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Évolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle–CNRS, Sorbonne Université, EPHE,
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Abstract

Rhodopsin mediates an essential step in image capture and is tightly associated with visual

adaptations of aquatic organisms, especially species that live in dim light environments

(e.g., the deep sea). The rh1 gene encoding rhodopsin was formerly considered a single-

copy gene in genomes of vertebrates, but increasing exceptional cases have been found in

teleost fish species. The main objective of this study was to determine to what extent the

visual adaptation of teleosts might have been shaped by the duplication and loss of rh1

genes. For that purpose, homologous rh1/rh1-like sequences in genomes of ray-finned

fishes from a wide taxonomic range were explored using a PCR-based method, data mining

of public genetic/genomic databases, and subsequent phylogenomic analyses of the

retrieved sequences. We show that a second copy of the fish-specific intron-less rh1 is pres-

ent in the genomes of most anguillids (Elopomorpha), Hiodon alosoides (Osteoglossomor-

pha), and several clupeocephalan lineages. The phylogenetic analysis and comparisons of

alternative scenarios for putative events of gene duplication and loss suggested that fish rh1

was likely duplicated twice during the early evolutionary history of teleosts, with one event

coinciding with the hypothesized fish-specific genome duplication and the other in the com-

mon ancestor of the Clupeocephala. After these gene duplication events, duplicated genes

were maintained in several teleost lineages, whereas some were secondarily lost in specific

lineages. Alternative evolutionary schemes of rh1 and comparison with previous studies of

gene evolution are also reviewed.

Introduction

Rhodopsin is an opsin belonging to the G-protein-coupled receptor (GPCR) superfamily. In

this superfamily, different opsins can be distinguished according to their Schiff base structure

and to phylogenetic relationships of genes encoding opsins [1,2]. In vertebrates, visual opsin

genes are often expressed in either retinal cone cells (i.e., cone opsin genes) or rod cells (i.e.,

the rhodopsin gene) [2]. They display diverse phenotypes with a maximum wavelength

absorption (λmax) in the range of the light spectrum located at wavelength ranges of visible and

ultraviolet light spectra [2]. Variations or adaptations in organismal spectral sensitivity may
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have arisen through structures of opsins and of retinal chromophore, gene duplications, and

evolution of gene regulation [3–7]. Four different classes of cone opsin genes, including short-

wavelength sensitive 1 (sws1) and 2 (sws2), medium- to long-wavelength-sensitive (m/lws),
and mid-wavelength/green-sensitive genes (rh2), which correspond well with the absorption

spectra of their encoding opsins, can be found in vertebrates. These opsins mediate an essential

step of color discrimination especially for animals living in sufficient light environments (e.g.,

terrestrial habitats, coral reefs, and freshwater lakes) [8]. Rhodopsin (encoded by rh1) is mainly

responsible for the perception of light or image capture, and contrary to cone opsins its func-

tion is sensitive to restricted dim-light environments such as, for example, the deep sea where

the light spectrum in the water column is restricted to a narrow waveband of blue light

(470~490 nm) or eventually fades to complete darkness at depths below 200 m [9,10]. As previ-

ously described in detail [6], rhodopsin is thus essential for aquatic vertebrates, especially for

those teleost fishes living at great depths. They rely on this ability of image capture to find food

and mates and maintain various interspecific and intraspecific associations that have a selec-

tive effect on their fitness [6]. Whereas various aspects of the molecular evolution of other

visual opsin genes have been fruitfully investigated [e.g., 7,8,11–13], case studies of the rhodop-

sin gene are relatively rare [14–18].

Some early studies [14,19] suggested that the adaptation to dark or deep-water environ-

ments by vertebrate visual systems relied on the molecular evolution of the rhodopsin gene.

The peak of λmax in environments (e.g., water) is consistent with the λmax of rhodopsin carried

by its host [16]. A short-wavelength shift of λmax (from the typical value of rhodopsin of 500

nm to ~490 nm) observed in rhodopsin of some deep-sea fishes, might have resulted from

mutations of some key amino acids sites [20–22]. This hypothesis was tested by comparing

amino acid sequences of rhodopsin from deep-sea fishes with others living in shallow waters,

but with limited taxonomic sampling [14,16,21,23]. However, using a diverse set of spiny-

rayed fishes living at different water depths, no simple relationship was observed between

mutations at these amino acid sites and the spectral fit of the visual system of a fish to the light

level where it lives [24]. Other physical or developmental mechanisms might more easily

achieve this adaptation. For example, a fish can adjust its levels of rhodopsin expression (to

achieve concordance of the λmax for rhodopsin and water) [22,25,26] to adapt to its environ-

ment even with its rhodopsin has no expected mutations at targeted amino acid sites. In addi-

tion, mesopelagic fishes such as lanternfish can undergo great diurnal vertical migrations to

adjust to their light needs [9,27].

