy of Yarden Ben-Tabou de-Leon (artist). (E), endothelial
cell GRN and differentiation genes.
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The cartilage GRN seem to have originated in the bilaterian ancestor [139] and evolved
within the chordates [33,140,141]. The co-expression of SoxE (invertebrate ortholog of
Sox8/9/10), SoxD (ortholog of Sox5/6) and ColA (ortholog of Col2) in cells that generate
cartilage like structures were observed in two diverged protostomes, the horseshoe crab
and the cuttlefish [136]. This dates the origin of cartilage GRN to the common bilaterian
ancestor. Within the deuterostomes, co-expression of SoxE and Col2 genes was detected in
endodermal derived cells near the collagenous cartilage skeletons that support cephalo-
chordates and hemichordates pharyngeal gill slits [142,143]. The cartilaginous skeleton of
Lamprey, a jawless vertebrate, contains Col2, and Sox9 is co-expressed with Col2 during
skeletal development [140]. Thus, the cartilage forming GRN dominated by SoxE, SoxD
and driving the expression of type II collagen, had probably originated in the bilaterian
ancestor, evolved within the deuterostomes and co-opted for biomineralization in the
vertebrate phylum.

The chordate cartilage GRN was co-opted for mineralization, apparently through
the upregulation of the runx genes that acquired new targets, the downregulation of the
sox genes and the evolution of a new set of bone matrix proteins [31,128]. The molecular
mechanism enabling some of these evolutionary changes is apparently the two events of
whole genome duplication that occurred during vertebrate evolution, and lead to the gen-
eration and specialization of new sets of orthologous genes [31,34]. For example, the single
ancestral chordate runx gene duplicated into the three vertebrates runx genes [144–146]
and the ancestral SoxE gene duplicated into the vertebrates’ sox8, sox9 and sox10 [34],
possibly enabling a rewiring of their regulatory connections. Moreover, the duplication of
the ancestral SPARC gene lead to the evolution of the SPARC-like gene and to its tandem
duplication that lead to the evolution of the vertebrates’ SCPP family that is an essential
component of the bone matrix [147]. Overall, the expansion and specialization of regulatory
and biomineralization gene families in the vertebrate phylum supported the co-option of
the chordate cartilage GRN to biomineralization.

4.5. Vertebrates’ Bone GRNs vs. the Echinoderm Skeletal GRNs

The vertebrate bone GRNs are quite distinct from the echinoderms core skeletogenic
GRN (Figures 3F and 4C). There are only a few regulatory genes common to both GRNs,
namely, Alx1, AP-1 and FGFR and within these genes, Alx1 and AP-1 are expressed in
the cartilage forming chondrocytes and turn off in the biomineralizing osteoblasts [125].
Furthermore, orthologs of the key regulators of the cartilage and bone GRNs, SoxE, SoxD
and Runx, are not expressed in the sea urchin skeletogenic cells, but in mesodermally
derived cells at the tip of the gut [16,106,146,148]. Sea urchin runx is also expressed in the
dorsal ectoderm [146]. Importantly, while the vertebrate organic scaffold is collagenous and
the biomineral that forms is apatite, collagen is not found in the sea urchin skeleton [56,57],
many other matrix genes are phylum specific [31,83], and the biomineral that forms is calcite.
Collagen is expressed in skeletogenic cells in both sea urchin larva [58,149] and adult brittle
stars [45], possibly to strengthen the extracellular matrix around the biomineralized spicules.
Yet, differently than in bone, the collagen secreted by the echinoderm skeletogenic cells
is not mineralized. Thus, the clear differences in the usage of regulatory genes, matrix
proteins and minerals between the vertebrate bone GRNs and the sea urchin skeletogenic
GRN do not support a common origin of these two biomineralization GRNs.

5. GRNs That Drive Vascular Tubulogenesis in Vertebrates

Echinoderm biomineralization occurs within a tubular cavity formed by the skeleto-
genic cells, and the core GRN that controls this process, shows a strong similarity to the
endothelial cell GRNs that control vascularization in vertebrates (Figures 3F and 4E [18,65]).
Despite the distinct structural and functional differences between sea urchin skeletons
and vertebrates’ blood vessels, an ancestral GRN that controls tube formation could have
evolved for these separate usages in the two phyla. Below I review the morphogenetic
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processes that drive blood vessel formation in vertebrate, the GRN that regulates these pro-
cesses, the evolution of this GRN, and its resemblance to the echinoderm skeletogenic GRN.

5.1. Vertebrates’ Endothelial Cells, Vascularization and Angiogenesis

Vertebrates’ blood vessels form during embryonic development in adult ischemic
tissues and in pathological conditions such as cancer [122,150–152]. The first blood vessel
that forms during vertebrate development is the dorsal aorta generated by endothelial cells
that originate from the lateral plate mesoderm (LPM, Figure 4A, [122,151–153]). Endothelial
progenitor cells migrate from the LPM to the medial region and generate a chord that they
fill with lumen to form the dorsal aorta [153–155]. The hematopoietic stem cells emerge
from a subpopulation of endothelial cells located at the ventral wall of the dorsal aorta [153].
The vascular network then expands through the process of sprouting angiogenesis, the
formation of new blood vessels from existing ones [150].

Sprouting angiogenesis occurs through endothelial cell proliferation and directed mi-
gration toward the angiogenetic cues, followed by tubulogenesis, where the lumen extends
into the new sprouts [150,156,157]. Lumen formation and extension in both embryonic
vascularization and angiogenesis is driven by various molecular mechanisms including
cytoskeletal remodeling, junctional rearrangement and vesicular transport [156,158–161].
Blood vessels maturation involves the formation of a basement membrane and the recruit-
ment of pericytes and smooth muscle cells that coat the endothelial tube (Figure 4D, [162]).

5.2. The Endothelial GRN That Drives Vascularization and Angiogenesis

The GRNs that control embryonic vascularization and those that control angiogenesis
were expansively studied in various vertebrate model systems during embryogenesis and
in endothelial cell cultures [151,153,163,164]. In Figure 4E, I list key transcription factors, sig-
naling pathways and differentiation genes that were shown to be expressed in endothelial
cells and play an essential role in vascularization in multiple vertebrates’ models.

VEGF signaling and transcription factors from the ETS family are key regulators of
endothelial specification and blood vessel formation. VEGF signaling is necessary for the
migration of the angioblasts from the LPM, is essential endothelial cell specification, and
critical for vascular tubulogenesis and for the induction of sprouting angiogenesis in healthy
tissues and in cancer [150,153,165]. VEGF signaling induces the transcriptional activation
of endothelial genes, partially through the acetylation of the ETS transcription factor [166].
Studies in zebrafish, Xenopus, mice and human endothelial cell cultures show that tran-
scription factors from the ETS family including, ETS1, ETS2, Fli, Erg1, Etv2, Tel and Elk3,
are key regulators of vascularization and angiogenesis and play various roles in endothe-
lial cell differentiation, migration, tubulogenesis and vessel maturation [151,164,167–176].
Thus, the essential role of VEGF signaling and ETS transcription factors in endothelial cell
specification and blood vessel formation in vertebrates is conserved within the phylum.

The regulation of angiogenesis requires negative cues provided by the transcription
factors Hex and FoxO, and vessel remodeling and maturation cues by the signaling factors
FGFR and angiopoietin (Figure 4E). The hematopoietically expressed homeobox (Hhex) is
transiently expressed in endothelial cells during vascular formation and was shown to be
a negative regulator of angiogenesis [177]. The forkhead transcription factors FoxO1 and
FoxO3 are expressed in mature endothelial cells and negatively regulate postnatal vessel
formation and maturation [178,179]. FGFR1 and FGFR2 are expressed in mature endothe-
lial cells and regulate neovascularization and vascular remodeling after injury [180,181].
Angiopoietins are signaling ligands that bind to the receptor tyrosine kinase, Tie2, which
is expressed in endothelial cells and regulates vascular maturation during developmen-
tal, physiological and pathological angiogenesis [96,182]. Angiopoietin2 is expressed in
endothelial cells downstream of the transcription factor Ets1 [183]. Thus, Hex, FoxO, FGFR
and angiopoietin are expressed in endothelial cells and regulate vascular homeostasis,
vascular remodeling, and vessel maturation.
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Blood vessel growth and lumen formation require the activity of cytoskeleton remodel-
ing and extracellular matrix remodeling proteins activated by the endothelial GRN [156,184].
Among those, the Rho-GTPase activating proteins, Rhogap24 and Rhogap22, are among
the most enriched RhoGAPs in endothelial cells (Figure 4E, [97,185].). Rhogap24 regulates
endothelial cell migration, tubulogenesis and angiogenesis through the inactivation of the
small GTPases, RAC1 and CDC42 [97,185]. The interactions between CDC42 and the mem-
brane type Metalloproteinase MMP14 (MT1-MMP) are essential for vascular tubulogenesis
and lumen formation [98,99]. Overall, lumen formation and tubulogenesis require the
activity of the cytoskeleton remodeling proteins, Rhogap24 and CDC42 and the proteolytic
activity of MMP14.

5.3. The Evolution of the Vertebrates’ Vascularization GRN

The endothelial cells that drive vascularization and form the inner lining of the ver-
tebrates’ blood vessels, between the basement membrane and the lumen, are vertebrate
specific [186,187]. In invertebrates’ vascular systems there are no true endothelial cells
lining the lumen and, instead, the lumen is delineated by the basement membrane of
surrounding epithelial cells. Thus, the endothelial cells are a vertebrate innovation, but
blood vascular systems are common in invertebrates and comparative gene expression can
illuminate the possible origin of the vertebrate vascularization GRN.

Within chordates, VEGFR expression and activity were linked to the development
of the vascular system. The endothelial GRN that drives vascularization is highly con-
served in vertebrates and especially the role of VEGF signaling and the ETS transcription
factors [151,164,167–176,186,188]. Tunicates do not have true endothelial cells and their
blood vessels contain lumen engulfed by basement membrane produced by the surround-
ing epithelial cells [189]. An ortholog of VEGFR is expressed in the epithelial cells that
surround the peripheral blood vessel of the colonial tunicate, Botryllus schlosseri, and the
inhibition of VEGFR signaling prevents blood vessel regeneration [189]. VEGFR homolog
is enriched in tissues that contain blood vessels in the tunicate, Halocynthia roretzi [190]. In
the cephalochordate Amphioxus, Branchiostoma lanceolatum, VEGFR ortholog is expressed
in cells within the dorsal aorta and the subintestinal vessel and VEGFR inhibition reduces
the level of Laminin in the basement membrane of the vessel [191]. These studies in basal
chordates support the conserved role of VEGF signaling in blood vessel formation and of
VEGFR expression in vascular epithelial cells.

