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Abstract: In this review, 170 natural substances, including steroid, diterpenoid, sesquiterpenoid,
peptide, prostaglandin, base, chlorolipid, bicyclolactone, amide, piperazine, polyketide, glycerol,
benzoic acid, glycyrrhetyl amino acid, hexitol, pentanoic acid, aminoethyl ester, octadecanone,
alkaloid, and a 53-kD allergenic component from octocorals belonging to genus Dendronephthya,
were listed. Some of these compounds displayed potential bioactivities.

Keywords: octocoral; Dendronephthya; steroid; natural compound

1. Introduction

Octocorals of the genus Dendronephthya (phylum Cnidaria, class Anthozoa, subclass Octocorallia,
order Alcyonacea, suborder Alcyoniina, family Nephtheidae) [1], distributed in the Indo-Pacific Ocean,
have been investigated. Since the initial study in 1999 discovered four antifouling seco-steroids,
isogosterones A–D (1–4), from an octocoral Dendronethphya sp. collected off the Izu Peninsula, Japan [2]
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(Figure 1), subsequent studies over the past two decades have yielded a series of interesting secondary
metabolites, particularly steroid metabolites. In this article, different types of compounds isolated from
Dendronephthya spp., were summarized.
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1-ene-3,22-dione (13) [7], were isolated from D. gigantea, collected at Green Island, off Taiwan [8] 
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Figure 1. Structures of isogosterones A–D (1–4).

2. Dendronephthya gigantea (Verrill, 1864)

The Dendronephthya genus includes one common species, D. gigantea. Yoshikawa and colleagues
isolated five polyhydroxylated sterols, including two new metabolites, dendronesterols A (5) and B (6),
along with three known analogues, (22E,24S)-24-methyl-cholesta-7,22-diene-3β,5α, 6β,9α-tetrol (7) [3],
(22E)-cholesta-7,22-diene-3β,5α,6β,9α-tetrol (8) [3], and (22E)-24-norcholesta-7, 22-diene-3β,5α,6β-triol
(9) [4,5] (Figure 2), from D. gigantea collected off the coast of Tokushima, Japan [6]. The study also
established the structures of new sterols 5 and 6 by spectroscopic methods. A cytotoxic assay showed
that sterol 6 had an IC50 value of 5.2 µg/mL in the treatment of L1210 (mouse lymphocytic leukemia)
cells [6].
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Figure 2. Structures of dendronesterols A (5) and B (6), (22E,24S)-24-methyl-cholesta-7,22-diene-3β,
5α,6β,9α-tetrol (7), (22E)-cholesta-7,22-diene-3β,5α,6β,9α-tetrol (8), and (22E)-24-norcholesta-7,22-
diene-3β,5α,6β-triol (9).

In 2004, three new steroids, dendronesterones A–C (10–12), along with a known steroid,
cholest-1-ene-3,22-dione (13) [7], were isolated from D. gigantea, collected at Green Island, off Taiwan [8]
(Figure 3). Structures of steroids 10–13 were established by spectroscopic methods, and the 1H and
13C chemical shifts at C-23 and C-24 in steroid 13 were revised in this study. In the cytotoxic testing,
steroids 10 and 13 had ED50 values of 9.84 and 8.93 µM, respectively, in the treatment of P-388
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(mouse lymphoma) cells, and 13 was cytotoxic toward HT-29 (human colorectal adenocarcinoma) cells
with an ED50 value of 9.03 µM [8].Molecules 2020, 25, x FOR PEER REVIEW 3 of 25 
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Furthermore, two known metabolites, including a monoalkyl glycerol ether (±)-1-non-
adecyloxy-2,3-propanediol (14) [9], a ceramide, (2S,3R,4E,8E)-N-hexadecanoyl-2-amino-4,8-
octadecadiene-1,3-diol (15) [10–14], as well as two bases, thymine (16) and uracil (17), (Figure 4),
were isolated from the organic extract of D. gigantea, collected in the area of Jeju Island, Korea [15].
The structures of metabolites 14–17 were established by spectroscopic methods and by comparison of
their physical and spectral data with those of literature values and glycero 14 was found to be cytotoxic
toward A549 (human lung epithelial carcinoma), HT-29, HT-1080 (human connective tissue epithelial
fibrosarcoma), and SNU-638 (human gastric adenocarcinoma) cells with IC50 values of 15.1, 14.5, 13.7,
and 15.5 µg/mL, respectively [15]. Glycerol 14 was not optically active ([α]25

D 0.00 (c 0.134, MeOH)),
indicating that this compound is a racemic mixture. Thus, the stereogenic center C-2 in 14 was not
determined [15]. Sphingolipid 15 showed cytotoxicity against human peripheral blood mononuclear
cells (PBMC) with an ED50 of 20 µg/mL [13].
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Figure 4. Structures of (±)-1-nonadecyloxy-2,3-propanediol (14) and (2S,3R,4E,8E)-N-hexadecanoyl-
2-amino-4,8-octadecadiene-1,3-diol (15), thymine (16), and uracil (17).