Another mechanism of visual adaptation is duplication of the rhodopsin gene [6,12]. In

fact, two paralogous rhodopsin genes with different λmax values (resulting from an amino acid

replacement) were reported in a few anguilliform fishes (from a conger eel, and Japanese and

European eels) [19,26,28]. Expressions of these two genes in Japanese eels in different sexual

maturation stages help them adapt to different environments (fresh water and deep sea) during

their life cycle [26]. Besides these anguilliform fishes, two rhodopsin copies were subsequently

found in zebrafish (Cypriniformes) [18,29], in pearleyes (Aulopiformes) [30], and more recetly

in a few species of the Otocephala including the Cypriniformes [31,32], Characiformes [33],

Siluriformes [34], and Clupeiformes [33]. A hypothetical senario explaining the “rise” of rho-

dopsin genes in those teleost fish genomes was often proposed to be the result of a single event

of gene duplication that coincided with the fish-specific genome duplication (FSGD), that

occurred in the common ancestor of teleost fishes [17,18,33,35–40]. However, the hypothesis

has not consistently been tested by an explicit phylogenetic method.

In this study, we attempted to provide a thorough perspective of rhodopsin gene evolution

with an emphasis on early teleost fishes. We thus explored, using a polymerase chain reaction

(PCR)-based method, public genetic/genomic data mining, and subsequent phylogenomic
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analyses, the presence of additional homologous rhodopsin genes in vertebrate genomes,

including the non-visual exo-rhodopsin gene (extra-ocular rhodopsin, exo-rh1) that is

expressed in the pineal gland of the fish brain [41]. Our taxonomic sampling focused on the

Elopomorpha (tarpons, bonefishes, eels, and relatives) which is one of the three major extant

teleost lineages, and includes more than 1000 species [6,42]. The morphology, ecology, and life

history of elopomorph fishes vary widely. Most elopomorphs are marine fishes; they are bathy-

pelagic or bathydemersal, and some live in shallow reefs (i.e., moray eels and snake eels). Only

the fishes from the family Anguillidae spend part of their life in fresh water (catadromous life

cycle). In addition, the consensus view reached by multiple recent nuclear gene studies shows

that the Elopomorpha is sister to the rest of the teleosts [43–46]. Thus, the common ancestor

of the Elopomorpha rose close to the divergence of teleosts, at a time which coincides with the

FSGD event. The high diversity (in morphology, ecology, and behavior) and the phylogenetic

position among elopomorph fishes (as a sister group to the rest of the teleosts) make this

group of fishes an ideal model to test the hypothesis of the “rise” of rhodopsin genes in teleost

fish genomes and address the role of gene duplication in the adaptation of visual systems of

deep-sea teleost fishes [6].

Materials and methods

Ethics statement

This research was performed at National Taiwan University (NTU) in accordance with NTU’s

guidelines regarding animal research. As this project did not involve experiments on live fish,

no ethics statement was required. Most of the specimens examined in the present study were

purchased from local fish markets or fish landing sites (Da-Shi and Donggang) in Taiwan; oth-

ers were from museum specimens collected during exploratory cruises (campaigns: EXBODI,

PAPUA NIUGINI, Taiwan 2013, NanHai 2014, and ZhongSha 2015) conducted between 2012

and 2015 under the "Tropical Deep-Sea Benthos" program and its joint bilateral cooperation

research project entitled “Taiwan France Marine Diversity Exploration and Evolution of

Deep-Sea Fauna” (TFDeepEvo) with the French research vessel ALIS and the Taiwanese

research vessels OR1 and OR5 (S2 Table). A few samples were provided by our collaborators

(see details in “Acknowledgments” and S2 Table).

Sequence acquisition and data collection

Genomic DNA was extracted from a small piece of muscle tissue or fin cut from each exam-

ined specimen using a commercial DNA extraction kit (DNeasy Blood & Tissue Kit, Qiagen,

Hilden, Germany) and/or LabTurbo DNA Mini Kit LGD480-220 (TAIGEN Bioscience, Tai-

pei, Taiwan) following the manufacturer’s protocols. With PCR methods, fragments of the

rhodopsin gene were amplified by standard primers published in a previous study [47] or by

modified or specific primers to the putative “deep-sea” type of rhodopsin gene homologous to

those possessed by Japanese and European eels, to osteoglossomorph rh1-1 and rh1-2 of Gold-

eye (Hiodon alosoides) or to rh1-B of otocephalan fishes (see S1 Table). Temperature cycling

profiles for amplification consisted of an initial denaturation stage (95˚C, 5 min) followed by

35 cycles, each with a denaturation step (95˚C, 40 s), an annealing step (54˚C, 40 s), and an

elongation step (72˚C, 60 s), before a final extension stage (72˚C, 7 min). PCR products were

purified using the AMPure magnetic bead cleanup protocol (Agencourt Bioscience, USA).

Purified PCR products were sequenced by Sanger sequencing using dye-labeled terminators.

Sequence determinations from Sanger reaction products were generated on ABI 3730 analyz-

ers (Applied Biosystems, Foster City, CA, USA) at Genomics BioSci & Tech (Taipei, Taiwan)

and at the Center of Biotechnology (NTU, Taipei, Taiwan). Sequences newly reported in this
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study were deposited in GenBank under accession numbers: MH674300,

MH769447~MH769543 (S2 Table).

Reference or compared sequences were first obtained by searching public genomic data-

bases such as GenBank [48] and Ensembl [49] with key words like “rh1” or “rhodopsin”. To

further explore for potential homologous rh1- or rh1-like sequences (e.g., exo-rh1) in jawed

vertebrates, different runs of “BLAST” searches (function: blastn) were performed using

known rh1 (or exo-rh1) sequences such as freshwater/deep-sea-type rhodopsin sequences

from the anguillids as the query sequence with default settings against sequences deposited in

the Ensembl and NCBI (nucleotide collection) databases. Eventually, 227 rhodopsin gene

homologous sequences, including exo-rh1, intron-containing rh1, and intron-less rh1, from

179 vertebrate species were included in this study (S2 Table).