Within the protostomes, VEGF signaling is necessary for the migration of blood cells
in Drosophila and controls blood vessel formation in lophotrocozoan species [192–194]. In
the arthropod, Drosophila, the ortholog of VEGFR is expressed in hemocytes [195] and three
orthologs of VEGF are expressed along the hemocyte migration path [194]. Drosophila VEGF
signaling is critical for hemocyte migration, proliferation and survival [194,196,197]. In
Hirudo medicinalis, a leech from the annelid phylum, the injection of human VEGF induced
the growth of new blood vessels [193]. This species has two VEGFR ortholog genes and
immunostaining with the human VEGFR antibody showed expression in the walls of the
blood vessels [193]. In Idiosepius paradoxus embryo, a squid from the mollusk phylum, an
ortholog of VEGFR, is expressed in developing blood vessels and in the branchial arch [192].
Moreover, an ortholog of the transcription factor ETS is expressed in hemocytes and blood
vessels in the mollusk, Chlamys farreri, a sea scallop [198]. The abovementioned studies
show that VEGF signaling and, possibly, ETS factors are involved in hemocytes and blood
vessel development in various protostome species.

Overall, the key role of VEGF signaling in vertebrates’ vascularization and hematopoiesis
GRNs and VEGFs role in similar processes in other bilaterians imply that VEGF signaling
was a part of an ancestral GRN that drove blood vessel morphogenesis. The expression of
other genes in this GRN was less studied in invertebrates. Nevertheless, the strong regula-
tory links between the VEGF pathway and ETS factors in vertebrates and ETS expression
in blood vessels and hemocytes of mollusk [198] suggest that ETS factors had been a part
of the ancestral vascular GRN.
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5.4. The Vascularization GRN vs. the Echinoderms’ Skeletal GRN

There is a remarkable similarity between the vertebrates’ endothelial GRN and the
echinoderm skeletogenic GRN (Figures 4E and 3F). These GRNs drive the formation of
blood vessels and spicules, two tubular organs with distinct morphological structure
and function: the endothelial cells are wrapped around the lumen and have cell-cell
junctions between them [199], unlike the syncytial mesenchymal skeletogenic cells that are
round, fused to each other and do not have junctions between them. Yet, the echinoderm
skeletogenic cells form a tubular cavity that constitutes the organic scaffold in which
their calcite spicule rods grow. Hence, both the endothelial GRN and the echinoderm
skeletogenic GRN drive a process of tubulogenesis. Additionally, both GRNs are very close
to hemocyte generating GRNs: The echinoderm skeletogenic GRN is highly similar to the
NSM GRN that drives hemocytes specification and the hemocytes can re-differentiate into
skeletogenic cells, depending on VEGF signaling (Figure 3D [110]). As explained above, a
close relationship between hematopoeitic cells and endothelial cells as well as the ability
to trans-differentiate between these fates exists in vertebrates [200]. Thus, the similarity
in the GRN structure, tubular morphology and kinship to the hemocyte differentiation
GRN support a common ancestral origin of the vertebrates’ vascularization and sea urchin
skeletogenesis GRNs. Apparently, the common ancestral GRN drove vascularization and
was uniquely co-opted for biomineralization in the echinoderm phylum.

6. Conclusions-Biomineralization Gene Regulatory Networks Evolve through the
Co-Option of Organic Scaffold Forming Networks

In this review, I examined two examples for the independent evolution of phylum
specific biomineralization GRNs, the GRNs that control echinoderm skeletogenesis and the
GRN that drives bone formation in vertebrates (Figures 3 and 4B,C). The organic scaffold
that echinoderms calcify is a tubular syncytial cable while the organic scaffold calcified
by vertebrates is a collagenous extracellular matrix. The echinoderm core skeletogenic
GRN shows little similarity to the vertebrate GRNs that drive biomineralization and strong
resemblance to the GRN that drives vascular tubulogenesis (Figures 3F and 4C,E). The
vertebrates’ bone GRNs show similarities to ancestral GRNs that generate cartilage in
bilaterians. This implies that these two phyla co-opted two distinct scaffold forming GRNs
for biomineralization–echinoderms co-opted a vascular tubulogenesis GRN and vertebrates
co-opted a cartilage generating GRN (Figure 5).

The echinoderms had apparently co-opted for biomineralization an ancestral vascu-
larization GRN that included VEGF signaling and ETS transcription factors (Figure 5A,
see references in Section 4). This co-option involved the activation of the transcription
factor Alx1, the evolution of a novel set of genes encoding spicule matrix proteins and
the activation of differentiation genes of the biomineralization toolkit, such as Caral7 and
MSP130. Interestingly, Alx1 contains an echinoderm specific domain that is critical for
its function in skeletogenesis [201]. The insertion of this region to the alx1 gene could
have been one of the genetic changes that contributed to the evolution of the echinoderms
biomineralization program [201]. The endothelial GRN had probably evolved from the
ancestral vascular GRN, utilizing the two events of whole genome duplication to generate
the elaborate and highly specialized vertebrates’ vascularization programs. Both the skele-
togenic GRN in echinoderms and the endothelial GRN in vertebrates show similarities and
trans-differentiation potential to the hemocyte GRNs in the two phyla, possibly due to the
close proximity between the ancestral hemocyte and vascular GRNs.

The bone GRN of vertebrates seems to have evolved from an ancestral cartilage form-
ing GRN that contained the transcription factors SoxE and SoxD and drove the expression
of Col2 and Col2 binding proteins (Figure 5B, [31,34,121,128,136–139]). The similarity of the
cartilage GRNs between chordates and protostomes suggests that the main evolutionary
innovations have occurred during the evolution of the bony vertebrates (Figure 5B). These
innovations had apparently involved the activation of Runx and Sp7, the downregulation
of SoxE and SoxD orthologs, a switch between Col2 to Col1, the evolution of a new set of
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bone matrix proteins and the activation of differentiation genes of the biomineralization
toolkit, such as carbonic anhydrase II (CA-II) and the bicarbonate anion transporter Slc4a2
(Figures 4E and 5B, [202,203]).

Figure 5. Proposed models of the evolution of the biomineralization GRNs in echinoderms and in
vertebrates. (A), an ancestral vascular GRN that generated blood vessels where hemocytes flow
evolved in vertebrates to make the endothelial GRN and was co-opted for biomineralization in
echinoderms. The ancestral vascular GRN included the VEGF pathway and transcription factors of
the ETS family. Co-option for biomineralization included the activation of the transcription factor
Alx1, the evolution of novel echinoderm spicule matrix (SM) proteins and the activation of genes of
the biomineralization toolkit. The vertebrate endothelial GRN and the echinoderm skeletogenic GRN
show similarities and trans-differentiation potential to the hemocyte GRN. (B), an ancestral GRN that
drove cartilage formation was co-opted for biomineralization in the vertebrate phylum. The ancestral
cartilage GRN included the transcription factors SoxE and SoxD that drove the expression of Col2.
The co-option for biomineralization was through the activation of the transcription factors Runx and
Sp7, the evolution of novel bone matrix (BM) proteins and the activation of Col1 and genes of the
biomineralization toolkit.

The two examples of biomineralization GRNs discussed here support the model pro-
posed in Figure 2A for the evolution of biomineralization GRNs from an ancestral scaffold
forming GRN. That is, the vertebrates’ bone GRNs and the echinoderm skeletogenic GRN
show little resemblance between them and strong similarity to the GRNs that generate the
distinct scaffolds that each GRN calcifies. However, there is a shared set of differentiation
genes that is activated by both biomineralization GRNs, such as carbonic anhydrase, Slc4,
etc. (Figures 3A and 4E). These genes must have evolved in the early metazoan and are a
part of a conserved biomineralization toolkit whose activation was acquired by the biomin-
eralization GRNs of echinoderms and vertebrates, most likely independently. Apparently,
the biomineralization GRNs in echinoderms and vertebrates evolved through the co-option
of distinct organic scaffold GRNs and the activation of phylum specific as well as conserved
biomineralization proteins (Figure 5).

There are still many open questions with regard to the evolution of biomineralization
GRNs. The genomic mechanisms that allow for the tandem duplication and evolution
of multiple calcium binding proteins that are phylum specific are yet to be identified.
The activation of these newly evolved genes as well as the conserved biomineralization
toolkit genes by the biomineralization GRNs possibly requires the parallel evolution of
novel cis-regulatory elements of which we know very little. Finally, why a certain scaffold
is specifically chosen for mineralization in a phylum is a question that will hopefully
be answered by further research on the evolution of biomineralization GRNs and its
relationship with the physiology of the species and with past environmental conditions.



Cells 2022, 11, 595 16 of 23

Funding: This research was funded by the Israel Science Function grant number: 211/20.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: I sincerely thank Charles Ettensohn, Stefan Materna, Eli Zelzer, my lab members,
Tsvia Gildor, Majed Layous, Prashant Tewari and Daniel Goloe, and the two reviewers for their
thorough read and insightful comments on the manuscript. I thank Yarden Ben-Tabou de-Leon for
the illustration in Figure 4D.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Carroll, S.B. Homeotic genes and the evolution of arthropods and chordates. Nature 1995, 376, 479–485. [CrossRef] [PubMed]
2. Brakefield, P.M.; Gates, J.; Keys, D.; Kesbeke, F.; Wijngaarden, P.J.; Monteiro, A.; French, V.; Carroll, S.B. Development, plasticity

and evolution of butterfly eyespot patterns. Nature 1996, 384, 236–242. [CrossRef] [PubMed]
3. Raff, R.A. The Shape of Life: Genes, Development and the Evolution of Animal Form; The University of Chicago Press: Chicago, IL,

USA, 1996.
4. Davidson, E.H. Evolutionary biology. Insights from the echinoderms. Nature 1997, 389, 679–680. [CrossRef] [PubMed]
5. Carroll, S.B. Endless forms: The evolution of gene regulation and morphological diversity. Cell 2000, 101, 577–580. [CrossRef]
6. Hayashi, C.Y.; Lewis, R.V. Molecular architecture and evolution of a modular spider silk protein gene. Science 2000, 287, 1477–1479.

[CrossRef]
7. Knoll, A.H. Biomineralization and Evolutionary History. Rev. Mineral. Geochem. 2003, 54, 329–356. [CrossRef]
8. Davidson, E.H. Gene Activity in Early Development, 3rd ed.; Academic Press Inc.: Orlando, FL, USA, 1986.
9. Levine, M.; Davidson, E.H. Gene regulatory networks for development. Proc. Natl. Acad. Sci. USA 2005, 102, 4936–4942.

[CrossRef]
10. Davidson, E.H.; Erwin, D.H. Gene regulatory networks and the evolution of animal body plans. Science 2006, 311, 796–800.

