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Abstract: Decapod assemblages in Zostera marina beds from two bays adjacent to unvegetated habitats
were investigated to assess their influence on decapod assemblages. Thirty-eight decapod species
belonging to four taxa were collected using a small beam trawl at four habitat types from two different
locations off the coast of Namhae Island, South Korea. Dominant decapod taxon at all habitats
was the caridean shrimps, with Eualus leptognathus, Heptacarpus pandaloides, Latreutes anoplonyx, La.
Laminirostris, and Palaemon macrodactylus being the most abundant caridean species. Crabs were
characterized with the highest biomass, but with moderate species richness and abundance. Penaeoid
and sergestoid shrimps only accounted for <1% of the total decapod abundance. The number of
species and their abundance of decapod assemblages varied greatly by habitat type, season, and
diel patterns, but not diversity. Species number and abundance peaked in seagrass beds of southern
exposed bays during the autumn and were lowest in unvegetated habitats during the summer months.
Diel decapod catch rates were higher at night. Dense seagrass vegetation and nighttime supported
higher decapod mean densities, but not species richness and diversity. Multivariate analyses
revealed that habitat type and season significantly affected the structure of decapod assemblages,
but diel patterns had a minor influence. Among decapod species, Pa. macrodactylus and Pugettia
quadridens characterized the decapod assemblages in seagrass beds at the northern semi-closed bay,
while Telmessus acutidens, Crangon affinis, Cr. hakodatei, Charybdis (Charybdis) japonica, and Portunus
sanguinolentus were significantly associated with both vegetated and unvegetated habitats at the
southern exposed bay, with the former two species more abundant during the colder season.

Keywords: decapod assemblage; Zostera marina; Namhae Island; seagrass vegetation; day/night
change

1. Introduction

Seagrass beds have been shown to be highly productive marine habitats, common in estuarine
and shallow marine coastal ecosystems throughout the world [1,2]. Among seagrass species, Zostera
marina is widespread in temperate coastal areas of the Western Pacific, providing shelter for many
marine animals, especially their juveniles [3–6]. Seagrass meadows’ physical complexity also provides
protection from predators [7–9] and allows coexistence of species occupying different ecological
niches [10]. As a further benefit, seagrass beds provide nursery grounds and feeding opportunities for
vertebrate and invertebrate species, many of which are of commercial and recreational value [4,11–13].

Studies on abundance patterns and community structure according to vegetation cover have
shown a higher diversity of vertebrates and invertebrates in vegetated habitats [10,14,15]. Since
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seagrasses stabilize sediments from tidal currents and wave action [16,17], they provide a suitable
habitat for benthic invertebrates [18,19]. The quality of vegetative cover and the complexity of the
physical habitat also have been shown to influence faunal assemblages. Recent studies of faunal
assemblages on seagrass-macroalgal beds and its adjacent habitats have shown faunal assemblages
structures determined by phenological parameters of seagrass [20,21], substrate structures [22,23],
geographical features around seagrass-microalgal beds [24], and other hydrographic factors [25,26].
Further investigations on trophic relationships have also revealed the roles of seagrass habitat
complexity structuring fish and macroinvertebrate assemblages [27–29].

Habitat structure complexity has often been associated with biodiversity [30], with a more complex
habitat providing a wider range of niches, allowing for a higher number of resident species [31–34].
The diversity of decapod assemblages, similarly, has been shown to be higher in seagrass beds
compared with that in non-vegetated habitats. Bloomfield and Gillanders [35] reported similar faunal
assemblages between non-vegetated and seagrass habitats in southern Australia, with the caveat of
higher loss rates of species richness and abundance in seagrass habitats. More recently, Park and
Kwak [36] showed that seagrass beds adjacent to both tidal flats and rocky shores supported greater
decapod abundances and diversities than adjacent unvegetated habitats. The importance of large
seagrass beds to abundance and diversity [36–38] may be due to the high abundances of eelgrass
residents [39]. Comparative studies of decapod assemblages between vegetated and unvegetated
seagrass habitats have shown bare habitats with fewer species [36] and associated with considerable
diel and seasonal variations in abundance and assemblage structure [36,40–42].

