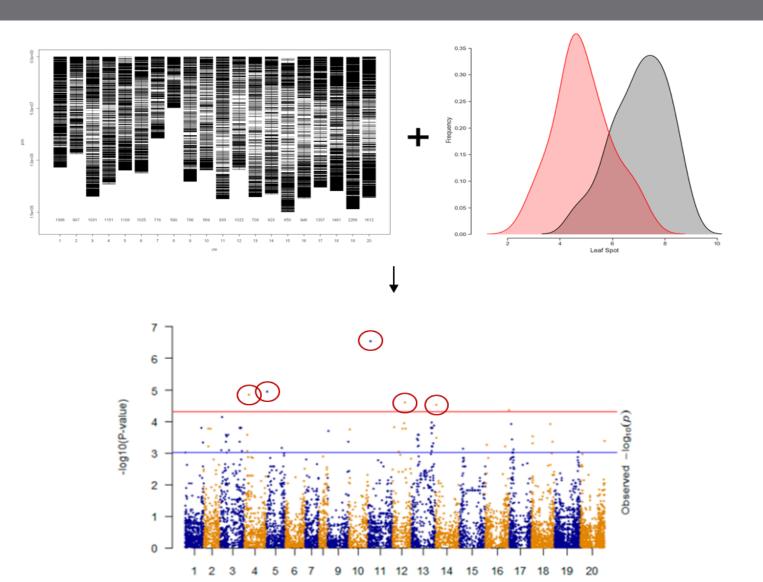
NCSU PEANUT BREEDING PROGRAM PROPOSAL

Marker-Assisted Selection in Virginia-Type Peanut for Multiple Disease Resistance

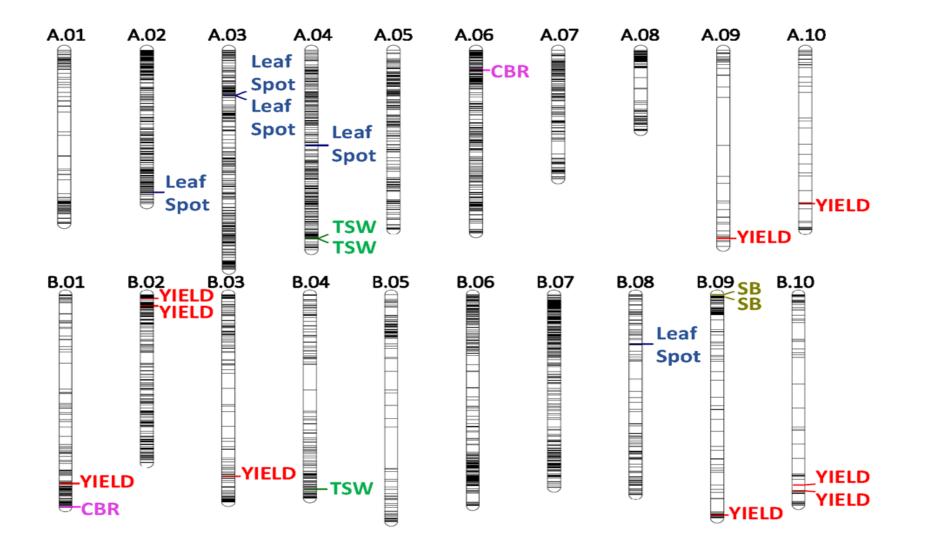
2020-0236

Jeff Dunne | Room 210, Unit 3, Method Road | 314.610.6568 | jcdunne@ncsu.edu

Marker-Assisted Selection Report

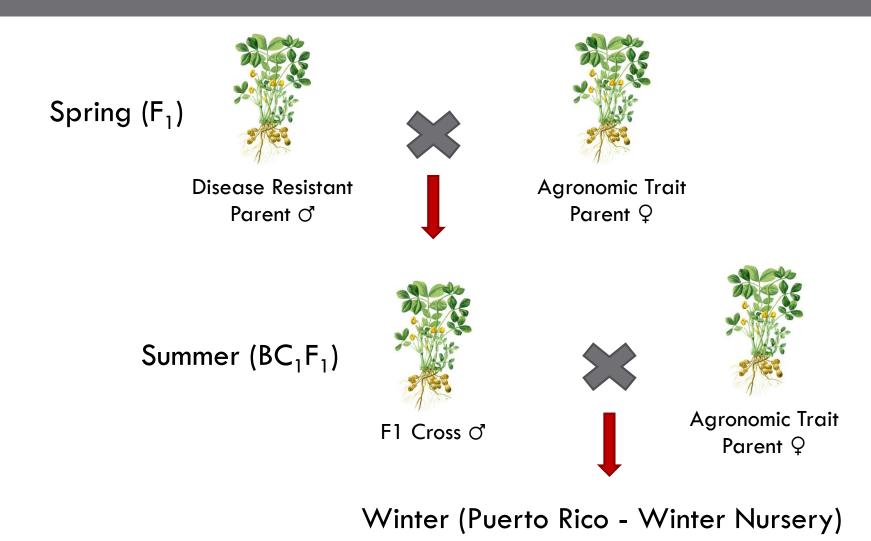

- COVID-19 Update on Field Program
- Marker-Assisted Selection Methodology
 - 1. Seed Chipper/Corer
 - 2. Crude DNA Isolation
 - 3. Multiplexing Marker Technology
- Impacts of Methodology
- Greenhouse Speed Breeding

- 1. Verify all parental materials used in crossing block
- 2. Confirm all crosses (F₁ Plants)
- 3. Genotype all early generation materials (F_2 through F_5) at large effect markers for marker-assisted selection


Genome-Wide Association Analysis

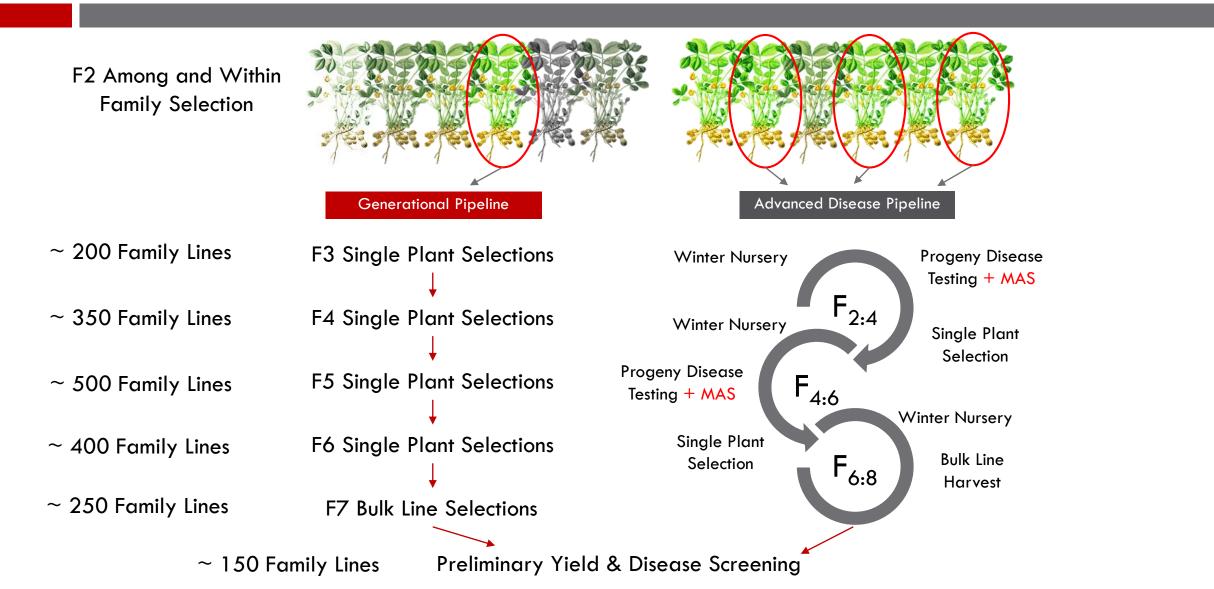
Identify Marker Trait Associations GWAS or QTL Analysis Results