[CrossRef]
11. Peter, I.S.; Davidson, E.H. Evolution of gene regulatory networks controlling body plan development. Cell 2011, 144, 970–985.

[CrossRef]
12. Carroll, S.B. Evolution. How great wings can look alike. Science 2011, 333, 1100–1101. [CrossRef]
13. Carroll, S.B. Evo-devo and an expanding evolutionary synthesis: A genetic theory of morphological evolution. Cell 2008, 134,

25–36. [CrossRef]
14. Ben-Tabou de Leon, S.; Davidson, E.H. Information processing at the foxa node of the sea urchin endomesoderm specification

network. Proc. Natl. Acad. Sci. USA 2010, 107, 10103–10108. [CrossRef]
15. Oliveri, P.; Tu, Q.; Davidson, E.H. Global regulatory logic for specification of an embryonic cell lineage. Proc. Natl. Acad. Sci. USA

2008, 105, 5955–5962. [CrossRef]
16. Andrikou, C.; Pai, C.Y.; Su, Y.H.; Arnone, M.I. Logics and properties of a genetic regulatory program that drives embryonic

muscle development in an echinoderm. eLife 2015, 4, e07343. [CrossRef]
17. Cary, G.A.; McCauley, B.S.; Zueva, O.; Pattinato, J.; Longabaugh, W.; Hinman, V.F. Systematic comparison of sea urchin and sea

star developmental gene regulatory networks explains how novelty is incorporated in early development. Nat. Commun. 2020, 11,
6235. [CrossRef]

18. Morgulis, M.; Gildor, T.; Roopin, M.; Sher, N.; Malik, A.; Lalzar, M.; Dines, M.; Ben-Tabou de-Leon, S.; Khalaily, L.; Ben-Tabou
de-Leon, S. Possible cooption of a VEGF-driven tubulogenesis program for biomineralization in echinoderms. Proc. Natl. Acad.
Sci. USA 2019, 116, 12353–12362. [CrossRef]

19. Hinman, V.F.; Nguyen, A.T.; Cameron, R.A.; Davidson, E.H. Developmental gene regulatory network architecture across
500 million years of echinoderm evolution. Proc. Natl.Acad. Sci. USA 2003, 100, 13356–13361. [CrossRef]

20. De-Leon, S.B.T.; Davidson, E.H. Gene regulation: Gene control network in development. Annu. Rev. Biophys. Biomol. Struct. 2007,
36, 191–212. [CrossRef]

21. Ben-Tabou de-Leon, S.; Davidson, E.H. Deciphering the underlying mechanism of specification and differentiation: The sea
urchin gene regulatory network. Sci. STKE 2006, 2006, pe47. [CrossRef]

22. Martik, M.L.; McClay, D.R. Deployment of a retinal determination gene network drives directed cell migration in the sea urchin
embryo. eLife 2015, 4, e08827. [CrossRef]

23. Lowenstam, H.A.; Weiner, S. On Biomineralization; Oxford University Press: New York, NY, USA, 1989.
24. Weiner, S.; Addadi, L. Biomineralization. At the cutting edge. Science 2002, 298, 375–376. [CrossRef] [PubMed]
25. Weiner, S.; Addadi, I. Crystallization Pathways in Biomineralization. Annu. Rev. Mater. Res. 2011, 41, 21–40. [CrossRef]
26. Murdock, D.J.; Donoghue, P.C. Evolutionary origins of animal skeletal biomineralization. Cells Tissues Organs 2011, 194, 98–102.

[CrossRef] [PubMed]

http://doi.org/10.1038/376479a0
http://www.ncbi.nlm.nih.gov/pubmed/7637779
http://doi.org/10.1038/384236a0
http://www.ncbi.nlm.nih.gov/pubmed/12809139
http://doi.org/10.1038/39484
http://www.ncbi.nlm.nih.gov/pubmed/9338776
http://doi.org/10.1016/S0092-8674(00)80868-5
http://doi.org/10.1126/science.287.5457.1477
http://doi.org/10.2113/0540329
http://doi.org/10.1073/pnas.0408031102
http://doi.org/10.1126/science.1113832
http://doi.org/10.1016/j.cell.2011.02.017
http://doi.org/10.1126/science.1211025
http://doi.org/10.1016/j.cell.2008.06.030
http://doi.org/10.1073/pnas.1004824107
http://doi.org/10.1073/pnas.0711220105
http://doi.org/10.7554/eLife.07343
http://doi.org/10.1038/s41467-020-20023-4
http://doi.org/10.1073/pnas.1902126116
http://doi.org/10.1073/pnas.2235868100
http://doi.org/10.1146/annurev.biophys.35.040405.102002
http://doi.org/10.1126/stke.3612006pe47
http://doi.org/10.7554/eLife.08827
http://doi.org/10.1126/science.1078093
http://www.ncbi.nlm.nih.gov/pubmed/12376692
http://doi.org/10.1146/annurev-matsci-062910-095803
http://doi.org/10.1159/000324245
http://www.ncbi.nlm.nih.gov/pubmed/21625061


Cells 2022, 11, 595 17 of 23

27. Murdock, D.J.E. The ‘biomineralization toolkit’ and the origin of animal skeletons. Biol. Rev. Camb. Philos. Soc. 2020, 95, 1372–1392.
[CrossRef]

28. Moczydłowska, M.; Kear, B.P.; Snitting, D.; Liu, L.; Lazor, P.; Majka, J. Ediacaran metazoan fossils with siliceous skeletons from
the Digermulen Peninsula of Arctic Norway. J. Paleontol. 2021, 95, 440–475. [CrossRef]

29. Erwin, D.H.; Laflamme, M.; Tweedt, S.M.; Sperling, E.A.; Pisani, D.; Peterson, K.J. The Cambrian conundrum: Early divergence
and later ecological success in the early history of animals. Science 2011, 334, 1091–1097. [CrossRef]

30. Page-McCaw, A.; Ewald, A.J.; Werb, Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell
Biol. 2007, 8, 221–233. [CrossRef]

31. Kawasaki, K.; Buchanan, A.V.; Weiss, K.M. Biomineralization in humans: Making the hard choices in life. Annu. Rev. Genet. 2009,
43, 119–142. [CrossRef]

32. Hojo, H.; Ohba, S. Insights into Gene Regulatory Networks in Chondrocytes. Int. J. Mol. Sci. 2019, 20, 6324. [CrossRef]
33. Yong, L.W.; Yu, J.K. Tracing the evolutionary origin of vertebrate skeletal tissues: Insights from cephalochordate amphioxus. Curr.

Opin. Genet. Dev. 2016, 39, 55–62. [CrossRef]
34. Gomez-Picos, P.; Eames, B.F. On the evolutionary relationship between chondrocytes and osteoblasts. Front. Genet. 2015, 6, 297.

[CrossRef]
35. True, J.R.; Carroll, S.B. Gene Co-Option in Physiologi.ical and Morphological Evolution. Annu. Rev. Cell Dev. Biol. 2002, 18, 53–80.

[CrossRef]
36. Erwin, D.H. The origin of animal body plans: A view from fossil evidence and the regulatory genome. Development 2020,

147, dev.182899. [CrossRef]
37. Moczek, A.P.; Rose, D.J. Differential recruitment of limb patterning genes during development and diversification of beetle horns.

Proc. Natl. Acad. Sci. USA 2009, 106, 8992–8997. [CrossRef]
38. Davidson, E.H. Emerging properties of animal gene regulatory networks. Nature 2010, 468, 911–920. [CrossRef]
39. Raff, R.A.; Byrne, M. The active evolutionary lives of echinoderm larvae. Heredity 2006, 97, 244–252. [CrossRef]
40. Shashikant, T.; Khor, J.M.; Ettensohn, C.A. From genome to anatomy: The architecture and evolution of the skeletogenic gene

regulatory network of sea urchins and other echinoderms. Genesis 2018, 56, e23253. [CrossRef]
41. Rafiq, K.; Shashikant, T.; McManus, C.J.; Ettensohn, C.A. Genome-wide analysis of the skeletogenic gene regulatory network of

sea urchins. Development 2014, 141, 950–961. [CrossRef]
42. Hyman, L.H. The Invertebrates; McGraw-Hill: New York, NY, USA, 1955; Volume 4.
43. Cary, G.A.; Hinman, V.F. Echinoderm development and evolution in the post-genomic era. Dev. Biol. 2017, 427, 203–211.

[CrossRef]
44. Stricker, S.A. The fine structure and development of calcified skeletal elements in the body wall of holothurian echinoderms. J.

Morphol. 1986, 188, 273–288. [CrossRef]
45. Piovani, L.; Czarkwiani, A.; Ferrario, C.; Sugni, M.; Oliveri, P. Ultrastructural and molecular analysis of the origin and differentia-

tion of cells mediating brittle star skeletal regeneration. BMC Biol. 2021, 19, 9. [CrossRef]
46. Thompson, J.R.; Paganos, P.; Benvenuto, G.; Arnone, M.I.; Oliveri, P. Post-metamorphic skeletal growth in the sea urchin

Paracentrotus lividus and implications for body plan evolution. Evodevo 2021, 12, 3. [CrossRef]
47. Politi, Y.; Arad, T.; Klein, E.; Weiner, S.; Addadi, L. Sea urchin spine calcite forms via a transient amorphous calcium carbonate

phase. Science 2004, 306, 1161–1164. [CrossRef]
48. Berman, A.; Addadi, L.; Kvick, A.; Leiserowitz, L.; Nelson, M.; Weiner, S. Intercalation of sea urchin proteins in calcite: Study of a

crystalline composite material. Science 1990, 250, 664–667. [CrossRef]
49. Beniash, E.; Addadi, L.; Weiner, S. Cellular control over spicule formation in sea urchin embryos: A structural approach. J. Struct.

Biol. 1999, 125, 50–62. [CrossRef]
50. Vidavsky, N.; Addadi, S.; Mahamid, J.; Shimoni, E.; Ben-Ezra, D.; Shpigel, M.; Weiner, S.; Addadi, L. Initial stages of calcium

uptake and mineral deposition in sea urchin embryos. Proc. Natl. Acad. Sci. USA 2014, 111, 39–44. [CrossRef]
51. Kahil, K.; Varsano, N.; Sorrentino, A.; Pereiro, E.; Rez, P.; Weiner, S.; Addadi, L. Cellular pathways of calcium transport and

concentration toward mineral formation in sea urchin larvae. Proc. Natl. Acad. Sci. USA 2020, 117, 30957–30965. [CrossRef]
52. Hodor, P.G.; Ettensohn, C.A. Mesenchymal cell fusion in the sea urchin embryo. Methods Mol. Biol. 2008, 475, 315–334. [CrossRef]
53. Ettensohn, C.A.; Dey, D. KirrelL, a member of the Ig-domain superfamily of adhesion proteins, is essential for fusion of primary

mesenchyme cells in the sea urchin embryo. Dev. Biol. 2017, 421, 258–270. [CrossRef]
54. Vidavsky, N.; Addadi, S.; Schertel, A.; Ben-Ezra, D.; Shpigel, M.; Addadi, L.; Weiner, S. Calcium transport into the cells of the sea

urchin larva in relation to spicule formation. Proc. Natl. Acad. Sci. USA 2016, 113, 12637–12642. [CrossRef]
55. Decker, G.L.; Lennarz, W.J. Skeletogenesis in the sea urchin embryo. Development 1988, 103, 231–247. [CrossRef] [PubMed]
56. Benson, S.; Jones, E.M.; Crise-Benson, N.; Wilt, F. Morphology of the organic matrix of the spicule of the sea urchin larva. Exp.