Extensive seagrass beds are common in Namhae Island, South Korea, providing shelter for
small fish and invertebrates [43–45]. Although a number of studies comparing fish and decapod
assemblages in seagrass meadows have been conducted globally [39,40,46–50], few such studies have
been conducted in the eelgrass beds of South Korean waters. Of the few, the focus was limited to
estimating the effects on fish communities [36,43,51]. Studies on the effects on decapod diversity,
including assessment of bottom sediment structure, presence of seagrasses, and hydrodynamic features,
such as water temperature, tidal current, and seasonal storms, might provide key insight into the
factors influencing the maintenance of decapod assemblages [52].

In this study, we compared decapod assemblages in seagrass beds adjacent to tidal flats and
rocky shores with unvegetated habitats in structuring decapod assemblages. More specifically, we
a) associated the effects of geographical locations, habitat types, seasons, and diel patterns with
assemblage structure; and b) compared diversity and abundance patterns with habitat. We anticipate
this study to aid in understanding the implications of habitat complexity in resource management and
conservation of decapods in Korea.

2. Materials and Methods

2.1. Study Area

Data for this study were gathered from a bay of Namhae Island and one of the adjacent
Changseon-Do Island, South Korea, with two study sites within each bay (Figure 1). Bays were
comprised of a northern semi-enclosed (Dongdae Bay) and southern exposed (Aenggang Bay) body of
water. Dongdae Bay is geographically rich and inland-facing, rich in tidal flats, rocky shores, small
islands and reefs. Aenggang Bay is exposed to open ocean from a southern inlet, allowing seawater
circulation to the bay. The two study sites in each bay were seagrass beds adjacent to tidal flats
(DS(t)) and to rocky shore (DS(r)) at Dongdae Bay, and seagrass beds (AS) and unvegetated habitat
(AU) at Aenggang Bay (Figure 1). Dongdae Bay sediment composition consists of compact particles
(e.g., clay-silt). Sediment at Aenggang Bay, conversely, mostly comprises coarse particles (Kim et al.,
unpublished data). Seagrass beds from both bays are characterized by Zostera marina, forming subtidal
habitats (2.7−3.3 km in width) in shallow water (<5 m). Seagrass biomass fluctuate with season,
peaking during the spring, and seagrass density. Biomass is typically five times higher at Dongdae Bay



Diversity 2020, 12, 89 3 of 15

than at Aenggang Bay [45]. Typical water temperature fluctuations are between 7.4 °C and 27.7 °C at
Dongdae Bay and between 7.7 °C and 30.7 °C at Aenggang Bay. Salinity is between 19.5 and 34.2 psu
(practical salinity unit) at Dongdae Bay and between 16.5 and 34.8 psu at Aenggang Bay. At both bays,
values in the summer are lowest for salinity [45].
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Figure 1. Namhae Island, South Korea, area of investigation. Black area = seagrass bed adjacent tidal
flat (DS(t), AS), gray area = seagrass bed adjacent rocky shore (DS(r)), oblique area = unvegetated
site (AU).

2.2. Sampling

Crustacean decapod samples were collected monthly in 2005 using a 3-m beam trawl with 1.9-cm
mesh surrounded by a 0.6-cm mesh liner. Tows (four; 6 min duration) both during the day (between
10:00 and 12:00) and night (between 20:00 and 22:00) at spring tide in all habitats were conducted,
with estimated 280 m2 coverage per sampling event. A total of 384 beam trawl hauls were conducted
during the study period. The number of individuals per 100 m2 was the variable recorded. A solution
of 5% formalin with seawater at sampling, followed by 70% ethanol for long-term storage was used to
preserve specimens. All individual decapods were identified to the lowest taxa possible and weighed
to the nearest milligram. All scientific names were checked against the WoRMS database [53].