Eight well known secondary metabolites, including (2S,3R,4E,8E)-N-hexadecanoyl-2-amino-4,8-
octadecadiene-1,3-diol (15) [10–14] (Figure 4), (2S,3R,4E)-N-hexadecanoyl-2-amino-4-octadecane-1,3-
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diol (18) [10,16], N-phenethylacetamide (19) [17–21], cyclo-(Leu-Pro) (20), cyclo-(Ala-Pro) (21),
cyclo-(Val-Pro) (22) [22], 2,4-dichlorobenzonic acid (23) [23], thymidine (24) [24–32], 2′-deoxyuridine
(25) [27–30,32,33], and cholesterol (26) [30] (Figure 5), were isolated from D. gigantea, collected from the
South China Sea [34]. The structures of compounds 15 and 18–26 were elucidated by spectral data and
by comparison with the spectral and physical data of other known compounds [34].
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Figure 5. Structures of (2S,3R,4E)-N-hexadecanoyl-2-amino-4-octadecane-1,3-diol (18), N-phenethyl
-acetamide (19), cyclo-(Leu-Pro) (20), cyclo-(Ala-Pro) (21), cyclo-(Val-Pro) (22), 2,4-dichlorobenzonic
acid (23), thymidine (24), 2′-deoxyuride (25), and cholesterol (26).

In 2012, six steroids, including three new compounds, 3-oxocholest-1,22-dien-12β-ol (27),
3-oxocholest-1,4-dien-20β-ol (28), 3-oxocholest-1,4-dien-12β-ol (29), along with three known analogues,
(20S)-20-hydroxyergosta-1,4,24-trien-3-one (30) [35], 5α,8α-epidioxycholesta-6,22-dien-3β-ol (31) [36],
and 5-cholestene-3β,12β-diol (32) [37] (Figure 6), were isolated from D. gigantea, collected near Geo-Je
Island, South Korea [38]. The structures for steroids 27–32 were established by spectroscopic methods.
Steroids 27–31 displayed inhibitory activity against farnesoid X-activated receptor (FXR) with IC50′s 14,
15, 100, 22, and 61 µM, respectively, and were not cytotoxic toward the CV-1 cells (Cercopithecus aethiops,
African green monkey kidney cells) [38].

In 2017, Jeon and Lee’s group reported the isolation of a mixture consisting nine 3β-hydroxy-
∆5-steroidal congeners, including 26,27-dinorergosta-5,22-dien-3β-ol (33) [39], cholesta-5,22-dien-
3β-ol (including 22-trans form 34 and 22-cis form 35) [40], cholest-5-en-3β-ol (= cholesterol) (26) [30]
(Figure 5), ergosta-5,22-dien-3β-ol (36) [41], stigmasta-5,24-dien-3β-ol (= fucosterol) (37) [42–48],
stigmasta-5,22-dien-3β-ol (38) [48], stigmasta-5-en-3β-ol (39) [48], and 22,23-methylenecholesterol
(40) [49] (Figure 7), from D. gigantea collected from Jeju Island, South Korea [50]. The structures
for all sterols 26 and 33–40 were determined by GC-MS/MS analysis. In lipopolysaccharides (LPS)-
stimulated RAW cells, this mixture inhibited nitric oxide (NO) and prostaglandin E2 (PGE2) production
via the downregulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2)
inflammatory mediators. This sterol-rich mixture also suppressed the expression of proinflammatory
cytokines, including tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), and interleukin 6
(IL-6). The anti-inflammatory effects of this sterol-rich mixture was confirmed in an LPS-stimulated
in vivo zebrafish model by the downregulation of iNOS and COX-2 expression, inhibition of NO
and reactive oxygen species (ROS) levels, and increased cytoprotective effects against LPS-induced
toxicity [50]. Furthermore, this sterol-rich fraction was found to exhibit cytotoxicity toward HL-60
(human acute promyelocytic leukemia) and MCF-7 (Michigan Cancer Foundation-7, human invasive
ductal carcinoma) cells with IC50 values of 13.59 and 29.41 µg/mL [51], and one of the mixtures,
stigmasta-5-en-3β-ol (39), displayed cytotoxicity on HL-60 and MCF-7 cells with IC50 values of 37.82
and 45.17 µg/mL, respectively [52].
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Figure 7. Structures of 26,27-dinorergosta-5,22-dien-3β-ol (33), cholesta-5,22-dien-3β-ol (including
22-trans form 34 and 22-cis form 35), ergosta-5,22-dien-3β-ol (36), stigmasta-5,24-dien-3β-ol (= fucosterol)
(37), stigmasta-5,22-dien-3β-ol (38), stigmasta-5-en-3β-ol (39), and 22,23-methylene- cholesterol (40).

