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Abstract 

Bryony Pearce - The Ecology of Sabellaria spinulosa Reefs 

Reef habitats built by the tubiculous polychaete Sabellaria spinulosa have been identified as a habitat with 

significant conservation importance, based on their historic decline across Europe and the assumption 

that, like many other biogenic reef systems, S. spinulosa reefs enhance biodiversity. Despite the high 

conservation status of this habitat very little work has been undertaken to explore the role that S. spinulosa 

reefs play in marine ecosystems, or their sensitivity to anthropogenic disturbance. Observations of the 

reproductive ecology and population dynamics of the reef building organism indicate that S. spinulosa 

exhibit life-history traits typically associated with r-strategists, indicating that this species is likely to have 

the ability to recover quickly following most anthropogenic disturbance events. A series of surveys on S. 

spinulosa reefs identified at the Thanet Offshore Wind Farm site, where the extent of the reef habitat was 

found to have increased between the pre-construction and post construction survey despite extensive 

cable laying and turbine installation, corroborates these findings. Detailed investigations into the 

macrofauna associated with S. spinulosa reefs in the eastern English Channel revealed that S. spinulosa 

reefs support macrofaunal communities that are comparable to those associated with adjacent muddy 

sandy gravel and gravelly muddy sand in terms of species composition, taxonomic breadth and beta-

diversity.  A consistent enhancement in species richness, abundance and biomass was identified in 

samples collected from S. spinulosa reefs when compared with adjacent sedimentary deposits, as well as 

a corresponding reduction in the equitability of species, indicating that some macrofauna are able to exist 

in higher densities within this habitat. The increase in macrofaunal biomass associated with S. spinulosa 

reefs was found to influence the diet of demersal fish species, with some species feeding on the reef 

organism itself while others feed on species found in high densities on the reefs. The high abundance of 

juvenile flatfish associated with this habitat also suggests that S. spinulosa reefs may provide an important 

nursery habitat.  
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Chapter 1. Introduction 
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1.1 Background 

Reef habitats can be separated into two broad classes, biogenic reefs, the structure of which is created by 

a living organism and geogenic reefs where biological complexes grow on rock or coarse substratum such 

as cobbles (EC 2013). Biogenic reefs are formed by a wide variety of marine animals though the term reef 

has become more or less synonymous with coral structures. With significant focus being attached to coral 

reefs, biogenic structures created by other organisms are often overlooked. Biogenic reefs found in UK 

waters include deep-water corals, mussel beds, oyster beds and polychaete reefs (Wilson 1971; Hall-

Spencer et al. 2002; Chapman et al. 2007; Lindenbaum et al. 2008; Soeffker et al. 2011; Green and Crowe 

2013). The following represents a review of the ecology of the latter, polychaete reefs, with an emphasis on 

reefs built by the Sabellariid polychaete Sabellaria spinulosa. Relatively few studies have been carried out 

on the ecology of S. spinulosa reefs (George and Warwick 1985; Foster-Smith 2001; Foster-Smith and 

White 2001; Foster-Smith and Hendrick 2003; Hendrick 2007; Condie 2009; Last et al. 2011a) and hence 

this chapter draws heavily upon work carried out on other species in this family. Attempts have been made 

here, to identify trends and variations in the ecology of Sabellariid reefs as a means to better understand 

the ecology of S. spinulosa. However, examination of the available literature has highlighted the imperative 

requirement for further research into the life-history and ecology of this species and the biogenic structures 

it creates.  

Tube building is a common trait amongst polychaetes and a great variety of tube morphologies exist (Figure 

1.1). Some tubiculous polychaetes have a highly selective preference for building materials, the character 

of the tube depending on the species as much as the materials available (Philips Dales 1967). For example, 

oweniid polychaetes are selective in their tube building materials using only very flat shell or sand particles 

which they arrange on an organic, secreted base, like tiles on a roof (Noffke et al. 2009). The tube building 

behaviour of some species also changes with age, for example adult ‘sand-mason’, Lanice conchilega use 

larger particles to build their tubes than the juveniles (Callaway 2003). Perhaps the most impressive tube 

building abilities though, are those of the pectinariids which construct very precise, conical tubes from sand 

and shell fragments as illustrated in Figure 1.1B. Sabellid polychaetes also use sediment in their tube 

construction although they tend to favour finer sediments giving rise to a more flexible tube (Hayward and 

Ryland 1998) similar in appearance to the leathery tubes built by the much larger chaetopterid polychaetes 
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(Rees et al. 2005). Serpulid worms are also tubiculous, converting carbonate material into a protective cover 

(Vinn et al. 2008).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Photographs illustrating the morphological variety that exists amongst polychaete tubes. The calcareous 

tubes of the serpulid Pomatoceros sp. (A),  the smooth conical tube of the pectinariid, Lagis koreni, (B) the flexible 

silty tubes of the sabellid Pseudopotamilla reniformis (C) and the coarse sand tube of the cirratulid Lanice conchilega 

(D).  

 

Although tube building is a common trait amongst polychaetes, not all are gregarious and reef-building 

behaviour has only been identified in a small number of families: Serpulidae (Fornos et al. 1997; Moore et 

al. 2009), Sabellariidae (Kirtley and Tanner 1968; Wilson 1971) and Cirratulidae (Rabaut et al. 2009). 

Hendrick and Foster-Smith (2006) suggest that in order to be classified as a reef an aggregation of worms 

needs to significantly alter a number of habitat characteristics: elevation, sediment consolidation, 

associated biodiversity, community structure and stability. They also state that a reef should be long lived, 
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spatially extensive (although possibly patchy) and that it must contain high densities of the reef builder 

itself. However, since aggregations of most tubiculous polychaetes occur only on a relatively small scale 

(Noji and Noji 1991; Bolam and Fernandes 2003) there are often insufficient observations to determine the 

influence they have on associated communities or the sediments in which they occur. The sand mason 

Lanice conchilega is known to form dense beds but there remains some debate about whether or not they 

constitute reef habitats (Godet et al. 2008; Rabaut et al. 2009). Rabaut et al (2007), Godet et al (2008) and 

Van Hoey et al (2008) have illustrated that the presence of dense L. conchilega aggregations increases 

biodiversity and provides important foraging grounds for birds and fish. Rabaut, et al (2009) also found 

that L. conchilega beds were significantly elevated when compared with the surrounding substrata, and 

exhibited some consolidating influence. On the basis of their observations, Rabaut, et al (2009) went on to 

suggest that L. conchilega possesses all of the necessary characteristics to be classified as a reef builder. 

Similarly detailed studies on other tubiculous polychaetes such as the oweniids and sabellids would be 

beneficial in elucidating the reef-building qualities that exist within these phyla.  

Although most polychaete aggregations are small and inconspicuous (Bolam and Fernandes 2002; Dodd et 

al. 2009), some have been found to cover tens if not thousands of square kilometres causing considerable 

alterations to both the physical and biological environment (Kirtley and Tanner 1968; Caline et al. 1992; 

Fornos et al. 1997). The serpulid Ficopomatus enigmaticus, for example forms a continuous layer up to 3 m 

thick in the coastal lagoons of the western Mediterranean (Fornos et al. 1997). Here the reefs double the 

annual sediment input into the lagoons through the construction and subsequent decay of their calcareous 

tubes. Serpulid worms also influence the oxygen and nutrient levels of subtropical lagoons (Keene 1980). 

Aggregations of spionid polychaetes can also cause significant changes in the physical environment despite 

their limited longevity (Noji and Noji 1991; Bolam and Fernandes 2003). Spionids are early colonisers and 

as such perform a key role in conditioning largely afaunal sediments for colonisation by other species (Noji 

and Noji 1991). Their tube beds can increase the organic content of the environment by acting as a trap for 

silt, clay and faecal material. This ultimately changes the fauna able to coexist with the spionids. For 

example, the increase in organic matter may be advantageous to mud-dwelling species such as Macoma 

balthica (Bolam and Fernandes 2003)  but may conversely suffocate other organisms (Noji and Noji 1991). 

The final fate of the spionids in their tube beds will either be a reduced abundance, coexisting with other 
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species or total replacement by other fauna. The ephemeral nature of these beds would almost certainly 

exclude them from being considered as reefs according to the scoring system identified by Hendrick and 

Foster-Smith (2006).  

The evolutionary foundations of gregarious behaviour in polychaetes is as yet unknown although some 

gregarious species have been found to respond to chemical or protein cues given off either by the living 

adults of conspecifics (Toonen and Pawlik 1996; Callaway 2003) or by their living and dead tubes (Wilson 

1968; Wilson 1970a; Pawlik 1986). There are obvious ecological advantages to gregarious behaviour in 

polychaetes, most notably, increased reproductive success (Thomas 1994b). Most tubiculous polychaetes 

are broadcast spawners, that is, they release their gametes into the water column, either in discrete, 

coordinated events or semi-continuously throughout their breeding season (Wilson 1970a; Eckelbarger 

1976; Toonen and Pawlik 2001). Living in dense aggregations therefore increases the chance of gametes 

being fertilised. By relying on the cues of their conspecifics the larvae also have a greater chance of locating 

suitable conditions for successful settlement. Whatever the evolutionary foundation of worm reefs there is 

no doubt that these structures play an important role in marine ecosystems. They have been found to 

stabilise and trap sediments, alter water quality and the composition of benthic communities. They are true 

ecological engineers, perhaps none more so than the sabellariids. Subsequent sections of this chapter will 

look in detail at the reefs built by sabellariid polychaetes, the most prolific reef building worms in our oceans 

(Kirtley and Tanner 1968; Caline et al. 1992; Kirtley 1994). 
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1.2 The Biology and Reef Building Capacity of Sabellaria spinulosa 

1.2.1 Morphology 

Sabellaria spinulosa has heteronomous segments, that is, segments that perform different functions. It has 

a distinct head, thorax and two abdominal sections, the abdomen and cauda (Figure 1.2). Each of the 

thoracic segments have parapodia containing oar chaetae which protrude sideways holding the worm 

upright in its tube (Figure 1.3). These chaetae also maintain a space between the animal and tube walls, 

allowing the movement of water in and out of the tube (Schafer 1972).  Water enters the tube on the 

dorsal side of the worm where gills waft it down toward the posterior end of the tube. Gametes are 

liberated from the body cavity and directed out of the tube by the second section of the abdomen, the 

cauda. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Systematic illustration of Sabellaria spinulosa showing the different body sections and key anatomical 

features (not to scale).   
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Figure 1.3 Illustration of Sabellaria spinulosa worms in their tubes, showing how the oar chaetae hold them in place. 

1 Shows an external view of the worms in their tubes with the operculum open (above) and closed (below). 2 - 4 

Show internal views of S. spinulosa in their tubes with a side-on view (2), a dorsal view (3) and a ventral view (4). 

Illustration adapted from Schafer (1972). 
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1.2.2 Reproduction 

Sabellariids, or at least those species that have been well studied, are known to have separate sexes and 

like many other sedentary marine organisms release their gametes into the water column during spawning 

events  (Kirtley 1994). The frequency and timing of Sabellaria spinulosa spawning events is largely 

unknown, although there have been several reports of settlement occurring between March and April 

(Wilson 1970b; Eckelbarger 1978a; George and Warwick 1985). Wilson (1970b) also reports observations 

made of spawning behaviour in S. spinulosa between January and March. Other sources report 

observations of S. spinulosa larvae in the plankton between August and November (Garwood 1982) and 

from January to September (MBA 1957). Most of these reports however, relate to incidental recordings 

and where targeted sampling appears to have been carried out, there is insufficient detail of the sampling 

employed to know how comprehensive this has been (Wilson 1970b). It is therefore impossible to 

determine how representative these records are of the general life cycle. 

1.2.3 Tube Building 

Sabellariid worms catch sand grains using their contractile palps, before moving them to the mouth where 

they are coated with a protein cement and laid down as the building blocks of their protective tubes (Schafer 

1972; Caline et al. 1992; Kirtley 1994). The cement hardens in seawater, and the inside of the tube is 

constantly lined with new cement to maintain the structural integrity (Schafer 1972). The mouth organ plays 

a central role in tube building and its size is hence the main limiting factor in the size of sand grains which 

can be utilised by the worms (Gruet 1982). Many intertidal sabellariid species use elongate shell fragments 

to construct a characteristic ‘hood’ or ‘porch’ at the orifice of each tube, giving a ‘honeycomb appearance’ 

to the colonies (Wells 1970a; Wilson 1971; Achari 1974; Posey et al. 1984; Zale and Merrifield 1989; Kirtley 

1994; Pandolfi et al. 1998; Pohler 2004; Bailey-Brock et al. 2007). This structure is absent in reefs formed 

by Sabellaria spinulosa (Figure 1.4) and other subtidal sabellariids indicating that these hood structures are 

in some way linked to high energy environments, perhaps affording the worms some protection from the 

force of the waves. A study by Thomas (1994a) into the roles of different extensions or ‘hoods’ built by 

Phragmatopoma californica indicate that these structures serve to reduce the rate of fluid exchange between 

the aggregation surface and the main water flow and also decrease the deflection and hence damage 

caused to the feeding tentacles by the water flow. The hood structure has also been shown to slow the 
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dissipation of sperm during spawning (Thomas 1994b) which may increase the chances of reproductive 

success in high energy environments.  

 

 

 

 

 

 

Figure 1.4 Photographs of A) an intertidal sabellariid colony (Sabellaria alveolata) © Laura Bush and B) a subtidal 

sabellariid colony (Sabellaria spinulosa), illustrating the difference in reef and tube structure which is evident across 

the family.  

The composition of the tubes built by Sabellariid polychaetes are highly variable, sand grains are often 

supplemented or even replaced with other mineral grains, shell fragments and detrital material, including 

foraminifera tests, ostracods, faecal pellets and sponge spicules. In most cases this would appear to merely 

be a reflection of the composition of the surrounding sediments although Reuter et al (2009) demonstrate 

strong selectivity in the tubes built by both Neosabellaria clandestina and Sabellaria chandraae at 

Meenkuunu Beach, south west India. The tubes of both species were found to contain very high quantities 

of the tests of the rotallid foraminifera Ammonia beccarii, which were only found sporadically in the 

surrounding sediments.  A preference for foraminifera as a building material in Neosabellaria clandestina 

was also reported by Kirtley (1994) some years earlier indicating that the preference for foraminifera is 

consistent in this species. Pohler (2004) also reports selectivity in the building material choices made by 

Neosabellaria vitiensis tubes in Fiji. In a detailed study of the sediment composition of N. vitiensis tubes, 

Pohler (2004) demonstrated that the worms had a greater proportion of coarser grained sediment particles 

than were present in the surrounding sediments. Pohler (2004) concluded that the disparity between the 

composition of the tubes and the surrounding sediments was an indication that the very fine sediment 

particles which dominated the surrounding sediments were unsuitable for tube building. It is not yet known 
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whether any of these species actively select their building materials or whether the process is more passive. 

It is possible for example that the local hydrodynamic regimes cause some density fractionation of the 

suspended material making certain particle sizes a more readily available source of building material.  

Many descriptions of the building strategy employed by Sabellariid polychaetes suggest that large numbers 

of the larvae settle and start building their tubes simultaneously (Wilson 1971; Schafer 1972; Caline et al. 

1992; Kirtley 1994). Subsequent settlements select peripheral sites and avoid settling on top of other tubes 

(Wilson 1971; Posey et al. 1984; Zale and Merrifield 1989; Caline et al. 1992). Where this behaviour is 

employed the worms are able to utilise a wall of the neighbouring individuals’ tube as part of their own, giving 

rise to a very regular and organised structure which resembles that of a honeycomb (Wilson, 1971). This 

building behaviour is common amongst intertidal Sabellariid species with a “honeycomb” structure being 

reported for numerous species around the world (Kirtley and Tanner 1968; Achari 1974; Caline et al. 1992; 

Kirtley 1994; Pohler 2004). A more irregular and self-contained structure is observed in subtidal and abyssal 

species however (see Figure 1.4) suggesting that there is considerable variation in building behaviour, 

which may have evolved in response to the prevailing environmental conditions.  

1.2.4 Reef Development 

To date there have been no studies on the natural life-cycle or temporal stability of the reefs built by 

Sabellaria spinulosa although several long-term studies have been carried out on reefs built by its congener 

S. alveolata (Wilson 1968; Wilson 1971; Wilson 1974; Wilson 1976; Gruet 1982; Gruet 1986b; Caline et al. 

1992; Gruet and Bodeur 1997). Sabellaria alveolata matures in the first year, spawning in the second 

summer following settlement (Wilson 1971) and has a typical life span of 9 years (Gruet 1982). In his 

comprehensive studies of S. alveolata reefs in the Bay of Mont Saint–Michel, Yves Gruet (Gruet 1970; Gruet 

1971; Gruet 1977; Robert et al. 1979; Gruet 1982; Gruet and Lassus 1983; Gruet 1984; Gruet 1986a; Gruet 

1986b; Gruet et al. 1987; Gruet 1991; Caline et al. 1992; Gruet and Bodeur 1994; Gruet and Bodeur 1995; 

Gruet and Baudet 1997; Gruet and Bodeur 1997) found that Sabellarian reef morphology was the result of 

a constantly disturbed and precarious balance between biological and physical factors. Gruet and Bodeur 

(1995) describe the formation, growth and degradation of Sabellariid reefs in five phases as summarised in 

Figure 1.5.   
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Figure 1.5 Main phases of sabellariid reef development and orientations of the structures adapted from (Gruet and 

Bodeur 1995).  

 

Once S. alveolata have settled they undergo a rapid growth phase. Growth rates (tube length) of 10-15 

cm/year have been reported in the first year of settlement slowing to 6 cm/year in the second year (Wilson 

1971; Gruet 1982). Since tube lengths do not typically exceed 30 cm in this species (Wilson 1971), this level 

of growth is presumably not sustained for the life of the individual. Similarly rapid growth rates have been 

reported for other Sabellariid species, for example average growth rates of 4-10 cm/year in the Pacific 

sabellariid Idanthyrsus cretus (Chen and Dai 2009). These growth rates were calculated on the basis that 

this species had formed extensive reefs over wave breakers which had been installed between 4 and 12 

years previously and hence no attempt was made to investigate the relationship between growth rate and 

age. No direct records of the growth of S. spinulosa were found although studies of the size-frequency 

distribution of a reef undertaken by Hendrick (2007) between May 2003 and August 2005 did indicate that 

a small cohort observed in July 2004 (mean cephalic diameter 0.26 mm) underwent rapid growth, doubling 

in size by November. This shows good agreement with similar work undertaken by George and Warwick 

(1985) in the Bristol Channel. George and Warwick (1985) identified a new settlement in March which had 
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merged with the main adult cohort by November of the same year. Whilst these two studies show differences 

in the specific growth rates, both indicate rapid growth in the early stages of development, in-line with what 

is known of other sabellariid species.  

Gruet and Bodeur (1995) report that the tubes of S. alveolata first grow horizontally, then vertically resulting 

in ball-shaped constructions, with secondary settlements increasing the vertical growth in a more or less 

symmetrical fan shape. Where dominant waves occur in the same direction as the flood tide, the construction 

lengthens in a direction perpendicular to the main current. These reef structures can form barriers in some 

cases altering the flow through channels. Barriers can also join to form platforms as is the case in the 

extensive reefs in the Bay of Mont-Saint-Michelle, also known as the ‘Banc des Hermelles’ (Gruet 1982). At 

this stage growth is slower, with the majority of building occurring over the winter months when storms and 

strong currents put more sand into suspension stimulating new growth (Gruet 1971). New growth on these 

platform reefs tends to be strongly directional and in some cases destruction and simultaneous new 

settlement can stimulate horizontal movement (Gruet and Bodeur 1995). It has also been reported that reefs 

can become inundated with sand and then develop again as superimposed structures (Caline et al. 1992; 

Gruet and Bodeur 1995). A similar cycle of development and degradation has been reported for the 

sabellariids off the coast of Florida where Kirtley and Tanner (1968) noted that fragments of sabellariid reef 

material, both living and dead, were broken off during storms but were incorporated into subsequent growth.  

The ephemeral nature of S. spinulosa reefs in the UK has been alluded to by numerous authors (Holt et al. 

1998; Hendrick 2007; UKBAP 2007b) although this is mostly thought to apply to “crusts” a loose term given 

to less stable and less developed reef complexes “crusts are not considered to constitute true S. spinulosa 

reef habitats because of their ephemeral nature which does not provide a stable habitat enabling associated 

species to become established where they are otherwise absent” (UKBAP 2007b). The basis of this 

differentiation however, is questionable especially in light of studies on other sabellariid reefs which have 

shown that degraded reefs support a greater biodiversity than living reef (Dubois et al. 2002). The recent 

disappearance of Saturn Reef, a seemingly stable and extensive reef in the southern North Sea, casts 

further doubt on the accuracy of this statement. Saturn Reef disappeared only a year after its first discovery 

with no conclusive evidence for the cause of its decline (Hendrick 2007; Limpenny et al. 2010). The stability 

of fully developed S. spinulosa reefs cannot therefore be assumed.  
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1.3 The Ecology of Sabellariid Reefs 

Sabellariid species are well known for their gregarious nature, forming mound and tabular formations and in 

some cases distinct reefs, throughout the temperate and tropical oceans  (Achari 1974; Posey et al. 1984; 

Lana and Gruet 1989; Zale and Merrifield 1989; Caline et al. 1992; Nishi and Nunez 1999; Bailey-Brock et 

al. 2007; Chen and Dai 2009; Nishi et al. 2010). The family Sabellariidae contains two sub families and 12 

genera which are further subdivided into over 100 species (Kirtley 1994). Aggregations formed by sabellariid 

polychaetes are reported to occur mostly in the intertidal or surf zone where there is an abundant supply of 

unconsolidated sand-sized sediment and strong currents (Wilson 1971; Achari 1974; Gruet 1982; Zale and 

Merrifield 1989; Bailey-Brock et al. 2007; Dubois et al. 2007; Barrios et al. 2009). There are also numerous 

records of sabellariid aggregations from intermediate depths on continental shelves and slopes (Kirtley and 

Tanner 1968; Achari 1974; Lechapt and Gruet 1993; Gherardi and Cassidy 1994; Hendrick 2007; Chen and 

Dai 2009) as well as a limited number of records from abyssal plains (Lechapt and Kirtley 1998). Given that 

sampling effort decreases rapidly with depth, it is unclear whether sabellariid aggregations are any more or 

less common in intertidal areas. Although there are a limited number of sabellariid records from abyssal 

depths, these are restricted to systematic species descriptions. There are no published studies on the 

ecology or distribution of sabellariid reefs beyond the continental shelf, indicating that this is an area of deep 

sea ecology that been neglected to date. Zale and Merrifield (1989) hypothesised that at depths greater 

than 2 m wave action is insufficient to provide enough turbulence to keep feeding and building materials in 

suspension for the intertidal species, Phragmatopoma lapidosa. Sabellariid aggregations however, are 

frequently found at greater depths (Kirtley 1994) and it is likely therefore that submarine currents also play 

a key role in maintaining the required levels of turbidity.  