2.3. Data Analyses

The Shannon–Wiener index (H’; [54]) was used to estimate community-level diversity. Prior to
ANOVA analysis, the assumption of homogeneity of variance was tested using Levene’s test [55].
Since there was no evidence for heteroschedasticity, three-way analysis of variance (ANOVA) was
used to assess spatial and temporal differences in species richness (number of species), abundance
(number of individuals), and diversity. Station (combined factor of location and habitat; i.e., study
location across seagrass vegetation), season, and diel patterns were fixed factors, with Tukey’s honest
significant different (HSD) test for post-hoc ANOVA tests. Abundances for all species were log(x +
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1)-transformed. Three stations were seagrass bed in Dongdae Bay, and both were seagrass bed and bare
habitat in Aenggang Bay. The four seasons were winter (December–February), spring (March–May),
summer (June–August), and autumn (September–November).

Inferential and descriptive analyses were performed to further assess abundance trends with diel
patterns, seasons, and habitat. Permutation multivariate analyses of variance (PERMANOVA) on
log(abundance + 1) based on Bray–Curtis similarity matrices were conducted [56]. Analysis factors for
the PERMANOVA were location (two fixed levels: Aenggang and Dongdae), habitat (nested within
location, three random levels), season (four fixed levels: winter, spring, summer, and autumn), and
diel patterns (two fixed levels: day and night). Similarity matrices were used in a PERMANOVA to
test for factor effects. In cases in which PERMANOVA detected a significant difference at the 0.05
level, posteriori pairwise PERMANOVA comparisons were used to determine which interaction terms
differed significantly among variables within each level of factors. PERMANOVA assigns components
of variation (COV) of differing magnitudes to the main factors and interaction between combinations
of main factors. The larger COV indicates the greater the influence of a particular factor or interaction
term on the structure of the data [57]. The metric multidimensional scaling (mMDS) ordination
technique was used to visualize factor effects. To assess statistical significance among factor levels, a
canonical analysis of principal coordinates (CAPs) was used [57]. Correlation coefficients between each
factor and the canonical axis were used as evidence for species contributions to observe differences.
Individual species with both correlations higher than 0.4 and total abundance larger than 1% were
plotted on CAP axes 1 and 2 for additional visualization of results.

Statistical software used was Systat (Systat version 18, SPSS Inc., Chicago, IL, USA) and PRIMER v7
with the PERMANOVA+ module [57,58]. A 0.05 level for statistical significance was used in analyses.

3. Results

3.1. Decapod Species Composition

Thirty-eight decapod species from four taxa were sampled in this study (Table 1). Ranks by
number were Caridea (19 species), followed by Brachyura (13 species), Penaeoidea (4 species), and
Sergestoidea (2 species). Aenggang Bay seagrass bed (AS) yielded the largest number of species,
and the lowest at the seagrass bed adjacent to the rocky shore at Dongdae Bay (DS(t)). The seagrass
bed of Aengang Bay produced the largest abundance of decapods and the lowest at the bare habitat
of Aengang Bay (AU). Overall, the study areas were dominated by the Caridea genera of Eualus,
Heptacarpus, and Latreutes. The species with highest abundance at all study sites were Heptacarpus
pandaloides, followed by Eualus leptognathus, Latreutes anoplonyx, and La. laminirostris. Among decapods,
Palaemon species was dominant at Dongdae Bay, and Crangon affinis and Portunus sanguinolentus were
dominant at Aengang Bay (Table 1).

3.2. Spatio-temporal Changes in Species Richness, Abundance, and Diversity

Abundance and mean richness varied by factors of station, season, and diel patterns, but not
diversity. Three-way ANOVA showed species richness and abundance of decapod assemblage differed
significantly among stations, seasons, and diel patterns, except species richness between day and night.
Diversity patterns were not significant for any factors (Table 2). No two- or three-way interactions
were significant between most factors. Only the station × day/night interaction for abundance had a
significant influence on decapod assemblage (Table 2).
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Table 1. Decapod species and total abundance (per 100 m−2) in seagrass beds adjacent to tidal flat (DS(t))
and rocky shore (DS(r)) of Dongdae Bay, seagrass beds (AS) and adjacent habitats to the unvegetated
areas (AU) of Aenggang Bay, Namhae Island, South Korea.