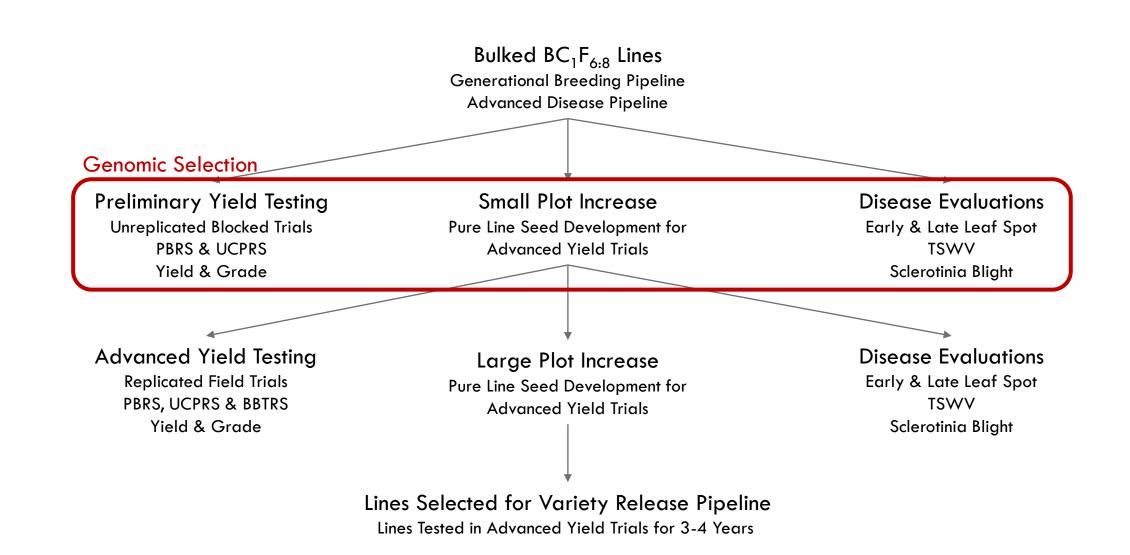
CROP AND SOIL SCIENCES


A. Hypogaea Trait*		A. Hypogaea	GWAS	Frequency of	Frequency of
IIdit	Chromosome	Physical Position (bp)	Adjusted r2	Desirable Allele	Undesirable Allele
PY	10	101,147,237	0.07	0.9	0.1
PY	19	153,897,034	0.07	0.61	0.39
PY	8	34,876,837	0.08	0.79	0.21
LS	2	94,810,239	0.1	0.93	0.07
LS	3	30,614,262	0.02	0.97	0.03
LS	18	32,865,575	0.13	0.06	0.94
CBR	13	123,937	0.07	0.5	0.5
CBR	11	148,970,476	0.07	0.2	0.8
SB	19	985,995	0.12	0.5	0.5
TSWV	14	135,149,720	0.06	0.09	0.91
FAD2B	19	154,049,242	N/A	0.89	0.11

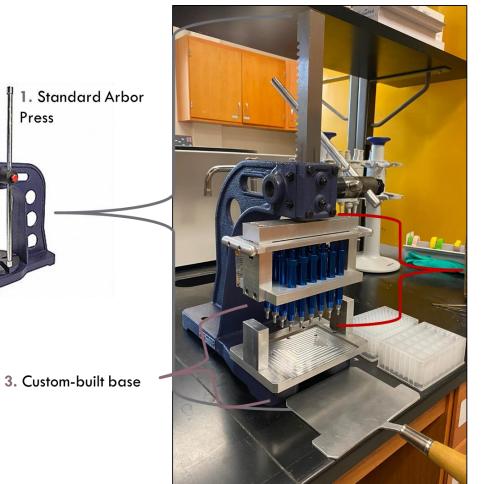
* PY - Pod Yield, LS - Leaf Spot, CBR - Cylindrocladium black rot, SB - Sclerotinia blight, TSWV - Tomato spotted wilt virus, and FAD2B - Gene providing the high-oleic trait

Other Traits? Flavor, Folate, etc.

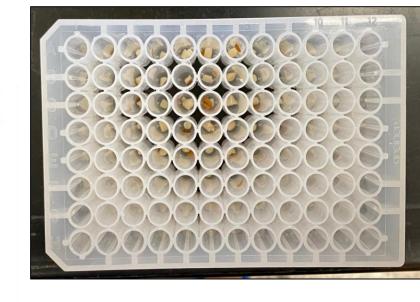

Greenhouse Crossing Program


Marker-Assisted Selection in Peanuts

Program Testing Network



- 1. Manual Seed Chipper > Sample 384 seeds rapidly
- 2. Standard "crude" DNA extraction from 384 samples in one hour at minimal costs
- 3. Custom multiplex SNP genotyping


Seed Chipper – Monsanto Patent Avoided

CROP AND SOIL SCIENCES

2. 24 modified biopsy punches in fixed positions (4 x 6 layout) with a custom-built single ejector

Crude DNA Isolation

- 1. Spin briefly in plate centrifuge.
- 2. Add 50µL Buffer A to each well and mix by inversion.
- 3. Heat at 65oC for 10 minutes.