Sequence alignment and data matrix

Intron regions of rhodopsin sequences were removed (except from rh1 sequences from ray-

finned fishes which have no introns), terminal ends were trimmed, and remaining parts of the

sequences were manually aligned based on the inferred amino acid translation using Se-Al

vers. 2.0a11 [50] before the phylogenetic analyses. The final alignment contained 996 nucleo-

tides. We characterized the base composition and tested for significant deviation from base

composition homogeneity (by codon position) using a Chi-squared test as implemented in

PAUP� vers. 4.0a10 [51] (results are showed in S3 Table). To reduce the impact of homoplasy

due especially to base composition bias at the third codon position sites on phylogenetic esti-

mates, we used an RY-coding strategy by recoding “A” and “G” as “R”, and “C” and “T” as “Y”

at the third codon positions when constructing the data matrix [52,53] using MacClade [54].

Phylogenetic analysis

The compiled data matrix with 227 rhodopsin gene homologous sequences was applied to

infer the rh1/rh1-like gene tree using the maximum-likelihood (ML) method. Sequences from

a shark (Scyliorhinus canicula) and skate (Raja erinacea) were used as outgroups to root the

inferred tree. For the ML search, five independent runs were conducted using the GTR + G

model as implemented in RAxML [55], and the final ML tree was selected among the five best

trees of those runs. Nodal support was assessed by bootstrapping [56] based on 1000 pseudo-

replicates generated from five separate runs. All RAxML analyses including bootstrapping

were conducted on high-performance parallel computers accessed using the CIPRES Science

Gateway vers. 3.3 at http://www.phylo.org [57].

Hypothesis evaluation

The phylogenetic analysis revealed some sequences with an uncertain orthology within the

Teleostei. For those sequences, alternative orthology hypotheses were compared (see Fig 1 and

S1 Fig). For example, the lineage Albula rh1 (Elopomorpha: Albulidae) was forced to indepen-

dently group with each elopomorph orthologous lineage, and the ML values of the constrained

topologies were compared: the best likelihood tree (or hypothesis) was chosen. In the case of

Albula rh1, its gene orthology to Elopomorph rh1-dso was more likely than to Elopomorph

rh1-fwo (S1 Fig). Hypothesized topologies were constructed using Mesquite [58] and their ML

values were calculated using RAxML.

Depending on the frequency of gene duplication events, based on results of the phyloge-

netic analysis (Figs 1 and 2) and assessments of the orthology (S1 Fig), three main hypothe-

sized scenarios concerning rh1 evolution in the Teleostei were proposed (Fig 3). In scenario A,

gene duplications occurred three times during the evolutionary history of the Teleostei, either

Teleost rhodopsin gene evolution
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in each common ancestor of the main teleost lineages (Elopomorpha, Osteoglossomorpha,

and Clupeocephala) (hypothesis A1, Fig 3) or one of the duplication events occurred before

the divergence of the Teleostei (instead of in the common ancestor of the Elopomorpha)

(hypothesis A2, Fig 3). In scenario B, gene duplications occurred twice, one in the common

ancestor of the Osteoglossomorpha and Clupeocephala and the other either before divergence

of the Elopomorpha (Fig 3, hypotheses B1 and B2) or before divergence of the Teleostei (Fig 3,

hypotheses B3 and B4). Another alternative hypothesis in scenario B was that two gene dupli-

cation events occurred, one in the common ancestor of the Teleostei, and the other in the com-

mon ancestor of the Clupeocephala (Fig 3, hypotheses B5 and B6). Scenario C assumed that

both copies of rh1 found in the genomes of the Teleostei resulted from a single gene duplica-

tion event that coincided with the FSGD event (Fig 3, hypotheses C1~C4). All hypothesized

topologies were subject to evaluation using the ML criterion. The constrained topologies that

fit the alternative hypotheses were first constructed using Mesquite [56], and the respective

RAxML analyses were performed to obtain their ML values for comparison and for further

likelihood ratio tests using the AU-test as implemented in the computer program CONCEL

[59].

Ancestral state reconstruction (ACR)

In addition to the phylogenetic method, we also used ACR to investigate rhodopsin gene evo-

lution. Here, the presence/absence of exo-rh1, intron-containing/intron-less rh1, and the copy

number of intron-less rh1 were used as independent characters. Ancestral states of these char-

acters were inferred from a simplified phylogeny of jawed vertebrates based on several molecu-

lar studies [43,44,46,60,61] using Mesquite [58]. A parsimonious approach was applied since it

allows missing data and generates ancestral states that minimize the number of evolutionary

steps.

Results

Rhodopsin gene sequences and phylogenetic tree

In total, 98 newly generated rhodopsin gene homologous sequences from the Teleostei (93

from the Elopomorpha, two from the Osteoglossomorpha and three from the Clupeocephala)

and 129 rh1/rh1-like sequences retrieved from the literature and databanks were included in

the analysis (S2 Table). Our gathered homologous sequences were sampled from a wide taxo-

nomic range of jawed vertebrates with dense sampling within the basal-most lineage of the

Tetelostei, the Elopomorpha (Figs 1 and 2). Sequences of the Osteoglossomorpha were from

five different species, including Hiodon alosoides, which belongs to the basal-most osteoglosso-

morph family. With this sampling strategy, analytical results should have allowed us to appro-

priately interpret rh1 gene evolution of jawed vertebrates.