Fifteen steroids, including four new compounds, 7-dehydroerectasteroid F (41),
11α-acetoxyarmatinol A (42), 22,23-didehydroarmatinol A (43), and 3-O-acetylhyrtiosterol (44), as well
as 11 known steroids, 24-methylene-5-cholesten-3β,7β-diol (45) [53], 24-methylene-5-cholesten-3β,
19-diol (= litosterol) (46) [54], 24-methylene-5-cholesten-3β,19-diol-7β-monoacetate (47) [55],
5,6-epoxylitosterol (48) [54], armatinol A (49) [56], hyrtiosterol (50) [57,58], (2β,3β,4α,5α,8β,11β)-4-
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methylergost-24-ene-2,3,8,11-tetrol (51) [58], and erectasteroids C–F (52–55) [59] (Figure 8), were isolated
from D. gigantea, collected from the inner coral reef of Meishan, Hainan Province, China [60].
The structures of new steroids 41–43 were elucidated by comprehensive spectroscopic analysis and
steroid 41 was found to show protection against hydrogen-peroxide (H2O2)-induced oxidative damage
in neuron-like PC-12 (rat adrenal gland pheochromocytoma) cells by promoting nuclear translocation
of nuclear factor erythroid 2-related factor 2 (Nrf2) and enhancing the expression of heme oxygenase-1
(HO-1) [60].
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dehydroarmatinol A (43), 3-O-acetylhyrtiosterol (44), 24-methylene-5-cholesten-3β,7β-diol (45),
24- methylene-5-cholesten-3β,19-diol (46), 24-methylene-5-cholesten-3β,19-diol-7β-monoacetate (47),
5,6-epoxylitosterol (48), armatinol A (49), hyrtiosterol (50), (2β,3β,4α,5α,8β,11β)-4-methylergost-24
(28)-ene-2,3,8,11-tetrol (51), and erectasteroids C–F (52–55).
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3. Dendronephthya griffini (Roxas, 1933)

Ten new steroids, griffinisterones A–I (56–64) and griffinipregnone (65) (Figure 9), were obtained
from D. griffini specimens collected by a bottom trawl net at depths from 200 to 100 m at Taiwan
Straight in December 2004 [61,62]. The structures of steroids 56–65 were determined by spectroscopic
methods and the configuration of griffinisterone A (56) was further confirmed by a single-crystal X-ray
diffraction analysis [61,62]. The absolute stereochemistry of griffinisterone E (60) was determined by
the application of a modified phenylglycine methyl ester (PGME) method [61]. Anti-inflammatory
assays revealed that griffinisterones A–D (56–59), F–H (61–63), and griffinipregnone (65), reduced the
levels of iNOS protein to 49.7, 48.9, 8.1, 29.8, 13.4, 6.5, 15.4, and 59.6%, respectively, at a concentration
of 10 µM [61,62]. At the same concentration, griffinisterones F (61), G (62), and griffinipregnone (65),
reduced the levels of COX-2 protein to 61.7, 31.5, and 52.3%, respectively [62].
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Furthermore, two new interesting polychlorolipids, (2R,3S,4R,5S,6S,7R)-2,3,5,6,7-pentachloro-
pentadec-14-en-4-yl hydrogen sulfate (66), (2R,3S,4R,5S,6S,7R)-2,3,5,6,7-pentachloropentadec-14-
en-4-ol (67), and a new natural substance, (2R,3S,4R,5S,6S,7R,E)-2,3,5,6,7,15-hexachloropentadec-
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14-en-4-ol (68) [63,64], along with a known analogue, chlorosulfolipid (69) [63,64] (Figure 10),
were obtained from D. griffini [65]. The structures of chlorolipids 66–69 were determined by extensive
spectroscopic analysis and by comparison of the NMR data with those of known compounds. It was
found that chlorolipid 68 has been prepared from the hydrolysis of 69 [63] and by a total synthesis of
racemic 68 [64]. Chlorolipid 68 was isolated for the first time from a natural source and the compounds
of this type was isolated for the first time from the soft corals [65].Molecules 2020, 25, x FOR PEER REVIEW 8 of 25 
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4. Dendronephthya hemprichi (Klunzinger, 1877)

Chemical investigation of the extract of D. hemprichi, collected from the Red Sea, Egypt, delivered
a novel glycyrrhetyl amino acid, dendrophen (70), a new sterol, dendrotriol (71), along with the
well-known metabolites, cholesterol (26) [30] (Figure 4) and hexitol (72) [66]. The structures of new
compounds 70 and 71 were established by spectroscopic methods, although the stereocehmsitry for
C-24 stereogenic center in 71 was not determined [66]. Furthermore, chromatography separation of the
low-polarity components of D. hemprichi extract afforded 4-oxo- pentanoic acid (73), 2-methyl-acrylic
acid 2-diethylaminoethyl ester (74), juniper camphor (75), and 2-octadecanone (76) (Figure 11) [66].
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5. Dendronephthya mucronata (Pütter, 1900)

A new pregane-type steroid 5α-pregn-20-en-3,6-dione (77), along with five known steroids,
5α- pregn-20-en-3β-ol (78) [67–69], 1,4,20-pregnatrien-3-one (79) [70–74], 15β-acetoxypregna-1,
4,20-trien-3-one (80) [73,75], 5α-cholestan-3,6-dione (81) [76–78], and 5α-cholest-22-en-3,6-dione
(82) [79], (Figure 12), were isolated from D. mucronate collected from waters off Phu Quoc Islands,
Kien Giang, Vietnam in 2018 [80]. The structure of new steroid 77 was elucidated by spectroscopic
method. Steroids 78 and 81 showed moderate inhibitory effects on LPS-induced NO formation in
RAW264.7 murine macrophage cells with IC50 values of 30.15 and 35.97 µM, respectively.Molecules 2020, 25, x FOR PEER REVIEW 9 of 25 
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Figure 12. Structures of 5α-pregn-20-en-3,6-dione (77), 5α-pregn-20-en-3β-ol (78), 1,4,20-pregna-
trien-3-one (79), 15β-acetoxypregna-1,4,20-trien-3-one (80), 5α-cholestan-3,6-dione (81), and 5α-
cholest-22-en-3,6-dione (82).