Buffer A:

- 4. Add 200µL Buffer B and mix by inversion
- 5. Spin briefly and transfer 60μ L of supernatant to a new plate
- 6. Use 2µL in PCR reaction, no need to quantify DNA

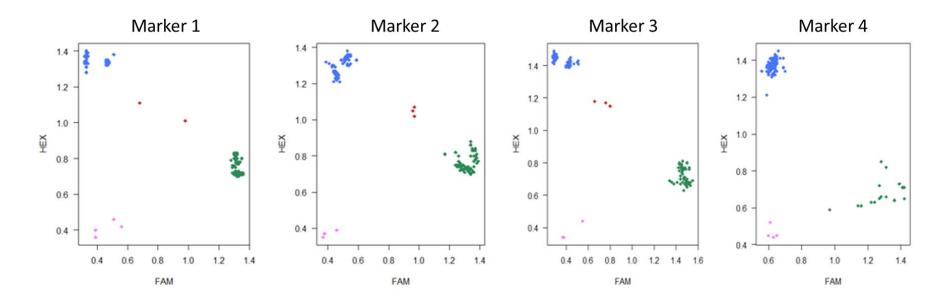
Stock	Volume	Final Concentration	Stock	Volume	Final Concentration
10 M NaOH	200uL	100mM	1 M Tris-HCI#	8mL	100mM
Tween 20	400uL	2%	0.5 M EDTA	320uL	2mM
Ultrapure H2O	19.4mL	N/A	Ultrapure H2O	72mL	N/A

Buffer B:

Zheng et al. 2015. Non-destructive high-throughput DNA extraction and genotyping methods for cotton seeds and seedlings. BioTechniques 58: 234-243.

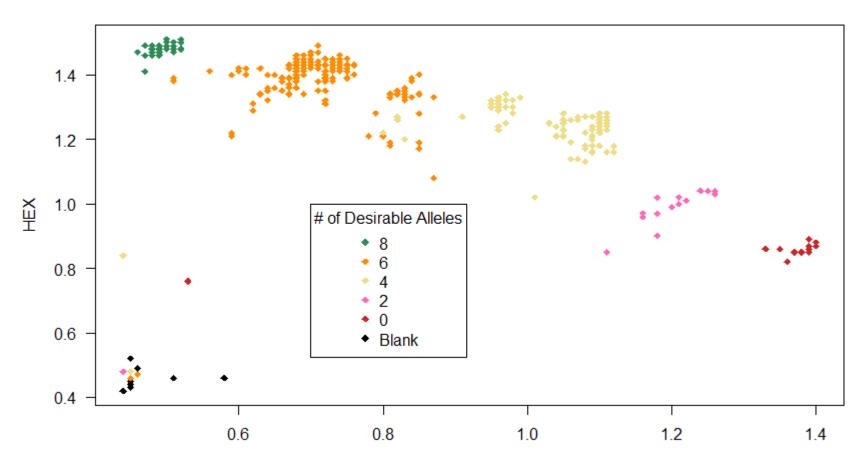
Avanti J-15

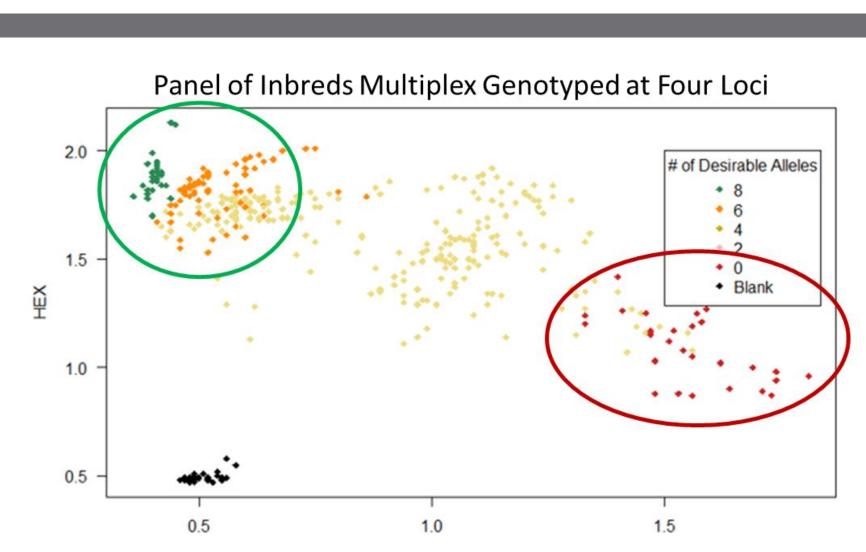
BECKMAN


KASP (or PACE) Assay

CROP AND SOIL SCIENCES

Most Marker Behave Similarly...


- Markers can often be grouped based on their fluorescence pattern
- What would happen if you arranged the beneficial allele on the same axis across all assays and then pooled the beneficial markers together?


Marker-Assisted Selection

Inbreds w/ high-quality DNA isolated with Qiagen kit, quantified and normalized

Signal vs. # of Desirable Alleles in a 4-Marker Pool on a Panel of Inbreds

Marker-Assisted Selection

Inbreds w/ crude DNA isolation – not quantified or normalized

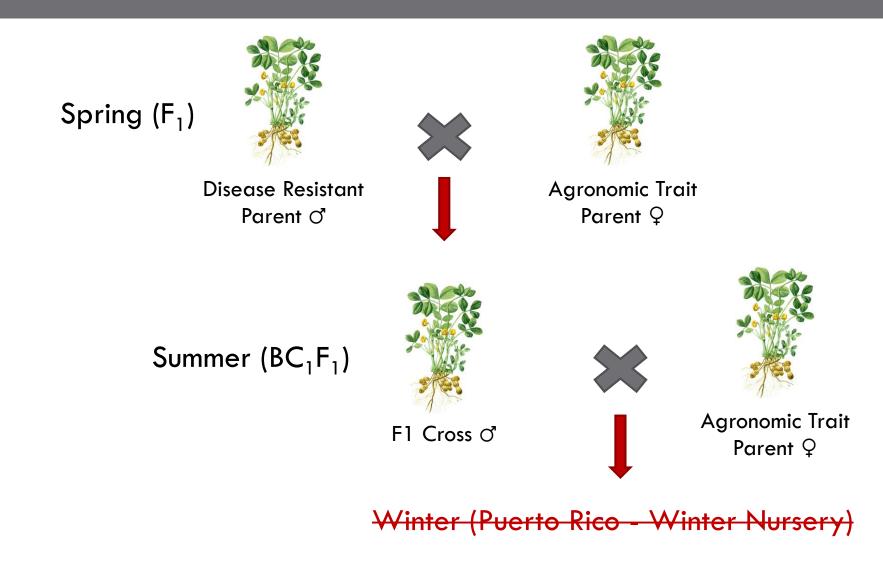
Impact of Methodology

CROP AND SOIL SCIENCES

Pros:

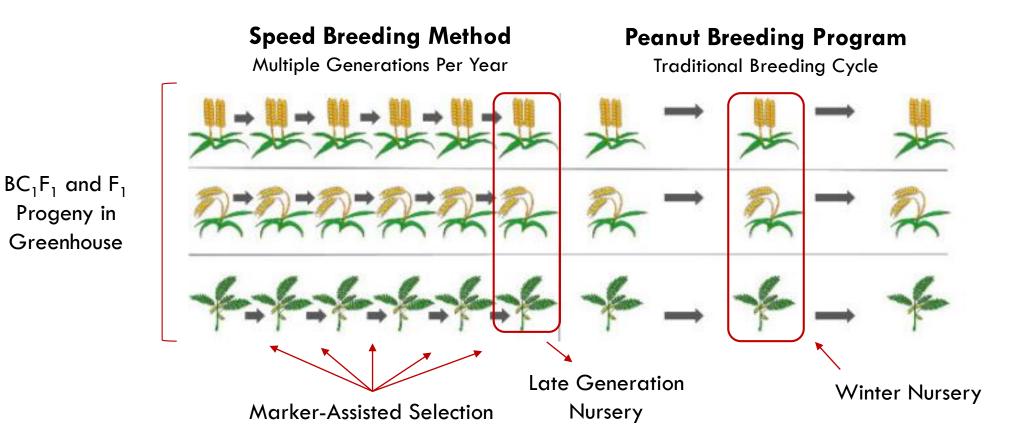
- Reduced genotyping costs
- Increased speed
- Simplified data analysis and selection selection index just HEX/FAM ratio

Verify all parental materials used in crossing block

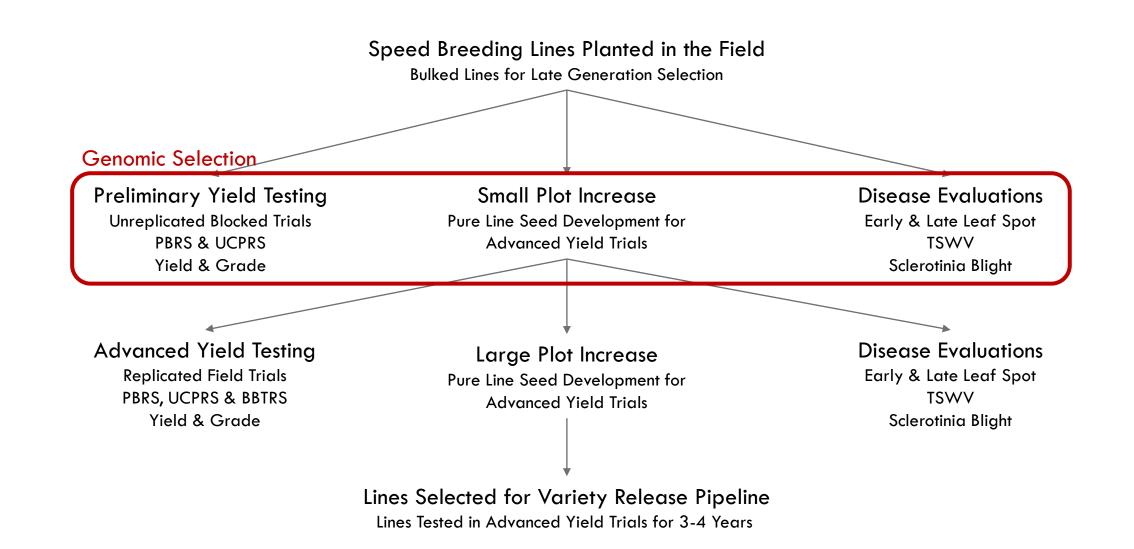

Confirm all crosses (F₁ Plants)

Genotype all early generation materials (F_2 through F_5) at large effect markers for marker-assisted selection

- Ideally adopt a speed breeding approach to turn 3+ generations per year in the greenhouse
- Concentrate field resources on genomic selection and testing later generation materials


Greenhouse Speed Breeding w/ MAS

Greenhouse Speed Breeding w/ MAS



Greenhouse Speed Breeding w/ MAS

CROP AND SOIL SCIENCES

NC STATE

UNIVERSITY

2021 Budget

FUNDS R	2021				
EPA Salaı	ries and fringe benefits ¹				
Graduate	Student Stipends and Support ²	\$21,000			
SPA Salaı	ries and fringe benefits ¹				
Part-time	Labor (including: 8.60% fringe benefits, and add \$142/year health insurance for hourly / part-time workers who will work ≥ 30hrs/wk. for longer than 3 months)	\$5,000			
Supplies	(such as: lab and field consumables, fuel, etc.)	\$2,500			
Equipmer)† (greater than \$500)				
Travel	(for airfare, overnight lodging and meals associated with project tasks)				
Other	(such as: motor pool rental, lab analysis, contracted services, greenhouse space, page/publication charges)				
TOTAL in	TOTAL in Dollars \$28,500				

NCSU PEANUT BREEDING PROGRAM PROPOSAL

Marker Development through Next-generation Sequencing (NGS) for Late Generation Selection

NC-42

Jeff Dunne | Room 210, Unit 3, Method Road | 314.610.6568 | jcdunne@ncsu.edu

Next-Generation Sequencing Report

CROP AND SOIL SCIENCES

Protocol Development Steps

- 1. Development of internal reference A. hypogaea cv. 'Bailey II'
- 2. Whole-genome sequencing of diverse breeding lines in NCSU peanut breeding program
- 3. Align whole-genome sequences to internal reference for single nucleotide polymorphism (SNP) discovery
- 4. In silico digest of Arachis hypogaea cv. 'Bailey II' reference genome
- 5. Use in silico site information (alignments) to maximize SNP recovery

Bailey II – Internal Reference Genome

CROP AND SOIL SCIENCES

Table 1. Comparison of genome assemblies based on summary statistics compiled for Bailey II, Tifrunner (both versions), Fuhuasheng and Shitoqi for use as internal reference genome for the North Carolina State University peanut breeding and genetics program.

Assembly	Scaffold Total	Contig Total	Max Scaffold Length	Max Contig Length	% Main Genome in Scaffolds	BUSCO*
Bailey II (CANU)	89	1,334	90,278,000	61,544,000	100.00%	5,192
Tifrunner (v.1)	384	4,039	160,880,000	9,488,000	99.79%	5,182
Tifrunner (v.2)	442	4,139	160,028,000	9,488,000	99.78%	5,183
Fuhuasheng (v.1)	20	31,747	168,161,000	1,735,000	100.00%	5,078
Shitoqi (v.1)	21	7,747	159,155,000	8,551,000	100.00%	5,178

* Measure of completeness of genome

Whole-Genome Sequencing

CROP AND SOIL SCIENCES

Table 2. List of 48 lines subjected to whole-genome sequencing (10x coverage) and SNP discovery using the Bailey II internal reference genome for alignment.