1.3.1 Distribution  

Sabellariid reefs are common worldwide in intertidal and nearshore areas where vigorous wave and current 

action maintain high levels of suspended sediments (Posey et al. 1984; Kirtley 1994; Pohler 2004; Chen 

and Dai 2009). Reefs can extend for hundreds if not thousands of square kilometres in some areas such as 

the massive Sabellaria vulgaris reefs described in Delaware Bay (Curtis 1978); the extensive 
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Phragmatopoma lapidosa reefs in Florida (Kirtley and Tanner 1968); Phragmatopoma californica reefs in 

California (Simmons et al. 2005) and Sabellaria alveolata reefs in Mont Saint-Michel in France (Gruet 1970; 

Marchand and Cazoulat 2003). There are no records of sabellariid reefs of this scale in the UK, but there is 

evidence to suggest that the extent of S. alveolata reefs has become more restricted in some areas 

(Cunningham et al. 1994) and hence larger reefs may once have existed on our shores. Similar reef building 

polychaetes have been recognised in the fossil record from as far back as the Cambrian (approx. 480-550 

my ago). Indeed, interest in the reef-building behaviour of sabellariids first came from geologists and 

palaeontologists, rather than biologists, who made comparisons between their structures and those of the 

Cambrian “pipe rock” quartzites, or Skolithus, found in Scotland and Sweden and similar Lower Devonian 

(approx. 400 my ago) trace fossils of the Eifel Mountains at Neroth in Germany (Schafer 1972). These early 

marine tube relics were widely assumed to have been formed by burrowing animals although more recent 

studies (Eckdale and Lewis 1993) indicate that these fossils strongly resemble the tube structures of modern 

sabellariids casting doubt on earlier assertions about their origin. Recognisable sabellariid tube fossils have 

been reported from the Quaternary (approx. 2-3 my ago) in Chile, Baja California and the deep floor of the 

eastern Mediterranean (approx. 2000-3000m) and from the Cretaceous (approx. 300 my ago) from 

Oklahoma. It is clear then that sabellariids have strong historic roots, perhaps another indicator of their 

adaptive and resilient nature.  

Like the geological history of sabellariids, the modern history is also somewhat uncertain. The literature 

indicates that sabellariids are currently found between latitudes of 67 ̊ North and 57 ̊ South, but with new 

species and new distribution records for this family being reported relatively frequently (Lana and Gruet 

1989; Lechapt and Gruet 1993; Lechapt and Kirtley 1996; Lechapt and Kirtley 1998; Nishi and Nunez 1999; 

Bhaud and Fernandez-Alamo 2001; Bremec and Giberto 2004; La Porta and Nicoletti 2009; Nishi et al. 

2010; Souza Dos Santos et al. 2011; De Assis et al. 2012; Hutchings et al. 2012; Bremec et al. 2013; Linero-

Arana 2013)  it is possible that their range extends beyond this.  

Sabellaria spinulosa has the widest geographical range of all the sabellariids, according to current records, 

encompassing Iceland, the Skagerrak and the Kattegat, the North Sea, the English Channel, the northeast 

Atlantic, the Mediterranean, the Wadden Sea and the Indian Ocean (Achari 1974; Riesen and Reise 1982; 

Reise and Schubert 1987; Hayward and Ryland 1998; Foster-Smith 2001; Collins 2005). In addition there 
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are at least four varieties of S. spinulosa which increase the species range further; S. spinulosa var. fuciola 

which has been identified on the coast of South Africa (Day 1967), S. spinulosa var alcocki which is found 

alongside S. spinulosa in the Indian Ocean as well as in southern Africa (Day 1967; Achari 1974), S. 

spinulosa var eupomatoides found in South Africa (Day 1967) and S. spinulosa var ranjhi found on the west 

coast of India (Achari 1974). It should be noted however, that the recorded distribution of S. spinulosa is 

currently based on morphological descriptions alone, and to date no genetic work has been carried to 

confirm the very broad geographical range of this species.  

Significant losses of Sabellaria spinulosa have been reported in the Wadden Sea (Riesen and Reise 1982; 

Reise and Schubert 1987; De Jong et al. 1999; Wolff 2000), where extensive colonies were once common 

in the subtidal shallows. Commercial shrimp fisheries have been implicated in the demise (Reise and 

Schubert 1987), although coastal eutrophication may also have played a role (Vorberg 2000). Saturn Reef, 

which was the first subtidal S. spinulosa reef to be awarded candidate Special Area of Conservation (cSAC) 

status in the UK, has also disappeared although this extinction is on a much smaller scale (Hendrick 2007). 

Records of S. spinulosa distribution are somewhat uncertain and much of the seafloor, both in the UK and 

overseas, remains un-surveyed it is impossible to make a judgement on how the distribution has changed 

in recent years. New observations could indicate an expansion in range or could simply be an artefact of 

increased sampling efforts. Nevertheless, there have been some significant losses highlighting the need to 

better understand the requirements of this species in order to conserve important reef habitats into the 

future.  

Sabellaria spinulosa is widely distributed around the UK whereas Sabellaria alveolata has a more restricted 

distribution occurring mostly on the western coast of the UK in intertidal or very shallow subtidal 

environments (Figure 1.6). S. spinulosa occurs mostly in subtidal environments with notable intertidal 

exceptions in Harwich, the Wash and parts of Scotland (McIntosh 1922; Unicomarine 1998; Hendrick 2007). 

Whilst the depth range of S. spinulosa is known to be greater than that of S. alvelolata its distribution in the 

UK appears to be limited to the continental shelf (Figure 1.6). There are very few records of S. spinulosa in 

Scotland held in the National Biodiversity Network database (Figure 1.6) but this may be an artefact of 

reduced sampling effort. S. spinulosa reefs have historically been recorded off the shores of St Andrews 
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and Hilbre Island so more comprehensive sampling would almost certainly reveal the presence of S. 

spinulosa in these areas. (McIntosh 1922).  

 

 

 

 

 

 

 

 

 

 

Figure 1.6. Distribution of A) Sabellaria spinulosa and B) Sabellaria alveolata in the UK, based on publically available 

data records. Data courtesy of the NBN Gateway and provided by Natural Resources Wales (NRW), Joint Nature 

Conservation Committee (JNCC), the Marine Biological Association (MBA), Natural England, Marine Conservation 

Society, South East Wales Biodiversity Records Centre, Cumbria Biodiversity Data Centre, Centre for Environmental 

Data and Recording, Scottish Natural Heritage, Yorkshire Naturalists’ Union Marine and Coastal Section, Merseyside 

BioBank, Bristol Regional Environmental Records Centre and Porcupine Marine Natural History Society.  

 

It has been inferred by many authors that Sabellaria spinulosa is most frequently encountered as solitary 

individuals or small clumps (George and Warwick, 1985; Holt et al., 1998; Jackson and Hiscock, 2008). The 

majority of studies on sabellariids are concerned with the formation and function of the reefs which they 

build. This therefore biases sampling towards the densest aggregations making it difficult to assess the 

occurrence of different growth forms across the family. There are however, records of other sabellariid 
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species occurring as solitary individuals (Wells 1970a; Smith and Chia 1985; Thomas 1994b) and indeed 

some sabellariids have been reported as having an entirely solitary life-history (Eckelbarger 1977; Wilson 

1977; Pawlik and Faulkner 1988). Laboratory studies on the settlement behaviour of Phragmatopoma 

lapidosa indicate that hydrodynamic flows may play an important role in the distribution of individuals (Pawlik 

and Chia 1991; Pawlik and Butman 1993). Here the fastest flows were found to dilute the concentration of 

larvae on the seafloor through enhanced turbulent mixing. It seems likely then that the majority of sabellariids 

will occur in both solitary and gregarious forms in varying proportions depending on the prevailing 

hydrodynamic regime.  

 

1.3.2 Environmental Niche 

Depth 

Sabellariid polychaetes have a eurybathic distribution occurring from the intertidal zone down to abyssal 

depths (Wilson 1971; Achari 1974; Caline et al. 1992; Lechapt and Kirtley 1998; Bhaud and Fernandez-

Alamo 2001; Simmons et al. 2005; McCarthy et al. 2008), though they are most commonly encountered in 

the intertidal and very shallow subtidal. Sabellaria spinulosa itself has a predominantly subtidal distribution 

(Riesen and Reise 1982; Reise and Schubert 1987; Sotheran et al. 1997; Foster-Smith 2001; Collins 2005) 

although its range is known to extend from very shallow intertidal environments (McIntosh 1922; 

Unicomarine 1998; Hendrick 2007) to bathyal depths (Hartmann-Schroder 1971; Achari 1974). Whilst depth 

does not appear to be a limiting factor in the range of the species, S. spinulosa has rarely been recorded at 

depths exceeding 45-50m in UK waters. This perceived restriction may however be due to other 

environmental conditions which correlate with depth, such as temperature, or may simply be an artefact of 

sampling effort, with far more effort having been afforded to coastal areas than the deeper shelf areas.   

Turbidity / Suspended Sediments 

The sabellariids’ requirements of material for building and of turbulence are widely quoted (Kirtley and 

Tanner 1968; Posey et al. 1984; Caline et al. 1992) . Being sedentary in nature they depend upon current 

action for a supply of both food and building materials and also to wash away metabolic waste (Schafer 

1972; Holt et al. 1998). The diet of sabellariids has been afforded little attention in the published literature 
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although Kirtley (1994) describes Sabellariids as filter feeders, feeding on microalgae and other organisms 

encrusting sand and shell fragments as well as planktonic meiofauna such as diatoms and foraminifera. 

Wells (1970b) describes briefly the feeding mechanisms of Sabellaria kaiparaensis, whereby particles too 

large to be ingested are incorporated into the walls of the tubes. Wells also mentions that feeding could not 

occur without aeration since suspended matter would foul the ciliary feeding mechanism under stagnant 

conditions. Since no reference to the feeding preferences or habits of Sabellaria spinulosa could be found 

it can only be assumed that they exhibit similar preferences as those described for other Sabellariids. This 

is an area that would benefit from further research. 

Water movement is doubtlessly important in the provision of feeding material but it has been postulated that 

the most limiting environmental requirement of sabellariids may be in the supply of material for tube building 

(Holt et al. 1998; Jones 1998). Water movement of a sufficient intensity to suspend sand and shell particles 

is required, making them available for use as tube building material (Cunningham et al. 1994).  Numerous 

examples of this have been described in the literature with turbidity being caused both by waves and 

currents. Given that S. spinulosa mostly occurs subtidally it is likely that water movements through currents 

are of as much significance in determining distribution as wave action.  

Simmons et al. (2005) hypothesised that within-rock aggregations are enhanced by local boulder induced 

flow, since the recirculation zone that forms in the lee of the boulders would preferentially retain larvae, 

enhancing settlement in these areas. Turbulence may also then be acting to improve larval retention in other 

areas, at least partially explaining the commonly reported ability of sabellariid aggregations to quickly 

colonise wave-breakers and other artificial structures placed on the seafloor (Pohler 2004; Chen and Dai 

2009) 

Substratum Preferences 

Sabellariids, like other sedentary organisms, have been reported to require a hard substratum upon which 

to settle and establish their tubes (Caline et al. 1992; Kirtley 1994; Holt et al. 1998; Jones et al. 2000; 

Jackson and Hiscock 2008), though unfortunately this assertion has never been tested. S. spinulosa reefs 

have been recorded in association with large mobile sandbanks in the Bristol Channel for example (George 

and Warwick 1985) casting some doubt on this assertion. 
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Sabellariids are able to settle on a wide variety of substrata and are often reported as growing on dead or 

even living shells, as was the case with the first discovery of Sabellaria tottoriensis found on living Turbo 

torquatus, or Turban shells in the Sea of Japan (Nishi et al. 2004). Neosabellaria vitensis has been reported 

as settling on Suva Marl, a crumbly mixture of clay, sand and shell fragments, rocks including seawalls and 

even mangrove roots in Fiji (Pohler 2004; Bailey-Brock et al. 2007) whilst Sabellaria cementarium and 

Idanthyrsus ornamentatus have been observed attached to sandstone bedrock in Oregon (Posey et al. 

1984). In 2008 Idanthyrsus cretus reefs were discovered for the first time in the western Pacific (Chen and 

Dai 2009), having colonised wave-breakers which had been installed near Hialien Port in eastern Taiwan 

between 1996 and 2003 (Chen and Dai 2009).  

Sabellaria spinulosa has also been recorded on a wide range of substrata including dead oyster and 

mussel shells (Rees and Dare 1993: Figure 1.7.), sandy gravel and rock substrata (Seiderer and Newell 

1999; Newell et al. 2001), crab carapaces (Hartmann-Schroder 1971), large gastropod shells (Warren and 

Sheldon 1967; Schafer 1972), and man-made surfaces including subsea pipelines (Braithwaite et al. 

2006). Once a colony has been established it is possible for the extent to increase without a requirement 

for hard substrata (Gruet and Bodeur 1995) which may explain the occurrence of extensive S. spinulosa 

reefs on what appear to be relatively mobile areas of sand (Warren and Sheldon 1967; Schafer 1972; 

George and Warwick 1985). 

 

 

 

 

 

 

Figure 1.7. Sabellaria spinulosa growing attached to the surface of an empty horse mussel, Modiolus modiolus, shell 
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No experimental studies of the substratum preferences of S. spinulosa were found in the literature, although 

given the wide ranging substrata upon which this species has been recorded; substratum composition 

seems unlikely to be a limiting factor in the distribution of this species, except perhaps for the complete 

absence of suitable building materials. High levels of mud and silt may also be prohibitive since they are 

thought to clog the feeding apparatus  of S. spinulosa (Wells 1970b).  

Salinity 

Sabellaria spinulosa is predominantly found in subtidal areas where salinity would be expected to be fully 

marine, although the presence of aggregations in estuaries such as the Humber (Holt et al. 1998; Foster-

Smith 2001), the Thames (Attrill et al. 1996) the Crouch and the Mersey (Killeen and Light 2000) indicates 

that this species must exhibit at least some tolerance to changes in salinity. Other sabellariids have been 

reported to tolerate salinities outside the range of fully marine or euhaline waters (30-35 ‰). Neosabellaria 

vitiensis for example is found in salinities ranging from 26-31 ‰ in Fiji (Pohler 2004; Bailey-Brock et al. 

2007). S. vulgaris has been found in salinities ranging from 15-31 ‰ in Delaware Bay in the USA (Wells 

1970a) whilst sabellariid polychaetes in the Florida area are reported to survive salinities as low as 10 ‰ for 

several days, although this is considered an adaptation unique to this region (Zale and Merrifield 1989). It 

seems likely then that S. spinulosa would be capable of surviving in variable salinity environments although 

laboratory experiments would be required to determine the full tolerance range of this species.  

Temperature 

The extensive biogeographical range of S. spinulosa from Iceland to India and from intertidal to bathyal 

depths, demonstrates that this species is tolerant of a very broad range of temperatures. Like the majority 

of other sabellariids, S. spinulosa is able to withstand several hours of exposure during low tide (Unicomarine 

1998; Hendrick 2007), presumably retaining sufficient seawater within its tube to maintain body temperature 

and oxygen levels. However, under these conditions episodes of extreme temperature variations are likely 

to be detrimental. High levels of mortality were observed in intertidal S. alveolata reefs during the cold winter 

of 1963 (Crisp 1964) and similarly sabellariid reefs suffered considerable deaths on the Delaware coast 

following a period of extreme heat (Miller 2001). The ideal temperature for growth in P. lapidosa is reported 

by Zale and Merrifield (1989) as being between 18-27°C. In contrast, Neosabellaria vitiensis is found at 

temperatures ranging from 27-30°C (Pohler 2004; Bailey-Brock et al. 2007), and as these records were 
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made on an overcast day, they indicate that this species is able to survive temperatures in excess of 30°C. 

Bamber and Irving (1997) reported that S. alveolata maintained higher metabolic rates and tube-building 

activity in the vicinity of the cooling water outflow of Hinkley point, which is usually 8 to 12°C above ambient 

water temperatures indicating that higher water temperatures could be beneficial to sabellariids in the UK.  

1.3.3 Interactions with the Physical Environment 

Stabilisation of sediments 

It has been hypothesised that sabellariids can impound up to 96% of the sediment that washes over them 

(Pandolfi et al. 1998), although it is unclear how this figure was derived. Nevertheless, the ability of these 

polychaetes to impound sediments makes them an important agent of coastline development in some areas. 

Indeed it has been suggested that seeding and protecting sabellariid reefs might form an important facet in 

future beach-erosion control programmes in Florida (Kirtley and Tanner 1968). In Fiji where beach erosion 

is also a major issue aggregations built by Neosabellaria vitiensis along a seawall were noted as having a 

positive effect which was twofold (1) the structures dampened the force of incoming waves on the base of 

the seawall by exerting some drag on the incoming currents (2) the worm colonies also reduced the wave 

energy that was reflected back off the seawall. Wave reflection is a major cause of coastal erosion which is 

why sea walls are problematic structures, often aggravating erosion as much, or more than they alleviate it 

(Kraus and McDougal 1996). Others have also noted the stabilising influence that sabellariid reefs have on 

sediments (Cunningham et al. 1994; Chen and Dai 2009). Sabellariids extract and agglutinate material 

suspended in the water column. By impounding sand on their landward side they also drive propagation of 

beaches. Cracks and crevices in the reefs structure are likely to aid the retention of sediment further by 

acting as sediment traps.  

Kirtley and Tanner (1968) infer that a process of cementation converts dead tubes of Sabellariid polychaetes 

to beach rock. Large platforms of this tube-derived rock are thought to form the foundations of the “perched” 

barrier islands which characterise the southeast coast of Florida (Tanner 1960; Multer and Milliman 1967). 

The processes by which lithification occurs are not fully understood, but it would seem that the protein 

cement is somehow replaced by calcium carbonate, which is presumably derived largely from the fine shell 

fragments favoured for tube construction by sabellariid species in this area (Kirtley and Tanner 1968). The 
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warm waters of Florida are also likely to contribute to this process, since lithification is known to occur more 

readily at higher temperatures (De Boer et al. 1977).  

Miller (2001) suggests that strategies to attract Sabellariid polychaetes could be employed to utilise the 

stabilising effect of the reefs in beach management. He suggests that this could be achieved by relocating 

boulders already colonised by sabellariids, placement of suitable settlement materials (boulders & large 

rocks) on sandy beaches and in the intertidal zone to slow water currents and potentially provide more stable 

reefs which could themselves improve the sabellariid larval supply leading to the development of further 

inshore reef systems.  

Impact on Water Quality 

The serpulid worm Ficpomatus enigmaticus forms reefs of calcareous tubes. Davies et al. (1989) calculated 

that a substantial population of F. enigmaticus that had colonised a large marina could completely filter the 

marine water in 26 hours. Serpulid worms have also been noted as influencing the oxygen and nutrient 

levels in subtropical lagoons (Keene 1980). It is likely that sabellariid reefs may have a similar influence on 

water quality where dense aggregations exist in closed or semi-closed water bodies. All of the recorded 

occurrences of sabellariid reefs in the UK are in open water systems though, so any changes in water quality 

are likely to be heavily diluted, although this might be an interesting topic for future research.  

 

1.3.4 Trophic Interactions of Sabellariid Reefs 

Biodiversity 

Kirtley and Tanner (1968) state that sabellariid reefs on the east coast of Florida support an elevated 

biodiversity “the reefs…..are the basis for an elaborate marine community of encrusting, boring, shelter-

seeking, parasitic and predatory marine animals, in addition to an abundant marine flora”. Wells (1970a) 

makes similar inferences about Sabellaria vulgaris reef masses in Delaware Bay, stating that “each 

Sabellaria mass provides crevices and attachment sites for a variety of living associates…creating a distinct 

community of organisms dependent on the masses for protection, shelter and food”. Chen and Dai (2009) 

state that Idanthyrsus cretus reefs in Taiwan have a comparable ecological role to tropical coral reefs, 
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providing substrata for a diverse epifauna and infauna. However, these statements, like so many others in 

the literature which infer enhanced biodiversity associated with sabellariid reefs (Lechapt and Gruet 1993; 

Dubois et al. 2002), were not backed up with quantitative comparisons with other habitats. In fact, very few 

studies have investigated the fauna associated with sabellariid reefs quantitatively indicating that the 

inferences about enhanced biodiversity which are so prevalent in the literature should be treated with some 

caution until such a time as this hypothesis is tested more comprehensively.  

A study of Sabellaria spinulosa reefs in the Wash reported that the reefs supported twice as many species 

and three times as many individuals as the surrounding sediments (excluding the worms themselves), 

suggesting that in this area sabellariid reefs are exerting a significant structuring influence on benthic 

communities (NRA 1994). However, these figures were derived from comparisons made between samples 

that contained high abundances of S. spinulosa (>100 individuals in 3 Day grab samples) and samples that 

contained low abundances of S. spinulosa (<100 individuals in 3 Day grab samples) with the latter category 

containing many more sites (n=58) than the former (n=8). These comparisons may not therefore accurately 

describe the influence of reef presence, particularly as the non-reef / low S. spinulosa abundance category 

included a number of sites thought to be negatively influenced by both natural and anthropogenic 

disturbances (NRA 1994). George and Warwick (1985) studied the production of S. spinulosa aggregations 

in the Bristol Channel and noted an increase in the number of species associated with the reefs when 

compared to the surrounding deposits, although no direct comparisons were made. The sub-tidal 

communities of the Bristol Channel are frequently exposed to periods of anoxia and high levels of scouring 

meaning that the macrofauna are generally impoverished (Mettam et al. 1994; Warwick and Somerfield 

2010). Reefs formed by S. spinulosa are more commonly found in association with more stable sedimentary 

deposits in the eastern English Channel and North Sea which are known to support a more diverse suite of 

fauna (Heip and Craeymeersch 1995; Rees et al. 1999). Hence the increase in diversity observed in the 

Bristol Channel is unlikely to be repeated where the reefs have formed in areas with more stable 

environmental conditions.  

Dubois et al. (2002) investigated the biodiversity of fauna associated with different stages of reef 

development although no comparisons were made with fauna inhabiting the surrounding sediments. This 

study found that the highest levels of biodiversity were associated with degraded reefs, a phenomenon also 
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reported in earlier studies by Dias and Paula (2001) and Gruet (1982). As the reefs get older and parts die 

off or break up, crevices are created which can be utilised by small fish, crabs and molluscs (Gruet 1982). 

This raises questions about the relationship between the health or developmental stage of these reefs and 

the associated biodiversity and ecological functioning. It is generally accepted that ecosystem function is 

positively correlated with biodiversity although a review of this topic found that few studies demonstrate 

improved function at higher levels of species richness (Schwartz et al. 2000). It is also generally accepted 

that a climax reef community will support the highest levels of biodiversity and provide the broadest range 

of ecosystem functions (Hooper et al. 2005; Ieno et al. 2006). Since enhanced biodiversity associated with 

sabellariid reefs has been used as a justification for their conservation status (UKBAP 2007b), further 

research is urgently required to establish the relationship between reefs created by S. spinulosa, biodiversity 

and the ecological functions they provide. 

Despite the gaps that exist in our understanding of the fauna associated with sabellariid reefs, some 

associations are well documented. Crustaceans, for example have been widely reported as showing a 

preference for sabellariid reefs. Lechapt and Gruet (1993) noted that pagurids and cirripedes were 

associated with the deep water species Bathysabellaria neocaledoniensis although these associations were 

based on a small number of observations. In southeast Florida crustaceans are reported to make up the 

largest component of fauna living in the sabelariid reef with at least two species being restricted to it (Gore 

et al. 1978). Crustaceans were also observed in association with Neosabellaria vitiensis in Fiji although no 

analysis of the associated fauna was undertaken (Pohler 2004). In the UK the Ostracod Hemicythere villosa 

(Sars) (Horne 1982) as well as the pink shrimp Pandalus monatgui  (Warren and Sheldon 1967) have been 

reported in association with sabellariid reefs. The widely documented association between crustacea and 

sabellariid reefs is perhaps another indication of their stabilising influence since this component of the 

benthos is usually considered as an indicator of a low level of environmental stress (Pearson and Rosenberg 

1978).  

The hermit crab Disorsopagurus schmitti is the only crustacean reported to be both ecologically dependent 

upon, and geographically restricted to, sabellariid reefs (Gherardi and Cassidy 1994). This species lives 

exclusively inside empty Sabellaria cementarium tubes and adults of this species have been shown to 

actively select them in laboratory experiments, even when presented with gastropod shells (Gherardi 1996). 
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The fact that juveniles and megalopae preferentially select gastropod shells, seems to indicate that the 

switch in housing preference has perhaps evolved in response to competition for more conventional 

gastropod homes (Gherardi 1996). D. schmitti is very small in size compared to most other hermit crabs, 

allowing it to occupy the narrow microhabitat created by the worm tubes but perhaps making it less able to 

compete for possession of gastropod shells. The maintenance of sabellariid reefs will prove essential for the 

survival of this species.  