The inferred rh1 gene tree was roughly consistent with the species phylogeny of jawed ver-

tebrates with some exceptions probably resulting from limitations or artifacts of the phyloge-

netic reconstruction using sequences from a relatively short fragment of a single gene (Fig 1).

For instance, exo-rh1 orthologous sequences found in genomes of ray-finned fishes formed a

monophyletic group that might be sister to the tetrapod rhodopsin clade [with a bootstrap

Fig 1. The rh1 gene tree of jawed vertebrates reconstructed using ML method. Circles on the nodes represent the different

degrees of nodal supports in terms of the bootstrap values from ML analysis (above 79%, black; 60–79%, gray). Bootstrap values

below 60% are not shown. Asterisks indicate the non-monophyletic groups due to the result of gene duplications. Highlighted

lineages were gene sequences with uncertain orthology and were further applied to the gene orthology assessment (see content,

S1 Fig).

https://doi.org/10.1371/journal.pone.0206918.g001
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Fig 2. The rh1 gene tree of jawed vertebrates reconstructed using ML method (with detail view of the elopomorph lineages shown).

Circles on the nodes represent the different degrees of nodal supports in terms of the bootstrap values from ML analysis (above 79%,

Teleost rhodopsin gene evolution
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value (BP) of< 60%] rather than to the ray-finned fish-specific rhodopsin clade, which was

unexpected (Fig 1). A previous study hypothesized that the duplication event from which exo-
rh arose occurred in the common ancestor of all ray-finned fishes, excluding the bichirs (the

Polypteriformes) [41]. Unfortunately, no rhodopsin homologous sequences were available for

bichirs to test this hypothesis. Nonetheless, the ancestral state reconstruction more or less sup-

ported the hypothesis proposed by Mano et al. [41] (see results below).

The ray-finned fish-specific rhodopsin gene, which is expressed in retinal rod cells, is an

intron-less gene [41,62]. None of our obtained sequences of teleost rh1 in this study contained

introns, which further supports this hypothesis. In the inferred tree, all of the compiled

sequences of ray-finned fish rh1 formed a highly supported monophyletic group, in which

sequences of the Teleostei formed another strongly supported clade sister to the non-sup-

ported clade containing sturgeon, paddlefish, bowfin, and gar (Fig 1). Within the Teleostei

clade, four main (but relatively weaker supported) groups/lineages could be found: (i) the Hio-
don alosoides rh1-2 and Albula spp. rh1 plus all sequences attributed to Elopomorph rh1-dso;

(ii) all the elopomorph rh1-fwo sequences; (iii) Hiodon alosoides rh1-1; and (iv) all osteoglosso-

morph rh1 sequences excluding the Hiodon alosoides rh1-1 and all clupeocephalan rh1
sequences (Fig 1). Clupeocephalan rh1 can be subdivided into two reciprocal monophyletic

groups, Clupeocephala rh1-A and Clupeocephala rh1-B, which indicates a putative gene dupli-

cation event might have occurred in the common ancestor of clupeocephalan fishes (Fig 1).

For a summary in terms of copy numbers of rh1/rh1-like genes, after our phylogenetic assess-

ment, we concluded that whereas only one copy (intron-containing rh1 gene) is present in

genomes of the skate, shark, coelacanth, lungfish, and tetrapods, up to three copies were

detected in genomes of diploid ray-finned fishes (two intron-less rh1 genes and one exo-rh1
gene) (S2 Table; Fig 4). The two copies of the intron-less rh1 gene were present in all three

main teleost groups, i.e., two copies (rh1-dso and rh1-fwo) were found in genomes of many elo-

pomorph species (most of the anguilliforms); two copies (rh1-1 and rh1-2) were found in the

genome of Hiodon alosoides (Osteoglossomorpha); and both the rh1-A and rh1-B genes were

found in genomes of some clupeocephalan species from the Otocephala (Fig 1).

Gene orthology and hypotheses of gene evolution

To resolve the uncertainty of rh1 gene evolution within the Teleostei inferred from the recon-

structed gene tree, we assessed the gene orthology and evaluated alternative hypotheses of

genes using the constrained analysis described in the "Methods" section.

Considering the best tree score (-ln likelihood) among the constrained trees corresponding

to alternative hypotheses, we suggest that Hiodon alosoides rh1-1 is most likely related to the

other osteoglossomorphs rh1 sequences, and Hiodon alosoides rh1-2 is a paralog of Hiodon alo-
soides rh1-1. In reference to these results for the two copies of Hiodon alosoides, other Osteo-

glossomorpha rh1 sequences are thereafter considered as belonging to the “rh1-1” group. We

also considered that sequences from single copies of rh1 found in genomes of Albula spp. are

most likely related to Elopomorph rh1-dso rather than to Elopomorph rh1-fwo (see S1 Fig).