0	U				
(EV) Bailey*	(EV) Perry*	(GL) GP-NC 343*	(MC) GP-NC WS 3	(MC) GP-NC WS 14	(MD) HTS IL-028*
(EV) Bailey II*	(EV) Sugg*	(GL) PI 121067	(MC) GP-NC WS 4	(MC) GP-NC WS 15	(MD) HTS IL-029*
(EV) Emery*	(EV) Sullivan*	(GL) PI 269685	(MC) GP-NC WS 5	(MC) GP-NC WS 16	(MD) HTS IL-047*
(EV) N05006	(EV) Wynne*	(GL) PI 270806	(MC) GP-NC WS 6	(MC) HTS 16-03*	(MD) HTS IL-049*
(EV) N11055B*	(EV) Gregory*	(GL) PI 576636*	(MC) GP-NC WS 7	(MC) HTS 16-04*	(MD) HTS IL-051*
(EV) N13042ol*	(FV) NC 5	(GL) PI 665000	(MC) GP-NC WS 11	(MC) HTS 16-06*	(MD) HTS IL-052*
(EV) N16021*	(FV) NC 6	(MC) GP-NC WS 1	(MC) GP-NC WS 12	(MC) SPT 07-01*	(MD) HTS IL-058*
(EV) N96076L*	(GL) Carolina Runner	(MC) GP-NC WS 2	(MC) GP-NC WS 13	(MD) HTS IL-002*	(MD) HTS IL-067*

* Denotes Whole-Genome Sequencing in Leaf Spot Trial

- EV Elite Virgina-type Cultivar or Breeding Line
- FV Virginia-type Founder Cultivar or Breeding line
- **GL** Germplasm Line
- MC Multiple Disease Resistant Lines with Introgressions from A. cardenasii
- **MD** Multiple Disease Resistant Lines with Introgressions from A. diogoi

CROP AND SOIL SCIENCES

52086.0 R

52251.0 R

52332.0 R

54382.0 R

54612.0 R

54658.0 R

Freq

Rare

Frea

Freq

Rare

Freq

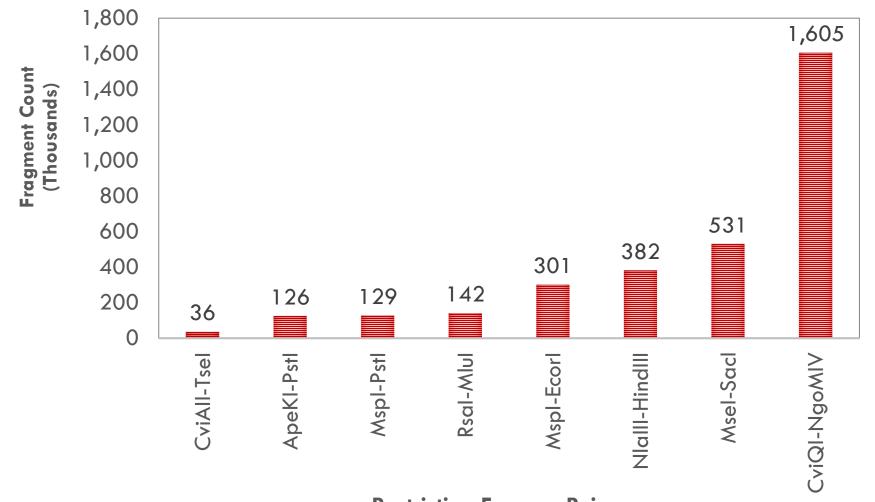
No

17419.0

165.0

81.0 2050.0

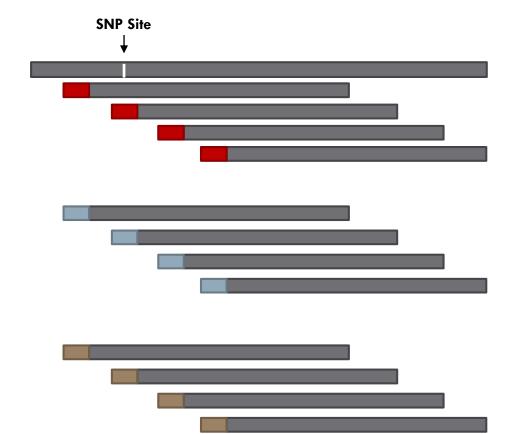
230.0


46.0

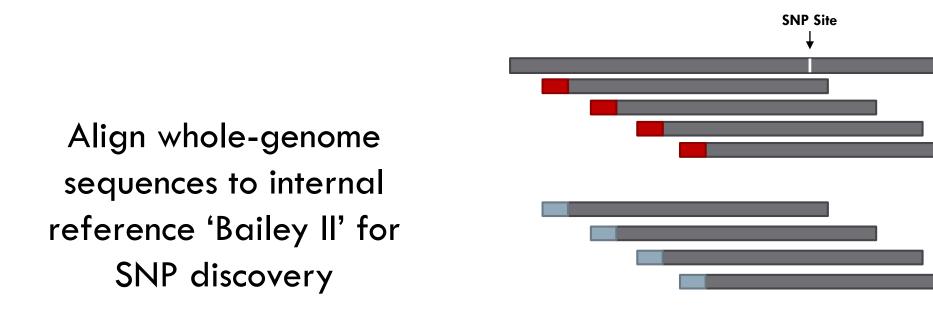
ApeKI Site (GCWGC) Pstl Site (CTGCAG) Genomic DNA In silico, construct reduced Run in silico.py representation libraries (RRLs) by digesting each Results from in silico.py Enz Start Cut Source Del Couple Size Site 15912.0 R Freq 0.0 No No DNA sample with a 16497.0 R No 585.0 Rare No 19495.0 R 2998.0 Freq No No 26735.0 R No No 7240.0 Freq 27246.0 R 511.0 Rare No No restriction enzyme pair Site 2 28152.0 R Frea No No 906.0 29719.0 R Freq No No 1567.0 29986.0 R No No 267.0 Rare 1492.0 31478.0 R No Frea No Site 3 (example: ApeKI – Pstl) 31622.0 R Freq No No 144.0 32802.0 R No No 1180.0 Rare 32950.0 R Rare No No 148.0 34667.0 R Freq No No 1717.0

Site 4

CROP AND SOIL SCIENCES



Restriction Enzyme Pair



CROP AND SOIL SCIENCES

Align whole-genome sequences to internal reference 'Bailey II' for SNP discovery

CROP AND SOIL SCIENCES

SNP Site **SNP** Site Marker #1 Marker #2 Align whole-genome sequences to internal reference 'Bailey II' for **SNP** Site **SNP** Site SNP discovery Marker #3 Marker #N

CROP AND SOIL SCIENCES

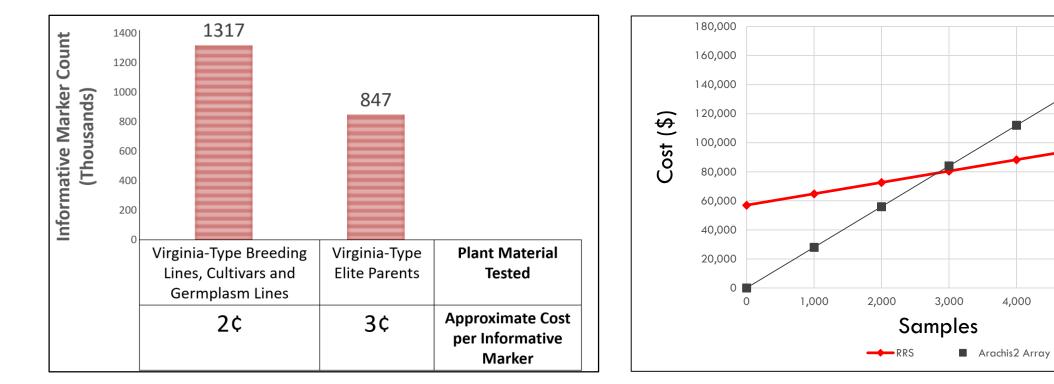
Use results from *in silico* digest to count potential recovery sites of SNPs discovered from wholegenome alignment