Competition and Succession 

Some early studies of sabellariid reefs suggest that these dense worm colonies, particularly those less than 

two years old, are able to out-compete all other littoral species (Wilson 1971; Cunningham et al. 1994). As 

reefs age, and are damaged, crevices and gaps are often utilised by other filter feeding animals including 

crustaceans (see previous section) and molluscs (Cunningham et al. 1994). Sabellariid reef / mussel 

successions have been frequently reported in the literature (Achari 1974; Riesen and Reise 1982; Reise 

and Schubert 1987; Cunningham et al. 1994; Holt et al. 1998; Pohler 2004) and it would seem that, because 

there is an overlap between their environmental niche occupied by these two animals, even a slight change 

in the environment, for example sediment composition, is likely to alter the community, favouring one or the 

other group. Such a pattern has been observed in the Wadden Sea where S. spinulosa reefs were once 

prevalent alongside oyster beds. These have disappeared and been replaced by beds of the mussel Mytilus 

edulis. This has been attributed to a combination of fishing and dredging pressures as well as coastal 

eutrophication (Riesen and Reise 1982; Reise and Schubert 1987). Holt et al. (1998) document further 

evidence of this in Morecombe Bay. Here S. alveolata reefs developed on a boulder scar which had 

previously been populated by the mussels M. edulis. It was postulated that changes in the sediment regime, 

including an increased availability of coarse sand as a result of new sea defences, had allowed the S. 

alveolata to outcompete the mussels. Barnacles and oysters have also been reported as competing with 

sabellariids for space (Zale and Merrifield 1989).  

Most sabellariid reefs are monospecific but Sabellaria cementarium and Idanthyrsus ornamentus have been 

recorded in association with one another as well as with dense aggregations of the ampheretid 

Schistocomus hiltoni (Posey et al. 1984). Sabellariids have also been reported as components of other 

mixed polychaete reefs, particularly in association with serpulids belonging to the genus Hydroides. For 
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example Nishi et al. (2004) observed Sabellaria tottoriensis in association with Hydroides ezoensis, both 

densely encrusting living Turbo torquatus. Lanice conchilega is known to colonise the periphery, and on 

occasion the interior, of the “banc des Hermelles” although the nature of this interaction is unknown. Where 

they reach high densities, they are thought to aid settlement by S. alveolata by consolidating sediments and 

providing more stable surface for attachment (Caline et al. 1992). Although there is some overlap between 

the environmental niche of our two native sabellariid species, S. alveolata and S. spinulosa have only rarely 

been reported as occurring in the same location (Last et al. 2011a).   

Some crustacean species such as Pachycheles monlifera in south east Florida (Gore et al. 1978) are also 

reported to compete with sabellariids for food, since they too feed on plankton and other suspended organic 

material, although in some cases they have also been reported as predating on the worms themselves (Zale 

and Merrifield 1989). Idanthyrsus sp. has been found growing amongst colonies of scleractinian corals in 

Okinawa, Japan (Nishi and Nishihira 1999), which may also compete for food. The impact of these filter 

feeding competitors may not only be in their reduction of food but also in their active removal of larvae from 

the water column, making them a very real threat to the longevity of the reef systems. George and Warwick 

(1985) suggested from their observations of S. spinulosa in the Bristol Channel that growth and recruitment 

might be inhibited, or even prevented, by the dense populations of the brittle star Ophiothrix fragilis. Detailed 

investigations into the interactions between sabellariid reefs and other filter feeders may therefore be crucial 

in understanding the best methods for their conservation.  

Parasites 

Killeen and Light (2000) report a recurring association between Sabellaria spp and two marine snails; the 

pyramidellid gastropod Noemiamea dolioformis and the aclid, Graphis albida. Based on their co-occurrence 

in samples taken from 24 locations around the British Isles and France, it was inferred that these and other 

pyramidellid species were feeding on Sabellaria. Pyramidellidae are small white gastropods, all of which are 

ectoparasites of other marine organisms particularly polychaetes and molluscs. It is likely therefore that the 

author’s inferences are correct although, without direct observations, predation on the fauna associated with 

the sabellariids cannot be ruled out. Further work would be required to investigate the nature of the 

relationship between Sabellaria and these small mollusc species. Unfortunately most work in this area 
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focuses in macrofauna (>0.5mm in estuarine environments and >1mm in marine environments) meaning 

that these very small animals are likely to be overlooked.  

Predation  

Kirtley (1994) concluded that sabellariids themselves must make an important contribution to the food web 

because of the high attrition rates he observed. Zale and Merrifield (1989) also concluded that the presence 

of sabellariid reefs substantially enhances diversity of small fish, indicating that these features play an 

important role in supporting marine food webs. In the UK Sabellaria spinulosa is reported to be a major 

component of the diet of pink shrimp Pandalus montagui, although this seems mostly to be based on the 

co-occurrence of the two species (Warren and Sheldon 1967). More detailed studies have found sabellariids 

to be an important component in the diet of other Pandalus species though, indicating that there may be 

some truth behind this assertion (Chuhukalo and Shebanova 2008). In Cumbria the shore crab (Carcinus 

sp.) and the shanny (Lypophrys pholis) were found to have sabellariid remains in their stomachs (Taylor et 

al. 1962), and Carcinus maenus preyed upon transplanted reefs in Somerset (Bamber and Irving 1997). The 

scale worm Lepidonotus is also thought to be a predator of Sabellaria spinulosa, attacking the worm by 

inserting its everted pharynx into the tube and pulling the worm’s head off with its four jaws (Schafer 1972).  

It has been mentioned in the literature (Holt et al. 1998) that flatfish including sole and plaice could easily 

obtain sabellariids by crunching up the brittle tubes although no direct evidence of this has been presented. 

Since the worms are known to be able to retract considerable distances down their tubes (Wilson 1971; 

Cunningham et al. 1994) it seems unlikely that they would represent a readily available prey source for fish. 

However, Posey et al. (1984) reported direct observations of the black rockfish Sebastes lanops and the 

stripe surfperch Embiotica lateralis feeding on the extended crowns of sabellariids alongside hermit crabs 

Pagurus spp. It has also been accepted practice in a number of commercial fisheries to search for Sabellaria 

reefs with hand held dredges before setting down demersal trawling gear (personal communications with 

fishermen), indicating a strong association between these reefs habitats and some commercial flatfish  

species. Given the reported association between sabellariid reefs and crustacean species it is perhaps more 

likely that the associated fauna are attracting fish rather than the worms themselves, it is also possible that 

the flatfish are utilising gaps in the reef to take refuge from predators. Wilson (1971) also regarded predation 
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to be of little overall importance to S. alveolata in North Cornwall, though this is obviously an area that would 

benefit from more rigorous research.  

 

1.4 Sensitivity to Disturbance  

The sessile nature of biogenic reefs formed by polychaete worms makes them vulnerable to changes in the 

environment as they have a limited capacity to move away from unfavourable conditions. There is little direct 

exploitation of sabellariids, although they are used as fishing bait on a small scale (Holt et al. 1998). 

However, the occurrence of sabellariid reefs in areas utilised by man means that there is significant potential 

for adverse anthropogenic impacts. Significant losses of Sabellaria spinulosa reefs have been reported in 

the Wadden Sea (Riesen and Reise 1982; Reise and Schubert 1987) and more recently with the 

disappearance of Saturn Reef (Hendrick 2007) making it all the more pertinent to understand the sensitivity 

of these habitats. Despite this, very few studies have been carried out, either experimentally or in the field, 

to ascertain the sensitivity and vulnerability of sabellariid reefs to anthropogenic activities.  

1.4.1 Changes in Suspended Solids (Water Clarity) 

A major physical impact associated with marine developments is the release of fine sediment into the water 

column, increasing turbidity. For example aggregate extracted by dredging is often screened, a process 

which adjusts the composition of the sediment load to meet consumer requirements usually by releasing 

finer (less valuable) sediments back into the sea (Newell et al. 2004). Sediment is also released as a result 

of substratum disturbance and overspill. As S. spinulosa is often found in turbid waters and is known to rely 

on suspended sediments for feeding and building materials, it is likely that this species will be resilient to 

increased sediment loads. It is possible that an increased sediment load could even have a positive impact 

on the development of S. spinulosa aggregations. However, the tolerance of this species to turbidity is likely 

to vary depending on the composition of the suspended sediment.  

Dubois et al. (2009) found that concentrations of suspended particulate matter (SPM) up to 55.5 mg L-1 had 

no adverse impacts on feeding activity of S. alveolata and noted an increase in the number of individuals 

feeding at concentrations between 6.5 and 12.3 mg L-1. Similarly, Davies et al. (2009) and Last et al. (2011b) 
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have demonstrated that the growth rates of S. spinulosa are significantly reduced in zero sediment 

conditions when compared to growth rates in intermediate and high sediment regimes. This further supports 

the assumption that S. spinulosa requires at least some suspended sediment and is tolerant of turbid 

conditions. However, Last et al. (2011b) noted that an increased number of S. spinulosa exhibited no tube 

growth under the highest SPM regime, indicating that in some instances high turbidity could impact the tube 

building abilities of this species. Turbidity levels experienced by sabellariids in the field have not been well 

documented to date, however predicted and recorded turbidity levels from estuaries in which sabellariid 

reefs are known to occur indicate that SPM concentrations could far exceed the levels used in the afore 

mentioned laboratory experiments (Uncles et al. 2006; Devlin et al. 2008; Uncles and Mitchell 2011; Mitchell 

et al. 2012). The persistence of sabellariid reefs in these estuaries indicates that the tolerance of these 

species exceeds expectations based on laboratory tests alone.  

The apparent tolerance of Sabellaria spinulosa to fluctuations in turbidity may not extend to situations where 

sediment loadings are reduced, indeed Davies et al. (2009) found that net erosion of tube structures occurs 

in sediment starved conditions. Reduced turbidity might occur where water movements are altered, perhaps 

as a result of marine constructions. This, however, is likely to be a rare occurrence in subtidal environments, 

with the exception perhaps of tidal barrages. S. spinulosa are therefore likely to be more susceptible to these 

impacts when they occur intertidally. Shore defences or harbour extensions are likely to interrupt sediment 

transport, reducing the supply of sand. Hence due attention should be afforded to this during any associated 

impact assessments. The offshore wind farm industry is in its infancy and the degree to which these 

structures alter the flow of water and sediments remains largely unknown. Large arrays may alter water 

movement, but the discontinuous nature of these developments makes increased turbulence more likely 

than a complete interruption to flow. More research would certainly be beneficial in this regard particularly 

given the scale of Round 3 wind farm developments (TCE 2013) 

Although it is unlikely that the reef building organism itself will be adversely impacted by the levels of turbidity 

and turbulence associated with offshore developments, and may even thrive under these conditions, the 

impacts on the fauna associated with the reefs has not yet been determined.  
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1.4.2 Siltation Rate Changes Including Smothering 

Pohler (2004) observed that episodes of sedimentation can smother Neosabellaria vitiensis reefs. 

Resettlement of the polychaetes occurred within a few weeks of smothering suggesting a rapid turn-over of 

reefs and plentiful larvae supply. Miller (2001) noted seasonal smothering of sabellariid reefs, with intertidal 

reefs suffering mass mortality every winter. Recruitment occurred each spring, indicating that these intertidal 

reefs were essentially being maintained by the more stable subtidal reefs. In contrast, Pohler (2004) 

concluded that new recruitments of N. vitiensis originated from more stable intertidal colonies along the 

coast, indicating that the larvae can also be distributed through longshore drift. Pohler (2004) also noted that 

large amounts of seaweed and litter washed up after tropical storms were having a detrimental effect on 

sabellariids, smothering and killing large areas of the reef.  

Smothering is likely to represent a very real threat to S. alveolata which occurs in intertidal and shallow 

sublittoral environments where new constructions and beach nourishment programmes occur. S. spinulosa 

is less likely to experience smothering through anthropogenic activities as it occurs primarily in subtidal 

habitats, although marine construction and spoil dumping could present a potential threat of smothering. S. 

spinulosa reefs have been reported to occur on the boundaries between mixed gravel deposits and mobile 

sands (Hendrick 2007). Therefore smothering may also occur through natural storm events. 

A recent study by Last et al. (2011b) found that S. spinulosa is tolerant of short-term (≤ 32 days) burial in 

fine sand with no effect of burial depth. Last et al. (2011b) describe the “emergence tube” built by S. 

spinulosa, seemingly as a mechanism for escape when buried. S. spinulosa constructs its fragile emergence 

tube at rates up to 1mm per day, which is likely to be a successful mechanism to avoid gradual burial. More 

rapid burial, which is perhaps more likely to impact S. spinulosa, has yet to be investigated. A comparable 

study on P. lapidosa (Sloan and Irlandi 2008) found that the effect of burial depth increased with increasing 

burial duration. Sloan and Irlandi (2008) also found latent effects of burial stress, a factor that was not 

considered by Last et al. (2011b). Latent mortality, recorded one week after the sediments were removed, 

reached 40 - 50% under the lowest level of burial stress (1cm for 72hrs), indicating that whilst the burial 

event did not cause instant mortality it did damage the worms significantly (Sloan and Irlandi 2008).   
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1.4.3 Pollution and Other Chemical Changes 

Studies relating to water quality, in particular contamination of water caused by effluent discharges (Hoare 

and Hiscock 1974; Walker and Rees 1980; Last et al. 2011a), have found that S. spinulosa is more tolerant 

to these conditions than many other marine organisms. Hoare and Hiscock (1974) found that species 

richness and diversity showed a significant reduction within 150 m of the outfall of a bromide extraction plant 

in North Wales. The effluent had a pH of 4 and contained contaminants including free halogens. S. spinulosa 

was found closer to the outfall than any other marine species, and furthermore was found at higher densities 

at an intermediate distance. This indicates that whilst S. spinulosa may show some sensitivity to very marked 

reductions in water quality, it may favour intermediate levels of contamination or be more tolerant than other 

species, giving it a competitive advantage in these conditions. This is further supported by work carried out 

by Walker and Rees (1980), who found that sludge dumping in Dublin Bay appeared to encourage the 

growth of S. spinulosa. Laboratory experiments conducted by Last et al. (2011a) showed significantly higher 

rates of tube growth in S. spinulosa specimens held in the highest concentrations of aqueous chlorine (0.1 

mg L-1 Total Residual Oxidant (TRO)) when compared to those held in lower concentration or control 

conditions. The authors offered no explanation for this observation, but as there were no differences in 

mortality rates between treatments it seems likely that S. spinulosa is tolerant of aqueous chlorine at these 

levels. However, it should be noted that although S. spinulosa itself may be tolerant to low water quality 

conditions the same may not be true of the reef inhabitants.  

1.4.4 Physical Damage: Selective Extraction and Abrasion 

The removal of substratum and physical destruction associated with marine activities is arguably the 

greatest anthropogenic threat that exists for S. spinulosa aggregations. However, the significance of this 

threat has yet to be assessed in terms of sustainable thresholds or the longevity of such impacts. It has 

been suggested that regeneration of S. spinulosa reefs could take between 15 and 150 years (UKBAP 

2007b) although others have determined recovery of this habitat to be more rapid (Jackson and Hiscock 

2008). There have been several instances in the UK where S. spinulosa aggregations have been reported 

to appear where aggregate extraction activities have ceased. Foster-Smith (2001) reported the presence of 

reefs in an area of the Wash were associated with ground clearly scarred by dredging activities. It was 

suggested that this was most likely due to a reduction in the overburden of sand resulting in a substratum 
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more suitable for S. spinulosa. The recent discovery of significant S. spinulosa aggregations within and 

adjacent to active aggregate licence areas in the North Sea (EMU 2008) provides further evidence that the 

physical impacts of dredging activities on this species are short lived and restricted in extent. The influence 

of sediment released during dredging activities on S. spinulosa reefs is discussed in previous sections of 

this chapter and is the subject of on-going research being carried out by the Scottish Association of Marine 

Science (Davies et al. 2009).  

Trawling, dredging, potting and net fishing are all thought to cause damage to S. spinulosa reefs (Holt et al. 

1998; Hendrick 2007). It has been postulated that where parts of the reef are broken off or damaged the 

resulting hole may be enlarged further by wave action (Cunningham et al. 1994), potentially exacerbating 

damage caused by fishing . Towed fishing gear is thought to represent the largest global anthropogenic 

disturbance to the seabed (Jennings and Kaiser 1998; Kaiser et al. 2003; Queiros et al. 2006; Olsgard et al. 

2008). In most cases these gears are used in direct contact with the seabed to capture target species that 

live on or within the seabed (Jennings and Kaiser 1998). It has long been accepted practice amongst 

commercial shrimp fishermen to search for S. spinulosa reefs using small hand held dredges (Warren and 

Sheldon 1967). The strong association between these habitats and demersal fish has also made them a 

target for beam trawlers (personal communications with fishermen in Ramsgate). Fishing is therefore 

thought to represent a significant threat to S. spinulosa reefs. However, the fact that S. spinulosa reefs 

continue to persist in the southern North Sea, despite many years of commercial fishing indicates that this 

habitat is somewhat resilient to this disturbance.  

Shrimp fishing was implicated in the decline of S. spinulosa reefs in the Wadden Sea between 1924 and the 

1980’s (Riesen and Reise 1982; Reise and Schubert 1987). Local fishermen were reported to have 

deliberately ground the reefs with heavy gear because they ripped apart the nets when fishing for shrimp 

(Riesen and Reise 1982). There was no specific evidence of fishing having caused the Wadden Sea demise 

and others have speculated that coastal eutrophication, favouring Mytilus, contributed to the collapse (Reise 

and Schubert 1987). Since the biodiversity of fauna associated with sabellariid reefs has been reported as 

being highest in degraded structures (Dubois et al. 2002), it could be hypothesised that low levels of fishing 

have a positive influence on these habitats. This would certainly pose a difficult dilemma to those responsible 
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for conservation of the marine environment, and is clearly an area that would benefit from further 

investigation.  

 

1.5 Conservation and Management of Sabellaria spinulosa 

1.5.1 Conservation Status  

Sabellaria spinulosa reefs have been identified as a priority habitat for conservation in European and 

National legislation as summarised in Table 1.1. It should be noted that all such legislation applies to the 

habitat created by S. spinulosa and not to the species itself.  

Table 1.1 Table summarising the legislative instruments used to protect Sabellaria spinulosa reefs in the UK. 

Legislative Instrument Mechanism for Protection 

Environmental Impact Assessment Directive 1985, as 
amended in 2014 

Avoidance of, or compensation for, significant impacts 
from marine developments 

Strategic Environmental Assessment Directive 2001 
Avoidance of significant impacts from marine 
developments  

European Habitats Directive 1992 Special Areas of Conservation (SACs)  

OSPAR Convention 1992 OSPAR Marine Protected Areas (MPAs)  
Nature Conservation (Scotland) Act 2004 Scotland’s Biodiversity Strategy  

Natural Environment and Rural Communities Act 2006 
England’s Biodiversity Strategy 
Environment Strategy for Wales 

Wildlife and Natural Environment Act (Northern Ireland) 
2011 

Northern Ireland’s Biodiversity Strategy 

Marine Strategy Framework Directive 2008 
“Good Environmental Status” targets 
(particularly under D1 and D6) 

Marine and Coastal Act 2009 Marine Conservation Zones (MCZ)  
Marine (Scotland) Act 2010  Nature Conservation Marine Protected Areas (MPAs)  

 

Environmental Impact Assessment Directive 

The EIA Directive (85/337/EEC) has been in force since 1985, and covers a variety of public and private 

projects which have the potential to negatively impact the environment. Amendments made to the EIA 

directive in 1997, 2003 and 2009 were codified in 2011 (EIA Directive 2011/92/EU) and were amended 

further in 2014, expanding the scope of the directive and bringing it in line with the Espoo convention on 

transboundary issues and the Aarhus convention on public participation.  

The aim of the EIA Directive is to ensure that due consideration is given to the environment during the 

planning process (IEEM 2006; IEEM 2010; SNH 2013). All natural resources that have the potential to be 

impacted by a new development are considered during the EIA process and the likelihood and 
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significance of such impacts are reported in the environmental statement (ES). Where there is potential for 

the development to affect a European Marine Site (EMS) the developer must also provide a report with 

their planning application which details how the site might be affected together with sufficient information 

to enable an Appropriate Assessment (AA) if required (see following section on the European Habitats 

Directive). The application of the EIA Regulations has meant that even small areas of S. spinulosa reef, 

that do not form part of the UK’s network of Marine Protected Areas (MPAs), have been afforded 

protection from potentially damaging activities such as marine aggregate extraction and offshore 

construction, through the administration of exclusion zones and alterations to construction plans (MESL 

2006; EMU 2008; Pearce et al. 2014).  

The Strategic Environmental Assessment Directive  

The Strategic Environmental Assessment Directive (2001/42/EC) bares many similarities with the EIA 

Directive and the intention is for an assessment to be made of the environmental impacts of new plans, 

programmes and policies (ODPM 2005). In contrast to the EIA directive, the SEA directive is typically 

applied to new policies or the development of new sectors such as offshore wind energy and assessments 

are made at a strategic level.  

European Habitats Directive 

In 1992 the European Union adopted the Habitats Directive (Council Directive 92/43/EEC on the 

conservation of natural habitats and of wild fauna and flora) through which it meets its obligations as a 

signatory of the Bern Convention on the Conservation of European Wildlife and Natural Habitats. The 

main aim of the Habitats Directive is to promote the maintenance of biodiversity by taking measures to 

maintain and restore natural habitats and wild species at a favourable conservation status, introducing 

robust protection for those habitats and species of European importance. The Habitats Directive was the 

first statutory driver to advocate the precautionary approach: permitting projects that have ascertained no 

adverse effect on the integrity of protected sites (although there are provisions for projects with overriding 

public interest). The Habitats Directive was initially applied out to UK territorial waters (12 nm) but following 

a legal challenge by Greenpeace this was extended to cover the whole of the UK Continental Shelf. 
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Sabellaria spinulosa reefs qualify under Annex I of the Habitats Directive where they are a type of “reef” to 

be protected by a network of Special Areas of Conservation (SACs). The Interpretation Manual of 

European Union Habitats (EC 2013) specifically lists Sabellaria spinulosa reefs of the sublittoral North Sea 

“Sabellaria-Riff des Sublittorals der Nordsee”, though they may also be protected by virtue of their 

occurrence in broader physiographic habitats listed under the directive such as “Estuaries” and “Large 

Shallow Inlets and Bays”.  

In the UK the presence of well-developed and stable S. spinulosa reefs was one of the primary reasons 

considered for the designation of ‘The Wash and North Norfolk Coast’ SAC (UK0017075). Here the reefs 

are both an Annex I habitat in their own right and part of the broader ‘Large Shallow Inlets and Bays’ 

habitat. More recently, an additional three UK sites were put forward to the EU Commission for the 

protection of S. spinulosa reefs (Tranche 38, August 2010): Inner Dowsing, Race Bank and North Ridge 

(UK0030370); North Norfolk Sandbanks and Saturn Reef (UK0030358); and Haisborough, Hammond and 

Winterton (UK0030369). All have been approved by the Commission as Sites of Community Importance 

(http://jncc.defra.gov.uk/page-1488). 

It is necessary to undertake a Habitats Regulations Assessment (HRA) where new plans or projects 

interact with designated Sabellaria spinulosa reefs, to determine the likelihood of the development 

interfering with the conservation objectives of the site. Where there is a potential for a plan or project to 

have a significant effect on a European site, either individually or in combination with other projects, then 

an Appropriate Assessment (AA) must be carried out. An AA explores the potential negative impacts of 

the plan or project and proposes avoidance or mitigation measures to reduce any effects to an 

insignificant level (IPC 2011). If it is not possible to reduce impacts to and insignificant level or there is any 

uncertainty as to whether or not this will be possible the development will only be granted consent if there 

are Imperative Reasons of Over-riding Public Interest (IROPI) (IPC 2011). 