Furthermore, three new bicyclo lactones, dendronephthyones A–C (83–85), along with a known
analogue, suberosanone B (86) [81] (Figure 13), were isolated from the methanol extract of the same target
material D. mucronata [82]. Structures of lactones 83–86 were established by spectroscopic methods and
these four compounds exhibited cytotoxicity toward HeLa (human papillomavirus-related endocervical
adenocarcinoma) cells with IC50 values of 32.48, 30.12, 35.45, and 14.45 µM, respectively [82].
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6. Dendronephthya nipponica (Utinomi, 1952)

A red soft-coral D. nipponica cause spiny lobster fisherman living along the coast of
Miyazaki Prefecture, Japan to develop occupational allergies. In order to understand the allergic
mechanism, a new 53-kD allergenic component (Den n 1) (87) was purified and the N-terminal
amino of this allergen component was determined and identified as Asp-Asp-IIe-Asn-Arg-Tyr-
Ala-Phe-Asp-Asn-Lys-IIe-Asn-Asp-Lys-Leu-Phe-Asp-His-Trp-Gln-Ser [83].
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7. Dendronephthya puetteri (Kükenthal, 1905)

In 2018, Jeon’s group reported the isolation of a 3β-hydroxy-∆5-steroidal congener,
consisting of six sterols, cholesterol (26) [30] (Figure 4), cholesta-5,22-dien-3β-ol (34) [40],
ergosta-5,22-dien-3β-ol (36) [41], stigmasta-5-en-3β-ol (39) [48], 22,23-methylenecholesterol (40) [49]
(Figure 7), and cholesta-5,24-dien-3β-ol (88) [84] (Figure 14), from D. puetteri, collected from the Jeju
Island, South Korea [85]. The structures for all sterols 26, 34, 36, 39, 40, and 88 were determined
by GC-MS/MS analysis [85]. In lipopolysaccharides (LPS)-stimulated RAW264.7 cells, this mixture
inhibited nitric oxide (NO) production with an IC50 value of 6.54 µg/mL. Moreover, this congener
reduced the level of PGE2 TNF-α, IL-1β, and IL-6. The anti-inflammatory effects of this sterol-rich
mixture was confirmed in an LPS-stimulated in vivo zebrafish model by the downregulation of NO,
iNOS, COX-2, ROS production and cell death [85,86], and this sterol rich congener showed cytotoxicity
toward HL-60 and MCF-7 cells with IC50 values of 25.27 and 22.81 µg/mL, respectively [87].
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8. Dendronephthya rubeola (Henderson, 1909)

Four new acetoxycapnellenes, 2α,8β,13-triacetoxycapnell-9-ene-10α-ol (89), 3α,8β,14-tri-
acetoxycapnell-9-ene-10α-ol (90), 3α,14-diacetoxycapnell-9-ene-8β,10α-diol (91), 3α,8β-di-acetoxycapnell-
9-ene-10α-ol (92), and the first epoxyprecapnellene, 3α,4α-epoxyprecapnell-10- ene (93), as well as two
known analogues, capnell-9-ene-8β,10α-diol (94) [88,89] and 8β-acetoxy- capnell-9-ene-10α-ol (95) [88,90]
(Figure 15), were obtained from D. rubeola, collected from the waters near Bali, Indonesia [91]. Structures of
89–95 were established by spectroscopic methods. Compounds 94 and 95 displayed antiproliferative
activity against L-929 (murine connective tissue fibroblasts) (GI50 = 6.8, 20.9 µM) [91]; 94 displayed
cytotoxicity toward HL-60, K-562 (human chronic myelogenous leukemia), G-402 (human renal
leiomyoblastoma), MCF-7, HT-115 (human colon carcinoma), and A-2780 (human ovarian endometrioid
adenocarcinoma) cells with IC50 values of 51, 0.7, 42–51, 93, 63, and 9.7µM, respectively [89]. Compounds 94
and 95 also showed cytotoxicity toward HeLa cells (CC50 = 7.6, 9.4 µM) [91]. It is interesting to note
that compound 94 (capnell-9-ene-8β,10α-diol) inhibited the interaction of oncogenic transcription factor
Myc (a family of regulator genes and proto-oncogenes that code for transcription factors) with its partner
protein Max (inhibition = 77%) in yeast [91].
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9. Dendronephthya studeri (Ridley, 1884)

Eleven steroids, including eight new metabolites, (22E)-19-norcholesta-1,3,5,22-tetraen-3-ol
(96), (22E)-19,24-dinorcholesta-1,3,5,22-tetraen-3-ol (97), (22E)-24,26-cyclo-19-norcholesta-1,3,5
(10),22-tetraen-3-ol (98), 24-methylene-19-norcholesta-1,3,5,22-tetraen-3-ol (99), (22E,24S)-24-methyl-19-
norcholesta-1,3,5,22-tetraen-3-ol (100), (22E,24R)-24-methyl-19-norcholesta-1,3,5, 22-tetraen-3-ol (101),
24-methylenecholesta-1,4,22-trien-3-one (102), and (22E)-24-cholesta-1,4,22- trien-3-one (103), which all
were found to be characterized by either the presence of an aromatic ring or a cross-conjugated
dienone system in ring A, as well as three known steroids, methyl spongoate (104) [92],
19-norcholesta-1,3,5-trien-3-ol (105) [93,94], and dendronesterone C (12) (Figure 3) [8], were obtained
from D. studeri, collected off the coast of Xiaodong Sea, Hainan Province, China [95] (Figure 16).
Structures of isolates 12 and 96–105 were established by spectroscopic analysis and by comparison
of their NMR data with those reported in the literature. Steroid 104 exhibited cytotoxicity against
BEL-7402 (human papillomavirus-related endocervical adenocarcinoma), A-549, HT-29, and P-388
cells with IC50 values of 0.14, 5, 5, and 3.8 µg/mL [92].