Cell Res. 1983, 148, 249–253. [CrossRef]
57. Benson, S.C.; Benson, N.C.; Wilt, F. The organic matrix of the skeletal spicule of sea urchin embryos. J. Cell Biol. 1986, 102,

1878–1886. [CrossRef] [PubMed]
58. Wessel, G.M.; Etkin, M.; Benson, S. Primary mesenchyme cells of the sea urchin embryo require an autonomously produced,

nonfibrillar collagen for spiculogenesis. Dev. Biol. 1991, 148, 261–272. [CrossRef]

http://doi.org/10.1111/brv.12614
http://doi.org/10.1017/jpa.2020.105
http://doi.org/10.1126/science.1206375
http://doi.org/10.1038/nrm2125
http://doi.org/10.1146/annurev-genet-102108-134242
http://doi.org/10.3390/ijms20246324
http://doi.org/10.1016/j.gde.2016.05.022
http://doi.org/10.3389/fgene.2015.00297
http://doi.org/10.1146/annurev.cellbio.18.020402.140619
http://doi.org/10.1242/dev.182899
http://doi.org/10.1073/pnas.0809668106
http://doi.org/10.1038/nature09645
http://doi.org/10.1038/sj.hdy.6800866
http://doi.org/10.1002/dvg.23253
http://doi.org/10.1242/dev.105585
http://doi.org/10.1016/j.ydbio.2017.02.003
http://doi.org/10.1002/jmor.1051880303
http://doi.org/10.1186/s12915-020-00937-7
http://doi.org/10.1186/s13227-021-00174-1
http://doi.org/10.1126/science.1102289
http://doi.org/10.1126/science.250.4981.664
http://doi.org/10.1006/jsbi.1998.4081
http://doi.org/10.1073/pnas.1312833110
http://doi.org/10.1073/pnas.1918195117
http://doi.org/10.1007/978-1-59745-250-2_18
http://doi.org/10.1016/j.ydbio.2016.11.006
http://doi.org/10.1073/pnas.1612017113
http://doi.org/10.1242/dev.103.2.231
http://www.ncbi.nlm.nih.gov/pubmed/3066610
http://doi.org/10.1016/0014-4827(83)90204-5
http://doi.org/10.1083/jcb.102.5.1878
http://www.ncbi.nlm.nih.gov/pubmed/3517009
http://doi.org/10.1016/0012-1606(91)90335-Z


Cells 2022, 11, 595 18 of 23

59. Ettensohn, C.A.; Illies, M.R.; Oliveri, P.; De Jong, D.L. Alx1, a member of the Cart1/Alx3/Alx4 subfamily of Paired-class
homeodomain proteins, is an essential component of the gene network controlling skeletogenic fate specification in the sea urchin
embryo. Development 2003, 130, 2917–2928. [CrossRef]

60. Guss, K.A.; Ettensohn, C.A. Skeletal morphogenesis in the sea urchin embryo: Regulation of primary mesenchyme gene
expression and skeletal rod growth by ectoderm-derived cues. Development 1997, 124, 1899–1908. [CrossRef]

61. Adomako-Ankomah, A.; Ettensohn, C.A. Growth factor-mediated mesodermal cell guidance and skeletogenesis during sea
urchin gastrulation. Development 2013, 140, 4214–4225. [CrossRef]

62. Layous, M.; Khalaily, L.; Gildor, T.; Ben-Tabou de-Leon, S. The tolerance to hypoxia is defined by a time-sensitive response of the
gene regulatory network in sea urchin embryos. Development 2021, 148, dev.195859. [CrossRef]

63. Morgulis, M.; Winter, M.R.; Shternhell, L.; Gildor, T.; Ben-Tabou de-Leon, S. VEGF signaling activates the matrix metallopro-
teinases, MmpL7 and MmpL5 at the sites of active skeletal growth and MmpL7 regulates skeletal elongation. Dev. Biol. 2021, 473,
80–89. [CrossRef]

64. Saunders, L.R.; McClay, D.R. Sub-circuits of a gene regulatory network control a developmental epithelial-mesenchymal transition.
Development 2014, 141, 1503–1513. [CrossRef]

65. Gildor, T.; Winter, M.R.; Layous, M.; Hijaze, E.; Ben-Tabou de-Leon, S. The biological regulation of sea urchin larval skeletogenesis—
From genes to biomineralized tissue. J. Struct. Biol. 2021, 213, 107797. [CrossRef]

66. Czarkwiani, A.; Dylus, D.V.; Oliveri, P. Expression of skeletogenic genes during arm regeneration in the brittle star Amphiura
filiformis. Gene Exp. Patterns 2013, 13, 464–472. [CrossRef]

67. Czarkwiani, A.; Ferrario, C.; Dylus, D.V.; Sugni, M.; Oliveri, P. Skeletal regeneration in the brittle star Amphiura filiformis. Front.
Zool. 2016, 13, 18. [CrossRef]

68. Czarkwiani, A.; Dylus, D.V.; Carballo, L.; Oliveri, P. FGF signalling plays similar roles in development and regeneration of the
skeleton in the brittle star Amphiura filiformis. Development 2021, 148, dev.180760. [CrossRef]

69. Erkenbrack, E.M.; Davidson, E.H. Evolutionary rewiring of gene regulatory network linkages at divergence of the echinoid
subclasses. Proc. Natl. Acad. Sci. USA 2015, 112, E4075–E4084. [CrossRef]

70. Thompson, J.R.; Petsios, E.; Davidson, E.H.; Erkenbrack, E.M.; Gao, F.; Bottjer, D.J. Reorganization of sea urchin gene regulatory
networks at least 268 million years ago as revealed by oldest fossil cidaroid echinoid. Sci. Rep. 2015, 5, 15541. [CrossRef]

71. Erkenbrack, E.M.; Ako-Asare, K.; Miller, E.; Tekelenburg, S.; Thompson, J.R.; Romano, L. Ancestral state reconstruction by
comparative analysis of a GRN kernel operating in echinoderms. Dev. Genes Evol. 2016, 226, 37–45. [CrossRef]

72. McCauley, B.S.; Weideman, E.P.; Hinman, V.F. A conserved gene regulatory network subcircuit drives different developmental
fates in the vegetal pole of highly divergent echinoderm embryos. Dev. Biol. 2010, 340, 200–208. [CrossRef]

73. McCauley, B.S.; Wright, E.P.; Exner, C.; Kitazawa, C.; Hinman, V.F. Development of an embryonic skeletogenic mesenchyme
lineage in a sea cucumber reveals the trajectory of change for the evolution of novel structures in echinoderms. Evodevo 2012,
3, 17. [CrossRef]

74. Sun, Z.; Ettensohn, C.A. Signal-dependent regulation of the sea urchin skeletogenic gene regulatory network. Gene Exp. Patterns
2014, 16, 93–103. [CrossRef]

75. Duloquin, L.; Lhomond, G.; Gache, C. Localized VEGF signaling from ectoderm to mesenchyme cells controls morphogenesis of
the sea urchin embryo skeleton. Development 2007, 134, 2293–2302. [CrossRef] [PubMed]

76. Röttinger, E.; Saudemont, A.; Duboc, V.; Besnardeau, L.; McClay, D.; Lepage, T. FGF signals guide migration of mesenchymal
cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development. Development 2008, 135,
353–365. [CrossRef] [PubMed]

77. Sun, Z.; Ettensohn, C.A. TGF-beta sensu stricto signaling regulates skeletal morphogenesis in the sea urchin embryo. Dev. Biol.
2017, 421, 149–160. [CrossRef] [PubMed]

78. Duboc, V.; Lapraz, F.; Saudemont, A.; Bessodes, N.; Mekpoh, F.; Haillot, E.; Quirin, M.; Lepage, T. Nodal and BMP2/4 pattern the
mesoderm and endoderm during development of the sea urchin embryo. Development 2010, 137, 223–235. [CrossRef]

79. Le Roy, N.; Jackson, J.J.; Marie, B.; Ramos-Silva, P.; MArin, F. The evolution of metazoan α-carbonic anhydrases and their roles in
calcium carbonate biomineralization. Front. Zool. 2014, 11, 16. [CrossRef]

80. Hu, M.Y.; Yan, J.J.; Petersen, I.; Himmerkus, N.; Bleich, M.; Stumpp, M. A SLC4 family bicarbonate transporter is critical for
intracellular pH regulation and biomineralization in sea urchin embryos. eLife 2018, 7, e36600. [CrossRef]

81. Voigt, O.; Adamska, M.; Adamski, M.; Kittelmann, A.; Wencker, L.; Worheide, G. Spicule formation in calcareous sponges:
Coordinated expression of biomineralization genes and spicule-type specific genes. Sci. Rep. 2017, 7, 45658. [CrossRef]

82. Zoccola, D.; Ganot, P.; Bertucci, A.; Caminiti-Segonds, N.; Techer, N.; Voolstra, C.R.; Aranda, M.; Tambutte, E.; Allemand, D.;
Casey, J.R.; et al. Bicarbonate transporters in corals point towards a key step in the evolution of cnidarian calcification. Sci. Rep.
2015, 5, 9983. [CrossRef]

83. Mann, K.; Wilt, F.H.; Poustka, A.J. Proteomic analysis of sea urchin (Strongylocentrotus purpuratus) spicule matrix. Proteome Sci.
2010, 8, 33. [CrossRef]

84. Ettensohn, C.A. Horizontal transfer of the msp130 gene supported the evolution of metazoan biomineralization. Evol. Dev. 2014,
16, 139–148. [CrossRef]