Until recently HRAs were only carried out on new projects and plans which meant that commercial fishing 

activities were excluded from the process. In 2012 however, Defra announced a revised approach to bring 

commercial fisheries in line with other activities (Defra 2013). UK and non-UK fishing vessels will now be 

subject to HRA for European Marine Sites within 12nm on a risk-prioritised basis. Furthermore, Defra 

intends to submit proposals for protection measures for EMSs outside 12nm to the European Commission 

http://jncc.defra.gov.uk/page-1488
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in accordance with the Common Fisheries Policy (CFP). In combination these new approaches to the 

management of commercial fishing activities occurring within EMSs will ensure that protection levels are 

consistent with the Habitats Directive and as a consequence, designated S. spinulosa reefs will be 

afforded a much greater level of protection.  

OSPAR Convention  

The OSPAR Convention for the Protection of the Marine Environment of the North East Atlantic was 

adopted in 1992 combining and updating the 1972 Oslo Convention on dumping waste at sea and the 

1974 Paris Convention on land-based sources of marine pollution. The OSPAR Convention aims to 

provide a comprehensive and simplified approach to addressing all sources of pollution which might affect 

the maritime area, as well as matters relating to the protection of the marine environment. It is through this 

commitment that international and regional OSPAR Marine Protected Areas (MPAs) are designated. The 

overarching aim of the OSPAR Convention is as follows; 

“Our mission is to conserve marine ecosystems and safeguard human health in the North-East Atlantic by 

preventing and eliminating pollution; by protecting the marine environment from the adverse effects of 

human activities; and by contributing to the sustainable use of the seas”  

The OSPAR Convention was adopted in 1992, and was sanctioned in the UK in 2000 as Annex V on the 

protection and conservation of ecosystems and biological diversity of the maritime area.  

The OSPAR Biodiversity Strategy is made up of four elements: 

1. Ecological quality objectives: in support of the ecosystem approach to the management of human 

activities a pilot on ecological quality objectives for the North Sea has been undertaken. Consideration is 

now being given to extending ecological quality objectives to other OSPAR sub-regions.  

2. Species and habitats: assessments are made of species and habitats that are threatened or in decline 

and programmes and measures are developed for their protection. 

3. Marine protected areas: an ecologically coherent network of well-managed marine protected areas is 

being created. This includes novel work on Marine Protected Areas in areas beyond national jurisdiction. 
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4. Human activities: the human activities in the OSPAR maritime area which may adversely affect it are 

being assessed and programmes and measures to safeguard against such harm are being developed.  

Sabellaria spinulosa reefs were added to the “OSPAR list of threatened and / or declining habitats” based 

on the Texel-Faial criteria for identification of species and habitats in need of protection (OSPAR 2003; 

OSPAR 2008). Sensitivity, rarity, ecological significance and decline were cited as reasons for its inclusion 

with information also provided on threat (OSPAR 2013). The list is used as one of the criteria to designate 

MPAs in the UK (Cork et al. 2006). However, to date there has not been any assessment of the rarity or 

sensitivity of this habitat with only very minimal evidence is cited for the habitats ecological significance 

(OSPAR 2013).  

Country Biodiversity Strategies 

The Biodiversity Action Plan (BAP) (BRIG 2008) was the UK Governments response to the Rio 

Convention on Biological Diversity (CBD) signed in 1992. It describes the UK’s biological resources as well 

as detailed plans for the protection of these resources. Sabellaria spinulosa reefs are listed as a priority 

habitat for conservation and have a dedicated Habitat Action Plan (HAP) (UKBAP 2007b). The 

establishment of devolved governments in Scotland, Wales and Northern Ireland in 1998 led the four 

countries to develop their own country strategies for biodiversity and the environment, allowing 

conservation approaches to differ according to the different environments and priorities within the 

countries. 

In 2007 a shared vision for UK biodiversity conservation was adopted by the devolved administrations and 

the UK government, described in ‘Conserving Biodiversity – the UK Approach’ (UKBAP 2007a). This 

document reflects the new key drivers for conservation action since the UK BAP was created, including 

the EU Gothenberg agreement in 2001 to halt the loss of biodiversity by 2010, and the findings of the 

Millennium Ecosystem Assessment (2005). Additionally, it outlines the need for the four countries to work 

together to meet shared challenges and achieve common goals, and describes the requirements for future 

work at a UK level. 

The ‘UK Post-2010 Biodiversity Framework’ (JNCC and Defra 2012) now succeeds the UK BAP and 

‘Conserving Biodiversity – the UK Approach’, and is the result of a change in strategic thinking following 
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the publication of the CBD’s ‘Strategic Plan for Biodiversity 2011–2020’ and its 20 ‘Aichi targets’, at 

Nagoya, Japan in October 2010, and the launch of the new EU Biodiversity Strategy (EUBS) in May 2011. 

The framework demonstrates how the work of the four countries and the UK contributes to achieving the 

‘Aichi targets’, and identifies the activities required to complement the country biodiversity strategies in 

achieving them. 

In England and Wales S. spinulosa reefs are listed as Habitats of Principal Importance under Section 41 of 

the Natural Environment and Rural Communities (NERC) Act 2006. In Northern Ireland a S. spinulosa 

HAP is currently under implementation (DOENI 2005). The Scottish Biodiversity List was published to 

satisfy Section 2(4) of The Nature Conservation (Scotland) Act 2004. However, the list does not include S. 

spinulosa reefs. 

Marine Strategy Framework Directive  

The Marine Strategy Framework Directive (MSFD) was adopted in June 2008 and it is concerned primarily 

with preserving the general health of European marine habitats and the biodiversity associated with them.  

Biogenic reefs formed by Sabellaria spinulosa have been identified as suitable Good Environmental Status 

(GES) targets for Descriptors 1 (Biological diversity) and 6 (Seafloor integrity) under the MSFD (Cochrane 

et al. 2010). As S. spinulosa reefs are identified under Community (EU Habitats Directive) and 

International (OSPAR) legislation they are considered a Special Habitat as defined in Table 1 of Annex III 

of the MSFD. 

Marine and Coastal Access Act (2009) 

The Marine and Coastal Access Act received royal assent on 12 November 2009 and introduced a new 

framework for managing the many demands placed on the sea, improving marine conservation and 

opening up access for the public to the English coast. 

Provisions are made in Part 5 of the Act for designation and protection through a new type of marine 

protected area, called Marine Conservation Zones (MCZs). MCZs will exist alongside European Marine 

Sites (SACs and SPAs), to form a marine protected areas network. Sabellaria spinulosa reef is identified 

as a priority habitat for protection in the “Ecological Network Guidance” both as the Broad Scale Habitat, 
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Subtidal biogenic reefs A5.6 and as the Habitat Feature of Conservation Importance (FOCI) Ross worm 

(Sabellaria spinulosa) reefs (NE and JNCC 2009). 

Marine (Scotland) Act 2010 

The Marine (Scotland) Act, which was introduced to Scottish Parliament on the 29th April 2009 and gained 

Royal Assent on 10th March 2010, provides the legal mechanism to help ensure clean, healthy, safe, 

productive and biologically diverse marine and coastal environments, managed to meet the long term 

needs of both nature and people, by putting in place a new system for improved management and 

protection of the marine and coastal environment.  

The Marine (Scotland) Act introduces new powers relating to functions and activities in the Scottish marine 

area, including provisions enabling Scottish Ministers to designate three types of Marine Protected Area 

(MPA) across Scottish territorial waters: Nature Conservation MPAs – for the conservation of Scotland’s 

most important marine biodiversity and geodiversity features; Historic MPAs – for the protection of 

historically important marine sites such as wrecks or national monuments; and Research/Demonstration 

MPAs – to demonstrate or research new methods of managing Scotland’s marine environment. Scottish 

Ministers also have devolved responsibility under the UK Marine and Coastal Access Act 2009 for the 

designation of MPAs for the conservation of important marine biodiversity and geodiversity out to 200 

nautical miles. Sabellaria spinulosa reefs are not specifically listed as an MPA Search Feature or a Priority 

Marine Feature (PMF) (Wilding et al. 2012), but may nevertheless be considered for inclusion in the 

Scottish MPS network based on their European conservation status. 

1.5.2 Reef Definition 

Despite the apparent conservation status of Sabellaria spinulosa reefs, no definitive definition of what 

constitutes a reef exists. Each piece of legislation outlined in the preceding sections has its own description, 

or refers to those of preceding legislation, though they are all relatively vague and seemingly without 

scientific premise: 
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European Habitats Directive 

“Reefs can be either biogenic concretions or of geogenic origin. They are hard compact substrata on 

solid and soft bottoms, which arise from the sea floor in the sublittoral and littoral zone. Reefs may 

support a zonation of benthic communities of algae and animal species as well as concretions and 

corallogenic concretions.” 

The definition of biogenic reef was further refined by the UK Marine SAC Project: 

“Solid, massive structures which are created by accumulations of organisms, usually rising from the 

seabed, or at least clearly forming a substantial, discrete community or habitat which is very different 

from the surrounding seabed. The structure of the reef may be composed almost entirely of the reef 

building organism and its tubes or shells, or it may to some degree be composed of sediments, stones 

and shells bound together by the organisms.”  (Holt et al. 1998) 

 

The following criteria were applied to further differentiate biogenic reef habitats: 

 the unit should be substantial in size (generally of the order of a metre or two across as a 

minimum, and somewhat raised, mainly in order to disqualify nodule like aggregations such 

as may be formed by S. spinulosa and scattered small aggregations such as occurs with 

many of the species under consideration) and should create a substratum which is 

reasonably discrete and substantially different to 

 the underlying or surrounding substratum, usually with much more available hard surfaces 

and crevices on and in which other flora and fauna can grow. 
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BAP Description 

“Sabellaria spinulosa reefs comprise of dense subtidal aggregations of this small, tube-building 

polychaete worm. Sabellaria spinulosa can act to stabilise cobble, pebble and gravel habitats, providing 

a consolidated habitat for epibenthic species. They are solid (albeit fragile), massive structures at least 

several centimetres thick, raised above the surrounding seabed, and persisting for many years. As 

such, they provide a biogenic habitat that allows many other associated species to become established. 

The S. spinulosa reef habitats of greatest nature conservation significance are those which occur on 

predominantly sediment or mixed sediment areas. These enable a range of epibenthic species with 

their associated fauna and a specialised ‘crevice’ infauna, which would not otherwise be found in the 

area, to become established. Studies have compared an area of S. spinulosa with other macrofaunal 

communities in the Bristol Channel and found that the former had a higher faunal diversity (more than 

88 species) and higher annual production (dominated by suspension-feeders) than other benthic 

communities in the area.” 
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In addition to the statutory reef definitions for S. spinulosa reef, there are four biotopes within the Marine 

Habitat Classification for Britain and Ireland Version 04.05 (Connor et al. 2004) and the European Nature 

Information System (EUNIS) classification scheme (EEA 2007) in which S. spinulosa is noted as being 

abundant or common, according to the SACFOR scale (Connor and Hiscock 1996) as summarised below 

in Table 1.2.

OSPAR Reef Definition: 

 “The tube-building polychaete Sabellaria spinulosa can from dense aggregation on mixed substrate 

and on rocky habitats. In mixed substrata habitats, comprised variously of sand, gravel, pebble and 

cobble, the Sabellaria covers 30% or more of the substrata and needs to be sufficiently thick and 

persistent to support an associated epibiota community which is distinct from surrounding habitats. On 

rocky habitats of bedrock, boulder and cobble, the Sabellaria covers 50% or more of the rock and may 

form a crust or be thicker in structure. In some areas, these two variations of reef type may grade into 

each other. Sabellaria reefs have been recorded from depths between 10 – 50 m BCD or more. The 

reef infauna typically comprises polychaetes species such as Protodorvillea kefersteini, Scoloplos 

armiger, Harmothoe spp, Mediomastus fragilis, Lanice conchilega, and cirratulids along with bivalves 

Abra alba and Nucula spp. and tube dwelling amplhipods such as Ampelisca spp. Epifauna comprise 

calcareous tubeworms, pycnogonids, hermit crabs, amphipods, hydroids, bryozoans, sponges and 

ascidians. S. spinulosa reefs are often found in areas with quite high levels of natural sediment 

disturbance: in some areas of reef, individual clumps of Sabellaria spinulosa may periodically break 

down and rebuild following storm events. S. spinulosa reefs have been recorded from all European 

coasts except the Baltic Sea, Skagerrak and Kettegat. Areas of dead Sabellaria reef indicate the site 

supported reef habitat in the past and should be reported as this habitat type”.      
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Table 1.2 Summary of the four main biotopes (Connor et al. 2004; EEA 2007) in which Sabellaria spinulosa are noted as being common or abundant (using the SACFOR scale (Connor 

and Hiscock 1996). Whether or not these biotopes are considered to be equivalent to the OSPAR threatened and declining habitat “Sabellaria spinulosa reef” is also noted.  

Biotope Name Biotope Code S. spinulosa Reef Biotope Description 

Sabellaria spinulosa on 
stable circalittoral 
mixed sediment 

SS.SBR.PoR. 
SspiMx 
 
EUNIS: 
A5.611 

Yes Sabellaria spinulosa at high abundances on mixed sediment. Sabellaria typically forms loose 
agglomerations of tubes forming a low lying matrix of sand, gravel, mud and tubes on the seabed. The 
infauna comprises typical sublittoral polychaete species such as Protodorvillea kefersteini, Pholoe 
synophthalmica, Harmothoe spp, Scoloplos armiger, Mediomastus fragilis, Lanice conchilega and 
cirratulids, together with the bivalve Abra alba, and tube building amphipods such as Ampelisca spp. The 
epifauna comprise a variety of bryozoans including Flustra foliacea, Alcyonidium diaphanum and 
Cellepora pumicosa, in addition to calcareous tubeworms, pycnogonids, hermit crabs and amphipods. 

Sabellaria spinulosa 
encrusted circalittoral rock 

CR.MCR. 
CSab.Sspi 
 
 
EUNIS: 
A4.221 

Yes Biotope with an almost entire crust of Sabellaria spinulosa tubes typically found encrusting the upper faces 
of wave-exposed and moderately wave exposed circalittoral bedrock, boulders and cobbles subject to 
strong and moderately strong tidal streams in areas with high turbidity. A diverse fauna may be found 
attached to the crust. There are two variants: The first (Sspi.ByB) contains turfs of bryozoans (including 
F.foliacea, A. diaphanum and Bugula plumosa); other scour tolerant species such as Urticina felina, 
Tubularia indivisa and Nemertesia antennina may also be present. The second variant (Sspi.As) has a 
dense turf of didemnid ascidians and scour-tolerant bryozoans including F. foliacea and Cellaria species. 
Sparse sponges and patchy occurrences of small ascidians such as Polycarpa spp. may also be 
observed. The fauna attached to the Sabellaria crust in many cases seem to reflect the biotopes on 
nearby rock. 

Sabellaria spinulosa with 
kelp and red seaweeds on 
sand- influenced infralittoral 
rock 

IR.MIR.KR. 
Lhyp.Sab 
 
EUNIS: 
A3.2145 

No Laminaria hyperborea kelp forest on shallow infralittoral bedrock and boulders characterised by 
encrustations of S. spinulosa tubes which cover much of the rock, together with sand-tolerant red 
seaweeds. Some of the richer examples of this biotope also have a rich fauna of ascidians, sponges, 
hydroids and bryozoans. A similar biotope is also found in the circalittoral zone, where it lacks the algal 
component (CR.MCR.CSab.Sspi). 

Laminaria digitata 
and piddocks on 
sublittoral fringe 
soft rock 

IR.MIR.KR. 
Ldig.Pid 
 
EUNIS: 
A3.2113 

No Soft rock, such as chalk, in the sublittoral fringe characterised by Laminaria digitata and rock-boring 
animals such as piddocks Barnea candida and Pholas dactylus, the bivalve Hiatella arctica and worms 
Polydora spp. S. spinulosa often colonises empty piddock burrows. Beneath the kelp forest, a wide variety 
of foliose and filamentous red seaweeds occurs together with bryozoans and hydroids. The undersides of 
small chalk boulders are colonised by encrusting bryozoans, colonial ascidians and the tube-building 
polychaete Pomatoceros lamarcki. 
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Two of these biotopes, “Sabellaria spinulosa on stable circalittoral mixed sediment” and “Sabellaria 

spinulosa encrusted circalittoral rock” are considered to be equivalent to the OSPAR threatened and 

declining habitat “Sabellaria spinulosa reef” whereas the other two are not. However, it should be noted 

that there is no measure of extent, elevation or any indication of longevity associated with these 

classifications. Both the reef and non-reef S. spinulosa biotopes are frequently applied to isolated point 

sample data where the community is dominated by S. spinulosa. However, this classification should be 

treated with some caution where there is a possibility that a reef classification has been applied to a 

localised habitat that would not otherwise be considered as a reef for conservation purposes, and similarly 

where non-reef biotopes have been applied to samples that have been taken from a more continuous 

feature which could qualify as a reef.  

S. spinulosa exists in a wide spectrum of growth forms from solitary individuals and isolated clumps to 

extensive reefs. From a planning and conservation perspective the need for a quantitative definition is 

clear, and the lack of such a definition has led to the development of ‘fuzzy’ management tools based on 

reef attributes which currently have unknown ecological significance (Hendrick & Foster-Smith, 2006). In 

an expert workshop aimed at addressing the need for a more robust S. spinulosa reef definition thresholds 

were assigned to some of the attributes put forward by Hendrick and Foster-Smith (2006), as summarised 

in Table 1.3. This has now been accepted as the working S. spinulosa reef definition in the UK (EMU 

2008). However, caution should be exercised as the definition is based solely on expert opinion and there 

remains an urgent need for research into the ecological significance (or otherwise) of these reef 

characteristics (Gubbay 2007). From an ecological perspective it seems likely that most reefs will contain a 

range of different developmental stages and that each of these stages will have some intrinsic ecological 

value (Dubois et al. 2002). From a management and conservation perspective, it would be advantageous 

to be able to determine the ecological value of different S. spinulosa aggregation types, such that the most 

valuable “reefs” are ultimately designated for protection and conversely, that costly protection measures 

are not wasted on the least valuable examples of the habitat (Lindeboom et al. 2005; Derous et al. 2007). 

Ecological valuations could usefully be converted to monetary valuations, such that the cost of protection 

can be directly compared with the value of the habitat being protected (Beaumont et al. 2007; Beaumont 

et al. 2008). 
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Table 1.3 Threshold ranges of Sabellaria spinulosa reef characteristics proposed by workshop participants (Gubbay 

2007). 

Characteristic Not a Reef 

“Reefiness” 

Low Medium High 

Elevation (cm)     
Average tube height 

<2 2-5 5-10 >10 

Extent (m2) <25 25-10,000 
10,000-

1,000,000 
>1,000,000 

Patchiness (% 
Cover) 

<10 10-20 20-30 >30 

 

1.5.3 Monitoring Reef Health 

Where statutory duties and ministerial commitments exist towards the active management of S. spinulosa 

habitats, either explicitly or implicitly, some form of monitoring and / or assessment is undertaken. The status 

of S. spinulosa habitats is currently reported annually to OSPAR on the basis of trends (JNCC personal 

communications). For example, the total area identified as S. spinulosa reef this year compared to previous 

years. As these trends are based on a mixture of third party reports and limited sampling carried out by the 

SNCBs, the results are often a reflection of the relative sampling effort rather an accurate reflection of the 

status of this habitat. With the inception of the MSFD there is a move towards more sophisticated tools to 

monitor GES.  
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1.6 Aims and Objectives of the Study   

This chapter has highlighted many gaps in our understanding of the ecological function and significance of 

Sabellaria spinulosa reefs. Their high conservation status and the need to designate a coherent network of 

areas to encompass the protection of S. spinulosa reefs make the need to gain this knowledge all the more 

pertinent. Whilst it would be impossible within the course of a single PhD, to address all of the research 

identified by this chapter, five key research objectives have been identified. By achieving these objectives 

this body of research will: 

 

Establish the ecological function and sensitivity of Sabellaria spinulosa aggregations to 

anthropogenic disturbance in order to provide scientific grounding for their conservation and 

management.  

 

1.6.1 Thesis Objectives & Hypotheses 

1. Investigate the reproductive mode and life cycle of Sabellaria spinulosa  

Elucidating the reproductive cycle of Sabellaria spinulosa is not one of the primary aims of this thesis. 

However, given the paucity of our knowledge in this area and the implications for the management of S. 

spinulosa reefs, additional sampling and analyses have been undertaken in a serendipitous manner, with 

the following broad aims: 

 

 

A. Describe the ultrastructure of the gametes of S. spinulosa  

B. Describe, histologically, the reproductive cycle of S. spinulosa 

C. Examine the availability of S. spinulosa larvae in the water column  

D. Refine our understanding of the timing and frequency of S. spinulosa spawning events 
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2. Establish the degree to which Sabellaria spinulosa reefs influence the composition and nature of 

the macrobenthos  

Establishing the influence that S. spinulosa reefs have on the macrobenthos is one of the core aims of 

this thesis since the perception that the reefs enhance biodiversity underpins the high conservation 

status afforded to the habitat, despite there being little evidence to support this assertion. The degree 

to which S. spinulosa reefs influence the composition and nature of the macrofauna will be tested using 

the following hypothesis: 

 

 

 

 

 

 

 

 

 

 

 

 

Hypothesis A 

HOA: S. spinulosa reef structures have no influence on macrofaunal biodiversity or community 

composition 

H1A: The macrobenthos found in association with S. spinulosa reefs is more diverse and abundant 

than the macrobenthos associated with comparable sedimentary deposits, and the reefs support 

fauna that would not otherwise occur in the area. 
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3. Determine whether or not demersal fish feed on S. spinulosa reefs and to investigate the 

commonalities between the diets and feeding behaviours of fish species associated with the reefs.  

 Due to the high conservation status of S. spinulosa reefs the opportunities for quantitative (destructive) 

sampling are very limited. The question of whether or not demersal fish feed on the reefs was therefore 

addressed using fish sampled serendipitously from reefs in the southern North Sea and the following 

three hypotheses:  

 

 

Hypothesis C 

H0C: The diet of demersal fish sampled from S. spinulosa reefs is comparable to published records 

H1C. The diet of demersal fish sampled from S. spinulosa reefs is markedly different from published 

records 

 

 Hypothesis D 

H0D: There is no structure in the diets of demersal fish associated with S. spinulosa reefs 

H1D: There are distinct feeding groups or guilds amongst the demersal fish associated with S. 

spinulosa reefs 

 

 

Hypothesis B 

H0B: Sabellaria spinulosa and abundant reef fauna (e.g. Pisidia longicornis) are not present in the 

guts of demersal fish sampled from S. spinulosa reefs.  

H1B. S. spinulosa and abundant reef fauna (e.g. Pisidia longicornis) are dominant in the guts of 

demersal fish sampled from S. spinulosa reefs. 
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4. Evaluate the feasibility of using remote sensing technology to delineate S. spinulosa reefs and 

explore the interaction between the reefs and the construction of an offshore wind farm.  

Repeat surveys of S. spinulosa reefs at a wind farm development site were used as a means of testing 

the theory that remote sensing could be used to detect and map S. spinulosa reefs whist also 

establishing whether or the construction and operation of the wind farm had impacted the reef, positively 

or negatively using the following hypotheses: 

 

 

 

Hypothesis E 

H0E: Substrates identified as being possible S. spinulosa reef using high resolution sidescan sonar 

are no more likely to contain S. spinulosa than areas not identified as being possible reef.  

H1E. Sabellaria spinulosa are present in significantly higher densities and cover a greater proportion 

of the substrate in areas identified as possible reef using high resolution sidescan sonar.  

 

 
Hypothesis F 

H0F: Sabellaria spinulosa reefs are unchanged in terms of their extent and quality (worm density, % 

cover or the diversity of macrofauna) following the construction of an offshore windfarm.  