Molecules 2020, 25, x FOR PEER REVIEW 11 of 25 

 

Structures of isolates 12 and 96–105 were established by spectroscopic analysis and by comparison of 

their NMR data with those reported in the literature. Steroid 104 exhibited cytotoxicity against BEL-

7402 (human papillomavirus-related endocervical adenocarcinoma), A-549, HT-29, and P-388 cells 

with IC50 values of 0.14, 5, 5, and 3.8 µg/mL [92].  

 

Figure 16. Structures of (22E)-19-norcholesta-1,3,5,22-tetraen-3-ol (96), (22E)-19,24-dinor- cholesta-

1,3,5,22-tetraen-3-ol (97), (22E)-24,26-cyclo-19-norcholesta-1,3,5,22-tetraen-3-ol (98), 24-methylene-19-

norcholesta-1,3,5,22-tetraen-3-ol (99), (22E,24S)-24-methyl-19-norcholesta-1,3,5 (10),22-tetraen-3-ol 

(100), (22E,24R)-24-methyl-19-norcholesta-1,3,5,22-tetraen-3-ol (101), 24- methylenecholesta-1,4,22-

trien-3-one (102), (22E)-24-cholesta-1,4,22-trien-3-one (103), methyl spongoate (104), and 19-

norcholesta-1,3,5-trien-3-ol (105). 

10. Dendronephthya spp. 

Dendronephthya is a genus of octocoral belonging to the family Nephtheidae and there are over 

250 described species in this genus. In 1990, Katrich and colleagues identified the correlation between 

the number of particular phospholipids (PhLs) and prostaglandins (PGs) that influenced the 

prostaglandin-like activities of the extracts from (1) Dendronephthya sp., collected in the region of the 

Great Barrier Reef, Australia and (2) Dendronephthya sp., collected in Vietnam [96]. 

An acetone extract from Dendronephthya sp., collected in 1990, off the Chichi-jima and Haha-jima 

Islands in the Ogasawara Islands, Japan, showed a high level of antifouling activity against the blue 

mussel Mytilus edulis [97]. Purification of the extract gave mixtures of sterols and fatty acids as active 

components. In the sterol mixture, there are several sterols, (24S)-24-methylcholesta-5(E),22- dien-3β-

Figure 16. Structures of (22E)-19-norcholesta-1,3,5,22-tetraen-3-ol (96), (22E)-19,24-dinor-cholesta-1,3,5,22-
tetraen-3-ol (97), (22E)-24,26-cyclo-19-norcholesta-1,3,5,22-tetraen-3-ol (98), 24-methylene-19-norcholesta-
1,3,5,22-tetraen-3-ol (99), (22E,24S)-24-methyl-19-norcholesta-1,3,5 (10),22-tetraen-3-ol (100), (22E,24R)-24-
methyl-19-norcholesta-1,3,5,22-tetraen-3-ol (101), 24- methylenecholesta-1,4,22-trien-3-one (102), (22E)-24-
cholesta-1,4,22-trien-3-one (103), methyl spongoate (104), and 19-norcholesta-1,3,5-trien-3-ol (105).
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10. Dendronephthya spp.

Dendronephthya is a genus of octocoral belonging to the family Nephtheidae and there are
over 250 described species in this genus. In 1990, Katrich and colleagues identified the correlation
between the number of particular phospholipids (PhLs) and prostaglandins (PGs) that influenced the
prostaglandin-like activities of the extracts from (1) Dendronephthya sp., collected in the region of the
Great Barrier Reef, Australia and (2) Dendronephthya sp., collected in Vietnam [96].

An acetone extract from Dendronephthya sp., collected in 1990, off the Chichi-jima and Haha-jima
Islands in the Ogasawara Islands, Japan, showed a high level of antifouling activity against the blue
mussel Mytilus edulis [97]. Purification of the extract gave mixtures of sterols and fatty acids as active
components. In the sterol mixture, there are several sterols, (24S)-24-methylcholesta-5(E),22- dien-3β-ol
(= pincsterol) or (24R)-24-methylcholesta-5(E),22-dien-3β-ol (= brassicasterol) (106) [98], cholesterol
(26) [30] (Figure 5), β-sitosterol (stigmasta-5-en-3β-ol) (39) [48], and β-cholestanol (5α- cholestan-3β-ol)
(107) [99] were identified and sterol 39 in this study [97] was found to contain 35% of a 24S epimer
(clionasterol) (108) [100,101] (Figure 17). Sterol 39 had the highest antifouling activity among sterols 26,
39, and 107 [97]. Moreover, a fatty acid mixture, showing the presence of saturated and unsaturated
fatty acids with a chain length of C12 to C22, being rich in C16 and C18 acids as active constituents in
antifouling activity [97].
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and clionasterol (108).