85. Yue, R.; Shen, B.; Morrison, S.J. Clec11a/osteolectin is an osteogenic growth factor that promotes the maintenance of the adult
skeleton. eLife 2016, 5, e18782. [CrossRef]

http://doi.org/10.1242/dev.00511
http://doi.org/10.1242/dev.124.10.1899
http://doi.org/10.1242/dev.100479
http://doi.org/10.1242/dev.195859
http://doi.org/10.1016/j.ydbio.2021.01.013
http://doi.org/10.1242/dev.101436
http://doi.org/10.1016/j.jsb.2021.107797
http://doi.org/10.1016/j.gep.2013.09.002
http://doi.org/10.1186/s12983-016-0149-x
http://doi.org/10.1242/dev.180760
http://doi.org/10.1073/pnas.1509845112
http://doi.org/10.1038/srep15541
http://doi.org/10.1007/s00427-015-0527-y
http://doi.org/10.1016/j.ydbio.2009.11.020
http://doi.org/10.1186/2041-9139-3-17
http://doi.org/10.1016/j.gep.2014.10.002
http://doi.org/10.1242/dev.005108
http://www.ncbi.nlm.nih.gov/pubmed/17507391
http://doi.org/10.1242/dev.014282
http://www.ncbi.nlm.nih.gov/pubmed/18077587
http://doi.org/10.1016/j.ydbio.2016.12.007
http://www.ncbi.nlm.nih.gov/pubmed/27955944
http://doi.org/10.1242/dev.042531
http://doi.org/10.1186/s12983-014-0075-8
http://doi.org/10.7554/eLife.36600
http://doi.org/10.1038/srep45658
http://doi.org/10.1038/srep09983
http://doi.org/10.1186/1477-5956-8-33
http://doi.org/10.1111/ede.12074
http://doi.org/10.7554/eLife.18782


Cells 2022, 11, 595 19 of 23

86. Killian, C.E.; Wilt, F.H. Characterization of the proteins comprising the integral matrix of Strongylocentrotus purpuratus
embryonic spicules. J. Biol. Chem. 1996, 271, 9150–9159. [CrossRef]

87. Zhu, X.; Mahairas, G.; Illies, M.; Cameron, R.A.; Davidson, E.H.; Ettensohn, C.A. A large-scale analysis of mRNAs expressed by
primary mesenchyme cells of the sea urchin embryo. Development 2001, 128, 2615–2627. [CrossRef]

88. Mann, K.; Poustka, A.J.; Mann, M. Phosphoproteomes of Strongylocentrotus purpuratus shell and tooth matrix: Identification of
a major acidic sea urchin tooth phosphoprotein, phosphodontin. Proteome Sci. 2010, 8, 6. [CrossRef]

89. Seaver, R.W.; Livingston, B.T. Examination of the skeletal proteome of the brittle star Ophiocoma wendtii reveals overall
conservation of proteins but variation in spicule matrix proteins. Proteome Sci. 2015, 13, 7. [CrossRef]

90. Dylus, D.V.; Czarkwiani, A.; Blowes, L.M.; Elphick, M.R.; Oliveri, P. Developmental transcriptomics of the brittle star Amphiura
filiformis reveals gene regulatory network rewiring in echinoderm larval skeleton evolution. Genome Biol. 2018, 19, 26. [CrossRef]

91. Adomako-Ankomah, A.; Ettensohn, C.A. P58-A and P58-B: Novel proteins that mediate skeletogenesis in the sea urchin embryo.
Dev. Biol. 2011, 353, 81–93. [CrossRef]

92. Cheers, M.S.; Ettensohn, C.A. P16 is an essential regulator of skeletogenesis in the sea urchin embryo. Dev. Biol. 2005, 283, 384–396.
[CrossRef]

93. Peled-Kamar, M.; Hamilton, P.; Wilt, F.H. Spicule matrix protein LSM34 is essential for biomineralization of the sea urchin spicule.
Exp. Cell Res. 2002, 272, 56–61. [CrossRef]

94. Wilt, F.; Lindsay, C.; Killian, C.; McDonald, K. Role of LSM34/SpSM50 proteins in endoskeletal spicule formation in sea urchin
emrbyos. Invertebr. Biol. 2008, 4, 452–459. [CrossRef]

95. Gong, Y.U.; Killian, C.E.; Olson, I.C.; Appathurai, N.P.; Amasino, A.L.; Martin, M.C.; Holt, L.J.; Wilt, F.H.; Gilbert, P.U. Phase
transitions in biogenic amorphous calcium carbonate. Proc. Natl. Acad. Sci. USA 2012, 109, 6088–6093. [CrossRef]

96. Fagiani, E.; Christofori, G. Angiopoietins in angiogenesis. Cancer Lett. 2013, 328, 18–26. [CrossRef]
97. Su, Z.J.; Hahn, C.N.; Goodall, G.J.; Reck, N.M.; Leske, A.F.; Davy, A.; Kremmidiotis, G.; Vadas, M.A.; Gamble, J.R. A vascular

cell-restricted RhoGAP, p73RhoGAP, is a key regulator of angiogenesis. Proc. Natl. Acad. Sci. USA 2004, 101, 12212–12217.
[CrossRef]

98. Stratman, A.N.; Saunders, W.B.; Sacharidou, A.; Koh, W.; Fisher, K.E.; Zawieja, D.C.; Davis, M.J.; Davis, G.E. Endothelial cell
lumen and vascular guidance tunnel formation requires MT1-MMP-dependent proteolysis in 3-dimensional collagen matrices.
Blood 2009, 114, 237–247. [CrossRef]

99. Sacharidou, A.; Koh, W.; Stratman, A.N.; Mayo, A.M.; Fisher, K.E.; Davis, G.E. Endothelial lumen signaling complexes control
3D matrix-specific tubulogenesis through interdependent Cdc42- and MT1-MMP-mediated events. Blood 2010, 115, 5259–5269.
[CrossRef]

100. Ruffins, S.W.; Ettensohn, C.A. A clonal analysis of secondary mesenchyme cell fates in the sea urchin embryo. Dev. Biol. 1993, 160,
285–288. [CrossRef]

101. Ruffins, S.W.; Ettensohn, C.A. A fate map of the vegetal plate of the sea urchin (Lytechinus variegatus) mesenchyme blastula.
Development 1996, 122, 253–263. [CrossRef]

102. Materna, S.C.; Ransick, A.; Li, E.; Davidson, E.H. Diversification of oral and aboral mesodermal regulatory states in pregastrular
sea urchin embryos. Dev. Biol. 2013, 375, 92–104. [CrossRef]

103. Ch Ho, E.; Buckley, K.M.; Schrankel, C.S.; Schuh, N.W.; Hibino, T.; Solek, C.M.; Bae, K.; Wang, G.; Rast, J.P. Perturbation of gut
bacteria induces a coordinated cellular immune response in the purple sea urchin larva. Immunol. Cell Biol. 2016, 94, 861–874.
[CrossRef]

104. Solek, C.M.; Oliveri, P.; Loza-Coll, M.; Schrankel, C.S.; Ho, E.C.; Wang, G.; Rast, J.P. An ancient role for Gata-1/2/3 and Scl
transcription factor homologs in the development of immunocytes. Dev. Biol. 2013, 382, 280–292. [CrossRef]

105. Materna, S.C.; Davidson, E.H. A comprehensive analysis of Delta signaling in pre-gastrular sea urchin embryos. Dev. Biol. 2012,
364, 77–87. [CrossRef] [PubMed]

106. Howard-Ashby, M.; Materna, S.C.; Brown, C.T.; Chen, L.; Cameron, R.A.; Davidson, E.H. Gene families encoding transcription
factors expressed in early development of Strongylocentrotus purpuratus. Dev. Biol. 2006, 300, 90–107. [CrossRef] [PubMed]

107. Ettensohn, C.A.; McClay, D.R. Cell lineage conversion in the sea urchin embryo. Dev. Biol. 1988, 125, 396–409. [CrossRef]
108. Ettensohn, C.A.; Kitazawa, C.; Cheers, M.S.; Leonard, J.D.; Sharma, T. Gene regulatory networks and developmental plasticity

in the early sea urchin embryo: Alternative deployment of the skeletogenic gene regulatory network. Development 2007, 134,
3077–3087. [CrossRef]

109. Sharma, T.; Ettensohn, C.A. Regulative deployment of the skeletogenic gene regulatory network during sea urchin development.
Development 2011, 138, 2581–2590. [CrossRef]

110. Ettensohn, C.A.; Adomako-Ankomah, A. The evolution of a new cell type was associated with competition for a signaling ligand.
PLoS Biol. 2019, 17, e3000460. [CrossRef]

111. Erkenbrack, E.M. Divergence of ectodermal and mesodermal gene regulatory network linkages in early development of sea
urchins. Proc. Natl. Acad. Sci. USA 2016, 113, E7202–E7211. [CrossRef]

112. Dylus, D.V.; Czarkwiani, A.; Stangberg, J.; Ortega-Martinez, O.; Dupont, S.; Oliveri, P. Large-scale gene expression study in the
ophiuroid Amphiura filiformis provides insights into evolution of gene regulatory networks. Evodevo 2016, 7, 2. [CrossRef]

113. Wada, H.; Satoh, N. Phylogenetic relationships among extant classes of echinoderms, as inferred from sequences of 18S rDNA,
coincide with relationships deduced from the fossil record. J. Mol. Evol. 1994, 38, 41–49. [CrossRef]

http://doi.org/10.1074/jbc.271.15.9150
http://doi.org/10.1242/dev.128.13.2615
http://doi.org/10.1186/1477-5956-8-6
http://doi.org/10.1186/s12953-015-0064-7
http://doi.org/10.1186/s13059-018-1402-8
http://doi.org/10.1016/j.ydbio.2011.02.021
http://doi.org/10.1016/j.ydbio.2005.02.037
http://doi.org/10.1006/excr.2001.5398
http://doi.org/10.1111/j.1744-7410.2008.00147.x
http://doi.org/10.1073/pnas.1118085109
http://doi.org/10.1016/j.canlet.2012.08.018
http://doi.org/10.1073/pnas.0404631101
http://doi.org/10.1182/blood-2008-12-196451
http://doi.org/10.1182/blood-2009-11-252692
http://doi.org/10.1006/dbio.1993.1306
http://doi.org/10.1242/dev.122.1.253
http://doi.org/10.1016/j.ydbio.2012.11.033
http://doi.org/10.1038/icb.2016.51
http://doi.org/10.1016/j.ydbio.2013.06.019
http://doi.org/10.1016/j.ydbio.2012.01.017
http://www.ncbi.nlm.nih.gov/pubmed/22306924
http://doi.org/10.1016/j.ydbio.2006.08.033
http://www.ncbi.nlm.nih.gov/pubmed/17054934
http://doi.org/10.1016/0012-1606(88)90220-5
http://doi.org/10.1242/dev.009092
http://doi.org/10.1242/dev.065193
http://doi.org/10.1371/journal.pbio.3000460
http://doi.org/10.1073/pnas.1612820113
http://doi.org/10.1186/s13227-015-0039-x
http://doi.org/10.1007/BF00175494