H1F. There is a reduction in S. spinulosa reefs in terms of either their extent or quality (worm density, 

% cover or the diversity of macrofauna) associated with the construction of an offshore windfarm.  

H2F. There is an enhancement in S. spinulosa reefs in terms of either their extent or quality (worm 

density, % cover or the diversity of macrofauna) associated with the construction of an offshore 

windfarm 
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Chapter 2. Study Sites & Sample Acquisition 
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2.1 Selected Study Sites 

Four primary study sites were identified around the UK coast for inclusion in the present investigation:  

1. Aggregate Extraction Licence Area 360-377 (Hastings Shingle Bank); 

2. Aggregate Extraction Licence Area 447 (Cutline); 

3. Thanet Offshore Wind Farm; 

4. East Coast Regional Environmental Characterisation (REC) Survey Area. 

Sabellaria spinulosa aggregations occurring within these sites are subject to a variety of different 

environmental conditions and anthropogenic pressures, facilitating a comprehensive assessment of the 

ecology and sensitivity of this habitat.  

The sampling reported here was carried out by the author (see Table A.1. for details of contributions 

made by others) as part of three research projects and one commercial monitoring programme, 

undertaken in parallel to the current investigation. There was therefore an element of serendipity to the 

sampling programme and whilst additional targeted sampling was sometimes possible, the resulting 

sampling designs in many instances were not optimal. It was not possible to undertake any power-

analyses to inform sample replication, and replication was not always allocated proportionately, or 

optimally across habitat types (Van der Meer 1997; Gray and Elliott 2009). Nevertheless, traditional 

stratified random sampling designs were possible in most instances and collecting data in this way has 

facilitated a much more robust and comprehensive assessment of the ecology of S. spinulosa reefs than 

would otherwise have been possible, due to the high costs associated with sampling these predominantly 

subtidal habitats.  
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Figure 2.1 Overview of the four sites sampled as part of this study on the ecology of Sabellaria spinulosa reefs.  
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2.1.1 Aggregate Extraction Licence Area 360-377 (Hastings Shingle Bank) 

Aggregate Extraction Licence Area 360-377 (hereafter referred to as Hastings Shingle Bank) is located in 

the eastern English Channel, approximately 20 km off the east Sussex coast. The Hastings Shingle Bank 

is a drowned gravel barrier complex which formed as a result of rapid post-glacial sea level rise during the 

Quaternary (Mellett et al. 2012). The surface sediments within the licenced aggregate extraction area 

range from sandy gravel to gravel, and are flanked by continuous sand deposits on all sides with 

occasional gravel patches to the west (MESL 2006). Sediment transport in the Hastings Shingle Bank 

area is tide-dominated and the hydrodynamic regime can be classified as meso-tidal with a tidal range of 

ca. 2-3 m (Anthony 2002). The sands adjacent to the Hastings Shingle Bank dredging area are mobile 

under the present-day regime (Dix et al. 2007). In contrast, the gravel deposits, that are the target of 

extractive activities, are relatively stable, supporting an epifaunal community that includes the soft coral 

Alcyonium digitatum and the bryozoan Flustra foliacea (Brown et al. 2004) 

The Hastings Shingle Bank and the surrounding seabed have been well studied due to the interest in 

extracting aggregates from this site (Brown et al. 2004; Foster-Smith et al. 2004; Cooper et al. 2007; 

Cooper et al. 2008; Mellett et al. 2012). The Centre for Environment, Fisheries and Aquaculture Science 

(Cefas) also have a small number of regular monitoring sites within the Hastings Shingle Bank area which 

provide a valuable time-series record of the occurrence of S. spinulosa aggregations at this site (Figure 

2.2). The known variability in the age of the different S. spinulosa aggregations at the Hastings Shingle 

Bank site derived from Cefas monitoring records and the history of dredging from Electronic Monitoring 

System (EMS) data (Figure 2.3) facilitated an investigation into some preliminary work on the population 

structure of these polychaetes.  
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Figure 2.2 Abundance of Sabellaria spinulosa recorded from 0.1 m2 Hamon grab samples collected by Cefas 

between 1999 and 2006 as well as those recorded by Marine Ecological Surveys Ltd (MESL) in 2005 (MESL 2006) 

within Licence Area 306-377 Hastings Shingle Bank in the eastern English Channel. S. spinulosa abundance records 

are overlaid on areas identified as being S. spinulosa aggregations (brown stippled polygons) using side-scan sonar 

data collected in 2005 (MESL 2006). The boundary of Aggregate Extraction Licence Area 360-377 is depicted by a 

grey line.  

 

A stratified sampling design was employed at the Hastings Shingle Bank site with four sampling blocks 

located within and adjacent to areas of S. spinulosa aggregation in each of four areas that had not been 

impacted by dredging for different periods of time (Figure 2.3). Four sampling blocks were also placed 

within the actively dredged area to allow the results to be put into context with the anthropogenic impacts 

occurring at this site. Data were originally collected from this site as part of a study investigating the 

recoverability of S. spinulosa reefs following the cessation of aggregate extraction (Pearce et al. 2007) 

however, the stratified sampling design is also well suited to an investigation of the macrobenthos 

associated with the reefs as well as a study of the populations size structure (Van der Meer 1997; Gray 

and Elliott 2009).  

1 km 
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Figure 2.3 Intensity of aggregate extraction (hours), within Licence Area 306-377 Hastings Shingle Bank in the 

eastern English Channel, based on Electronic Monitoring System (EMS) data supplied by The Crown Estate for the 

period 1993-2005. 
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Figure 2.4 The stratified sampling design employed at Hastings Shingle Bank. Sampling blocks have been overlaid 

on areas identified as being S. spinulosa aggregations using side-scan sonar data collected in 2005 (MESL 2006). A 

description of the five sampling regions is provided in Table 2.1.  

 

Table 2.1 Summary of the dredging history, previous reef observations and likely age of Sabellaria spinulosa reefs 

present in each of the five sampling regions (Figure 2.4).  

Region Dredging History 
Reef First 
Recorded 

Likely Age of Reef  

(as of Sept 2006) 

1 Dredging ceased in 2000 2002  4-5 years 

2 Dredging ceased in 2003 2004  3-4 years 

3 Dredging ceased in 2003 2002 4-5 years 

4 Actively dredged  n/a  n/a 

5 
Dredging reduced in Feb 
2005 and ceased end of 
May 2005 

August 2005 (visible on 
side-scan sonar) 

16-18 months 

 

1km 
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Grab Sample Collection 

Benthic grab samples were collected from four positions within each of the treatment blocks (Figure 2.4) 

using a 0.1m2 Hamon grab. An earlier study of a S. spinulosa reef in the Bristol Channel (George and 

Warwick 1985) used a small (0.07m2) Day grab but found that the grab penetrated to varying depths, often 

resulting in incomplete sections of reef. Wash-out can also be a problem with this type of grab as small 

pebbles, or reef sections, can easily get caught between the jaws (Eleftheriou and McIntyre 2005). The 

Hamon grab is recommended for sampling in coarse deposits as “wash-out” is minimised by the 

orientation of the bucket once it has tripped (Davies et al. 2001; Cefas 2002; Eleftheriou and McIntyre 

2005; Ware et al. 2011). Upon retrieval, sediments were released from the grab into a plastic fish box and 

a photograph of the sample was then taken before a small sub-sample was removed for Particle Size 

Analysis (PSA). As far as possible an ‘average’ sample was obtained by pooling several successive small 

scoops of sediment taken randomly from the sample. Where samples contained S. spinulosa 

aggregations, sediment sub-samples were taken from the underlying sediments.  

The residual sediment was then sieved over a 1mm mesh sieve in order to retain the macrofauna. The 

sample was then gently elutriated to remove excess fine sediment without damaging fragile fauna. The 

residual sample was then transferred to a plastic bucket, preserved in a 4% buffered formalin solution and 

sealed prior to further separation and analysis in the laboratory.  

2.1.2 Aggregate Extraction Licence Area 447 (Cutline) 

Aggregate Extraction Licence Area 447 (hereafter referred to as Cutline) is located offshore from Harwich 

in the southern North Sea. Side-scan sonar data collected across the area identified gravelly sand 

deposits extending down the western half of the area and rippled sand to the east and north (Figure 2.5). 

The tides in this area run approximately north-east to south-west (Figure 2.5)  and typically range from 2 

to 3.5 m, with the highest tidal range reported to be 4.47 m (Source: Admiralty Chart Datum for Harwich).   

Surveys carried out as part of the licence application process revealed the presence of Sabellaria 

spinulosa aggregations both within and adjacent to the licence area. An exclusion zone was placed 

around the S. spinulosa aggregations that were identified within the site (Figure 2.5), and those identified 

to the south of licence area were surveyed as part of a research project designed to investigate the 

impacts of aggregate extraction on adjacent reefs and other benthic fauna (Pearce et al. 2011a). A total of 
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198 0.1 m2 Hamon grab samples were collected from this site, during the course of eight surveys spanning 

a two year period (Table 2.2). In order to maximise the value of these time-series surveys four 5 minute 

surface and sub-surface plankton hauls were also collected to determine the availability of S. spinulosa 

larvae in the water column (Table 2.2).  S. spinulosa were also retained from the grab samples to facilitate 

a histological examination of their reproductive state throughout the year. However, the grab samples 

were not collected or processed for the purpose of histological examination and hence only a small subset 

of the S. spinulosa present in the grab samples were complete enough for this purpose (Table 2.2).  

 

Table 2.2 Summary of the surveys carried out at Licence Area 447, Cutline between April 2008 and April 2010, and 

the biological samples collected. 

 

Survey Month 
Hamon 
Grab 
Samples 

Total  
S. spinulosa  

S. spinulosa 
Specimens for 
Histology 

Plankton 
Hauls 

1 April 2008 24 994 3 8 

2 July 2008 24 623 45 4 

3 September 2008 25 69 14 8 

4 February 2009 25 22 7 8 

5 March 2009 25 28 8 8 

6 July  2009 25 79 12 7 

7 November 2009 25 104 36 8 

8 April 2010 25 17 0 8 



91 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 Side-scan sonar interpretation carried out by the Resource Management Association (RMA) in 2007 as 

part of their licence application for Area 447 Cutline. © CEMEX UK Marine Ltd, Hanson Aggregates Marine Ltd & 

United Marine Dredging Ltd. Plankton haul and 0.1 m2 Hamon grab sampling was carried out to the south of the 

licence area within the green shaded box. ARCS charts 2052, 1975 & 1610 used under licence from the UK 

Hydrographic Office 
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Plankton Hauls 

Plankton samples were collected by towing plankton trawls fitted with a 53 µm mesh filter for 5 minutes. 

Two trawls were towed simultaneously at the surface and at a depth of approximately 5m, attached to the 

grab wire. Samples were decanted into small plastic jars and preserved in Industrial Methylated Spirit 

(IMS) for subsequent microscopic identification back at the laboratory.   

2.1.3 Thanet Offshore Wind Farm 

The Thanet offshore wind farm site is located 12 km off Foreness Point in Kent, in the English southern 

North Sea (Figure 2.6), occupying an area of approximately 35 km2 in water depths ranging from 15 to 27 

m CD (Chart Datum). The site is meso-tidal during neap tides, with an estimated tidal range of 2.5 m, and 

macro-tidal during spring tides, with an estimated tidal range of 4.3 m (Haskoning 2005). The Thanet site 

is also exposed to northerly and easterly waves generated from the North Sea, as well as waves 

generated in the English Channel that can propagate from the south. Locally generated waves caused by 

winds blowing across the Thames Estuary from west to north-westerly directions are also significant 

(Haskoning 2005).  

Surficial sediments at the site range from sand to sandy gravels with a small area of gravel in the far north-

west. Much of the wind farm site is characterised by sand with megaripples trending in an east-west 

direction (Gardline 2007; Gardline 2012). The sand waves typically reach a maximum height of 3 m and 

are asymmetrical, with the lee to the south, indicating that the predominant current runs in a southerly 

direction (Gardline 2012). To date there have been no studies on the mobility of these sand waves 

although it is assumed that some degree of migration occurs, as has been observed at other sites across 

the North Sea (Haskoning 2005).  

The sedimentary processes occurring at the Thanet offshore wind farm site are dominated by the tidally 

driven current regime which typifies the southern North Sea (Pietrzak et al. 2011). High turbidity levels 

(monthly average Suspended Particulate Matter (SPM) > 20 mg l-1) are observed year round, peaking 

between January and April when the erosion of cliffs along the English coasts is also at its greatest 

(Pietrzak et al. 2011). Strong tidal currents (peak spring tides of 1.0 m/s) and sediment inputs from the 

Thames estuary and the East Anglian Plume (Holt and James 1999) are all thought to contribute to the 

high turbidity levels experienced at this site (Pietrzak et al. 2011). 
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Figure 2.6 The Thanet offshore wind farm site and stations sampled with a fresh water lens camera in 2005, 2007 

and 2012 (MESL 2005; MESL 2007b; MESL 2012). Sampling stations are overlaid on the 2012 digital elevation 

model (DEM) derived from high resolution multibeam echo sounder data (Gardline 2012). 

 

Samples were collected and processed as part of the normal regulatory process for the wind farm, 

although additional sample and data analysis was carried out as part of this investigation to maximise the 

research potential of this site. A baseline characterisation survey was undertaken at this site in 2005, 

followed by a pre-construction survey in 2007 and, most recently, the first post-construction monitoring 

survey in 2012. S. spinulosa aggregations were identified at this site during the baseline characterisation 

surveys and these were subsequently re-surveyed and mapped using high resolution side-scan sonar and 

seabed imagery. Permission was granted for the development of this site on the proviso that turbines were 

micro-sited to avoid the best parts of the reef, and the pre-construction survey was used for this purpose. 

This habitat will now be monitored as part of the licence conditions attached to this development using 

seabed imagery. The use of extractive sampling using a sediment grab to monitor this habitat was limited 

by the Statutory Nature Conservation Bodies (SNCBs) and prohibited completely in the most recent 
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survey. There is therefore only a limited amount of quantitative data from these aggregations, collected 

before the wind farm was constructed. 

Acoustic surveys 

Acoustic data were collected from the Thanet offshore wind farm site using side-scan sonar and 

multibeam bathymetry. The side-scan sonar data and the digital elevation model derived from the 

multibeam data, were examined in combination in order to delineate elevated areas of irregular texturing 

which are thought to be representative of S. spinulosa aggregations (Figure 2.7) 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 Raw, high resolution (500 kHz) side-scan sonar image showing the irregular seafloor texture used to 

delineate Sabellaria spinulosa aggregations. Also shown are the contrasting regular texture typical of flat seafloor 

sediments (in this case sandy gravel deposits) and trawl scars which reveal the elevation of the textured features.  

 

Irregular seafloor texture  

Trawl scars  

Regular /flat seafloor texture 
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The acoustic survey carried out in 2005 was concentrated in the south of the development site as S. 

spinulosa records from baseline macrofaunal sampling were limited to this area. In subsequent surveys 

the whole site was surveyed using acoustics to ensure the full extent of this habitat was captured.  

2005 Baseline characterisation survey 

In July/August 2005 sidescan sonar data were collected using a GeoAcoustics Dual Frequency sidescan 

sonar system, set at its highest frequency (410 kHz) in order to record fine scale seabed features. The 

sonar fish was towed at a depth of 10-12m below the surface, equivalent to between 7 and 15m above the 

seabed, and the transceiver was set to transmit 8 pings per second. A minimum of 100% coverage was 

achieved by running north-south survey lines at 150m intervals, with the data range set to between 75 and 

85m. Infill lines were run at 75m intervals where time allowed, finally providing >200% coverage of over 

60% of the area surveyed. In addition, two east-west cross-lines were run. Horizontal positioning accurate 

to approximately +/-1m was achieved for the recorded vessel track using a CSI dGPS MAX 12-channel 

parallel differential GPS receiver. The differential corrections used by the receiver were supplied by the 

IALA beacon system. The sonar tow fish position was calculated using recorded vessel position, vessel 

heading (from the ships compass) and measured cable ‘out’ between the vessel and the sonar tow fish. 

Accuracy of calculated tow fish position is estimated to be +/-3m. Navigation, data logging, real-time 

quality control, display and post-processing were carried out using C-View Navigation and C-View Seabed 

Data Management software packages (C-Products Ltd).  

2007 Pre-construction baseline survey 

The EdgeTech 4200FS side-scan sonar fish was flown at an approximate height 7.5 to 10m above the 

seabed. The sonar range was set at between 75m and 100m and data coverage of between 100% and 

400% was achieved across the site. Sidescan sonar data was exported to Coda and digital recorder for 

post processing and interpretation. MBES data were simultaneously collected using a vessel mounted 

Simrad EM3002D system. Bathymetry data were processed using Caris HIPS and SIPS (version 7.1) 

software to produce a depth profile gridded at a horizontal resolution of 1m2 and a backscatter layer to aid 

in the determination of habitat boundaries. Velocity profiles were undertaken at 24 hour intervals 

throughout the survey using a Valeport SV&T probe. Positioning was managed using Gardline’s Voyager5 
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navigation software integrated with the Seatex Seapath 200 positioning and orientating system for heave 

pitch, roll and yaw corrections. Differential corrections were provided by Fugro Starfix.  

2012 Post-construction monitoring survey 

The first in a series of planned post-construction monitoring surveys was undertaken at the site in April 

2012, approximately 18 months after the construction of the turbines had been completed. Geophysical 

surveys were undertaken across the whole site using a combination of sidescan sonar and MBES with the 

same specifications as the 2007 pre-construction baseline survey.  

Ground-truthing Sampling 

Ground truth sampling surveys were undertaken shortly after each of the acoustic surveys allowing time 

for a preliminary interpretation of the acoustic data to be undertaken. As S. spinulosa reefs are considered 

to be sensitive to physical damage, direct samples were not collected to groundtruth the acoustics in all 

but the first baseline survey, although they were collected from adjacent sedimentary habitats as part of 

more general environmental assessment work (MESL 2005; MESL 2007b; MESL 2012). Ground-truthing 

was carried out using a drop-down camera system fitted with a fresh-water lens, especially designed to 

collect images in highly turbid environments as occur at this site (MESL 2005). Images collected in 2005 

were excluded from all analyses as the quality and resolution was insufficient to estimate tube density, % 

cover or to facilitate the identification of associated fauna. The poor quality and resolution of seabed 

images taken in 2005 was a result of very high turbidity levels. The freshwater lens camera system was 

also in a very early stage of development which will also have contributed to the poor quality of the images 

acquired. The results reported here are therefore limited to those obtained from the seabed images 

collected in 2007 and 2012. Positioning accurate to approximately +/-1m was achieved for the ground-

truth sampling using a differential GPS receiver. Between 3 and 5 images were collected at each sampling 

site.  
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2.1.4 East Coast Regional Environmental Characterisation (REC) 

The Regional Environmental Characterisation (REC) surveys were funded through the Marine Aggregate 

Levy Sustainability Fund (MALSF) administered by Defra, as a means of providing some regional context 

to local Environmental Impact Assessments (EIAs) routinely carried out for the aggregate extraction 

industry in the UK. Four areas were chosen due to their strategic importance to the industry, the Humber, 

the East and South Coasts of England and the Thames (Figure 2.8). The four areas were surveyed with 

the aim of developing comprehensive, regional level geophysical and environmental maps to inform 

sustainable resource management.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8 Chart showing the location and extent of the four Regional Environmental Characterisation (REC) studies 

funded through the Marine Aggregate Levy Sustainability Fund (MALSF) administered by Defra. 
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Previously un-recorded Sabellaria spinulosa aggregations were identified during the course of the East 

Coast REC surveys and additional high resolution acoustic data was collected across the S. spinulosa 

aggregations in order to map their extent (Figure 2.9). Demersal fish were also retained from trawl 

samples obtained, incidentally, from S. spinulosa aggregations across this site for subsequent stomach 

content analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9 Chart showing the location of Sabellaria spinulosa aggregations (or reefs) identified using high resolution 

acoustic data, as well as the location of all biological sampling undertaken during the East Coast REC survey 

(Limpenny et al. 2011). 
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2.2. Raw Data and Sampling Positions 

With the exception of data collected as part of the Thanet Offshore Windfarm site development process, 

which is commercially sensitive, the data used in this study are all publically available and can be 

accessed directly from the Marine Aggregate Levy Sustainability Fund (MALSF) website: 

http://www.marinealsf.org.uk/. The associated research reports, provided on the CD that accompanies this 

thesis, also contains all of the raw data and sampling positions.  
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Chapter 3. The Reproductive Cycle of Sabellaria spinulosa 
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3.1 Introduction 

The life history of a species determines its success within a community (Sveshnikov 1985). Each of the 

main life functions: self-preservation, reproduction and dispersal, have evolved to collectively maximise a 

species’ success (Grahame and Branch 1985). Understanding these life functions helps us to predict the 

ability of a species to survive and / or recover from changes in their environment (Newell et al. 1998; 

MESL 2007a). Understanding the life-cycle of a species can also assist the management and preservation 

of populations, for example, by limiting anthropogenic disturbance during important breeding seasons 

(Roeckmann et al. 2007).  

Some aspects of sabellariid life-histories, such as larval dispersal, settlement and metamorphosis, have 

been well studied (Wilson 1968; Wilson 1970a; Wilson 1970b; Wilson 1977; Eckelbarger 1978a; Pawlik 

1986; Pawlik and Faulkner 1986; Pawlik 1988b; Pawlik 1988a; Pawlik and Faulkner 1988; Pawlik et al. 

1991; Pawlik and Chia 1991; Pawlik and Butman 1993; Naylor and Viles 2000; Ayata et al. 2009). Other 

aspects of sabellariid life-history, such as gametogenesis, spawning behaviour and population structure, 

have been afforded much less attention (Eckelbarger 1978b; Eckelbarger 1979; Eckelbarger 1984; 

George and Warwick 1985; Thomas 1994b; Hendrick 2007; Culloty et al. 2010).  

Numerous authors have reared sabellariid polychaetes under laboratory conditions (Wilson 1929; Wilson 

1968; Eckelbarger 1977; Curtis 1978; Eckelbarger 1978a; Pawlik 1986) and all have had good success, 

indicating that larvae belonging to this family of polychaetes are fairly resilient. Development from 

fertilization to metamorphosis in S. spinulosa is variable under laboratory conditions, taking anywhere from 

5 to 36 weeks, although most individuals metamorphose by week 8 (Wilson 1970b). This long planktonic 

phase is thought to increase the dispersal potential of the species (Wilson 1970b). Dispersal can be 

advantageous as it acts to reduce competition for food and space, reduce the risks of inbreeding and it 

can also facilitate the colonisation of new areas (Pechenik 1999). Nevertheless, there are also many 

disadvantages to dispersal; larvae risk being predated upon or transported to less hospitable 

environments and in the longer term extensive dispersal can make a species less able to adapt to local 

conditions (Pechenik 1999).  
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Most polychaete families exhibit a high degree of diversity in their reproductive modes, despite 

phylogenetic and morphological constraints (Wilson 1991; Giangrande 1997). Sabellariidae, however, 

have only ever been observed to undergo free-spawning planktotrophic development (Wilson 1991), 

considered by many as the most primitive mode of reproduction amongst invertebrates (Jägersten 1972).  

Ad-hoc records of S. spinulosa settlement at different times of the year and in different localities (MBA 

1957; Wilson 1970b; Garwood 1982; George and Warwick 1985) suggest that S. spinulosa either has an 

extended spawning season or that there is some geographical variation in spawning behaviour. 

Geographical variation has been observed in the spawning behaviour of the congener, Sabellaria 

alveolata which is reported to have one discrete spawning event in the UK between June and September 

(Wilson 1971; Culloty et al. 2010) and two extended spawning periods, from March to April and from June 

to September in the Fromentine tidal delta, France (Gruet and Lassus 1983). The timing and frequency of 

spawning events will have a significant influence on a species’ ability to recover from disturbance events 

(Newell et al. 1998). This therefore represents a significant gap in our understanding of S. spinulosa which 

will ultimately inhibit our ability to preserve the habitats that they create.   