Results from in_silico.py

Enz_Star	rt	Cut	Source	Del	Couple	Size
15912.0	R	Freq	No	No	0.0	
16497.0	R	Rare	No	No	585.0	
19495.0	R	Freq	No	No	2998.0	
26735.0	R	Freq	No	No	7240.0	
27246.0	R	Rare	No	No	511.0	
28152.0	R	Freq	No	No	906.0	
29719.0	R	Freq	No	No	1567.0	
29986.0	R	Rare	No	No	267.0	
31478.0	R	Freq	No	No	1492.0	
31622.0	R	Freq	No	No	144.0	
32802.0	R	Rare	No	No	1180.0	
32950.0	R	Rare	No	No	148.0	
34667.0	R	Freq	No	No	1717.0	
52086.0	R	Freq	No	No	17419.0	
52251.0	R	Rare	No	No	165.0	
52332.0	R	Freq	No	No	81.0	
54382.0	R	Freq	No	No	2050.0	
54612.0	R	Rare	No	No	230.0	
54658.0	R	Freq	No	No	46.0	

Filtering Results (in_silico.py)

- Sequence fragment size selection (150-500 bp)
- Frequent Rare sticky ends
 Sites identified from wholegenomes sequencing falling between starting positions


Validation: Run GBS protocol with selected enzyme pairs for read depth evaluation and SNP count recovery post alignment

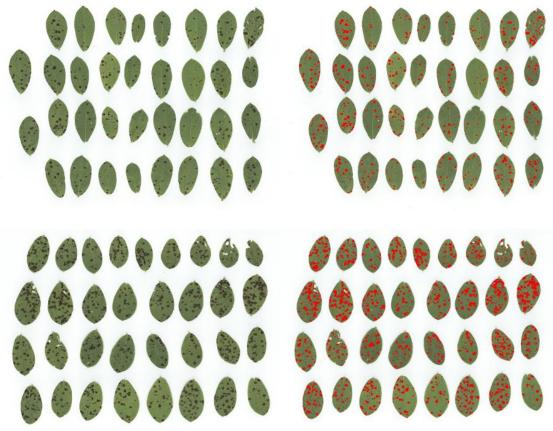
CROP AND SOIL SCIENCES

5,000

6,000

The Genotype-By-Sequencing (GBS) or Reduced Representation Sequencing (RRS) pipeline will reduce the cost per informative marker from \$0.03 to \$0.001 The Genotype-By-Sequencing (GBS) or Reduced Representation Sequencing (RRS) pipeline will break even in 4 years or after ~2,800 samples

Leaf Spot Characterization



CROP AND SOIL SCIENCES

Aerial Image of Peanut Defoliation

Leaf Spot Tissue Scans for Coverage

Leaf Spot Characterization

CROP AND SOIL SCIENCES

Aerial Image of Peanut Defoliation

Comparison of Imaging to Visual Ratings

NC STATE UNIVERSITY

CROP AND SOIL SCIENCES

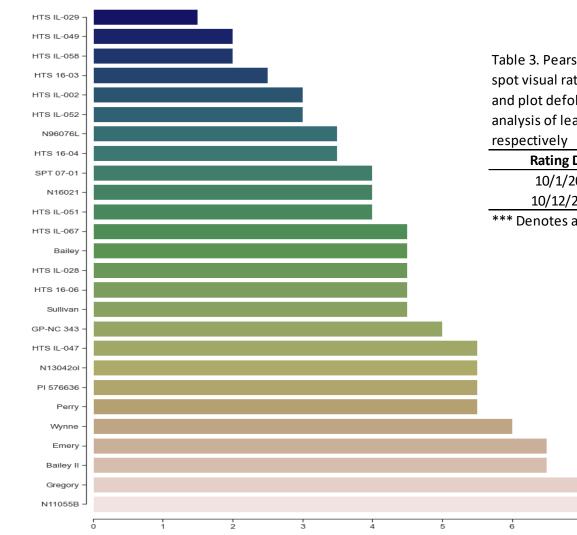


Table 3. Pearson's correlation coefficient between leaf spot visual ratings and the combined percent leaf spot and plot defoliation values determined through image analysis of leaf tissue and aerial drone imaging, respectively

Rating Date	Pearson's Correlation (r)
10/1/2020	0.59***
10/12/2020	0.64***

*** Denotes a significant correlation at the <0.0001 level

Ż

Leaf Spot Rating - Visual (10/12/2020)

2021 Budget

FUNDS R	2021				
EPA Salaı	ries and fringe benefits ¹				
Graduate	Student Stipends and Support ²	\$21,000			
SPA Salaı	ries and fringe benefits ¹				
Part-time	Labor (including: 8.60% fringe benefits, and add \$142/year health insurance for hourly / part-time workers who will work ≥ 30hrs/wk. for longer than 3 months)	\$5,000			
Supplies	(such as: lab and field consumables, fuel, etc.)	\$2,500			
Equipmer)† (greater than \$500)				
Travel	(for airfare, overnight lodging and meals associated with project tasks)				
Other	(such as: motor pool rental, lab analysis, contracted services, greenhouse space, page/publication charges)				
TOTAL in	TOTAL in Dollars \$28,500				

SUPPORT FOR PEANUT WILD SPECIES BREEDING AND GERMPLASM MAINTENANCE AT NCSU

NORTH CAROLINA PEANUT GROWERS RESEARCH MEETING NOVEMBER 30, 2020

Ryan Andres | Room 209, Unit 3, Method Road | 919.215.7338 | rjandres@ncsu.edu

Objective 1: Maintain Wild Species Greenhouse Collection

- Started with 325 very weedy and overgrown pots.
- Discarded 171 either because they were duplicates or we already had sufficient seed.
- Did not harvest any seed off these pots.

Performed vegetative propagation on the remaining 154 pots.

1) Cut diagonally along the last node of an

actively growing lateral branch.

2) Dip cut end in rooting powder.

3) Plant cutting and keep soil wet.

4) In a few weeks, cutting will produce roots and leaves.