Cells 2022, 11, 595 20 of 23

114. Gao, F.; Davidson, E.H. Transfer of a large gene regulatory apparatus to a new developmental address in echinoid evolution. Proc.
Natl. Acad. Sci. USA 2008, 105, 6091–6096. [CrossRef]

115. Gao, F.; Thompson, J.R.; Petsios, E.; Erkenbrack, E.; Moats, R.A.; Bottjer, D.J.; Davidson, E.H. Juvenile skeletogenesis in anciently
diverged sea urchin clades. Dev. Biol. 2015, 400, 148–158. [CrossRef]

116. Morino, Y.; Koga, H.; Tachibana, K.; Shoguchi, E.; Kiyomoto, M.; Wada, H. Heterochronic activation of VEGF signaling and the
evolution of the skeleton in echinoderm pluteus larvae. Evol. Dev. 2012, 14, 428–436. [CrossRef]

117. Hinman, V.F.; Davidson, E.H. Evolutionary plasticity of developmental gene regulatory network architecture. Proc. Natl. Acad.
Sci. USA 2007, 104, 19404–19409. [CrossRef]

118. Koga, H.; Fujitani, H.; Morino, Y.; Miyamoto, N.; Tsuchimoto, J.; Shibata, T.F.; Nozawa, M.; Shigenobu, S.; Ogura, A.; Tachibana,
K.; et al. Experimental Approach Reveals the Role of alx1 in the Evolution of the Echinoderm Larval Skeleton. PLoS ONE 2016,
11, e0149067. [CrossRef]

119. Kaneto, S.; Wada, H. Regeneration of amphioxus oral cirri and its skeletal rods: Implications for the origin of the vertebrate
skeleton. J. Exp. Zool. B Mol. Dev. Evol. 2011, 316, 409–417. [CrossRef]

120. Wada, H. Origin and genetic evolution of the vertebrate skeleton. Zool. Sci. 2010, 27, 119–123. [CrossRef]
121. Cole, A.G. A review of diversity in the evolution and development of cartilage: The search for the origin of the chondrocyte. Eur.

Cell Mater. 2011, 21, 122–129. [CrossRef]
122. Gilbert, S.F. Developmental Biology, 6th ed.; Sinauer Associates: Sunderland, MA, USA, 2000.
123. Kozhemyakina, E.; Lassar, A.B.; Zelzer, E. A pathway to bone: Signaling molecules and transcription factors involved in

chondrocyte development and maturation. Development 2015, 142, 817–831. [CrossRef]
124. Zhou, X.; von der Mark, K.; Henry, S.; Norton, W.; Adams, H.; de Crombrugghe, B. Chondrocytes transdifferentiate into

osteoblasts in endochondral bone during development, postnatal growth and fracture healing in mice. PLoS Genet. 2014,
10, e1004820. [CrossRef]

125. Hojo, H.; McMahon, A.P.; Ohba, S. An Emerging Regulatory Landscape for Skeletal Development. Trends Genet. 2016, 32, 774–787.
[CrossRef]

126. Bellido, T. Osteocyte-driven bone remodeling. Calcif. Tissue Int. 2014, 94, 25–34. [CrossRef] [PubMed]
127. Knothe Tate, M.L.; Adamson, J.R.; Tami, A.E.; Bauer, T.W. The osteocyte. Int. J. Biochem. Cell Biol. 2004, 36, 1–8. [CrossRef]
128. Fisher, S.; Franz-Odendaal, T. Evolution of the bone gene regulatory network. Curr. Opin. Genet. Dev. 2012, 22, 390–397. [CrossRef]

[PubMed]
129. Khor, J.M.; Ettensohn, C.A. Transcription Factors of the Alx Family: Evolutionarily Conserved Regulators of Deuterostome

Skeletogenesis. Front. Genet. 2020, 11, 569314. [CrossRef]
130. Wen, X.; Li, X.; Tang, Y.; Tang, J.; Zhou, S.; Xie, Y.; Guo, J.; Yang, J.; Du, X.; Su, N.; et al. Chondrocyte FGFR3 Regulates Bone Mass

by Inhibiting Osteogenesis. J. Biol. Chem. 2016, 291, 24912–24921. [CrossRef]
131. He, X.; Ohba, S.; Hojo, H.; McMahon, A.P. AP-1 family members act with Sox9 to promote chondrocyte hypertrophy. Development

2016, 143, 3012–3023. [CrossRef]
132. Karolak, M.R.; Yang, X.; Elefteriou, F. FGFR1 signaling in hypertrophic chondrocytes is attenuated by the Ras-GAP neurofibromin

during endochondral bone formation. Hum. Mol. Genet. 2015, 24, 2552–2564. [CrossRef]
133. Ryoo, H.M.; Hoffmann, H.M.; Beumer, T.; Frenkel, B.; Towler, D.A.; Stein, G.S.; Stein, J.L.; van Wijnen, A.J.; Lian, J.B. Stage-specific

expression of Dlx-5 during osteoblast differentiation: Involvement in regulation of osteocalcin gene expression. Mol. Endocrinol.
1997, 11, 1681–1694. [CrossRef]

134. Holmbeck, K.; Bianco, P.; Chrysovergis, K.; Yamada, S.; Birkedal-Hansen, H. MT1-MMP-dependent, apoptotic remodeling of
unmineralized cartilage: A critical process in skeletal growth. J. Cell Biol. 2003, 163, 661–671. [CrossRef]

135. Chan, K.M.; Wong, H.L.; Jin, G.; Liu, B.; Cao, R.; Cao, Y.; Lehti, K.; Tryggvason, K.; Zhou, Z. MT1-MMP inactivates ADAM9 to
regulate FGFR2 signaling and calvarial osteogenesis. Dev. Cell 2012, 22, 1176–1190. [CrossRef]

136. Brunet, T.; Arendt, D. Animal Evolution: The Hard Problem of Cartilage Origins. Curr. Biol. 2016, 26, R685–R688. [CrossRef]
137. Zhang, G.; Eames, B.F.; Cohn, M.J. Chapter 2. Evolution of vertebrate cartilage development. Curr. Top. Dev. Biol. 2009, 86, 15–42.

[CrossRef]
138. Cattell, M.; Lai, S.; Cerny, R.; Medeiros, D.M. A new mechanistic scenario for the origin and evolution of vertebrate cartilage.

PLoS ONE 2011, 6, e22474. [CrossRef]
139. Tarazona, O.A.; Slota, L.A.; Lopez, D.H.; Zhang, G.; Cohn, M.J. The genetic program for cartilage development has deep homology

within Bilateria. Nature 2016, 533, 86–89. [CrossRef]
140. Zhang, G.; Miyamoto, M.M.; Cohn, M.J. Lamprey type II collagen and Sox9 reveal an ancient origin of the vertebrate collagenous

skeleton. Proc. Natl. Acad. Sci. USA 2006, 103, 3180–3185. [CrossRef]
141. Mansfield, J.H.; Haller, E.; Holland, N.D.; Brent, A.E. Development of somites and their derivatives in amphioxus, and implications

for the evolution of vertebrate somites. Evodevo 2015, 6, 21. [CrossRef]
142. Rychel, A.L.; Smith, S.E.; Shimamoto, H.T.; Swalla, B.J. Evolution and development of the chordates: Collagen and pharyngeal

cartilage. Mol. Biol. Evol. 2006, 23, 541–549. [CrossRef]
143. Rychel, A.L.; Swalla, B.J. Development and evolution of chordate cartilage. J. Exp. Zool. B Mol. Dev. Evol. 2007, 308, 325–335.

[CrossRef]

http://doi.org/10.1073/pnas.0801201105
http://doi.org/10.1016/j.ydbio.2015.01.017
http://doi.org/10.1111/j.1525-142X.2012.00563.x
http://doi.org/10.1073/pnas.0709994104
http://doi.org/10.1371/journal.pone.0149067
http://doi.org/10.1002/jez.b.21411
http://doi.org/10.2108/zsj.27.119
http://doi.org/10.22203/eCM.v021a10
http://doi.org/10.1242/dev.105536
http://doi.org/10.1371/journal.pgen.1004820
http://doi.org/10.1016/j.tig.2016.10.001
http://doi.org/10.1007/s00223-013-9774-y
http://www.ncbi.nlm.nih.gov/pubmed/24002178
http://doi.org/10.1016/S1357-2725(03)00241-3
http://doi.org/10.1016/j.gde.2012.04.007
http://www.ncbi.nlm.nih.gov/pubmed/22663778
http://doi.org/10.3389/fgene.2020.569314
http://doi.org/10.1074/jbc.M116.730093
http://doi.org/10.1242/dev.134502
http://doi.org/10.1093/hmg/ddv019
http://doi.org/10.1210/mend.11.11.0011
http://doi.org/10.1083/jcb.200307061
http://doi.org/10.1016/j.devcel.2012.04.014
http://doi.org/10.1016/j.cub.2016.05.062
http://doi.org/10.1016/S0070-2153(09)01002-3
http://doi.org/10.1371/journal.pone.0022474
http://doi.org/10.1038/nature17398
http://doi.org/10.1073/pnas.0508313103
http://doi.org/10.1186/s13227-015-0007-5
http://doi.org/10.1093/molbev/msj055
http://doi.org/10.1002/jez.b.21157


Cells 2022, 11, 595 21 of 23

144. Stricker, S.; Poustka, A.J.; Wiecha, U.; Stiege, A.; Hecht, J.; Panopoulou, G.; Vilcinskas, A.; Mundlos, S.; Seitz, V. A single
amphioxus and sea urchin runt-gene suggests that runt-gene duplications occurred in early chordate evolution. Dev. Comp.
Immunol. 2003, 27, 673–684. [CrossRef]

145. Hecht, J.; Stricker, S.; Wiecha, U.; Stiege, A.; Panopoulou, G.; Podsiadlowski, L.; Poustka, A.J.; Dieterich, C.; Ehrich, S.; Suvorova,
J.; et al. Evolution of a core gene network for skeletogenesis in chordates. PLoS Genet 2008, 4, e1000025. [CrossRef]

146. Robertson, A.J.; Dickey, C.E.; McCarthy, J.J.; Coffman, J.A. The expression of SpRunt during sea urchin embryogenesis. Mech. Dev.
2002, 117, 327–330. [CrossRef]

147. Yong, L.W.; Lu, T.M.; Tung, C.H.; Chiou, R.J.; Li, K.L.; Yu, J.K. Somite Compartments in Amphioxus and Its Implications on the
Evolution of the Vertebrate Skeletal Tissues. Front. Cell Dev. Biol. 2021, 9, 607057. [CrossRef] [PubMed]