Dongdae Bay Aenggang Bay
Taxa Species Name DS(t) DS(r) AS AU

Penaeoidea Metapenaeopsis tenella 3.3 3.3 3.9 1.1
Mierspenaeopsis hardwickii 0.6

Penaeus japonicus 0.6
Trachysalambria curvirostris 3.9 0.6

Sergestoidea Acetes chinensis 5.6 1.7 3.9
Acetes japonicus 0.6 0.6

Caridea Alpheus brevicristatus 2.2 0.6 1.1
Alpheus digitalis 0.6 1.1
Crangon affinis 1.7 2.2 76.7 92.8

Crangon hakodatei 0.6 24.4 14.4
Eualus leptognathus 1380.6 544.4 347.2 9.4
Eualus middendorffi 3.9 1.7

Hayashidonus japonicus 7.8 3.3
Heptacarpus futilirostris 61.7 0.6 16.7 1.1
Heptacarpus pandaloides 2462.2 925.0 5067.2 882.2
Heptacarpus rectirostris 17.8 7.2 108.9 0.6

Latreutes anoplonyx 334.4 578.3 2220.6 106.1
Latreutes laminirostris 415.6 185.6 123.9 52.8
Latreutes planirostris 0.6 3.3

Leptochela gracilis 0.6
Lysmata vittata 0.6 0.6

Palaemon carinicauda 1.1 1.7
Palaemon macrodactylus 224.4 46.7 4.4 5.6

Palaemon orientis 18.9 3.9
Palaemon ortmanni 92.8 30.6 40.0 8.3

Brachyura Arcania undecimspinosa 0.6
Charybdis (Charybdis) japonica 5.0 8.3 94.4 20.0

Charybdis (Charybdis)
sagamiensis 3.3

Hemigrapsus penicillatus 20.0 11.1 6.1 0.6
Hemigrapsus sanguineus 0.6

Paradorippe granulata 0.6
Pilumnus minutus 0.6

Portunus sanguinolentus 5.0 28.9 2.8
Portunus trituberculatus 1.7 1.1

Pugettia quadridens 33.3 26.1 23.3 1.7
Telmessus acutidens 11.1 1.1 35.0 2.8

Thalamita sima 8.3 1.1
Xanthidae sp. 0.6

Total 5106.7 2380.0 8252.8 1213.9
Number of species 25 21 30 23

Tukey’s post-hoc tests indicated that mean species richness was lower at unvegetated habitat than
seagrass beds in Aenggang Bay, and during summer than autumn (Figure 2). Mean abundance was
the highest at seagrass beds than unvegetated habitats in Aenggang Bay, and during autumn than
summer (Figure 2). Diel patterns in decapod assemblage showed that only decapod abundance was
significantly higher during the night than day (Figure 2). No patterns in diversity were found with all
three factors combined (Figure 2).
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Table 2. Abundance (100 m−2), number of species, and diversity three-way ANOVA for decapod
assemblages in South Korea. Boldface values are significance at p < 0.05.

Species Richness Abundance Diversity
Source df F p F p F p

Main test
Station (St) 2 3.373 0.030 5.930 0.005 1.269 0.289
Season (Se) 3 3.035 0.037 7.318 0.001 0.385 0.764

Day/Night (D/N) 1 0.004 0.953 4.513 0.039 0.266 0.608
Interactions

St × Se 6 1.085 0.383 2.245 0.052 1.178 0.117
St × D/N 2 2.319 0.108 5.186 0.009 1.132 0.330
Se × D/N 3 0.885 0.455 1.228 0.309 0.221 0.882

St × Se × D/N 5 0.298 0.912 1.212 0.316 0.470 0.797
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3.3. Decapod Assemblage Structure

PERMANOVA tests revealed decapod assemblages were significantly associated with study
location, habitat type, and season, with COV of location being the highest, indicating the strongest
factors determining variation within samples (Table 3). Only one statistically significant two-way
interaction between location and season was observed (Table 3). Pairwise comparisons of location
and season showed evidence of differences in decapod assemblage structures between Dongdae and
Aenggang bays during spring, summer, and autumn (Table 4). Significant differences between seasons
within each location were also observed, except between winter and spring at both locations, and
autumn versus other seasons at Dongdae Bay (Table 4). At Dongdae Bay, only differences between
spring and summer and between winter and summer were significant. Seasonal comparisons between
colder (winter and spring) and warmer (summer and autumn) seasons, and within warmer seasons
(summer and autumn) were significant at Aenggang Bay (Table 4).