Kawamata et al. isolated an antifouling substance, trigonelline (109) (Figure 18),
from Dendronephthya sp. collected at Chichijima Island in the Ogasawara Islands [102]. The structure
of 109 was elucidated by spectroscopic methods and this compound showed the same level of
settling-inhibitory activity against the acorn barnacle Balanus amphitrite larvae as CuSO4 [102,103].
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In 1999, the ethanol extract of two soft coral specimens Dendronephthya (Roxasia) sp. and
Dendronephthya (Morchellana) sp., collected off the Gopalpur coast, Bay of Bengal, were found to display
attachment inhibitory activity against the settlement of cyprids of barnacle Balanus amphitrite [104],
and the extract was claimed to contain natural non-toxic antifouling agents, although no natural
products was reported to be active components.

Research by a group in Japan identified four new antifouling seco-steroids, isogosterones A–D
(1–4) (Figure 1) from an octocoral identified as Dendronethphya sp. collected off the Izu Peninsula,
Japan [2], and their structures were elucidated on the basis of spectroscopic data. This is the first
time to isolate naturally occurring 13,17-secosteroids. It is interesting to note that secosteroids 3 and
4 were interconvertible in CHCl3 and 3 was detected as the hydrolyzed product of 4 [2]. These four
secosteroids displayed activity to inhibit the settlement of B. amphitrite cyprid larvae with an EC50

values of 2.2 µg/mL
Furthermore, a new steroid, methyl 3-oxochola-4,22-dien-24-oate (110) (Figure 19) [105],