It is not usually possible to observe the spawning behaviour of sublittoral invertebrates directly, but the 

timing and frequency of spawning events can be determined by tracking gametogenesis within the 

population (Cotter et al. 2003; Culloty et al. 2010) or by examining the populations structure in terms of 

body size (Warwick et al. 1978; George and Warwick 1985). Studying the population structure of an 

organism can also help determine the temporal stability of the population and typical recruitment levels, as 

well as the longevity and growth rates of the organism (Warwick et al. 1978; George and Warwick 1985; 

Somers and Kirkwood 1991; Shirose and Brooks 1995; Manjon-Cabeza and Garcia-Raso 1998). To date 

the size frequency of S. spinulosa populations has received little attention in the literature (George and 

Warwick 1985) and gametogenesis has yet to be studied.  

Egg production is another important life history trait, which provides an indication of the energy investment 

being made per offspring. The egg size of marine invertebrates is strongly correlated with a number of 

other traits including fertilization mode, sperm structure, developmental mode, fecundity and brood 

frequency (Olive 1985). The number of eggs produced is also thought to be influenced by ecological 

factors, such as population size and food availability (Giangrande 1997). Despite the importance of egg 
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production as a life history trait this is not an area of polychaete biology that has been well studied. Egg 

production has been studied in less than 0.3% of polychaete species (Giangrande 1997). Egg production 

has not been studied in Sabellaria spinulosa, but the sabellariid, Phragmatapoma lapidosa, has been 

found to undergo intra-ovarian oogenesis with blood vessel association (Giangrande 1997).  

Elucidating the reproductive cycle of Sabellaria spinulosa is not one of the primary aims of this thesis. 

However, given the paucity of our knowledge in this area and the implications for the management of S. 

spinulosa reefs, additional sampling and analyses have been undertaken in a serendipitous manner, with 

the following broad aims: 

 

3.2 Methodology 

3.2.1 Gamete Liberation & Examination 

Living aggregations of S. spinulosa were collected from the East Coast REC site (Figure 2.11) in August 

2010, for the purpose of investigating gamete ultrastructure. The reef fragments were retained in a marine 

aquarium for approximately one week prior to examination. Adult worms were carefully extracted from their 

tubes with tweezers in order to induce the release of gametes, as has previously been reported by 

Eckelbarger (1976) and Kirtley (1994). Worms were then transferred to vials seawater and allowed to 

spawn. Gluteraldehyde was later added to the vials as a means of fixing the adults and any gametes that 

had been released. Adult worms and their reproductive products were dehydrated and dried in a critical 

point dryer before being coated in a thin layer of gold, in preparation for SEM imaging as described in 

Eckelbarger and Chia (1976). 

A. Describe the ultrastructure of the gametes of S. spinulosa  

B. Describe, histologically, the reproductive cycle of S. spinulosa 

C. Examine the availability of S. spinulosa larvae in the water column  

D. Refine our understanding of the timing and frequency of S. spinulosa spawning events 
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3.2.2 Histological Examination 

Sabellaria spinulosa specimens were extracted from grab samples collected from the Cutline site in the 

southern North Sea (Figure 2.7) during surveys undertaken in April 2008, July 2008, September 2008, 

February 2009, March 2009, July  2009, November 2009 and April 2010. Samples collected in April 2010 

were not found to be suitable for histological examination due to desiccation during storage. The grab 

samples had previously been processed for macrofaunal analysis and were stored in industrial methylated 

spirits (IMS). The hard crown was removed with a sharp blade before each of the extracted worms was 

dehydrated in ethanol. The dehydrated worms were then mounted in paraffin and sectioned longitudinally 

at 7 µm intervals using a microtome. The paraffin slices were then mounted on glass slides before being 

stained with Harris’s haematoxylin and counterstained with eosin. Between 3 and 10 replicate sections 

were taken from each mount, many of which contained several small individuals. Each of the replicate 

slides were examined using a Leica DMD 108 digital microscope (x400 magnification) and the slide which 

contained the most complete section of an individual was then used in subsequent analysis. Notes were 

taken on the stage of gonad development observed in each S. spinulosa specimen and these were then 

categorised according to the descriptions of gametogenesis devised for the congener Sabellaria alveolata 

by Culloty et al. (2010).  

3.2.3 Larval Availability 

Polychaete larvae were extracted from plankton haul samples collected during the eight surveys carried 

out at the Cutline site, as described above for the plankton haul sampling (April 2008, July 2008, 

September 2008, February 2009, March 2009, July  2009, November 2009 and April 2010). The 

identification of polychaete larvae to species level is a difficult and specialist task and there are very few 

accurate keys in existence. Larvae belonging to the family Sabellariidae were identified using descriptions 

provided by Wilson (1929) Fauchald (1977), Eckelbarger (1978a) and Bhaud and Fernandez-Alamo 

(2001). However, most of the drawings and descriptions were based on living specimens, rather than 

preserved specimens making positive species level identification difficult. This was especially important 

since the larvae of both S. spinulosa and its congener Sabellaria alveolata could potentially be present in 

plankton samples collected from the southern North Sea. A reference collection of lab reared S. alveolata 

larvae, were sourced from Stanislas Dubois (IFREMER) and species level identifications were verified 
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through comparisons of the larval morphology and examination of their provisional bristle morphology 

using Scanning Electron Microscopy (Figure 3.1). The abundance of larvae recorded in each survey was 

then plotted in a histogram to give an indication of larval availability and the timing of spawning events. 

 

Figure 3.1 Scanning Electron Microscope (SEM) images of A) the asymmetrically ringed provisional bristles of 

Sabellaria alveolata larvae and B) the symmetrically ringed provisional bristles of Sabellaria spinulosa larvae.         
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3.2.4 Size-Frequency Distribution 

Biometric measurements (Figure 3.2) were recorded for each Sabellaria spinulosa extracted from benthic 

grab samples collected during a single survey undertaken in September 2006 at the Hastings Shingle 

Bank site in the eastern English Channel (Figure 2.4). In order to investigate the age structure of five 

different areas of reef, measurements were taken from all 4,498 individuals sampled and the data were 

then pooled according to reef area. Anterior width (Figure 3.2) or cephalic trunk width was used as the 

main measurement of size, with measurements being obtained from the area immediately posterior to the 

two great lateral lobes (Figure 3.2). Anterior width has been found to be the most appropriate measure of 

sabellariid size since it is not affected by frequently missing posterior regions (Gruet and Lassus 1983; 

George and Warwick 1985; Hendrick 2007). Total length (anterior + posterior length) and blotted wet 

weight were also recorded in complete specimens to provide a comparison with anterior width. The 

resulting data were used to construct size-frequency distribution histograms which were subsequently 

used to identify different cohorts within each of the five reef areas.  

3.3. Results and Discussion  

3.3.1 Sexual Dimorphism  

Researchers studying the reproductive strategies of sabellariid polychaetes, including S. spinulosa, have 

reported a purple-pink or blueish colouration in gravid females and a white swollen appearance in ripe 

males, corresponding to the colour of their gametes (Wilson 1929; Kirtley and Tanner 1968; Eckelbarger 

1976; Gruet and Lassus 1983). The same dimorphic colouration was observed in the live S. spinulosa 

used in this study. Adults that were removed from their tubes in order to liberate their gametes, were 

separated on the basis of their colouration and, although some contamination of sex products was 

unavoidable, eggs were only found in vials that contained adults with a purple hue. Individual eggs were 

just visible with the naked eye and were observed to have the same purple colouration. The adult males 

from which sperm were liberated were found to have a milky white appearance corresponding to the 

semen liberated from them in the laboratory. The sexual dimorphism observed here in S. spinulosa is of 

little significance from a management perspective since their colouration cannot be observed without 

removing individual worms from their tubes. This observation does nevertheless confirm that the species 

reproduces sexually and that S. spinulosa aggregations contain a mixture of both sexes.   
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Figure 3.2 Illustration showing where Sabellaria spinulosa biometric measurements were taken.  
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3.3.2 Gamete Ultrastructure 

Eggs liberated in the laboratory from adult Sabellaria spinulosa ranged in size from 45 µm to 58 µm 

(Figure 3.3). These are some of the smallest eggs recorded for polychaetes, including sabellariids 

(Thorson 1946; Giangrande 1997). In an extensive review of polychaete reproduction, Giangrande (1997) 

reports an egg size for Sabellaria spinulosa of 150 µm although neither of the quoted source references 

(Wilson 1929; Kalmus 1931) confirm this observation and hence this is thought to be a typographical error. 

Wilson (1929) states that the eggs of S. spinulosa are smaller than those of S. alveolata, which are 

reported to be between 56 and 90 µm in diameter (Wilson 1929; Robert et al. 1979; Gruet and Lassus 

1983), corroborating the results of this study. However, since the eggs were liberated under stress it is 

possible that they were not fully developed and these measurements should therefore be treated with 

some caution.  

Production of small eggs is most frequently associated with the production of ‘primitive’ sperm in males of 

the same species. The sperm liberated from these southern North Sea specimens were found to be 

modified from the primitive sperm type as defined by Franzen (1956), possessing a long tapering tip or 

acrosome (Figure 3.4). The head including the acrosome was approximately 3 µm in length and 2 µm 

wide. The tail or flagellum was found to reach between 15 and 60 µm. Sabellaria spinulosa sperm appear, 

therefore, to be very similar in size and morphology to those described for Phragmatopoma lapidosa 

(Eckelbarger, 1976) and S. alveolata (Robert et al. 1979).   

Like other polychaete sperm, S. spinulosa sperm have four round protrusions at the base of the head 

which are assumed to contain the mitochondria which provide energy to the flagellum. The purpose of 

such a long flagellum, relative to the head, is not clear. It is possible that the flagella become entangled 

thus promoting clumping, as was evident in the semen liberated in the laboratory (Figure 3.4). The 

elongated flagellum may also serve to keep individual sperm, or clumps, close to the reef structure since 

such a long appendage is likely to get caught on the tube edges. The release of sperm in clumps which 

stay loosely associated with the reef has previously been observed in Phragmatopoma californica 

(Thomas 1994b). This species releases eggs in clumps and strings which also get caught on the reef 

structure, thereby increasing the chances of fertilisation (Thomas 1994a). The majority of the eggs  
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Figure 3.3 SEM images of Sabellaria spinulosa eggs liberated from living Sabellaria spinulosa collected from the 

East Coast REC site, in the southern North Sea, in August 2010. A) A single egg with an approximate diameter of 50 

µm B) A string of eggs. 
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Figure 3.4 SEM images of Sabellaria spinulosa sperm liberated from living individuals collected from the East Coast 

REC study site, in the southern North Sea, in August 2010. A) The head of a single sperm with an approximate 

diameter of approx. 2 µm B) Multiple sperm illustrating the very long flagella (15-60 µm).  

 

 

A 

B 



111 
 

 

observed in S. spinulosa were present in chains (Figure 3.3) which may reflect a similar reproductive 

strategy. If S. spinulosa utilise such a strategy, the widely held theory that this species release their 

gametes in plumes, like most other invertebrate broadcast spawners, would need to be refigured (Ayata et 

al. 2009). This in turn would have significant implications for our understanding of the fertilisation success 

and larval dispersion of this species.  

3.3.3 Gametongenesis 

The stages of gonad development identified through histological examination are shown in Figure 3.5 and 

are described in Table 3.1. A total of 119 individuals were examined of which 34 were found to be 

incomplete specimens (IS), missing the posterior region and a further 13 were found to be inactive adults 

(IA) meaning that they were either immature or were completely spent and their sex could not be 

determined. Due to the low numbers of specimens examined in each month (Table 3.2), a degree of 

caution should be applied to the results. The following observations should be used to inform future 

studies in this area rather than as a complete picture of gametogenesis in their own right. 

The ratio of males to females was roughly equal (1.12:1) across all of the specimens examined but varied 

from survey to survey from 3:1 in April 2008 to no females in February 2009. However, these ratios may 

be an artefact of the low numbers of active adults sampled in these months (n=4). Inactive adults were 

sampled in most months but were most abundant in September 2008 (n=2) and November 2009 (n=8). 

Spermatogenesis 

Males exhibiting different stages of gonadal development were evident in all surveys except February 

2009, where no active males were sampled, and March 2009 where both of the active males examined 

were found to be in the early stages of gametogenesis (EA) (Figures 3.5 and 3.6). Males that were ripe, 

partially spent or spent were observed in April, July, September and November, indicating that this species 

either has a protracted or polytelic spawning season at this site. However, a far greater number of 

individuals collected at more frequent intervals would be required to unequivocally determine the spawning 

season of S. spinulosa.  
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Table 3.1 The stages of gametogenesis of female and male Sabellaria spinulosa identified through histological 

examination of specimens collected from Cutline in the southern North Sea. Categories adapted from Culloty et al. 

(2010).  

Abv. Stage Female Male  

IA 
Inactive 
(Figure 3.5A) 

Coelomic cavity empty with no traces of reproductive products.  

EA 
Early Active 
(Figure 3.5B) 

Oogonia present in clusters arising 
from stem cells. Very few free oocytes 
present. 

Spermatogonia, spermatids and 
spermatozoa present in 
approximately equal numbers 

LA 
Late Active 
(Figure 3.5C) 

All stages of oogenesis present in 
approximately equal proportions. 

Coelomic cavity contains 
spermatids and spermatozoa in 
approximately equal proportions.  

R 
Ripe 
(Figure 3.5D) 

Not observed 
Coelomic cavity densely packed 
with spermatozoa.  

PS 
Partially Spent  
(Figure 3.5E) 

Majority of eggs present are mature, 
significant gaps in the coelomic cavity 
(>50% empty) 

Coelomic cavity largely empty 
but parapods with spermatozoa. 

S 
Spent 
(Figure 3.5F) 

Coelomic cavity generally empty, 
remaining oocytes necrotic and / or 
cytolytic  

Coelomic cavity empty with 
scanty spermatozoa present, 
usually in the parapods 

 

Table 3.2 Summary of the reproductive state, as outlined in Table 3.1 and Figure 3.5, of male and female Sabellaria 

spinulosa sampled from the Cutline study area in seven different sampling events carried out between April 2008 and 

November 2011. The number of specimens (n), the ratio of males to females (sex ratio), the number of incomplete 

specimens (IS) and inactive adults (IA) observed from the survey are also noted.  

Survey n 
Sex 

Ratio 
(M:F) 

IS IA 
Male Female 

EA LA R PS S EA LA R PS S 

Apr-08 4 3 : 1 1 0 0 2 0 0 1 1 0 0 0 0 

Jul-08 48 1.6 : 1 1 1 8 15 0 5 1 0 8 0 8 2 

Sep-08 13 0.8 : 1 6 2 3 1 1 0 0 2 0 0 0 4 

Feb-09 4 0 : 4 10 0 0 0 0 0 0 2 2 0 0 0 

Mar-09 6 0.7 : 1 4 1 2 0 0 0 0 2 1 0 0 0 

Jul-09 16 1.5 : 1 5 1 3 5 0 0 1 0 5 0 0 1 

Nov-09 28 0.7 : 1 7 8 2 4 2 0 0 2 5 0 2 3 

 Totals 119 1.12 : 1 34 13 18 27 3 5 3 9 21 0 10 10 
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Figure 3.5 Stages of gonad development in male and female Sabellaria spinulosa. A) Inactive adult B) Early active 

female, C) Late active female, D) Partially spent female, E) Spent female F) and J) Early active male, G) and K) Late 

active male, H) and L) Ripe male, I) Partially spent male and M) Spent male. 
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Figure 3.6 Stages of gametogenesis, as outlined in Table 3.1 and Figure 3.5, observed in 56 male Sabellaria 

spinulosa collected Cutline between April 2008 and November 2009.  

 

Oogenesis and ovarian ultrastructure 

S. spinulosa gametogenesis was found to be harder to stage in females than in males as all stages of 

oogenesis were generally evident in the specimens examined (Figure 3.5). Based on the specimens 

examined here it is possible that oogenesis in S. spinulosa is different to that observed in its congener S. 

alveolata where the same stage of oogenesis was present throughout each of the individuals examined 

(Culloty et al. 2010). Furthermore, no females were examined that could be described as ripe using the 

definitions described for S. alveolata by Culloty et al. (2010). It is not clear whether this is an artefact of the 

limited number of specimens available for examination or whether this species has less well defined 

stages of development, which would be indicative of semi-continuous or polytelic spawning behaviour.  

Oogenesis observed here in S. spinulosa was more similar to that reported for the American sabellariid, 

Phragmatopoma lapidosa than its European congener S. alveolata. In a study examining the ultrastructure 

of the ovaries and oogenesis in P. lapidosa Eckelbarger (1979) found that all stages of egg development 

could be found within the ovaries at any one time. The description of the ultrastructure of the ovaries 

provided by Eckelbarger (1979) closely resembles that observed in S. spinulosa, with bunches of follicle 
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cells, presumed to be oocytes in differing stages of development, attached to a genital blood vessel, 

extending from the intersegmental septum (Figure 3.8).  

 

 

 

 

 

 

 

 

Figure 3.7 Stages of gametogenesis, as outlined in Table 3.1 and Figure 3.5, observed in 50 female Sabellaria 

spinulosa collected from Cutline between April 2008 and November 2009.  

 

Eckelbarger (1979) notes that the role of the follicle cells has yet to be ascertained. Oogenesis in most 

polychaetes is of the solitary type described by Raven (1961), where each follicle cell develops into an 

oocyte. However, follicle cells or a sheath of squamous epithelial cells have been reported in some 

polychaete species such as Platynereis dumerillii (Fischer 1974; Fischer 1975), where they are thought to 

play a mechanically supportive role (Eckelbarger 1979). More detailed examination of the structure of the 

follicle cells using TEM techniques would be required to further our understanding of the functioning of 

these cells in S. spinulosa. This would also help to determine whether or not the presence of oocytes in 

different developmental stages means that S. spinulosa has the ability to reproduce throughout the year, 

or for an extended period of time.  
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Figure 3.8 Structure and organisation of the ovaries in Sabellaria spinulosa. IS, intersegmental septum: GBV, genital 

blood vessel: Oo, mature oocyte: Og, oogonia: N, Nucleolus. 
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3.3.4 Larval Availability 

The highest abundance of S. spinulosa larvae was recorded in the water column in February 2008 (Figure 

3.9). Since the larvae of S. spinulosa typically take between 6 and 8 weeks to metamorphose (Wilson 

1970b) we can conclude that the main spawning event occurred between December 2007 and February 

2008. That there were no larvae sampled from the water column a month later indicates that settlement 

had occurred by this time. This corresponds well with the dominance of male and female adults in the later 

stages of gametogenesis (Late Active, Ripe, Partially Spent & Spent) in November and the dominance of 

females in the early stages of gametogenesis (early Active) in April (Table 3.2 and Figures 3.6 and 3.7). 

That the only males sampled in April were found to be Spent or Late Active (Figure 3.6) is likely to be an 

artefact of the small numbers examined (n=3).  

 

 

 

 

 

Figure 3.9 Mean abundance (± SE) of Sabellaria spinulosa larvae recorded in plankton hauls collected from the 

Cutline site between April 2008 and April 2010. 

 

A smaller number of larvae were collected in September and November 2009, indicating that there were at 

least two smaller spawning events between July and September 2008. This again corresponds well with 

the histological examinations that revealed spent and partially spent females in July, September and 

November (Figure 3.7) and males in the later stages of gametogenesis (Late Active, Ripe, Partially Spent 

& Spent) at the same times (Figure 3.6). Collectively these data indicate a seasonal trend in the spawning 

behaviour of S. spinulosa and it seems likely that this species either has a protracted spawning season 

extending from July to February or that it has a main spawning event between December and February 

with some gamete leakage or smaller spawning events in the lead-up to the main event.   
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The timing of S. spinulosa spawning observed here corroborates early observations made by Wilson 

(1970b) who reported a peak in larval abundance at the beginning of the year when sea temperatures 

were still cold.  Winter spawning is indicative of a species with a boreal distribution, however, S. spinulosa 

is reported to occur along the west coast of India (Achari 1974) as well as southern Africa (Day 1967). 

Assuming that these are not misidentifications, it would seem likely that S. spinulosa will have significantly 

different spawning times across its geographical range. Wilson (1970b) also noted the presence of S. 

spinulosa larvae in the water column in smaller numbers throughout much of the year. Similarly, Hendrick 

(2007) observed a secondary recruitment event in a S. spinulosa population in the Wash in November. 

Wilson (1970b) postulates that occasional spawning remote from the main spawning event cannot be 

ruled out given the capacity of S. spinulosa larvae to undergo normal development, in the laboratory, at 

almost any time of the year. The data presented here, and by Hendrick (2007), support this hypothesis 

although it has yet to be established whether or not these secondary spawning events are active events 

making up a protracted spawning season or the result of passive gamete leakage. A more complete time-

series data set would be required than that presented here, with the addition of settlement and laboratory 

experiments. In combination, though, the evidence collected by different authors would suggest that 

successful recruitment is possible throughout much of the year, although greater recruitment success can 

be expected in the spring.   

 

3.3.5 Population Structure 

The size-frequency distribution data presented in Figures 3.10-3.12 show that the bulk of the S. spinulosa 

sampled from each of the five reef areas at Hastings Shingle Bank (Figure 2.4 and Table 2.1) formed a 

single cohort. The main cohort peaked at approximately 1.2 mm anterior width, or 9 mm total length in 

concordance with the size-frequency studies undertaken by George and Warwick (1985) and Hendrick 

(2007). A smaller cohort of individuals, peaking between 0.3 and 0.5 mm anterior width, was present in all 

regions except the actively dredged area. In this region only very low numbers of S. spinulosa were 

recorded, although virtually the full size range was present, suggesting that at least some individuals have 

escaped the impacts of dredging activities. No cohorts have been assigned to the actively dredged area 

as the occurrence of S. spinulosa was very sporadic.  
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Figure 3.10 Size frequency histograms of the anterior width (mm) of Sabellaria spinulosa individuals (n=4498) collected from five regions within Hastings Shingle Bank, in the eastern 

English Channel, in September 2006. Early developmental cohorts are coloured black and the main adult cohort is coloured purple. No cohorts have been assigned to Region 4 as very 

few individuals were sampled from this region.  
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Figure 3.11 Size frequency histograms of total body length (mm) of Sabellaria spinulosa individuals (n=4498) collected from five regions within Hastings Shingle Bank, in the eastern 

English Channel, in September 2006. Early developmental cohorts are coloured black and the main adult cohort is coloured blue. No cohorts have been assigned to Region 4 as very 

few individuals were sampled from this region.  
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Figure 3.12 Size frequency histograms of total biomass (Log g wet weight) of Sabellaria spinulosa individuals (n=4498) collected from five regions within Hastings Shingle Bank, in the 

eastern English Channel, in September 2006. Early developmental cohorts are coloured black and the main adult cohort is coloured green. No cohorts have been assigned to Region 4 

as very few individuals were sampled from this region.



123 
 

The small proportion of juveniles compared to the main adult cohort across all regions, indicates that the 

most recent recruitment event was either very small, or that the main cohort is made up of more than one 

year class. The latter seems most likely given the ratio of newly recruited juveniles to adults (1:10 based 

on anterior width).  This would correspond well with previous observations made by George and Warwick 

(1985) who found that S. spinulosa juveniles grew very quickly, whilst the adults showed little growth after 

one year, causing the main adult cohorts to merge. S. spinulosa reefs are likely therefore to be composed 

of adults of differing ages. In contrast, S. alveolata reefs have a clearly defined age structure (Gruet 1982; 

Gruet 1984; Gruet 1986b) adding weight to the hypothesis that there are fundamental differences in the 

reproductive cycle of these congeners. The contrasting age structures of the adult populations of S. 

spinulosa and S. alveolata are also likely also to be the cause of the differing appearance of the reef 

structures formed by these two sabellariids (See Figure 1.4). The uniform, honeycomb like structure of S. 

alveolata reefs, in which individuals use the walls of others tubes to complete their own, is indicative of a 

species which has a very well defined and coordinated reproductive cycle. The main body of a S. alveolata 

reef is made up of adults that have settled and grown synchronously with new recruits being limited to the 

outer reef edges (Gruet 1982; Gruet and Lassus 1983; Caline et al. 1992). Reefs built by S. spinulosa are 

typically irregular and patchy which is likely to be an artefact of their extended polytelic spawning season. 