Table 3. Mean squares (MS), pseudo-F ratios, significance levels (p), and components of variation (COV)
for PERMANOVA tests using Bray–Curtis similarity matrices from abundance of decapod assemblages
showing differences in location (Lo), habitat (Ha nested within Lo), season (Se), day/night (D/N), and
interactions terms; bold letters indicate significance at p < 0.05.

Source df MS Pseudo-F p COV

Main test
Lo 1 15294.0 9.538 0.001 21.269

Ha (Lo) 1 3747.8 2.337 0.031 12.847
Se 3 6363.6 3.969 0.001 16.936

D/N 1 2968.8 1.851 0.086 6.761
Interactions

Lo × Se 3 4450.4 2.775 0.001 18.522
Lo × D/N 1 3102.2 1.935 0.074 11.045

Ha (Lo) × Se 3 2404.0 1.499 0.073 14.443
Ha (Lo) × D/N 1 2666.6 1.663 0.114 12.936

Se × D/N 3 2618.4 1.633 0.065 10.017
Lo × Se × D/N 3 1568.2 0.978 0.497 -2.915

Ha (Lo) × Se × D/N 2 2297.5 1.433 0.151 18.001
Residual 54 1603.5 40.044

Table 4. Pairwise PERMANOVA tests for the location–season interaction within each study location, or
season; bold letters indicate significance at p < 0.05.

Winter Spring Summer Autumn
Location t p t p t p t p

Dongdae-Aenggang 1.509 0.063 2.296 0.008 2.5082 0.001 2.213 0.001
Dongdae Aenggang

Season t P t P

Winter-Spring 1.177 0.221 1.012 0.374
Winter-Summer 1.648 0.011 1.764 0.008
Winter-Autumn 1.245 0.151 2.878 0.002
Spring-Summer 1.717 0.012 1.603 0.026
Spring-Autumn 1.214 0.175 2.793 0.001

Summer-Autumn 1.045 0.373 2.492 0.001

Metric MDS ordination of similarity of mean decapod assemblages showed clear differences in
decapod assemblages by study location, habitat type, season, and the location × season interaction
(Figure 3). Samplings from different locations and habitats showed distinct clustering patterns,
indicating no overlaps of the multivariate dispersions between locations or habitats (Figure 3A,B).
Taking seasonal data pooled by study location and habitat type also showed clear clustering. Bootstrap
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averages of samples between warmer seasons (i.e., summer and autumn) showed clear separation,
compared with the average assemblages between colder seasons (Figure 3C). In addition, samples of
seasonal decapod assemblage were clearly divided between warmer and colder seasons along with
the Y axis in mMDS ordination. In terms of the location–season interaction, decapod assemblages
displayed discrete groups according to both study location and season in the ordination plot (Figure 3D).
Within each study location, Aenggang samples showed clear separation in the summer and autumn,
while those in Dongdae showed no apparent groupings.
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Canonical analyses on principal coordinates were performed on significant interactions as a
further test on PERMANOVA analyses. The CAP plot for the location–season interaction showed
strong evidence for factor group separation (Figure 4). Palaemon macrodactylus and Pugettia quadridens
contributed to separate the sites of Dongdae Bay from those in Aenggang Bay. Telmessus acutidens,
two crangonid shrimps (Cr. affinis and Cr. hakodatei), and two portunid crabs (Ch. japonica and
Portunus trituberculatus) characterized the decapod assemblages in Aenggang Bay (Figure 4). Weak
seasonal differences in decapod assemblages were found at Dongdae Bay, although there were some
trends on species contribution of Pa. macrodactylus and Pu. quadridens on colder and warmer season
assemblages, respectively. Conversely, clear seasonal classifications in decapod assemblages were
evident at Aenggang Bay sites. Te. acutidens and Cr. affinis contributed to the colder season samples,
and Cr. hakodatei, Ch. Japonica, and Po. trituberculatus to the warmer season samples, regardless of
seagrass vegetation (Figure 4).