The lineages we used to evaluate the hypothesis were defined based on the rh1 gene tree and

results of the gene orthology assessment (Fig 2 and S1 Fig). Subsequently, according to the ML

estimation (Table 1), the best -ln likelihood score hypothesis B6 should be chosen to represent

the most likely scenario for rh1 gene evolution in the Teleostei (Fig 3). After further evaluation

with likelihood ratio tests, we found that although the other alternative hypotheses (except B2)

black; 60–79%, gray). Bootstrap values below 60% are not shown. Asterisks indicate the non-monophyletic groups. Annotations of

abbreviations (i.e. Hiodon rh1-2, Elops rh1-dso, etc.) are corresponding to the lineages used in the hypothesis evaluation (Fig 3).

https://doi.org/10.1371/journal.pone.0206918.g002
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Fig 3. Alternative hypotheses of rh1 gene evolution in the Teleostei. Scenario A, B, and C imply that the major gene duplication events

occurred three times, twice, and once, respectively. Observed gene lineages are defined according to the rh1 gene tree (see the annotation

Teleost rhodopsin gene evolution
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in addition to B6 could not be excluded to explain the results of gene rises and falls of the rh1
gene in teleost genomes by p-values resulting from the AU-test, with a non-scaled probability

(np), all hypotheses except hypotheses B5 and B6 were rejected (Table 1). Therefore, by follow-

ing the most likely hypothesis (B6) selected, the rh1 gene likely should have been duplicated

twice (instead of once) during the early evolution of the Telesotei: one occurred before diver-

gence of the Teleostei, and the other occurred in the common ancestor of the Clupeocephala

(Fig 3). Yet, the duplicated rh1 from the first duplication event within the Teleostei was appar-

ently lost or simply was not found (due to PCR failure or incomplete data) from the available

genomic data of several lineages in the Osteoglossomorpha (except Hiodon alosoides) and in

the Clupeocephala (hypothesis B6, Fig 3).

Ancestral state reconstruction (ASR)

ASR suggests that exo-rh1 might have resulted from a duplication event that occurred either

before the divergence of the ray-finned fishes or just after their divergence with the bichir (S2

Fig). Deletion of rh1 intron regions occurred after divergence of ray-finned fishes with the

bichir (S2 Fig). These two events might have occurred simultaneously. Based on the ASR anal-

ysis, three independent events (instead of one) of gene duplications of rh1 intron-less genes

likely occurred within the Teleostei (S2 Fig).

Discussion

Exo-rhodopsin in ray-finned fishes

The exo-rhodopsin of ray-finned fishes was first discovered by an early study investigating gene

expressions in the photosensitive pineal gland of zebrafish [41]. The exo-rhodopsin gene is

thought to have the same role as other non-visual opsin genes (like pinopsin, parapinopsin,

etc.) that are expressed in the pineal gland and regulate the rhythmic production of melatonin

and thereby regulate circadian rhythms [41,63,64]. While rh1 genes found in ray-finned fishes

are intron-less, the structure of pineal exo-rh1 with five exons and four introns is similar to the

rhodopsin gene of the other vertebrates. It is suggested that the intron-less rh1 may have arisen

through an ancient retrotransposition of mature mRNA originating from exo-rh1. The dupli-

cation event, resulting from this retro-duplication mechanism, occurred early in the evolution

of ray-finned fishes since rh1 of the sister-clade of the Teleostei (i.e., sturgeon, bowfin, and

gar) is also intron-less [65,66]. With increasing available genomic data, more and more exo-
rh1 genes have been identified from genomes of diverse ray-finned fishes [33]. In this study,

we present 27 exo-rh1 sequences which were found in spotted gar (Lepisosteus oculatus), two

anguillids (Elopomorpha), Scleropages formosus (Ostoglossomorpha), and several species of

the Clupeocephala, notably from model species from which complete genomic sequences are

available (i.e., Danio rerio, Oryzias latipes, Takifugu rubripes, etc.) [41,61,67,68] (Fig 1). The

presence of exo-rh1 throughout this wide taxonomic coverage of ray-finned fishes highlights

its functional importance in the evolution of ray-finned fishes [69].

Gene duplication in the teleostei

Teleost fishes are usually found to contain more copies of genes (e.g., opsin genes) than other

vertebrates; this might be a result of the genome-wide duplication events that occurred during

in Fig 2). Arrow sign indicates a gene duplication event (red arrow indicates the duplication that coincides with the FSGD event). Cross

sign indicates a gene loss event. The event time(s) are showed behind each hypothesis: D, time(s) of gene duplication; L, time(s) of gene

loss. Abbreviation: Elops, Elopomorpha; Osteo, Osteoglossomorpha; Clupeo, Clupeocephala.

https://doi.org/10.1371/journal.pone.0206918.g003
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Fig 4. The summary of the rhodopsin gene features and its evolution within jawed vertebrate. Panels behind the

tree represent status of different characters of the gene. Blank squares indicate that the character is absent while solid

ones indicate the character present in the genome of the organism. Question mark indicates that the status of the exo-
rh1 gene is unknown from the genome of the organism. The numbers within the solid squares in the third panel show

the copy number of intron-less rh1 found in the genome of the organism. The last panel indicates the number of rh1
and rh1-like (i.e. exo-rh1) gene can be found in the genome of the indicated organism. Arrows indicate the gene
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their evolution [39]. In addition to the two rounds of whole-genome duplication (WGD)

events that occurred at the common ancestor of vertebrates, teleost fishes experienced a third

round of WGD (the FSGD event) which occurred in their common ancestor [36–40]. While

most of duplicated genes are lost (nonfunctionalization) [40], those that are retained are

assumed to be maintained either by a proportioning of ancestral gene functions (subfunctiona-

lization) or by their evolution into novel functions (neofunctionalization) [70]. These various

evolutionary dynamics of gene evolution might explain the great diversity of teleost species

[3,71–74]. As a consequence of this specific event of ancient genome duplication (i.e., the

FSGD), the Teleostei are a good model group to investigate how gene duplications or large-

scale genomic changes can shape the biodiversity of a lineage [3,36,75].