148. Andrikou, C.; Iovene, E.; Rizzo, F.; Oliveri, P.; Arnone, M.I. Myogenesis in the sea urchin embryo: The molecular fingerprint of
the myoblast precursors. Evodevo 2013, 4, 33. [CrossRef] [PubMed]

149. Benson, S.; Smith, L.; Wilt, F.; Shaw, R. The synthesis and secretion of collagen by cultured sea urchin micromeres. Exp. Cell Res.
1990, 188, 141–146. [CrossRef]

150. Potente, M.; Gerhardt, H.; Carmeliet, P. Basic and therapeutic aspects of angiogenesis. Cell 2011, 146, 873–887. [CrossRef]
151. Liu, F.; Walmsley, M.; Rodaway, A.; Patient, R. Fli1 acts at the top of the transcriptional network driving blood and endothelial

development. Curr. Biol. 2008, 18, 1234–1240. [CrossRef]
152. Neave, B.; Rodaway, A.; Wilson, S.W.; Patient, R.; Holder, N. Expression of zebrafish GATA 3 (gta3) during gastrulation and

neurulation suggests a role in the specification of cell fate. Mech. Dev. 1995, 51, 169–182. [CrossRef]
153. Ciau-Uitz, A.; Pinheiro, P.; Kirmizitas, A.; Zuo, J.; Patient, R. VEGFA-dependent and -independent pathways synergise to drive

Scl expression and initiate programming of the blood stem cell lineage in Xenopus. Development 2013, 140, 2632–2642. [CrossRef]
154. Gore, A.V.; Monzo, K.; Cha, Y.R.; Pan, W.; Weinstein, B.M. Vascular development in the zebrafish. Cold Spring Harb. Perspect. Med.

2012, 2, a006684. [CrossRef]
155. Sato, Y. Dorsal aorta formation: Separate origins, lateral-to-medial migration, and remodeling. Dev. Growth Differ. 2013, 55,

113–129. [CrossRef]
156. Gebala, V.; Collins, R.; Geudens, I.; Phng, L.K.; Gerhardt, H. Blood flow drives lumen formation by inverse membrane blebbing

during angiogenesis in vivo. Nat. Cell Biol. 2016, 18, 443–450. [CrossRef]
157. Gerhardt, H.; Golding, M.; Fruttiger, M.; Ruhrberg, C.; Lundkvist, A.; Abramsson, A.; Jeltsch, M.; Mitchell, C.; Alitalo, K.; Shima,

D.; et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 2003, 161, 1163–1177. [CrossRef]
158. Iruela-Arispe, M.L.; Davis, G.E. Cellular and molecular mechanisms of vascular lumen formation. Dev. Cell 2009, 16, 222–231.

[CrossRef]
159. Lammert, E.; Axnick, J. Vascular lumen formation. Cold Spring Harb. Perspect. Med. 2012, 2, a006619. [CrossRef]
160. Sigurbjornsdottir, S.; Mathew, R.; Leptin, M. Molecular mechanisms of de novo lumen formation. Nat. Rev. Mol. Cell Biol. 2014,

15, 665–676. [CrossRef]
161. Strilic, B.; Kucera, T.; Eglinger, J.; Hughes, M.R.; McNagny, K.M.; Tsukita, S.; Dejana, E.; Ferrara, N.; Lammert, E. The molecular

basis of vascular lumen formation in the developing mouse aorta. Dev. Cell 2009, 17, 505–515. [CrossRef]
162. Jain, R.K. Molecular regulation of vessel maturation. Nat. Med. 2003, 9, 685–693. [CrossRef]
163. Swiers, G.; Patient, R.; Loose, M. Genetic regulatory networks programming hematopoietic stem cells and erythroid lineage

specification. Dev. Biol. 2006, 294, 525–540. [CrossRef]
164. Shah, A.V.; Birdsey, G.M.; Peghaire, C.; Pitulescu, M.E.; Dufton, N.P.; Yang, Y.; Weinberg, I.; Osuna Almagro, L.; Payne, L.; Mason,

J.C.; et al. The endothelial transcription factor ERG mediates Angiopoietin-1-dependent control of Notch signalling and vascular
stability. Nat. Commun. 2017, 8, 16002. [CrossRef]

165. Liang, D.; Chang, J.R.; Chin, A.J.; Smith, A.; Kelly, C.; Weinberg, E.S.; Ge, R. The role of vascular endothelial growth factor (VEGF)
in vasculogenesis, angiogenesis, and hematopoiesis in zebrafish development. Mech. Dev. 2001, 108, 29–43. [CrossRef]

166. Chen, J.; Fu, Y.; Day, D.S.; Sun, Y.; Wang, S.; Liang, X.; Gu, F.; Zhang, F.; Stevens, S.M.; Zhou, P.; et al. VEGF amplifies transcription
through ETS1 acetylation to enable angiogenesis. Nat. Commun. 2017, 8, 383. [CrossRef] [PubMed]

167. Brown, L.A.; Rodaway, A.R.; Schilling, T.F.; Jowett, T.; Ingham, P.W.; Patient, R.K.; Sharrocks, A.D. Insights into early vasculogen-
esis revealed by expression of the ETS-do.omain transcription factor Fli-1 in wild-type and mutant zebrafish embryos. Mech. Dev.
2000, 90, 237–252. [CrossRef]

168. Dufton, N.P.; Peghaire, C.R.; Osuna-Almagro, L.; Raimondi, C.; Kalna, V.; Chauhan, A.; Webb, G.; Yang, Y.; Birdsey, G.M.;
Lalor, P.; et al. Dynamic regulation of canonical TGFbeta signalling by endothelial transcription factor ERG protects from liver
fibrogenesis. Nat. Commun. 2017, 8, 895. [CrossRef] [PubMed]

169. Wei, G.; Srinivasan, R.; Cantemir-Stone, C.Z.; Sharma, S.M.; Santhanam, R.; Weinstein, M.; Muthusamy, N.; Man, A.K.; Oshima,
R.G.; Leone, G.; et al. Ets1 and Ets2 are required for endothelial cell survival during embryonic angiogenesis. Blood 2009, 114,
1123–1130. [CrossRef]

170. Elvert, G.; Kappel, A.; Heidenreich, R.; Englmeier, U.; Lanz, S.; Acker, T.; Rauter, M.; Plate, K.; Sieweke, M.; Breier, G.; et al.
Cooperative interaction of hypoxia-inducible factor-2alpha (HIF-2alpha) and Ets-1 in the transcriptional activation of vascular
endothelial growth factor receptor-2 (Flk-1). J. Biol. Chem. 2003, 278, 7520–7530. [CrossRef]

171. Liu, F.; Patient, R. Genome-wide analysis of the zebrafish ETS family identifies three genes required for hemangioblast differentia-
tion or angiogenesis. Circ. Res. 2008, 103, 1147–1154. [CrossRef]

http://doi.org/10.1016/S0145-305X(03)00037-5
http://doi.org/10.1371/journal.pgen.1000025
http://doi.org/10.1016/S0925-4773(02)00201-0
http://doi.org/10.3389/fcell.2021.607057
http://www.ncbi.nlm.nih.gov/pubmed/34041233
http://doi.org/10.1186/2041-9139-4-33
http://www.ncbi.nlm.nih.gov/pubmed/24295205
http://doi.org/10.1016/0014-4827(90)90289-M
http://doi.org/10.1016/j.cell.2011.08.039
http://doi.org/10.1016/j.cub.2008.07.048
http://doi.org/10.1016/0925-4773(95)00351-7
http://doi.org/10.1242/dev.090829
http://doi.org/10.1101/cshperspect.a006684
http://doi.org/10.1111/dgd.12010
http://doi.org/10.1038/ncb3320
http://doi.org/10.1083/jcb.200302047
http://doi.org/10.1016/j.devcel.2009.01.013
http://doi.org/10.1101/cshperspect.a006619
http://doi.org/10.1038/nrm3871
http://doi.org/10.1016/j.devcel.2009.08.011
http://doi.org/10.1038/nm0603-685
http://doi.org/10.1016/j.ydbio.2006.02.051
http://doi.org/10.1038/ncomms16002
http://doi.org/10.1016/S0925-4773(01)00468-3
http://doi.org/10.1038/s41467-017-00405-x
http://www.ncbi.nlm.nih.gov/pubmed/28851877
http://doi.org/10.1016/S0925-4773(99)00256-7
http://doi.org/10.1038/s41467-017-01169-0
http://www.ncbi.nlm.nih.gov/pubmed/29026072
http://doi.org/10.1182/blood-2009-03-211391
http://doi.org/10.1074/jbc.M211298200
http://doi.org/10.1161/CIRCRESAHA.108.179713


Cells 2022, 11, 595 22 of 23

172. Loose, M.; Patient, R. A genetic regulatory network for Xenopus mesendoderm formation. Dev. Biol. 2004, 271, 467–478.
[CrossRef]

173. Roukens, M.G.; Alloul-Ramdhani, M.; Baan, B.; Kobayashi, K.; Peterson-Maduro, J.; van Dam, H.; Schulte-Merker, S.; Baker, D.A.
Control of endothelial sprouting by a Tel-CtBP complex. Nat. Cell Biol. 2010, 12, 933–942. [CrossRef]

174. Ciau-Uitz, A.; Pinheiro, P.; Gupta, R.; Enver, T.; Patient, R. Tel1/ETV6 specifies blood stem cells through the agency of VEGF
signaling. Dev. Cell 2010, 18, 569–578. [CrossRef]

175. Liu, F.; Li, D.; Yu, Y.Y.; Kang, I.; Cha, M.J.; Kim, J.Y.; Park, C.; Watson, D.K.; Wang, T.; Choi, K. Induction of hematopoietic and
endothelial cell program orchestrated by ETS transcription factor ER71/ETV2. EMBO Rep. 2015, 16, 654–669. [CrossRef]

176. Heo, S.H.; Cho, J.Y. ELK3 suppresses angiogenesis by inhibiting the transcriptional activity of ETS-1 on MT1-MMP. Int. J. Biol. Sci.
2014, 10, 438–447. [CrossRef]

177. Nakagawa, T.; Abe, M.; Yamazaki, T.; Miyashita, H.; Niwa, H.; Kokubun, S.; Sato, Y. HEX acts as a negative regulator of
angiogenesis by modulating the expression of angiogenesis-related gene in endothelial cells in vitro. Arter. Thromb. Vasc. Biol.
2003, 23, 231–237. [CrossRef]

178. Potente, M.; Urbich, C.; Sasaki, K.; Hofmann, W.K.; Heeschen, C.; Aicher, A.; Kollipara, R.; DePinho, R.A.; Zeiher, A.M.; Dimmeler,
S. Involvement of Foxo transcription factors in angiogenesis and postnatal neovascularization. J. Clin. Investig. 2005, 115,
2382–2392. [CrossRef]