4. Discussion

Dominant caridean shrimps were Ha. pandaloides, La. anoplonyx, Eu. leptognathus, La. laminirostris,
and Pa. macrodactylus, and abundant crab species were Ch. japonica, Pu. quadridens, and Te. acutidens.
Similar community structures from other South Korean regions were reported. Heptacarpus, Latreutes,
Eualus, and Palaemon were the dominant shrimp genera at the seagrass habitats in Kwang Bay and
Jinhae Bay [4,36,59]. Charybdis (Charybdis) japonica, Pu. quadridens, and Te. acutidens were the common
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crab species at the seagrass beds of Jinhae Bay, but they were not in adjacent unvegetated areas
of the bay [36]. Compared with seagrass beds of temperate regions worldwide, the genera Eualus,
Heptacarpus, and Latreutes were the principally North Pacific caridean genera often abundant in Zostera
meadows [42]. Crangon and Palaemon also dominated the decapod communities of seagrass beds in
Western Port Bay, Australia [5,60]. Charybdis (Charybdis) japonica and Pu. quadridens, in particular, were
the seagrass-dependent crab species in northwestern Pacific regions [61,62]. The above taxonomical
groups, therefore, show common decapods inhabiting seagrass beds of temperate Pacific regions,
regardless of locations.
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Seagrass beds are highly productive, showing higher abundances and diversity of marine
organisms compared with bare habitats [6,36,63]. This is due to the higher capacity of seagrass
vegetation in supporting higher abundance and richness of faunal assemblages [39]. This study
corroborated the expected by showing higher species richness and abundance in seagrass beds. There
were also tendencies of differences in species richness and abundance between seagrass beds within
Dongdae Bay. No evidence of differences in diversity, however, were evident among habitat types.
Several studies have shown significantly higher decapod abundances at vegetated habitats [35,36]. Park
and Kwak [36] documented that decapod abundances within seagrass habitats were also significantly
influenced by habitat structures associated with adjacent environments, where seagrass bed associated
with vegetated tidal flats had a higher decapod abundance than seagrass beds adjacent to rocky
shores or unvegetated habitats. Physical habitat structure (i.e., both seagrass vegetation and adjacent
environment), therefore, is one of the main forces driving abundance of coastal marine animals in
seagrass habitat [64].
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High seagrass biomass is indicative of high species richness and abundance of faunal assemblages
in seagrass habitats [36,65], because increased seagrass biomass provides refuge from predation and
favors food availability [6,66]. Although noticeable differences in seagrass biomass between the two
study bays were evident, with Dongdae Bay having higher seagrass biomass than Aenggang Bay [45],
species richness and abundance of decapod assemblages were not associated with seagrass density
in the study area. Hori et al. [67] reported intermediate, instead of high, seagrass biomass more
conducive to increased abundance of faunal communities. Moranta et al. [68], similarly, reported
denser meadows hosting higher densities of small-sized fishes, but not necessarily larger adults. Thus,
decapod assemblage among seagrass beds in this study may not be influenced solely by seagrass
biomass, but other physical factors, such as shoreline characteristics, may influence decapod abundance.
In Cádiz Bay of southwestern Spain, inner bay habitats with higher vegetative cover and relatively
limited water renewal support lower species richness compared with the outer bay [69]. Similarly,
in this study, higher accessibility due to exposure to open ocean promoted the occurrence of marine
organisms, whereas enclosed bays hindered habitat accessibility to marine fauna. Habitat accessibility
to macroinvertebrates has also been shown to be a factor of exposure levels in seagrass beds [24]. Thus,
the effects of coastline patterns and meadow structure may interact, producing the patterns in decapod
communities observed in this study.