Phylogenetic analyses in previous studies were conducted to address ray-finned fish specific

intron-less rh1 gene evolution, but conflicting results were obtained. To figure out the origin

of the second visual rhodopsin gene (paralogous rh1) found in zebrafish and other ray-finned

fishes (cavefish and carp), Morrow et al. [18] analyzed around 130 rh1/rh1-like sequences, and

their taxonomic sampling expanded from lampreys throughout the vertebrates (see Fig 4 in

[18]). The topology of the gene tree from Morrow et al. [18] is similar to the gene tree obtained

in this study (Fig 1), except for the position of the paralogous rh1 clade which was closely

related to anchovies, herrings, and ostariophysians (see Fig 4 in [18]). Those authors therefore

rejected the lineage-specific duplication hypothesis and suggested a much more ancient origin

that linked to FSGD for the second visual rhodopsin gene found in zebrafish [18]. Yet, no fur-

ther hypotheses for rh1 evolution were proposed or tested in Morrow et al. [18]. Recently, rh1
evolution (duplication) within the ray-finned fishes was further studied with whole-genomic

sequences. Lin et al. [33] identified visual opsin genes and their adjacent genes (sytenenies)

from 59 ray-finned fish genomes, and restated a model of rhodopsin gene evolution. Largely

based on syntenic data, they found that rh1 duplicates was retained after whole-genome dupli-

cation in the ancestor of teleosts (FSGD), and indicated that paralogs found in eels and zebra-

fish both originated in a single gene duplication event [33]. However, in their rh1 gene tree (S3

duplication events and plus marks show the duplicated gene, triangles indicate the intron region deletion and the gene

loss events. FSGD, Fish-Specific Genome Duplication event.

https://doi.org/10.1371/journal.pone.0206918.g004

Table 1. Likelihood value and probability of the best tree that inferred under the hypothesized constraint of each hypothesis concerning the gene evolution (see Fig

3). The p-value shown in bold indicates that the hypothesis could not be rejected.

- ln likelihood

Best tree -33958.863478

Hypothesis -ln likelihood Ranking au np

A1 -33982.52599 6 0.137 0.013

A2 -33977.39867 3 0.152 0.012

B1 -33990.4781 11 0.104 0.016

B2 -33987.99438 9 0.043 0.003

B3 -33985.72485 7 0.095 0.004

B4 -33980.32094 4 0.166 0.011

B5 -33975.71097 2 0.269 0.075

B6 -33960.44312 1 0.687 0.367

C1 -33993.89872 12 0.083 0.020

C2 -33987.38234 8 0.208 0.019

C3 -33981.15311 5 0.184 0.024

C4 -33989.47416 10 0.08 0.002

https://doi.org/10.1371/journal.pone.0206918.t001
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Fig), it is more likely that the lineage-specific duplication events occurred in eel and herring

lineages (S3 Fig). This topology barely supported the hypothesis and conflicted with their con-

clusion [33]. A similar hypothesis (single gene duplication) for rh1 evolution was also reviewed

by Nakamura et al. [17]. Nakamura et al. [17] compared syntenic structures along rh1 genes

found in spotted gar, Japanese eel, Asian arowana, and other representative teleosts in detail

and deduced gene duplication/loss events under different scenarios. They proposed that rh1
duplicates which were products of the FSGD had been maintained in the genomes of Japanese

eel and some otocephalan species (i.e., zebrafish), but one of the duplicated copies was lost in

the genomes of arowana and the Euteleostei (i.e., Nile tilapia) (see Fig 5 in [17]). According to

the synteny, the authors further suggested that losses of rh1 on opposite regions occurred inde-

pendently in the arowana and clupeocephalan lineages after their divergence (see Fig 5 in

[17]). Although this hypothesis (single gene duplication) was strongly supported by their phy-

logenetic analytical results of concatenated sequences [rh1 plus adjacent genes (ataxin7,

magi1, prickle2)], the topologies of some individual gene trees (i.e., ataxin7, rh1, and magi1)

failed to support this hypothesis [17]. The authors herein simply concluded that two copies of

the eel rhodopsin gene were most likely generated at the FSGD which actually corroborated

our result (hypothesis B6 in Fig 3), and less stressed the story of two copies found in other tele-

osts like zebrafish. Adjacent genes along with rh1 were also analyzed by Lagman et al. [75], in

which topologies from those genes were inconsistent (not showed in the text). The authors

therefore could not ascertain whether or not teleost rh1 paralogs (in anguillid eels, zebrafish,

and cyprinids) originated from the FSGD [75].