Objective 1: Maintain Wild Species Greenhouse Collection

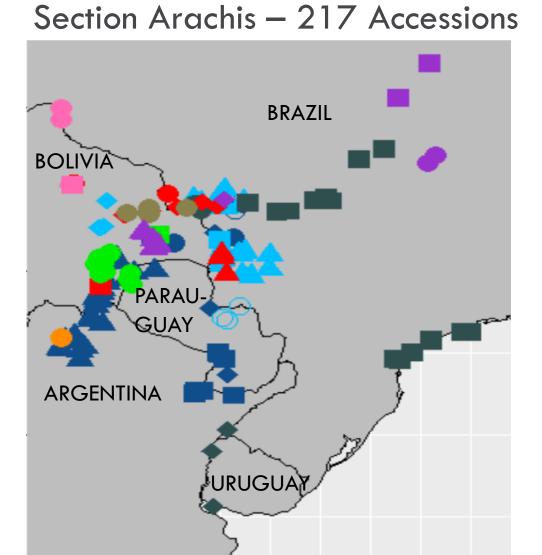
CROP AND SOIL SCIENCES

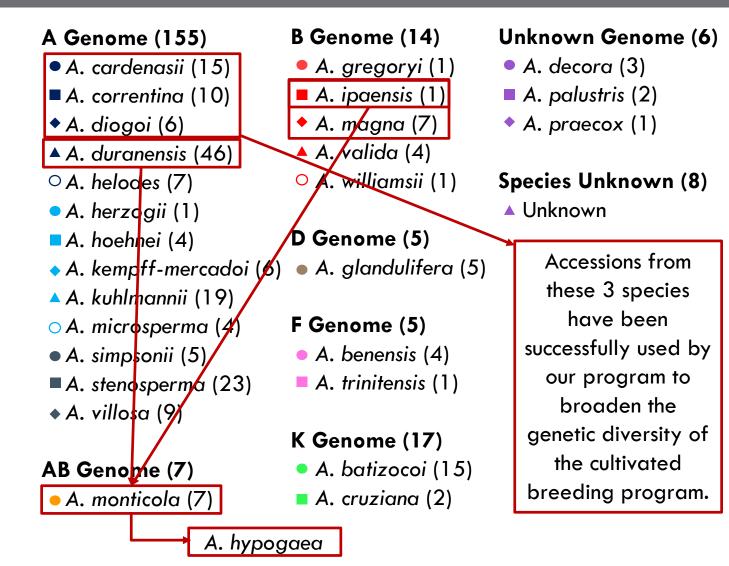
One control box for two benches.

Control box feeds a lateral tube that runs the length of the bench. Every other box has a vertical riser with a sprinkler on top.

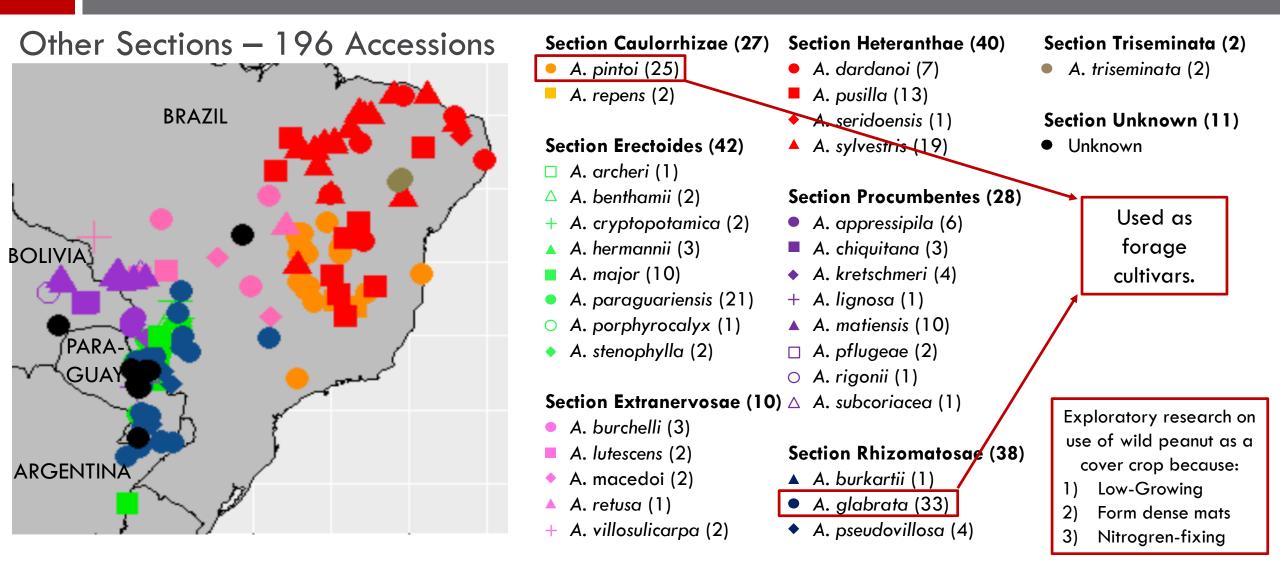
Objective 1: Maintain Wild Species Greenhouse Collection

- Harvest seed when its ready.
- Maintain via vegetative propagation if necessary.



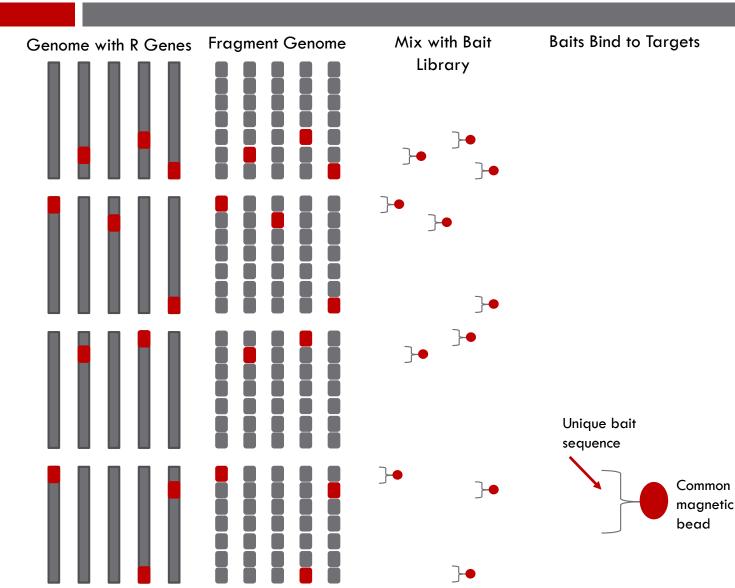


- Refresh: No Wild Species Nursery at Sandhills this year due to Covid-19.
 - No long-term effects.
 - Larger in 2021.


- Inventory: 475 total accessions
 - 22 known duplicates
 - 38 have questionable or incomplete information
 - 415 "high-quality" accessions

- Organize: Currently have 5 freezers that look like this.
- Discard anything older than 15 years.
 - Includes 2 additional freezers at Reedy Creek
- Keep only 3 most recent bottles of each accession.
- Eventually genotype to eliminate duplicates and misclassifications in Section Arachis.

Objective 3: Develop a genotyping strategy to characterize the wild species collection.