Multivariate analyses agreed with analyses from ANOVA in that decapod assemblage structure
was influenced by study location, habitat type, and season, especially between colder (winter and
spring) and warmer (summer and autumn) seasons. Such a difference, however, was likely not only
due to vegetative cover. The differences in assemblage may have also been due to habitat use variation
by individual decapod species in different habitats and seasons. Canonical analysis of principal
coordinates showed strong associations between decapod assemblages and habitat, as well as season.
As an example, crangonid shrimps were limited to Aenggang Bay, whereas Pu. quadridens and Pa.
macrodactylus were highly associated with seagrass beds of Dongdae Bay. In this study, the differences
of decapod assemblages are likely associated with sediment compositions (i.e., compact verse coarse
particles) and degree of exposure to open sea between study locations [45]. Among decapod species,
crangonid shrimps showed sediment preferences in coarse sand bottoms related to its borrowing
ability [70,71], whereas Palaemon species inhabited mainly seagrass-covered beds [72,73] with mud
bottoms [74]. De La Rosa et al. [69] also showed structures of decapod assemblages influenced by
variability of granulometric composition in Cádiz Bay, southwestern Spain, with low granulometric
variability and fine sediment associated with structural heterogeneity. In addition, high circulation at
exposed habitats (i.e., Anggang Bay) may allow accessibility for various marine species, including
swimming crabs (Portunidae). Since our sampling locations all provided adequate habitats, the
observed differences in assemblage may have been due to different sediment structure and habitat
exposures at each location. Nonetheless, several minor decapod groups, including Eualus and Palaemon
shrimps, and Pu. quadridens and Te. acutidens crabs, consistently preferred vegetated habitats, regardless
of geographical difference and sediment compositions.

Seasonal variation in both species richness and abundance was significant for seagrass decapod
communities, with similar patterns among winter, spring, and autumn, but considerably lower in the
summer. The pattern observed was probably more due to stable and dense vegetative cover and less
to hydrographic factors [52]. Lower abundance of seagrass organisms during summer suggests that
some marine animals select against high temperatures [75] or low salinities [76]. Decapod assemblages,
however, were highly variable between colder and warmer seasons, especially at Aenggang Bay. This
seasonal structural difference was mainly due to contributions of several crab species in each season;
i.e., swimming crabs (Portunidae) were more associated with decapod assemblage during the warmer
season, while Telmessus acutidens contributed to colder season assemblages. Spawning, coinciding with
development of the seagrass, may have been the driver for the observed pattern [45,77,78], probably
due to migration from deeper waters to shallow habitats for reproduction. In addition, although two
crangonid shrimps were highly associated with Aenggang Bay, their occurrence pattern between colder
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and warmer seasons was apparent for this bay. Such temporal segregations among sympatric species
have also been reported for palaemonid shrimps, with varying freshwater inputs and salinity between
dry and wet season in estuarine habitats [79], allowing coexistence of closely related species in a given
habitat through resource partitioning [80].

Overall abundance of decapods was higher at night than during the day. No significant
diel patterns in assemblage structure, however, were evident. Decapod assemblage patterns in
seagrass beds and shallow marsh creeks from sub-tropical and temperate estuaries supported our
observation [40,42,81–83]. Diel difference in abundance might relate to diurnal changes in decapod
behavior associated with variation in light intensity, turbidity, and tide forcing [84,85]. Rountree and
Able [81] reported that young-of-the-year decapod were significantly more abundant at night due to
their nocturnal movement into shallow marsh creeks. From both field and laboratory observations,
Bauer [42] found that mean abundance of caridean shrimps from seagrass meadows was consistently
higher at night, because of nocturnal emergence from daytime burrows. Several studies also reported
nocturnal movement from substrate into the water column [86,87], increasing abundance of epiphytic
crustaceans at night in shallow seagrass habitats [82,88]. More recently, Hampel et al. [83] showed
densities of faunal assemblages influenced by the interplay of light intensity and tidal cycles in an
intertidal salt marsh creek, with the highest densities during low tide and at night.

5. Conclusions

This study provides important insights into the spatio-temporal variabilities of decapod
assemblages in seagrass beds and unvegetated areas from two locations at Namhae Island in South
Korean waters. Findings herein showed that habitat type, location, and season, driven principally by
variations in the abundance of common decapod species, influence decapod assemblage structure.
Moreover, density of seagrass beds and abundance of decapods were positively related, with higher
abundances during the night. Since seagrass habitats are associated with high abundance of ecologically
and economically important marine organisms, preservation and management of such habitats must
be a priority. Investigations of relationships between faunal assemblages and habitat types, such as this,
establish much-needed baselines for future research and management interventions toward marine
biodiversity, especially in areas where research is limited or lacking, as in South Korean waters.
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