Since the two copies of the ray-finned fish specific rh1 gene were present in all three main

teleost groups, the most straightforward answer for the question of the rise of those paralogs in

teleost genomes is that gene duplication events independently occurred in the specific lineages

(Fig 3, scenario A; S2 Fig). Yet, this is not necessarily the most parsimonious solution, like the

above studies which demonstrated scenario C in Fig 3 that involves a single duplication before

teleost diversification. Such a question should be addressed by an explicit phylogenetic method

as presented in this study. Multiple hypotheses concerning various rh1 evolutionary events

were subsequently tested. The likelihood score comparison and results of the test showed that

hypothesis B6 was the most likely interpretation of rh1 gene evolution in the Teleostei

(Table 1; Fig 3, hypothesis B6). It is suggested that the rh1 gene was duplicated once before the

explosive divergence of the teleosts, which might correspond to the whole-genome duplication

event of the FSGD (Fig 4). Following this gene duplication, the duplicated rh1 was maintained

in elopomorph fishes (Elops rh1-dso and fwo) and Hiodon alosoides (Osteoglossomorpha)

(Hiodon rh1-1 and rh1-2) but secondarily lost twice in other osteoglossomorph species and

the Clupeocephala (Fig 3, hypothesis B6; Fig 4). Subsequently, one more duplication event sup-

posedly occurred in the common ancestor of the Clupeocephala, which gave rise to the second

copy of rh1 found in the Clupeocephala (Clupeocephala rh1-B) (Fig 3, hypothesis B6). Accord-

ing to the phylogenetic results and a thorough survey of possible genes that are orthologous to

each of the identified teleost rhodopsin genes through lab work and data mining of the whole

genome (Ensembl) and NCBI Genbank databases, it was observed that after gene duplications,

gene loss events regularly occurred. For example, several elopomorph fishes like tarpons (Elo-

piformes), bony fishes (Albuliformes), and spiny eels (Notacanthiformes) lost their rh1-fwo
(Figs 2 and 4). The inferred secondary loss of one of the Clupeocephala genes (rh1-B) during

the early evolution of the Euteleostei (Figs 1 and 4) was supported by the orthologous gene

search of rh1-B using BLAST against available complete genomic sequences of model euteleost

species deposited in the Ensembl database [49].

The major difference in the proposed hypotheses for rh1 evolution in ray-finned fishes

between the present and previous studies is the second duplication event which supposedly
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occurred in the common ancestor of the Clupeocephala. It is likely that the extra rh1 found in

clupeocephalan lineages like zebrafish, herring, etc. resulted from this event rather than the

first duplication event (the FSGD). This hypothesis was also supported when referring to the

gene tree of magi1 (with an RY-coding strategy) from Nakamura et al. [17] (showed in their

supplementary data) and the rh1 gene tree from Morrow et al. [18], in which the sequences

from both paralogous gene lineages of the Clupeocephala formed a monophyletic group. Com-

bining the hypothesis proposed in this study with whole-genomic data (synteny) from refer-

ences [17,33], an evolutionary scheme of the rh1 regions in teleosts is presented in Fig 5.

In addition, it was noted that the topologies of the rh1 tree with the best likelihood scores

from previous references mentioned above as well as from this study (Figs 1 and 2) all sepa-

rated the elopomorph rh1 paralogs to be non-monophyletic or paraphyletic. This pattern can

be explained by the FSGD hypothesis, since the two rh1 genes found in elopomorphs were

products of this duplication event, which occurred before teleost divergence. A pattern of

reciprocal sister-group relationship of the two elopomorph paralogs would be observed if only

a lineage-specific duplication event had occurred before the divergence of the Elopomorpha

(see: hypotheses A1, B1 and B2 in Fig 3).

This study, however, had several limitations. For example, without the whole-genomic

sequences, it could not be determined whether the absence of the other rh1 in some elopo-

morph lineages like tarpon, bonefishes, and spiny eels (Fig 4) was due to a gene loss event or

experimental failure (PCR-based strategy). Also, the length of rh1 might be too short to pro-

vide sufficient information for phylogenetic inferences, which might result in a tree topology

with low support at nodes that represent long-standing amphibious relationships of organ-

isms. However, compared to the references based on whole-genomic data [17,33], our taxo-

nomic sampling was expanded throughout jawed vertebrates, which allowed us to

comprehensively test the hypothesis. Moreover, by examining the Fig 5 of this study, the synte-

nic structure could not reflect the true story of gene evolution, and the actual gene evolution

might have been misrepresented (Fig 5) (see Results in [33]). To reduce biases as much as pos-

sible caused by limitations mentioned above, supplementary analyses were applied like ances-

tral state reconstruction (S2 Fig) and hypothesis evaluation (Table 1; Fig 3) in this study.

Eventually, further data and research are needed to precisely address the gene evolution in ray-

finned fishes such as whole-genomic sequences from early-teleost fishes like elopomorphs (i.e.,

tarpons, bony fishes, and spiny eels) as well as osteoglossomorphs (i.e. Hiodon alosoides to

complete the scenario of gene evolution with syntenic structure as presented in Fig 5), since

the genomes of those lineages represent missing puzzles between the early ray-finned fishes

and the remaining teleosts to address questions concerning gene duplication.