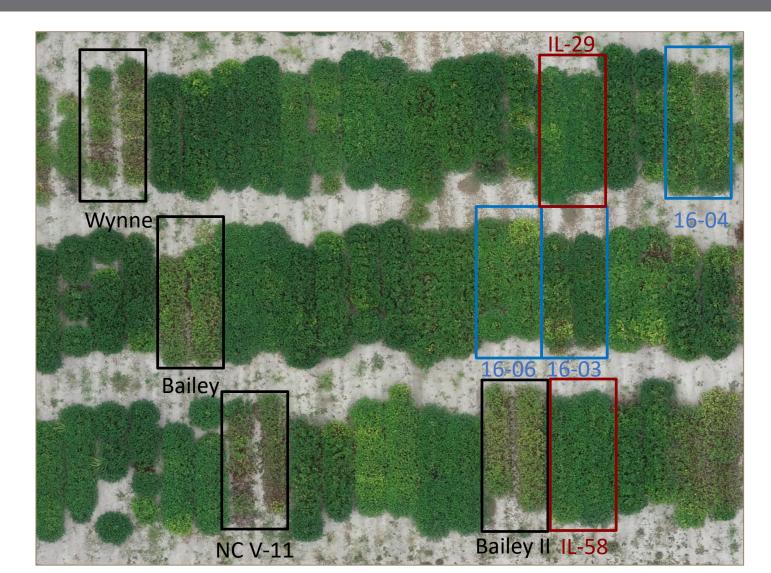
- With 218 wild species in Section Arachis, which ones should we cross with?
- Traditional Route: 1st step would involve full sequencing of 10 wild species.
 - \$50,000 & \sim 2 years to analyze the data
- Alternate Route: Wild species primary utility is their collection of novel R (Resistance) genes.
 - Not found in cultivated material.
- R genes are very similar to one another and that makes them easy to find in the peanut genome.

Objective 3: Develop a genotyping strategy to characterize the wild species collection.

CROP AND SOIL SCIENCES

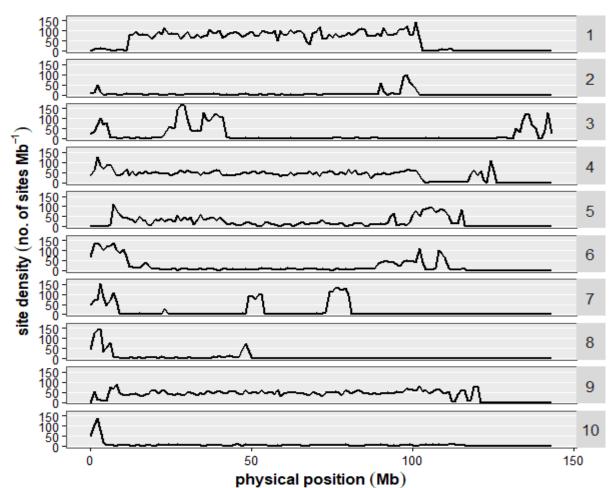
Use Magnet to Capture Baits + Targets

> Sequence just the R genes.


 Get 95% of the relevant data.

\$8,800

Data analysis
 ~2 months.


- We have breeding lines with elite leaf spot resistance from both A. cardenasii and A. diogoi backgrounds.
- The objective is to combine them in a single breeding line.
- This makes it much easier to transfer both sources of resistance to future cultivars.

CROP AND SOIL SCIENCES

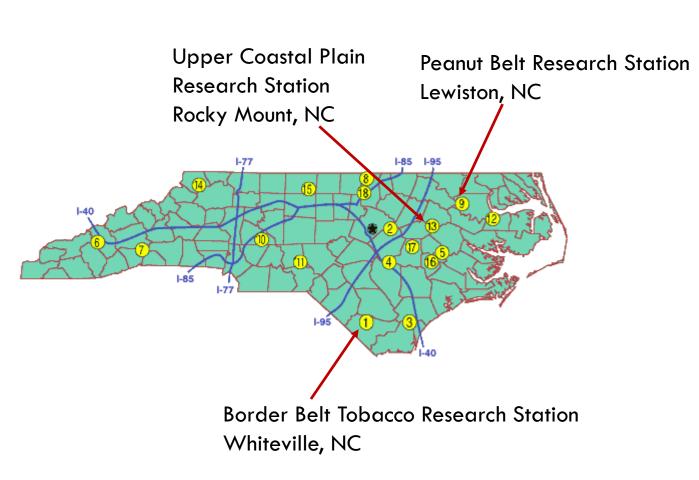
- 1st step: Sequenced 18 relevant lines.
- 2nd step: Aligned those sequences to the reference genome.
- Peaks in the graphs on the right represent regions of wild species DNA.
- Design molecular markers to determine which of these blocks lead to resistance.

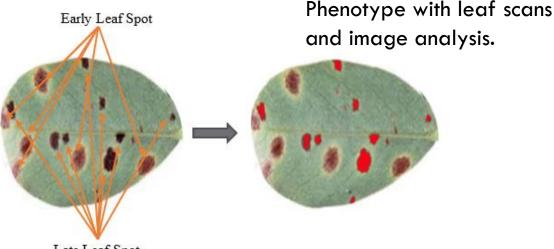
A. Diogoi Introgression Blocks in IL-29

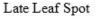
NC STATE UNIVERSITY

- In summer 2000, VA-98R was crossed with the A.
 correntina accession GKP 9530.
- After 20 years we may finally have 3 plants out of this cross with the right number of chromosomes.
- Send seed from these plants to USDA to check the chromosome number.

- 46 synthetic allotetraploids in the greenhouse from 11 different wild species crosses.
- Keep looking for normal levels of fertility in these plants.


$\stackrel{\frown}{_{_{_{_{}}}}}$ Parent	Genome	🕈 Parent	Genome	# Plants
A. batizocoi	KK	A. cardenasii	AA	2
A. batizocoi	KK	A. correntina	AA	2
A. batizocoi	KK	A. stenosperma	AA	6
A. gregoryi	BB	A. stenosperma	AA	3
A. ipaensis	BB	A. cardenasii	AA	3
A. ipaensis	BB	A. correntina	AA	15
A. ipaensis	BB	A. diogoi	AA	5
A. ipaensis	BB	A. duranensis	AA	1
A. ipaensis	BB	A. stenosperma	AA	4
A. magna	BB	A. cardenasii	AA	4
A. magna	BB	A. stenosperma	AA	1




Objective 5: Evaluate wild species lines for disease resistance and yield potential.

CROP AND SOIL SCIENCES

Phenotype with dronebased whole-plot defoliation.

Budget

BUDGET						
FUNDS REQUESTED:		2021	2022	2023		
EPA Salaries and fringe benefits ¹		\$21,218				
Graduate Stude	nt Stipends and Support ²					
SPA Salaries and fringe benefits ¹						
Part-time Labor	(including: 9.05% fringe benefits, and add \$151/year health insurance for hourly / part-time workers who will work ≥ 30hrs/wk. for longer than 3 months)					
Supplies	(such as: lab and field consumables, fuel, etc.)	\$7,500				
Equipment	(greater than \$500)					
Travel	(for airfare, overnight lodging and meals associated with project tasks)					
Other	(such as: motor pool rental, lab analysis, contracted services, greenhouse space, page/publication charges)					
TOTAL in Dollars		\$28,718	\$	\$		