Individual S. spinulosa also build complete tubes, which indicates that there is less synchronicity in their 

reproductive behaviour.   

Region 5 represents the newest area of reef which has an approximate age of 16 to 18 months. This area 

was intensively dredged up to February 2005 when extractive activities were significantly reduced before 

ceasing completely in March 2005 (Pearce et al. 2007). The reefs sampled in this region were visible on 

side-scan sonar in August 2005 indicating that there was a significant recruitment event soon after 

dredging activities ceased. The samples used in the size-distribution analyses presented here were not 

collected until September 2006 and hence the smallest cohort is likely to represent a March 2006 

recruitment. That the main cohort is so much larger than the new recruit cohort in this region, suggests 

that either the initial recruitment event in 2005 was much more successful and / or that there has been 

more than one recruitment event between March 2005 and September 2006.  A greater proportion of large 

adults were observed in Region 5 than in the other regions, with cephalic width peaking at 1.5 mm. It is 
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unclear why the adults might be larger in this region, but it is possible that in a younger reef, individuals 

are less spatially constrained or that there was a greater availability of food, perhaps as a result of nearby 

dredging activities. That parts of the S. spinulosa reef identified in Region 5 were established before the 

cessation of dredging activities cannot be ruled out either, since extractive activities of this nature are 

rarely, if ever, 100 % effective.  

The size distribution data presented here were collected during a single survey event and it is not 

therefore possible to determine the longevity of this species with any certainty. However, assuming that 

the smaller cohort represents a typical recruitment event, and that there are between 1 and 3 recruitment 

events per year, as observed at the Cutline site (Figure 3.6, 3.7 and 3.9), then S. spinulosa sampled from 

the Hastings Shingle Bank reefs are likely to have a maximum age of between 3 and 10 years. This 

corroborates the earlier observations of George and Warwick (1985), and casts some doubt on the 

popular belief that S. spinulosa is a fast growing annual  (Holt et al. 1998; Jones 1998). S. spinulosa reefs 

may appear as annual features, as observed in the Wash by Hendrick (2007), but it seems likely that 

longevity in this instance is determined by the fragility of the reef structure, rather than by the longevity of 

the polychaetes that construct them.  

 3.4 Conclusions 

The data presented here were collected in a serendipitous manner, during the course of surveys that were 

not designed to investigate the reproductive cycle of Sabellaria spinulosa, meaning that there are 

limitations to the conclusions that can be drawn. Nevertheless, it has been possible to use these data to 

advance our understanding of the reproductive cycle of S. spinulosa. These results represent the first 

description of gamete ultrastructure and gametogenic development in S. spinulosa and collectively have 

furthered our understanding of the timing, frequency and nature of the reproductive cycle of this species.  

The eggs liberated from adult S. spinulosa in the laboratory were found to be small compared to the eggs 

other polychaetes (Giangrande 1997) and smaller than the eggs of the congener S. alveolata (Wilson 

1929; Robert et al. 1979; Gruet and Lassus 1983) ranging in size from 45 µm to 58 µm. The sperm were 

found to be modified from the primitive sperm type as defined by Franzen (1956), possessing a long 

tapering tip or acrosome. The head including the acrosome was approximately 3 µm in length and 2 µm 
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wide and the tail or flagellum was found to reach between 15 and 60 µm. Clumping was observed in both 

the eggs and sperm of S. spinulosa, as has previously been described for the related species 

Phragmatopoma californica (Thomas 1994a). This raises the possibility that the gametes of this species 

may stay loosely associated with the reef structure rather than being broadcast into the water column as 

had previously been assumed (Giangrande 1997). It will be important to establish the extent to which the 

gametes clump and catch on the reef structure in the field, as this will influence both the fertilisation 

success and larval dispersion, or connectivity, of S. spinulosa reefs.  

Oogensis in S. spinulosa was found to be fundamentally different from that observed in its congener S. 

alveolata where the oocytes were present in the same stage of development throughout the coelomic 

cavity (Culloty et al. 2010). Bunches of follicle cells, presumed to be oocytes in different stages of 

development, were observed in the majority of the S. spinulosa specimens studied here, mirroring 

oogenesis described for Phragmatopoma lapidosa (Eckelbarger 1979).  More detailed examination of the 

structure of the follicle cells using TEM techniques would be required to confirm the function of the follicle 

cells. However, fully developed oocytes were present in the majority of the females examined indicating 

that S. spinulosa is physiologically able to reproduce throughout much of the year.   

Spermatogenesis in S. spinulosa was found to be broadly similar to that observed in S. alveolata, with 

some seasonality in the developmental stages present (Culloty et al. 2010). Individuals belonging to 

several different developmental stages were observed during each month sampled, except for March 

when all individuals were found to be early active, consistent with a main spawning event having occurred 

over the winter. S. spinulosa larvae were most prevalent in the water column in February with smaller 

numbers also noted in September and November.  No larvae were present in the water column in March 

indicating that larval recruitment had occurred by this time.   

Size-frequency distribution analysis of S. spinulosa populations in the eastern English Channel provided 

further evidence of polytelic spawning with a much greater abundance of adults in the youngest reef than 

would be expected based on the most recent recruitment. The results of this study corroborate earlier 

observations of S. spinulosa settlement (Wilson 1970b; George and Warwick 1985), indicating that this 

species either has a protracted spawning period extending from July to February, or that it has a main 
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spawning event between December and February with some secondary spawning events or gamete 

leakage in the months leading up to the main event as  summarised in Figure 3.13. 

 

Figure 3.13 Summary of the life cycle of Sabellaria spinulosa based on information presented within this thesis and 

the published literature (Wilson 1929; Wilson 1970b; George and Warwick 1985) * Image redrawn from Schafer 

(1972), ** images redrawn from (Wilson 1929), *** metatrocophore larva preserved in formaldehyde. 

 

The population structure of S. spinulosa reefs in the English Channel showed that the majority of animals 

belong to one main cohort, which corroborates the results of George and Warwick (1985). There was a 

relatively abrupt drop in the number of individuals recorded with an abdominal width greater than the 

modal (most common) width, suggesting that there is a sharp slowing in the growth rate. This accords well 

with previous work carried out by George and Warwick (1985) in the Bristol Channel, where over the 

twelve months of the study the main S. spinulosa cohort grew from 1.1 mm to 1.2 mm illustrating very slow 

growth rates of the adult worms. The new settlement of S. spinulosa in the Bristol Channel grew 

approximately 0.8 mm in four months which is over 20 times faster than the growth rate observed in the 

adult population (George and Warwick 1985). It is therefore likely that the main cohort identified at the 
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Hastings Shingle Bank site is made up of a number of year classes which have merged due to their slow 

growth rates. It is possible that the reef structure itself limits the transverse growth of S. spinulosa, 

especially where individuals are tightly packed. Longitudinal growth could not be accurately assessed in 

this study because of the damage sustained to individuals during standard macrofaunal sample 

processing. It was not possible to dissolve the tubes using acid as recommended by George and Warwick 

(1985) since this would dissolve body parts of other species that are necessary for identification. Future 

work should therefore consider collecting samples dedicated for the purpose of analysis the size-

frequency distribution of S. spinulosa.  

The temporal stability of S. spinulosa reefs has traditionally been assumed where reefs have been 

observed repeatedly in any one location, over time (Gubbay 2007).  However, given the potential for these 

reefs to occur both as annual features (Hendrick 2007) and as more stable habitats, in which individuals 

are able to realise their maximum longevity, as is indicated by the results presented here and by 

comparable data collected from the Bristol Channel (George and Warwick 1985), studying the population 

structure could prove to be a key tool in determining the true temporal stability of S. spinulosa reefs. S. 

spinulosa reefs are widespread in the UK (Hiscock 2003) but it is possible that the majority are transient or 

annual features. More stable reefs may be rarer, and may prove to have a higher ecological value, 

although this relationship has yet to be investigated. The true stability of a reef feature should therefore be 

used to determine its relative conservation value, rather than relying on its historic presence as a proxy 

(Hendrick and Foster-Smith 2006; Gubbay 2007). 

The new observations of the reproductive cycle of S. spinulosa presented here, indicate that this species 

has a number of life-history traits typical of an r-strategist as summarised in Table 3.3. S. spinulosa has a 

protracted spawning season extending from July to February, with several spawning events occurring 

separately from the main spawning event which occurs between December and February. Fully developed 

eggs and males in the latter stages of gametogenesis (ripe or late active) were found throughout the year. 

It is not possible to determine from the data presented here whether individuals are capable of breeding 

more than once in a year, but S. spinulosa populations, as a whole, are certainly capable of breeding more 

than once in a year, markedly increasing their ability to recover from natural and anthropogenic 

disturbances.  
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Table 3.3 Summary of the characteristics of equilibrium (K selected) and opportunistic (r selected) species as defined 

by MacArthur (1960) and the corresponding characteristics of Sabellaria spinulosa.  

Feature Equilibrium (K) Opportunistic (r) Sabellaria spinulosa 

Reproduction periods Once per year 

Many per year 

Larvae in the water 
column most of the year 

At least 2-3 times per 
year 

Larvae present in the 
water column in February, 
September and 
November 

Fully developed eggs and 
males in the latter stages 
of gametogenesis present 
throughout the year  

Development 
Slow growth 

Delayed reproduction 

Rapid growth 

Early reproduction 

Rapid growth 

Sexual maturity unknown, 
but presumed to be <1yr  

Mortality 
Low,  

Often density dependent 

High  

Often catastrophic 

Density Independent 

Unknown 

Recruitment 
Low 

Few large offspring 

High 

Many small offspring  

Recruitment levels are 
unknown  

High numbers of small 
offspring (broadcast 
spawners) 

Colonising time Late Early 

Uncertain, but evidence 
from the Hastings Shingle 
Bank site indicates that 
colonisation occurred 
within 1-2 months 

Adult size Generally large Generally small 
Moderate amongst 
polychaetes 

Mobility High 
Low  

Sedentary or sessile 

Low  

Sedentary 
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Rapid initial growth rates have been observed here and in a study in the Bristol Channel (George and 

Warwick 1985) which is indicative of a species that also reaches sexual maturity at a young age 

(Giangrande 1997). The precise age at which S. spinulosa reaches sexual maturity is yet to be established 

but since the adolescent population has been found to merge with the adult cohort within one year 

(George and Warwick 1985), it can be assumed that sexual maturity has also been reached by one year.  

S. spinulosa is a broadcast spawner, producing characteristically high numbers of offspring. The number 

of eggs per brood has never been quantified although Giangrande (1997) estimates it to be in the order of 

100,000. Although high levels of larval mortality are likely temper population numbers this has never been 

quantified. Successful recruitment has been observed in all studies that have looked at the size-frequency 

of S. spinulosa populations, including this one (George and Warwick 1985; Hendrick 2007). However, 

recruitment has yet to be formally quantified across years, or interannual spawning events. It is likely 

though, that recruitment associated with secondary spawning events will reflect the reduced numbers 

larvae present in the water column, making recovery or colonisation more likely in the spring. Evidence 

from the eastern English Channel suggests that S. spinulosa colonised a previously dredged area within 1 

or 2 months indicating that this species can act as an early coloniser although it is likely that there will be 

some seasonality in this trait.  

These findings indicate that S. spinulosa have a high reproductive output and fast early growth rates 

affording them a high capacity to adapt to changes in the environment and to recover from adverse 

impacts. Many of the life history traits of S. spinulosa are typical of r-strategists, although not all, hence 

this species should not be considered as wholly opportunistic. It should also be noted that these traits 

belong to the species and not necessarily the reef habitats that it creates. It is not yet known how long it 

takes for a stable S. spinulosa reefs to develop, although some of the evidence presented here suggests 

that reefs can develop in a matter of months in some.  Fundamental differences have been identified 

between the reproductive strategy of S. spinulosa and that of its congener S. alveolata and what is 

assumed of broadcast spawners more generally. These differences could have significant implications   

for the management of this species and once again reiterate the importance of undertaking observational 

research in this field. 
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Chapter 4. Biodiversity Associated with Sabellaria spinulosa Reefs 
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4.1 Introduction 

The term biodiversity, a compaction of “biological diversity”, refers in general terms to the diversity of life 

on earth. The term encompasses genetic diversity, organismal diversity and ecological diversity, including 

functional traits such as body size and feeding behaviours (Harper and Hawksworth 1994; Pearson 2001; 

Norling et al. 2007). However, the term is often used synonymously with the much narrower community 

descriptor, species diversity, (Warwick and Clarke 2001). Biodiversity can also be considered at different 

spatial scales, each of which tells us something different about the system being studied. Sample level 

diversity, or alpha diversity, is by far the most common scale at which patterns of biodiversity are 

investigated (Dubois et al. 2002; La Porta and Nicoletti 2009). Measuring and comparing alpha-diversity 

has obvious uses and advantages from a monitoring and investigative perspective since the data required 

are easily obtained and there exist numerous methods through which direct comparisons can be made 

(Magurran 2004; Magurran 2011; Maurer and McGill 2011). The many alpha diversity indices reported in 

the literature can also be used to make comparisons between different habitat types, locations or time-

periods. However, comparisons made on the basis of alpha diversity may not always accurately detect 

differences or trends in biodiversity, because sample level diversity varies over a small spatial scale (Gray 

and Elliott 2009).  

The biodiversity supported by a given habitat is determined by a complex interplay between environmental 

variables (both natural and anthropogenic) and biological interactions. One of the key drivers of 

biodiversity however, is habitat complexity, since more complex habitats provide a greater number of 

environmental niches which in turn may be occupied by a greater variety of species (Bradshaw et al. 2003; 

Cranfield et al. 2004; Hewitt et al. 2005; Cosentino and Giacobbe 2006; Skilleter et al. 2006; Gray and 

Elliott 2009; Buhl-Mortensen et al. 2012). The level of complexity in the benthos depends primarily on the 

composition of the sediment deposits, with complexity increasing with the range of particle sizes present, 

and the degree of sorting, with the highest levels of complexity being associated with the lowest levels of 

sorting or homogeneity (Gray and Elliott 2009; Buhl-Mortensen et al. 2012). The complexity of the benthos 

is often further enhanced, however, by the presence of hard substrata e.g. cobbles, stones and rocky 

outcrops (Sheehan et al. 2013; Gatt Støttrup et al. 2014; Trebilco et al. 2015) as well as by marine fauna 

and the structures which they create (Cranfield et al. 2004; Dame 2005; Hauser et al. 2006; Bouma et al. 
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2009; Buhl-Mortensen et al. 2012). Some species have profound effects on the seabed, creating 

conspicuous features which can have a stabilising influence on sediment deposits, particularly in soft-

sediment environments (Ragnarsson and Raffaelli 1999; Hall-Spencer and Moore 2000; Bolam and 

Fernandes 2003; Cranfield et al. 2004) These features are collectively referred to as ‘biogenic reefs’ or 

‘biogenic structures’, the most prolific examples being coral reefs and seagrass meadows (Nishi and 

Nishihira 1999; Skilleter et al. 2006; Mellin et al. 2010; Soeffker et al. 2011).  

Species capable of creating biogenic reefs exist within most major Phyla, with mussel and oyster beds 

(Ragnarsson and Raffaelli 1999; Dame 2005), slipper limpet complexes (Thieltges 2005), vermatid reefs 

(Milazzo et al. 2014) and lesser-known nest-building bivalves (Hall-Spencer and Moore 2000; Trigg et al. 

2011) representing the molluscs. High density aggregations of tubiculous polychaetes can also form 

complex beds (Daro and Polk 1973; Bolam and Fernandes 2003; Rees et al. 2005; Callaway 2006; Godet 

et al. 2011) as well as more solid reef-like structures (Wilson 1971; Fornos et al. 1997; Dubois et al. 2006). 

Algae can form mats (Bolam et al. 2000), kelp forests (Anderson et al. 2005) and, in their calcareous 

forms, maerl beds (Hall-Spencer et al. 2003). Crustacean species do not often form biogenic structures as 

species belonging to this group are usually free-living and mobile, an exception to this being amphipod 

tube beds (Sheader 1998). Encrusting animals such as sponges and hydroids do not form biogenic reefs 

in the truest sense they do increase complexity, and in high abundances can also have a stabilising 

influence on sediments (Bradshaw et al. 2003; Cranfield et al. 2004).  

Of the biogenic reefs mentioned above, most have been identified as priorities for conservation efforts in 

International and European conservation legislation. This study focusses on reefs formed by the 

tubiculous polychaete Sabellaria spinulosa, which have been identified as a priority for protection under 

the Habitats Directive (Annex I) and by OSPAR due to their historic losses, sensitivity to anthropogenic 

disturbance and ability to enhance biodiversity (OSPAR 2003; OSPAR 2008; EC 2013; OSPAR 2013). 

Despite the emphasis on enhanced biodiversity as a criterion for the inclusion of S. spinulosa reefs in the 

Habitats Directive and the OSPAR list, there is very little empirical evidence to support this assertion. 

George and Warwick (1985) studied the production of S. spinulosa aggregations in the Bristol Channel 

and noted an increase in the number of species associated with the reefs when compared to the 

surrounding deposits, although no direct comparisons were made. The sub-tidal communities of the Bristol 
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Channel are frequently exposed to periods of anoxia and high levels of scouring, meaning that the 

macrofauna are generally impoverished (Mettam et al. 1994; Warwick and Somerfield 2010). Reefs 

formed by S. spinulosa are more commonly found in association with more stable sedimentary deposits in 

the eastern English Channel and North Sea which are known to support a more diverse suite of fauna 

(Heip and Craeymeersch 1995; Rees et al. 1999). It is, therefore, unclear whether the relationship 

observed between the presence of S. spinulosa reefs and enhanced biodiversity in the Bristol Channel 

extends to reefs that have developed in more stable environmental conditions.  

The Wash Zone Report (NRA 1994) found that S. spinulosa reefs supported twice as many species and 

three times as many individuals as the surrounding sediments (excluding the worms themselves), 

suggesting that sabellariid reefs are exerting a significant structuring influence on benthic communities. 

However, these figures were derived from comparisons made between samples that contained high 

abundances of S. spinulosa (>100 individuals in 3 Day grab samples) and samples that contained low 

abundances of S. spinulosa (<100 individuals in 3 Day grab samples) with the latter category containing 

many more sites (n=58) than the former (n=8). These comparisons may not therefore accurately describe 

the influence of reef presence, particularly as the non-reef / low S. spinulosa abundance category included 

a number of sites known to be negatively influenced by both natural and anthropogenic disturbances (NRA 

1994).   

Neither of the aforementioned studies were designed specifically to examine the influence that S. 

spinulosa reefs have on macrofaunal communities and both studies are limited to the use of species 

richness and abundance as a proxy for biodiversity (George, 1985; NRA, 1994). To date no consideration 

has been given to the influence that S. spinulosa reefs have on species equitability (or dominance), 

taxonomic diversity, functional diversity or beta-diversity, and hence our understanding of this habitats 

influence on biodiversity is incomplete (Magurran 2011).  

In this study we compare the macrofauna (>1 mm) associated with S. spinulosa reefs in the eastern 

English Channel and southern North Sea with macrofauna associated with adjacent sedimentary deposits 

in order to determine what, if any,  influence S. spinulosa reef structures have on biodiversity or 

macrofaunal community composition. Since sediment composition is known to have a significant influence 

on macrofaunal composition and diversity in these areas (Newell et al. 2001) and to ensure that 
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comparisons were made with the habitat most likely to occur in the absence of specific areas of reef, 

sedimentary composition was also incorporated into the analysis which tested the following hypothesis: 

 

It was not possible within the scope of this study to measure all aspects of biodiversity, nevertheless 

attempts have been made to use a range of indices which measure, or act as proxies for, different aspects 

of biodiversity, for example, taxonomic distinctness has been used as a proxy measure of ecological 

diversity (Warwick and Clarke 2001). The focus of this study is the effect that the habitat created by S. 

spinulosa has on biodiversity, and biodiversity must therefore be considered at the habitat scale (beta-

diversity) in order to explore the null-hypothesis fully.  What follows therefore is an assessment of the 

influence of S. spinulosa reefs on different aspects of alpha-diversity, including species richness, 

equitability, diversity and taxonomic spread as well as an assessment of the influence that reef presence 

has on beta-diversity.  

4.2 Methodology 

4.2.1 Study Site 

This study was conducted at Hastings Shingle Bank in the eastern English Channel (0°34E, 50°44.5N; 

Figures 2.1-2.3) in coarse gravel deposits adjacent to an active aggregate extraction site. Sabellaria 

spinulosa aggregations were identified as rough texturing visible on high resolution side-scan sonar data 

collected during surveys related to the extraction licence. The presence of the structures was confirmed 

prior to sampling using a towed video courtesy of the National Oceanographic Centre, Southampton. Once 

the presence of S. spinulosa reefs had been confirmed a number of sampling stations were positioned 

Hypothesis A 

HOA: S. spinulosa reef structures have no influence on macrofaunal biodiversity or community 

composition 

H1A: The macrobenthos found in association with S. spinulosa reefs is more diverse and 

abundant that the macrobenthos associated with comparable sedimentary deposits, and the reef 

support fauna that would not otherwise occur in the area.  
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within and closely adjacent (<50 m) to the structures, within a hydrographically linked area (Pearce et al. 

2007), in order to test the null hypothesis that the macrofaunal communities are not significantly different 

on and off the reefs.  

4.2.2 Sample collection and processing  

A total of 119 samples of the benthos were collected using 0.1m2 Hamon grab. A small sub-sample 

(approx. 250 ml) was removed from each grab sample for Particle Size Analysis (PSA). In the case of reef 

samples this sub-sample was taken from the sediments underlying the reef structure. The remaining 

material from each grab sample was washed through a 1 mm aperture sieve and the retained material 

was fixed and preserved in a 4% buffered formaldehyde solution.  

4.2.3 Macrofaunal Identification, Enumeration & Biomass 

Before processing the grab samples the excess formalin was filtered through a 1 mm mesh sieve. Each 

sample was gently elutriated with tap water through the same sieve, to extract the low-density components 

(small crustaceans and annelids). The larger macrofauna were then removed from the elutriated material. 

Where S. spinulosa aggregations were present in the samples, the tubes were elutriated and then gently 

broken up before being elutriated again to ensure that both the worms themselves and any commensal 

fauna were retained in the best condition possible. The remaining sediments were sorted under a x40 

stereomicroscope to extract the rest of the marine fauna. The entire mixed sample of separated fauna was 

then preserved in industrial methylated spirit (IMS) for subsequent analysis. Following the initial 

processing phase, each sample was sorted into major faunal groups before being identified to the highest 

possible taxonomic resolution (species level in most instances) and the number and blotted wet weight of 

individuals belonging to each species were recorded. Due to inherent difficulties in quantification, colonial 

taxa were entered with a nominal value of P=1 (present) in all subsequent statistical analyses. 

4.2.4 Sediment Particle Size Analysis 

A sub-sample of sediment was taken for Particle Size Analysis (PSA) where possible from each of the 

grab samples taken. The material was sieved over a range of sieves based on the Wentworth scale as 

follows: 64 mm, 31.5 mm, 16 mm, 8 mm, 5.6 mm, 4 mm, 2.8 mm, 2 mm, 1.41 mm, 1 mm, 0.710 mm, 

0.500 mm, 0.350 mm, 0.250 mm, 0.180mm, 0.125 mm, 0.090 mm and 0.063 mm. The weight of material 

passing through the finest sieve (0.063 mm) was recorded to give a measure of the silt and clay content. 
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The results were expressed as cumulative percentage passing and were converted to absolute 

percentage retained on each sieve size.  