Two copies of the rhodopsin gene in the Elopomorpha

Anguillid eels were the first elopomorph fishes found to contain two copies of the rhodopsin

gene in their genomes [19,26]. Recently, the origin of the two copies of rh1 in the genome of

the Japanese eel was investigated, and the authors concluded that these two copies originated

in the FSGD event [17,33]. Beyond anguillid eels, we herein identified two copies of rh1 in

most anguilliforms and determined their orthology to either rh1-dso (dso: “deep-sea” type) or

rh1-fwo (fwo: “freshwater” type) of anguillid eels (Fig 2).

Previous studies showed that anguillid eels adjust their vision to adapt to the photic envi-

ronment using two copies of the rhodopsin gene (rh1-dso and rh1-fwo) in different life stages

(deep-sea vs. fresh water) [19,26]. Other anguilliform fishes are predominantly benthic marine

fishes which do not exhibit a complete catadromous life cycle; they may, however, perform

vertical migrations corresponding to different light conditions during their life stages. For
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example, during the larval or leptocephalus stage, Kaup’s cutthroat eels (Synaphobranchus kau-
pii) may stay in the mixed layer shallower than 200 m and then quickly sink to the deep-sea

floor (deeper than 1000 m in depth) after metamorphosis from the leptocephalus to the glass

eel stage [76]. Maintaining two copies of the rhodopsin gene in the genome might be advanta-

geous for visual adaptation in the evolution of those anguillifom fishes. Conversely, the loss of

the duplicated copy in the elopiforms, albuliforms, notacanthiforms, pelican eels, and mura-

nids might be related to a life history in which all life-stages take place in the same environ-

ment (only shallow, coastal, or deep-sea).

Yokoyama et al. [21] pinpointed that replacements occurring at 12 key amino acid sites of

vertebrate rhodopsin were responsible for the divergence in light absorbance. Those sites are:

positions 83, 96, 102, 122, 183, 194, 195, 253, 261, 289, 292, and 317 [21]. By comparing these

key amino acid sites from sequences between rh1-dso and rh1-fwo of each examined species in

the Elopomorpha, five of these 12 key sites were observed to exhibit variations including sites

83, 183, 194, 195, and 292 (S4 Table). Beyond those key sites, an additional amino-acid site was

found to display a consistent pattern of differences between the two types of rhodopsin (site

210; S4 Table). In previous studies, this amino-acid site was mentioned as exhibiting variable

amino acids [cysteine (C)/valine (V)] of rhodopsins throughout the studied taxa (i.e., deep-sea

fishes, teleosts, and vertebrates) [14,16,21]. In this study, we found that most “deep-sea” type

rhodopsins exhibited V, while “freshwater” types exhibited C for this site. Variations in these

six amino acid sites between the compared rh1-dso and rh1-fwo rhodopsin in each species sup-

port the hypothesis of functional divergence between Elops rh1-dso and Elops rh1-fwo. This

hypothesis fits with the mechanism of “subfunctionalization” proposed to explain the long-

term maintenance of duplicated genes [40]. This implies that elopomorph fishes might use the

two copies of the rhodopsin gene to adjust their light needs during different stages of their life

history. However, as previously suggested [6], further investigations, i.e., gene expression and

gene functional assessments, are still required to better understand the evolution of opsins in

elopomorph fishes and the precise mechanisms of molecular adaptation described above for

Fig 5. Hypothesized evolutionary scheme of rh1 region in teleosts. Two times of gene duplication events were demonstrated. Furthermore, it is suggested that one

gene cluster was lost before the second gene duplication event occurred in the common ancestor of the Cupeocephala. Rhodopsin gene is showed in green color while

the adjacent genes in grey. Crosses indicate the cluster/gene lost event.

https://doi.org/10.1371/journal.pone.0206918.g005
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teleost fishes. Such additional data would eventually highlight the potential consequences of

gene duplication in the diversification of elopomorph fishes.
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S1 Fig. The gene orthology assessment of the lineage Albula spp. rh1 and Hiodon alosoides
rh1-1, rh1-2. Various possible orthologous relationships were constrained and tested. The

result showed that the Albula spp. rh1 is more relative to Elopomorph rh1-dso (with higher–ln

likelihood value) while the Osteoglossomorph rh1 is more relative to Hiodon alosoides rh1-1.

(TIF)

S2 Fig. The reconstruction of ancestral state of rh1/rh1-like gene within the jawed verte-

brate. The analysis was based on parsimony method. Inferring characters including the pres-

ence of the exo-rh1 (left), intron region of rh1 (middle), and the number of intron-less rh1
(right) found in the genome of the organisms.

(TIF)

S3 Fig. The schematic rhodopsin gene tree of Lin et al. 2017. Each gene lineage correspond-

ing to gene lineages in this study was indicated in parenthesis.

(TIF)

S1 Table. Rhodopsin gene primers used in this study.

(DOCX)

S2 Table. Samples/sequences used in this study. Voucher number for elopomorph specimens

collected in this study was quoted in parenthesis.

(DOCX)

S3 Table. Descriptive statistics of each codon of rhodopsin gene sequences.

(DOCX)

S4 Table. Variable amino acid sites between two types of rhodopsins in the Elopomorpha

(Elops rh1-dso and rh1-fwo). Asterisk indicates the critical sites for functional tuning which

were proposed in Yokoyama et al. (2008). Sequences were aligned with the bovine rhodopsin

sequence.
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