179. Wilhelm, K.; Happel, K.; Eelen, G.; Schoors, S.; Oellerich, M.F.; Lim, R.; Zimmermann, B.; Aspalter, I.M.; Franco, C.A.; Boettger,
T.; et al. FOXO1 couples metabolic activity and growth state in the vascular endothelium. Nature 2016, 529, 216–220. [CrossRef]

180. Oladipupo, S.S.; Smith, C.; Santeford, A.; Park, C.; Sene, A.; Wiley, L.A.; Osei-Owusu, P.; Hsu, J.; Zapata, N.; Liu, F.; et al.
Endothelial cell FGF signaling is required for injury response but not for vascular homeostasis. Proc. Natl. Acad. Sci. USA 2014,
111, 13379–13384. [CrossRef]

181. House, S.L.; Castro, A.M.; Lupu, T.S.; Weinheimer, C.; Smith, C.; Kovacs, A.; Ornitz, D.M. Endothelial fibroblast growth factor
receptor signaling is required for vascular remodeling following cardiac ischemia-reperfusion injury. Am. J. Physiol. Heart Circ.
Physiol. 2016, 310, 559–571. [CrossRef]

182. Singh, H.; Hansen, T.M.; Patel, N.; Brindle, N.P. The molecular balance between receptor tyrosine kinases Tie1 and Tie2 is
dynamically controlled by VEGF and TNFalpha and regulates angiopoietin signalling. PLoS ONE 2012, 7, e29319. [CrossRef]

183. Hasegawa, Y.; Abe, M.; Yamazaki, T.; Niizeki, O.; Shiiba, K.; Sasaki, I.; Sato, Y. Transcriptional regulation of human angiopoietin-2
by transcription factor Ets-1. Biochem. Biophys. Res. Commun. 2004, 316, 52–58. [CrossRef]

184. Rundhaug, J.E. Matrix metalloproteinases and angiogenesis. J. Cell Mol. Med. 2005, 9, 267–285. [CrossRef]
185. Van Buul, J.D.; Geerts, D.; Huveneers, S. Rho GAPs and GEFs: Controling switches in endothelial cell adhesion. Cell Adhes. Migr.

2014, 8, 108–124. [CrossRef]
186. Munoz-Chapuli, R. Evolution of angiogenesis. Int. J. Dev. Biol. 2011, 55, 345–351. [CrossRef]
187. Monahan-Earley, R.; Dvorak, A.M.; Aird, W.C. Evolutionary origins of the blood vascular system and endothelium. J. Thromb.

Haemost. 2013, 11 (Suppl. 1), 46–66. [CrossRef]
188. Cebe-Suarez, S.; Zehnder-Fjallman, A.; Ballmer-Hofer, K. The role of VEGF receptors in angiogenesis; complex partnerships. Cell

Mol. Life Sci. 2006, 63, 601–615. [CrossRef]
189. Tiozzo, S.; Voskoboynik, A.; Brown, F.D.; De Tomaso, A.W. A conserved role of the VEGF pathway in angiogenesis of an

ectodermally-derived vasculature. Dev. Biol. 2008, 315, 243–255. [CrossRef] [PubMed]
190. Samarghandian, S.; Shibuya, M. Vascular Endothelial Growth Factor Receptor Family in Ascidians, Halocynthia roretzi (Sea

Squirt). Its High Expression in Circulatory System-Containing Tissues. Int. J. Mol. Sci. 2013, 14, 4841–4853. [CrossRef]
191. Pascual-Anaya, J.; Albuixech-Crespo, B.; Somorjai, I.M.; Carmona, R.; Oisi, Y.; Alvarez, S.; Kuratani, S.; Munoz-Chapuli, R.;

Garcia-Fernandez, J. The evolutionary origins of chordate hematopoiesis and vertebrate endothelia. Dev. Biol. 2013, 375, 182–192.
[CrossRef]

192. Yoshida, M.A.; Shigeno, S.; Tsuneki, K.; Furuya, H.H. Squid vascular endothelial growth factor receptor: A shared molecular
signature in the convergent evolution of closed circulatory systems. Evol. Dev. 2010, 12, 25–33. [CrossRef] [PubMed]

193. Tettamanti, G.; Grimaldi, A.; Valvassori, R.; Rinaldi, L.; de Eguileor, M. Vascular endothelial growth factor is involved in
neoangiogenesis in Hirudo medicinalis (Annelida, Hirudinea). Cytokine 2003, 22, 168–179. [CrossRef]

194. Cho, N.K.; Keyes, L.; Johnson, E.; Heller, J.; Ryner, L.; Karim, F.; Krasnow, M.A. Developmental control of blood cell migration by
the Drosophila VEGF pathway. Cell 2002, 108, 865–876. [CrossRef]

195. Heino, T.I.; Karpanen, T.; Wahlstrom, G.; Pulkkinen, M.; Eriksson, U.; Alitalo, K.; Roos, C. The Drosophila VEGF receptor homolog
is expressed in hemocytes. Mech. Dev. 2001, 109, 69–77. [CrossRef]

196. Munier, A.I.; Doucet, D.; Perrodou, E.; Zachary, D.; Meister, M.; Hoffmann, J.A.; Janeway, C.A., Jr.; Lagueux, M. PVF2, a
PDGF/VEGF-like growth factor, induces hemocyte proliferation in Drosophila larvae. EMBO Rep. 2002, 3, 1195–1200. [CrossRef]
[PubMed]

197. Bruckner, K.; Kockel, L.; Duchek, P.; Luque, C.M.; Rorth, P.; Perrimon, N. The PDGF/VEGF receptor controls blood cell survival
in Drosophila. Dev. Cell 2004, 7, 73–84. [CrossRef] [PubMed]

198. Ma, H.; Wang, J.; Wang, B.; Zhao, Y.; Yang, C. Characterization of an ETS transcription factor in the sea scallop Chlamys farreri.
Dev. Comp. Immunol. 2009, 33, 953–958. [CrossRef] [PubMed]

199. Dejana, E. Endothelial cell-cell junctions: Happy together. Nat. Rev. Mol. Cell Biol. 2004, 5, 261–270. [CrossRef]

http://doi.org/10.1016/j.ydbio.2004.04.014
http://doi.org/10.1038/ncb2096
http://doi.org/10.1016/j.devcel.2010.02.009
http://doi.org/10.15252/embr.201439939
http://doi.org/10.7150/ijbs.8095
http://doi.org/10.1161/01.ATV.0000052670.55321.87
http://doi.org/10.1172/JCI23126
http://doi.org/10.1038/nature16498
http://doi.org/10.1073/pnas.1324235111
http://doi.org/10.1152/ajpheart.00758.2015
http://doi.org/10.1371/journal.pone.0029319
http://doi.org/10.1016/j.bbrc.2004.02.019
http://doi.org/10.1111/j.1582-4934.2005.tb00355.x
http://doi.org/10.4161/cam.27599
http://doi.org/10.1387/ijdb.103212rm
http://doi.org/10.1111/jth.12253
http://doi.org/10.1007/s00018-005-5426-3
http://doi.org/10.1016/j.ydbio.2007.12.035
http://www.ncbi.nlm.nih.gov/pubmed/18234178
http://doi.org/10.3390/ijms14034841
http://doi.org/10.1016/j.ydbio.2012.11.015
http://doi.org/10.1111/j.1525-142X.2009.00388.x
http://www.ncbi.nlm.nih.gov/pubmed/20156280
http://doi.org/10.1016/S1043-4666(03)00176-5
http://doi.org/10.1016/S0092-8674(02)00676-1
http://doi.org/10.1016/S0925-4773(01)00510-X
http://doi.org/10.1093/embo-reports/kvf242
http://www.ncbi.nlm.nih.gov/pubmed/12446570
http://doi.org/10.1016/j.devcel.2004.06.007
http://www.ncbi.nlm.nih.gov/pubmed/15239955
http://doi.org/10.1016/j.dci.2009.05.003
http://www.ncbi.nlm.nih.gov/pubmed/19446578
http://doi.org/10.1038/nrm1357


Cells 2022, 11, 595 23 of 23

200. Schatteman, G.C.; Awad, O. Hemangioblasts, angioblasts, and adult endothelial cell progenitors. Anat. Rec. Part. A Discov. Mol.
Cell. Evol. Biol. 2004, 276, 13–21. [CrossRef]

201. Khor, J.M.; Ettensohn, C.A. Functional divergence of paralogous transcription factors supported the evolution of biomineralization
in echinoderms. eLife 2017, 6, e32728. [CrossRef]

202. Lehenkari, P.; Hentunen, T.A.; Laitala-Leinonen, T.; Tuukkanen, J.; Vaananen, H.K. Carbonic anhydrase II plays a major role in
osteoclast differentiation and bone resorption by effecting the steady state intracellular pH and Ca2+. Exp. Cell Res. 1998, 242,
128–137. [CrossRef]

203. Wu, J.; Glimcher, L.H.; Aliprantis, A.O. HCO3−/Cl− anion exchanger SLC4A2 is required for proper osteoclast differentiation
and function. Proc. Natl. Acad. Sci. USA 2008, 105, 16934–16939. [CrossRef]

http://doi.org/10.1002/ar.a.10131
http://doi.org/10.7554/eLife.32728
http://doi.org/10.1006/excr.1998.4071
http://doi.org/10.1073/pnas.0808763105

	Introduction 
	Biomineralization and Its Evolution 
	Skeletogenesis in Echinoderms and the GRNs That Control It 
	Adult and Larval Skeletogenesis in Echinoderms 
	The GRN and Differentiation Genes That Control Sea Urchin Larval Skeletogenesis 
	Echinoderm Skeletogenic and Mesodermal GRNs 

	GRNs That Drive Biomineralization in Vertebrates 
	Biomineralization Programs in Vertebrates 
	Endochondral Ossification in Vertebrates 
	GRNs That Drive Endochondral Ossification in Vertebrates 
	The Evolutionary Origin of the Endochondral Ossification GRNs 
	Vertebrates’ Bone GRNs vs. the Echinoderm Skeletal GRNs 

	GRNs That Drive Vascular Tubulogenesis in Vertebrates 
	Vertebrates’ Endothelial Cells, Vascularization and Angiogenesis 
	The Endothelial GRN That Drives Vascularization and Angiogenesis 
	The Evolution of the Vertebrates’ Vascularization GRN 
	The Vascularization GRN vs. the Echinoderms’ Skeletal GRN 

	Conclusions-Biomineralization Gene Regulatory Networks Evolve through the Co-Option of Organic Scaffold Forming Networks 
	References