from Dendronephthya sp. collected off the Kii Peninsula, Japan, and determined its structure using
spectroscopic methods [105]. Steroid 110 was lethal to cyprids of B. amphitrite at 100 µg/mL (LD100) but
did not inhibit larval settlement of B. amphitrite [105].
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Four new brominated oxylipins, (4S,5E,7Z,12R,14Z,17Z)-4-hydroxy-17,18-didehydrobromo-
vulone-3 (111), (4S,5E,7Z,12R,14Z,17Z)-4-(α-d-glucopyranosyloxy)-17,18-didehydrobromovulone-3
(112), (4R,5E,7Z,12R,14Z,17Z)-4-hydroxy-17,18-didehydrobromovulone-3 (113), and (4R,5E,7Z,12R,
14Z,17Z)-4-(β-D-glucopyranosyloxy)-17,18-didehydrobromovulone-3 (114), (Figure 20) were isolated
from Dendronephthya spp. (red variety—for compounds 111 and 112; yellow variety—for compounds
113 and 114) collected in the Gulf of Aqaba in the Red Sea (Eilat, Israel) [106]. The structures,
including the absolute configurations of oxylipins 111–114, were determined by spectroscopic and
chemical methods. All the isolates showed significant inhibition of the growth of crown gall tumors on
potato disks inoculated with Agrobacterium tumefaciens and gave positive responses in a brine shrimp
toxicity toward Artemia salina; these compounds showed antibacterial activity against the Gram-(+)
bacteria Staphylococcus aureus and Bacillus subtilis [106].
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Fifteen steroids, including five new compounds, (22E)-3-O-β-formylcholest-5,22-diene
(115), (22E)-3-O-β-formyl-24-methyl-cholest-5,22-diene (116), 2-ethoxycarbonyl-2-β-hydroxy-A-nor-
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cholest-5-ene-4-one (117), (22E)-2-ethoxycarbonyl-2-β-hydroxy-A-nor-cholest-5,22-diene-4-one (118),
(22E)-2-ethoxycarbonyl-2-β-hydroxy-24-methyl-A-nor-cholest-5,22-diene-4-one (119), a new natural
steroid, 3-β-formyloxycholest-5-ene (120) [107], as well as nine known steroids, 3β,7β-dihydroxy-
cholest-5-ene (121) [108,109], (22E)-3β,7α-dihydroxy-cholest-5,22-diene (122) [110], 3β,7α-dihydroxy-
24-methylene-cholest-5-ene (123) [109], 3β,7α-dihydroxy-24-methyl-cholest-5,22-diene (124) [110],
3β,7α-dihydroxy-cholest-5-ene (125) [110–112], cholest-4-ene-3-one (126) [113–115], 24-methylene-
cholest-4-ene-3-one (127) [116,117], (22E)-cholest-4,22-dien-3-one (128) [116], and (22E)-24-methyl-
cholest-4,22-dien-3-one (129) [118] (Figure 21), were isolated from the soft coral Dendronephthya sp.
collected off coral reef in Sanya, Hainan Province, South China Sea of People’s Republic of China [119].
The structures of steroids 115–129 were elucidated by spectroscopic methods and by comparison
of their spectroscopic data with those reported previously. However, the configuration of Me-28 at
stereogenic center C-24 in steroids 116, 119, 124, and 129 were not determined in this study. Steroids 115,
116, and 120 belonging to 3-O-formylated cholesterol analogues and steroids 117–119 are unique ring
A-contracted steroids [119].
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Figure 21. Structures of (22E)-3-O-β-formylcholest-5,22-diene (115), (22E)-3-O-β-formyl-24-methyl-
cholest-5,22-diene (116), 2-ethoxycarbonyl-2-β-hydroxy-A-nor-cholest-5-ene-4-one (117), (22E)-2-
ethoxycarbonyl-2-β-hydroxy-A-nor-cholest-5,22-diene-4-one (118), (22E)-2-ethoxycarbonyl-2-β-
hydroxy-24-methyl-A-nor-cholest-5,22-diene-4-one (119), 3-β-formyloxycholest-5-ene (120), 3β,7β-
dihydroxycholest-5-ene (121), (22E)-3β,7α-dihydroxy-cholest-5,22-diene (122), 3β,7α-dihydroxy-24-
methylene-cholest-5-ene (123), 3β,7α-dihydroxy-24-methyl-cholest-5,22-diene (124), 3β,7α-
dihydroxy-cholest-5-ene (125), cholest-4-ene-3-one (126), 24-methylene-cholest-4-ene-3-one (127),
(22E)-cholest-4,22-dien-3-one (128), and (22E)-24-methyl-cholest-4,22-dien-3-one (129).
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A chemical examination of a soft coral identified as Dendronephthya sp., collected from the
inner coral reef in Sanya Bay, Hainan Island of China, resulted in the isolation of 20 cembrane-type
diterpenoids [120], including 15 new metabolites, dendronpholides C–F (130–133), I–R (134–143),
and (–)-sandensolide (144) (an enantiomer of sandensolide) [120–124], along with five known
compounds, 11-episinulariolide (145) [125–130], and sinulaflexiolides E, F, J, K (146–149) [128]
(Figure 22). The structures of all isolates 130–149 were determined through spectroscopic methods and
by comparison with those reported in literature [120]. Cembranoid dendronpholides C (130), J (135),
and sinulaflexiolide E (146) showed cytotoxicity toward BGC-823 (human papillomavirus-related
endocervical adenocarcinoma) cells with IC50 values of 0.05, 0.20, 0.02 µg/mL, respectively, whereas the
other compounds were not active. A comparison of the cytotoxic data between 130 and 144 revealed
that the methyl ester functionality plays a crucial role in the inhibition of BGC-823 cells compared to
the the ε-lactone functionality. This is the first report of cembrane-type diterpenoids from the soft
corals belonging to the genus Dendronephthya [120].
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In 2010, two tetrahydroxylated sterols, including a new compound, 23-nor-ergost-24-ene-
3β,5α,6β,7β-tetrol (150) and a known analogue, ergost-24-ene-3β,6β,9α,19β-tetrol (151) [131],
were isolated from Dendronephthya sp. collected from Naozhou Islands of the South China Sea [132]
(Figure 23). The structures of sterols 150 and 151 were identified by spectroscopic methods [132].
Sterol 150 showed cytotoxicity toward the BEL-7402, MCG (human plasma cell myeloma), MCF,
LoVo (human colorectal adenocarcinoma), and Hep G2 (human hepatocellular carcinoma) cells with
IC50 values of 32.2, 20.5, 2.0, 5.5, and 18.6 µg/mL, respectively, and sterol 151 was cytotoxic against
MCG and LoVo cells (IC50 = 22.0, 13.8 µg/mL), respectively [132].
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Three new ylangene-type sesquiterpenoids, dendronephthols A–C (152–154) (Figure 24),
together with two known steroids, dendronesterone A (10) [8] (Figure 3) and cholesterol (26) [30]
(Figure 5), were isolated from a Red Sea soft coral Dendronephthya sp., collected near the coast
of Hurghada, Egypt [133]. The structures of new sesquiterpenoids 152–154 were established by
spectroscopic methods and 152 and 154 were found to be cytotoxic against L5178Y (mouse lymphoma)
cells with ED50 values of 8.4 and 6.8 µg/mL, respectively [133].
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Furthermore, two new steroids, dendronesterones D (155) and E (156), featuring with
1,4-dienone moiety, together with three known steroids, methyl 3-oxochola-4,22-dien-24-oate
(110) [105] (Figure 19), 5α,8α-epidioxy-24(S)-methylcholesta-6,22-dien-3β-ol (157), and 5α,8α-epidioxy-
24(S)-methylcholesta-6,9,22-trien-3β-ol (158) [36,134], were isolated from an octocoral Dendronephthya
sp., collected off the northeast coast of Taiwan [135] (Figure 25). The structures of new steroids
155 and 156 were elucidated by using spectroscopic methods and 155 was found to suppress the
expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) to 24.2 and 70.4%
at a concentration of 10 µM [135].



Molecules 2020, 25, 5957 17 of 26

Molecules 2020, 25, x FOR PEER REVIEW 16 of 25 

 

23). The structures of sterols 150 and 151 were identified by spectroscopic methods [132]. Sterol 150 

showed cytotoxicity toward the BEL-7402, MCG (human plasma cell myeloma), MCF, LoVo (human 

colorectal adenocarcinoma), and Hep G2 (human hepatocellular carcinoma) cells with IC50 values of 

32.2, 20.5, 2.0, 5.5, and 18.6 µg/mL, respectively, and sterol 151 was cytotoxic against MCG and LoVo 

cells (IC50 = 22.0, 13.8 µg/mL), respectively [132]. 

 

Figure 23. Structures of 23-nor-ergost-24-ene-3β,5α,6β,7β-tetrol (150) and ergost-24-ene-3β, 6β,9α,19-

tetrol (151). 

Three new ylangene-type sesquiterpenoids, dendronephthols A–C (152–154) (Figure 24), 

together with two known steroids, dendronesterone A (10) [8] (Figure 3) and cholesterol (26) [30] 

(Figure 5), were isolated from a Red Sea soft coral Dendronephthya sp., collected near the coast of 

Hurghada, Egypt [133]. The structures of new sesquiterpenoids 152–154 were established by 

spectroscopic methods and 152 and 154 were found to be cytotoxic against L5178Y (mouse lymphoma) 

cells with ED50 values of 8.4 and 6.8 µg/mL, respectively [133]. 

 

Figure 24. Structures of dendronephthols A–C (152–154). 

Furthermore, two new steroids, dendronesterones D (155) and E (156), featuring with 1,4-

dienone moiety, together with three known steroids, methyl 3-oxochola-4,22-dien-24-oate (110) [105] 

(Figure 19), 5α,8α-epidioxy-24(S)-methylcholesta-6,22-dien-3β-ol (157), and 5α,8α-epidioxy- 24(S)-

methylcholesta-6,9,22-trien-3β-ol (158) [36,134], were isolated from an octocoral Dendronephthya sp., 

collected off the northeast coast of Taiwan [135] (Figure 25). The structures of new steroids 155 and 

156 were elucidated by using spectroscopic methods and 155 was found to suppress the expression 

of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) to 24.2 and 70.4% at a 

concentration of 10 µM [135]. 

 

Figure 25. Structures of dendronesterones D (155) and E (156), 5α,8α-epidioxy-24(S)-methyl- cholesta-

6,22-dien-3β-ol (157), and 5α,8α-epidioxy-24(S)-methylcholesta-6,9,22-trien-3β-ol (158). 

Two new 2,5-piperazinedione derivatives, janthinolides A (159) and B (160), as well as a new 

natural product, deoxymycelianamide (161) [136,137], and two known metabolites, griseofulvin (162) 

Figure 25. Structures of dendronesterones D (155) and E (156), 5α,8α-epidioxy-24(S)-methyl-
cholesta-6,22-dien-3β-ol (157), and 5α,8α-epidioxy-24(S)-methylcholesta-6,9,22-trien-3β-ol (158).

Two new 2,5-piperazinedione derivatives, janthinolides A (159) and B (160), as well as a new natural
product, deoxymycelianamide (161) [136,137], and two known metabolites, griseofulvin (162) [138–142],
and dechlorogriseofulvin (163) [142–144], were isolated from the fermentation broths of the endophytic
fungus Penicillium janthinellum, isolated from a soft coral identified as Dendronephthya sp., collected in
the South China Sea [145]. The structures of metabolites 159–163 were determined by spectroscopic
data analysis and compound 162 displayed inhibitory concentration at 2.75 and 20 µg/mL against the
fungal pathogen Alternaria solani and ascomycetous pathogen Pyricularia oryzae, respectively [145]
(Figure 26).
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Moreover, seven isoechinulin-type alkaloids, neoechinulin A (164) [146–154],
preechinulin (165) [155,156], isoechinulin A (166) [149,157], tardioxopiperazine A (167) [158],
variecolorin L (168) [159], dihydroxyisoechinulin A (169) [160], and L-alanyl-L-tryptophan anhydride
(170) [161] (Figure 27), were isolated from the fermentation broths of an endophytic fungus
Nigrospora oryzae isolated from a soft coral identified as Dendronephthya sp. collected in the South China
Sea [162]. The structures of 164–170 were determined by their spectroscopic data and by comparison
with those reported in the literature. In the antifouling activity against the larval settlement of barnacle
Balanus amphitrite, compound 166 showed activity with an IC50 value of 5.92 µg/mL [162].
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Figure 27. Structures of neoechinulin A (164), preechinulin (165), isoechinulin A (166), tardioxopiperazine
A (167), variecolorin L (168), dihydroxyisoechinulin A (169), and L-alanyl-L- tryptophan anhydride (170).

11. Conclusions

Ever since the seco-steroids, isogosterones A–D (1–4) were obtained from a specimen of the
octocoral Dendronephthya collected off the Izu Peninsula, Japan [2], 170 interesting secondary metabolites,
including 96 steroids (56.47%), 20 cembranes (11.76%), 11 sesquiterpenoids (6.47%), 11 amides (6.47%),
4 chlorolipids (2.35%), 4 bicyclic lactones (2.35%), 4 prostaglandins (2.35%), 4 bases (2.35%), 3 peptides
(1.76%), 2 polyketides (1.18%), 2 ceramides (1.18%), 1 glycerol (0.59%), 1 glycyrrhetyl amino acid
(0.59%), 1 benzoic acid (0.59%), 1 trigonelline (0.59%), 1 hexitol (0.59%), 1 pentanoic acid (0.59%),
1 octadecanone (0.59%), 1 aminoethyl ester (0.59%), and a 53-KD allergenic component (0.59%),
were produced by Dendronephthya spp., and extensive biomedical activities, especially in cytotoxicity
and anti-inflammatory activity, were related to these natural substances (Figure 28).
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All the secondary metabolites from Dendronephthya spp., reported between 1999 and 2019 were
obtained from the octocorals distributed in the Indo-Pacific Ocean and Red Sea. As more than 56%
of the compounds obtained from the Dendronephthya genus are steroids, based on above findings,
these results suggest that continuing the investigation of new steroid analogues with the potential
bioactivities from this marine organism are worthwhile for further development. The octocoral
Dendronephthya sp. had been transplanted to culturing tanks located in the National Museum of Marine
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Biology and Aquarium, Taiwan, for the extraction of additional natural products to establish a stable
supply of bioactive material.
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