The PSA results were then summarised in terms of % gravel, sand and silt and subsequently classified 

under the Folk classification system (Folk 1954) (Figure 4.1) to facilitate the exploration of S. spinulosa 

reef effects within broad sedimentary habitats.  

 

 

 

 

 

 

 

 

Figure 4.1 Folk classification used to classify sediment sub-samples taken from each grab sample collected from the 

Hastings Shingle Bank, in the eastern English Channel in 2005. The classification G* was applied to samples that 

were unsuitable for Particle Size Analysis (PSA) because of the presence of large cobbles. 

 

4.2.5 Data Analysis 

As the overarching hypothesis relates to fauna associated with the S. spinulosa reefs, S. spinulosa itself 

was excluded from the data in all of the analyses that follow. Samples were grouped according to their 

position on or off the reefs, as well as the composition of the substratum in accordance with Folk (1954) as 

summarised in Table 4.1.  Gravel and muddy sand were not included in the analysis due to the lack of 

replication. All statistical analyses were undertaken using the PRIMER v6.1 software (Clarke and Warwick 

2001; Clarke and Gorley 2006) with the PERMANOVA+ add-on (Anderson and Gorley 2008; Anderson et 

al. 2008b).  
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Table 4.1 Summary of grab sample replication (n) within each substratum type (sandy gravel (sG), muddy sandy gravel 

(msG), gravelly sand, (gS) and sand (S)) and each treatment (reference (ref) and S. spinulosa Reef (Sab)).   

Substratum  Treatment  n 

Gravel (G) 
Ref 1 
Sab 1 

Sandy gravel (sG) 
Ref 41 
Sab 17 

Muddy sandy gravel (msG) 
Ref 12 
Sab 14 

Gravelly sand (gS) 
Ref 10 
Sab 3 

Gravelly muddy sand (gmS) 
Ref 4 
Sab 6 

Sand (S) 
Ref 4 

Sab 4 

Muddy sand (mS) 
Ref 0 
Sab 2 

 

Standard community descriptors, number of species (S), abundance (N) and biomass (g wet weight) were 

calculated for each sample alongside a selection of diversity indices which provide a measure of species 

richness (Margalef’s diversity (d)), species equitability (Pielou’s evenness (J’)) and diversity, a function of 

richness and equitability (Shannon-Wiener’s diversity (H’)) (Magurran 2004; Maurer and McGill 2011). 

Since all of these diversity indices are sample-size dependent (Warwick and Clarke 2001), Simpson’s 

diversity (1-λ) was also calculated to ensure that any observed patterns in diversity were not artefacts of 

unequal sampling effort (Table 4.1). To complement the more traditional diversity indices, a number of 

taxonomic distinctness indices (taxonomic distinctness (Δ*), average taxonomic distinctness (Δ+) and 

variation in taxonomic distinctness (λ+)) were also calculated to test for differences in the taxonomic 

spread between reef habitats and adjacent sediments as well as the equitability of the taxonomic spread 

(Warwick and Clarke 2001). Taxonomic distinctness indices were based on hierarchical classifications 

obtained from the World Register of Marine Species (WoRMs: http://marinespecies.org/). 

The relationship between each of the community descriptors and diversity indices and the presence of reef 

on different substrata was investigated using box and whisker plots and 2- way crossed ANOSIM tests 

carried out on Euclidean distance resemblance matrices (Clarke 1993), testing for the influence of reef 

and sediment type. Differences in the variability in species composition, or beta diversity, were compared 

using a multivariate dispersion (PERMDISP) test carried out on a Jaccard resemblance matrix, based on 

macrofaunal presence / absence data (Anderson et al. 2006). This test essentially removes the mean 

http://marinespecies.org/
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effect and tests for differences in dispersion, the equality of which is assumed in the null hypothesis 

(Fisher 1939). This test uses permutation of the residuals to obtain the P-values making it robust to 

deviations from normality, negating the need to test data for normality prior to analysis (Anderson 2006; 

Anderson et al. 2006; Anderson and Gorley 2008; Anderson et al. 2008b). Differences in community 

composition were investigated using a 2-way crossed ANOSIM test (Clarke 1993; Clarke and Ainsworth 

1993) since the assumption of equal dispersion was not fulfilled even after transformation (PERMDISP; 

Anderson, 2006). The ANOSIM test was carried out on a Bray–Curtis similarity matrix calculated using 

forth root transformed macrofaunal abundance data. Finally a SIMPER analysis was carried out on the 

raw abundance data where significant reef effects were detected to explore the composition of fauna on 

and off the reefs (Clarke et al. 2008). 

4.3 Results 

The number of species (S), abundance (N) and biomass (g WW) of macrofauna, excluding Sabellaria 

spinulosa itself, were found to be significantly higher in samples taken from within S. spinulosa reefs than 

from adjacent sediments, where the reefs occur on sandy gravel (Figure 4.2; Table 4.2).  Where reefs 

were sampled from other sediment types there was no significant difference in the number of species (S) 

or biomass (g WW) that they support although a significant enhancement was observed in the abundance 

of macrofauna (N) supported by reefs sampled from muddy sandy gravel and gravelly sand habitats.  

Margalef’s diversity (d) of macrofauna, a measure of species richness, was not found to be significantly 

different in the presence of S. spinulosa reef sampled from any sediment type (Figure 4.3; Table 4.3).  

However, Pielou’s J’, a measure of species equitability, is significantly lower on S. spinulosa reef habitats 

where they occur in muddy sandy gravel (msG) and sandy gravel (sG) substrata and Shannon-Wiener’s 

diversity (H’) and Simpson’s diversity (1-λ) were also found to be lower on reefs sampled from muddy 

sandy gravel (msG) deposits (Figure 4.3; Table 4.3) indicating that one or more species has become 

numerically dominant on reefs that have developed on these sediment types.  
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Figure 4.2. Number of species (S), abundance (N) and biomass (g blotted wet weight) per 0.1m2 Hamon grab 

sample, from within Sabellaria spinulosa reefs (dark grey) and from adjacent sedimentary deposits (pale grey), 

collected from Hastings Shingle Bank in the eastern English Channel in 2006. Samples have been grouped 

according to the composition of the substratum (Folk 1954): sandy gravel (sG), muddy sandy gravel (msG), gravelly 

sand, (gS) and sand (S). Sabellaria spinulosa itself was excluded from this analysis. Box plots show the interquartile 

range and median values whilst the maximum and minimum observed values are represented by the whiskers. An 

asterisk indicates that there is a significant difference between reef and non-reef habitats (P<5%: see Table 4.2).  

  

Table 4.2. Summary of ANOSIM tests carried out on the number of species (S), abundance (N) and biomass (g WW) 

recorded in 0.1m2 Hamon grabs collected on and off Sabellaria spinulosa reef (identified using high resolution side-

scan sonar) in a range of sedimentary deposits in the eastern English Channel: sandy gravel (sG), muddy sandy gravel 

(msG), gravelly sand (gS), gravelly muddy sand (gmS) and sand (S). Table shows the R statistic (R) and the 

significance level as a percentage (P). Significant differences (p<5%) are highlighted with bold font.    

Community 
Descriptor 

sG msG gS gmS S 

R P R P R P R P R P 

No. Species 0.186 0.4 0.074 9.8 0.151 18.9 0.24 10 -0.057 57.1 

Abundance 0.296 0.2 0.153 0.8 0.569 2.8 0.063 24.8 0.146 17.1 

Biomass 0.252 0.4 -0.002 43.1 0.035 37.8 0.19 9.5 0 48.6 

 

 

 

 

* 

* 

* 

* 
* 
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Figure 4.3 Margalef’s Diversity (d), Pielou’s Evenness (J’), Shannon-Wiener’s Diversity (H’) and Simpson’s Diversity 

(1-λ) per 0.1m2 Hamon grab sample, from within Sabellaria spinulosa reefs (dark grey) and from adjacent 

sedimentary deposits (pale grey), collected from Hastings Shingle Bank in the eastern English Channel in 2006. 

Samples have been grouped according to the composition of the substratum (Folk 1954): sandy gravel (sG), muddy 

sandy gravel (msG), gravelly sand, (gS) and sand (S). Sabellaria spinulosa itself was excluded from this analysis. 

Box plots show the interquartile range and median values whilst the maximum and minimum observed values are 

represented by the whiskers.  

 

* * 

* * 
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Table 4.3 Summary of ANOSIM tests carried out on the alpha diversity measures, Margalef’s diversity (d), Pielou’s 

evenness (J’), Shannon-Wiener’s diversity (H’) and Simpson’s diversity (1-λ) of macrofauna recorded in 0.1m2 Hamon 

grabs collected on and off Sabellaria spinulosa reef (identified using high resolution side-scan sonar) in a range of 

sedimentary deposits in the eastern English Channel: sandy gravel (sG), muddy sandy gravel (msG), gravelly sand 

(gS), gravelly muddy sand (gmS) and sand (S). Table shows the R statistic (R) and the probability as a percentage 

(P). Significant differences (p<5%) are highlighted with bold font.    

Alpha Diversity 
Measures 

sG msG gS gmS S 

R P R P R P R P R P 

Margalef’s d’ 0.11 5.1 0.011 30.3 0.015 40.2 0.159 19 -0.083 60 

Pielou’s 
Evenness 

0.246 0.4 0.375 0.2 0.146 22.9 0.333 5.2 0.146 22.9 

Shannon 
Weiner’s H’ 

-0.052 78.1 0.407 0.1 -0.099 58.7 0.063 27.6 -0.125 71.4 

Simpson’s 1-λ 0.1 9.7 0.343 0.1 0.093 32.2 0.286 6.2 -0.125 85.7 

 

A small but significant increase in taxonomic distinctness (Δ*) and average taxonomic distinctness (Δ+) 

was evident on S. spinulosa reefs, sampled from muddy sandy gravel habitats (Figure 4.4; Table 4.4). No 

differences in taxonomic distinctness were observed in reefs occurring on other sediment types however 

indicating that that the taxonomic breadth of macrofaunal communities is not influenced by S. spinulosa 

reefs in this area except where they occur on muddy sandy gravels. In contrast beta diversity, or the 

variability in macrofaunal composition between samples, was found to be significantly reduced in 3 of the 

5 sediment classes studied indicating that species were present more consistently within the reefs than 

adjacent sediments (Table 4.5). No significant difference was identified between the beta diversity of reef 

macrofauna and sedimentary macrofauna where reefs occur on muddy sandy gravel and gravelly muddy 

sand however, indicating that these habitats have an equivalent levels of variance in the macrofaunal 

communities they support. 
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Figure 4.4 Taxonomic distinctness (Δ*), average taxonomic distinctness (Δ+) and variation in taxonomic distinctness 

(λ+) per 0.1m2 Hamon grab sample, from within Sabellaria spinulosa reefs (dark grey) and from adjacent sedimentary 

deposits (pale grey), collected from Hastings Shingle Bank in the eastern English Channel in 2006. Samples have 

been grouped according to the composition of the substratum (Folk 1954): sandy gravel (sG), muddy sandy gravel 

(msG), gravelly sand, (gS) and sand (S). Sabellaria spinulosa itself was excluded from this analysis. Box plots show 

the interquartile range and median values whilst the maximum and minimum observed values are represented by the 

whiskers.  

Table 4.4 Summary of ANOSIM tests carried out on taxonomic distinctness measures, Taxonomic distinctness (Δ*), 

average taxonomic distinctness (Δ+) and variation in taxonomic distinctness (λ+) per 0.1m2 Hamon grab sample 

collected on and off Sabellaria spinulosa reef (identified using high resolution side-scan sonar) in a range of 

sedimentary deposits in the eastern English Channel: sandy gravel (sG), muddy sandy gravel (msG), gravelly sand 

(gS), gravelly muddy sand (gmS) and sand (S). Table shows the R statistic (R) and the probability as a percentage 

(P). Significant differences (p<5%) are highlighted with bold font.    

Taxonomic 
Distinctness 
Measures 

sG msG gS gmS S 

R P R P R P R P R P 

Taxonomic 
Distinctness Δ* 

-0.47 74.9 0.116 3.6 0.076 34.3 0.135 16.7 -0.052 48.6 

Avg Taxonomic 
Distinctness Δ+ 

-0.013 55.9 0.126 2.6 -0.106 67.8 -0.103 64.8 -0.222 85.7 

Variation in 
Taxonomic 
Distinctness λ+ 

-0.007 48.1 -0.046 85.4 0.108 20.6 -0.012 35.2 -0.357 100 

 

 

 

* 
* 
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Table 4.5 Results of a PERMDISP, multivariate dispersion test, carried out on a Jaccard resemblance matrix 

constructed using P/A transformed macrofaunal data recorded in grab samples collected from Hastings Shingle Bank 

in the eastern English Channel in 2006. Samples have been grouped according to the substratum composition (Folk, 

1959) and whether or not the samples were taken from an area identified as Sabellaria spinulosa reef using acoustic 

data. Sabellaria spinulosa itself was excluded from this analysis. 

F: 10.927, P (perm): 0.001 

Pairwise Comparisons (Reef Vs Non-Reef) 

Substratum (Folk) T P (perm) 

Sandy Gravel (sG) 3.7496 0.003* 

Muddy Sandy Gravel (msG) 0.5700 0.634 

Gravelly Muddy Sand (gmS) 1.4642 0.377 

Gravelly Sand (gS) 4.4876 0.005* 

Sand (S) 2.4913 0.033* 

 
Means and Standard Errors 

Substratum 
Non-Reef Reef 

n Average SE n Average SE 

Sandy Gravel (sG) 41 59.10 0.94 17 53.00 1.08 

Muddy Sandy Gravel (msG) 12 49.74 2.10 14 48.27 1.58 

Gravelly Muddy Sand (gmS) 4 48.26 3.48 6 42.09 2.55 

Gravelly Sand (gS) 10 58.46 1.47 3 45.90 0.76 

Sand (S) 4 56.50 0.78 4 52.04 1.61 

 

Table 4.6 Summary of ANOSIM tests carried out on a Bray-Curtis similarity resemblance based on fourth root 

transformed benthic abundance recorded from 0.1m2 Hamon grab samples collected on and off Sabellaria spinulosa 

reef (identified using high resolution side-scan sonar) in a range of sedimentary deposits in the eastern English 

Channel: sandy gravel (sG), muddy sandy gravel (msG), gravelly sand (gS), gravelly muddy sand (gmS) and sand (S). 

Table shows the R statistic (R) and the probability as a percentage (P). Significant differences (p<5%) are highlighted 

with bold font.    

Community 
Composition 

sG msG gS gmS S 

R P R P R P R P R P 

Macrofaunal 
Abundance  

-0.083 89.8 0.149 1.1 -0.181 82.9 0.175 11.4 -0.198 85.7 
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ANOSIM tests carried out on a Bray-Curtis similarity resemblance based on fourth root transformed 

benthic abundance data revealed that there was no significant difference in the composition of 

macrofaunal communities associated with S. spinulosa reefs, except where they occurred on muddy 

sandy gravel habitats (Table 4.6). A SIMPER test used to explore this difference further (Table 4.7) 

reveals that almost half (46.91%) of the dissimilarity between reef and non-reef habitats in muddy sandy 

gravel areas is explained by a large increase in the abundance of the porcelain crab Pisidia longicornis in 

the presence of S. spinulosa reef. The remaining dissimilarity is explained by much smaller differences in 

the abundance of macrofaunal taxa for example the barnacle Balanus crenatus exhibits a small reduction 

in its abundance in the presence of the reef falling from an average of 14.92 to 12 individuals per grab 

sample whilst the tubiculous polychaete, Spirobranchus triqueter increases from an average of 4.50 to 

5.14 individuals per sample. Such differences are unlikely to represent an ecologically significant 

difference in the community in isolation. However, the majority (21 of 33) of the taxa, which collectively 

account for 80 % of the dissimilarity between reef and non-reef communities found in association with 

muddy sandy gravel deposits, were present on the reef in higher abundance than in adjacent sediments 

(Table 4.7) indicating that the reefs are increasing the overall density of macrofauna in these habitats.   
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Table 4.7 Summary of species contributing to 75% of the dissimilarity between samples taken from Sabellaria 

spinulosa reefs and adjacent sedimentary deposits, sampled from muddy sandy gravel deposits. The data are derived 

from a SIMPER test carried out on untransformed benthic abundance data from 0.1m2 Hamon grab samples collected 

from Hastings Shingle Bank in the eastern English Channel. Colonial epifaunal species which cannot be enumerated 

are included in the data as present “1” or absent “0”. Sabellaria spinulosa abundance has been removed from the data. 

The reef effect on individual species abundance (↑ = enhancement, ↓ = reduction) is also shown.  

Taxa 
Non- Reef 
Av. Abund 

Reef  
Av. Abund 

Reef 
Effect 

Av.Diss Diss/SD Cont% Cum.% 

Pisidia longicornis     47.08    359.50 ↑   34.55    1.72    46.91 46.91 

Balanus crenatus     14.92     12.00 ↓    3.28    0.78     4.46 51.37 

Scalibregma inflatum     12.67      5.43 ↓    1.61    0.93     2.19 53.56 

Crepidula fornicata      1.92     11.29 ↑    1.43    0.75     1.94 55.50 

Spirobranchus triqueter      4.50      5.14 ↑    1.41    0.57     1.91 57.42 

Lumbrineris gracilis      8.25      9.79 ↑    1.26    0.88     1.71 59.12 

Spirobranchus lamarcki      6.08      8.57 ↑    1.21    1.07     1.64 60.77 

Harmothoe      2.00     11.14 ↑    1.12    1.28     1.51 62.28 

Phyllodoce maculata      2.00      7.57 ↑    1.02    0.81     1.38 63.66 

Galathea intermedia      3.75      3.07 ↓    0.79    0.89     1.08 64.74 

Ampelisca      5.00      3.50 ↓    0.78    0.98     1.06 65.80 

Mediomastus fragilis      1.83      6.71 ↑    0.78    0.86     1.06 66.85 

Nemertea      4.08      2.29 ↓    0.72    0.97     0.98 67.83 

Notomastus latericeus      4.33      1.64 ↓    0.67    0.72     0.90 68.73 

Abra alba      0.42      4.93 ↑    0.60    0.70     0.81 69.55 

Ampharete      2.75      1.36 ↓    0.58    0.73     0.79 70.34 

Aequipecten opercularis      3.08      3.43 ↑    0.56    1.07     0.76 71.10 

Goniada maculata      3.25      4.57 ↑    0.55    0.96     0.74 71.84 

Unciola crenatipalma      1.75      3.79 ↑    0.54    0.86     0.74 72.58 

Poecilochaetus serpens      2.75      0.79 ↓    0.54    0.62     0.73 73.31 

Pilumnus hirtellus      0.17      4.86 ↑    0.50    1.19     0.68 73.99 

Lagis koreni      2.83      2.29 ↓    0.48    0.73     0.65 74.64 

Nephtys      2.17      1.93 ↓    0.44    0.51     0.60 75.25 

Pholoe inornata      1.17      3.00 ↑    0.42    0.90     0.56 75.81 

Eunereis longissima      0.75      2.86 ↑    0.40    0.86     0.54 76.35 

Spirobranchus      1.92      1.64 ↓    0.40    0.73     0.54 76.90 

Jasmineira elegans      0.75      2.36 ↑    0.39    0.69     0.53 77.43 

Nassarius reticulatus      0.33      3.14 ↑    0.38    0.82     0.51 77.94 

Ampharete finmarchica      1.83      0.79 ↓    0.36    0.69     0.48 78.42 

Nephtys hombergii      0.75      2.36 ↑    0.35    0.91     0.47 78.90 

Schistomeringos rudolphii      1.92      0.64 ↓    0.35    0.74     0.47 79.37 

Upogebia deltaura      0.92      1.64 ↑    0.32    0.85     0.43 79.80 

Myrianida      0.58      2.50 ↑    0.32    1.20     0.43 80.23 
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4.4 Conclusions & Discussion 

In their early study of S. spinulosa reefs in the Bristol Channel, George and Warwick (1985) recorded a 

total of 88 taxa from 24 0.07m2 Day grab samples supplemented by 6 semi-quantitative naturalist dredge 

samples. The average number of taxa associated with S. spinulosa reefs in the North Sea ranges from 22 

to 60, based on observations from between 5 and 44 0.1 m2 grab samples (Rees et al. 1999; Hendrick 

2007). An average of 56 taxa, and a total of 336, were identified in association with the Hastings Shingle 

Bank reefs in this study from 44 0.1m2 Hamon grab samples, indicating that the species richness 

documented at this site is broadly comparable to other S. spinulosa reefs in the UK.  

The gravelly deposits in the Hastings Shingle Bank area are known to support a diverse macrofaunal 

community with the average number of species typically ranging from 29-71 per 0.1m2 Day grab sample 

(Rees et al. 1999). Despite the high richness of sedimentary deposits in this area, species richness (S) 

was found to be higher, on average, in samples taken from S. spinulosa reefs than samples taken from 

adjacent sedimentary habitats. The increase in species richness was however, only significant where reefs 

had developed on sandy gravel (sG) deposits, where the average number of species increased by 55 % 

(Table 4.8). Increases of a similar magnitude were observed in reefs sampled from all other sediment 

types, with the exception of muddy sandy gravel where the average number of species only increased by 

18 %, but none of these apparent differences were found to be statistically significant. Like species 

richness (S), macrofaunal abundance (N), biomass (B) and diversity (Margalef’s d’) were found, on 

average, to be higher in grab samples collected from S. spinulosa reefs than in those collected from 

adjacent sedimentary habitats (Table 4.8) although these increases were again only statistically significant 

in a small number of cases. The variance in all of the aforementioned community descriptors is high both 

on and off the reefs (see Figures 4.1 – 4.3) and it is possible that this is masking the true influence that 

the reefs are having on macrofaunal communities at Hastings Shingle Bank. It is likely that the influence of 

high variability was further exacerbated by the low sample replication in some sediment classes (Table 

4.1). Hence any future work in this area would benefit from a more comprehensive sampling regime.
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Table 4.8 Summary of the effect of Sabellaria spinulosa reefs on macrobenthic community descriptors, showing the average value for each descriptor calculated for reef and non-reef samples taken in 

different sediment types. Statistically significant reef effects are depicted by upward arrows for enhancements and downward facing arrows for reductions.

Community 
Descriptor 

Sandy Gravel Muddy Sandy Gravel Gravelly Sand Gravelly Muddy Sand Sand 

Non-Reef Reef 
Reef 
Effect 

Non-Reef Reef Reef Effect 
Non-
Reef 

Reef 
Reef 
Effect 

Non-Reef Reef 
Reef 
Effect 

Non-Reef Reef 
Reef 
Effect 

No. Species 34.5 53.7 ↑ 47.7 56.4 ~ 34.2 57.3 ~ 46.8 72.8 ~ 19.75 39.25 ~ 

Abundance 98.2 226.8 ↑ 194.7 563.4 ↑ 75.4 204 ↑ 309 949.8 ~ 58 181.75 ~ 

Biomass 6.9 14.4 ~ 17.9 39.5 ↑ 8.1 11.1 ~ 21.2 76.7 ~ 6.4 14.5 ~ 

Margalef’s d’ 7.5 10 ~ 8.9 9.2 ~ 7.7 10.6 ~ 8.1 10.7 ~ 4.7 7.5 ~ 

Pielou’s Evenness 0.87 0.77 ↓ 0.79 0.57 ↓ 0.87 0.77 ~ 0.64 0.51 ~ 0.88 0.75 ~ 

Shannon Weiner’s H’ 2.9 3 ~ 3 2.2 ↓ 2.9 3.1 ~ 2.4 2.2 ~ 2.1 2.7 ~ 

Simpson’s 1-λ 0.90 0.87 ~ 0.89 0.67 ↓ 0.91 0.89 ~ 0.76 0.63 ~ 0.88 0.84 ~ 

Taxonomic 
Distinctness Δ* 

89.2 90.6 ~ 88.8 91.5 ↑ 89.9 88.7 ~ 91.5 92.3 ~ 83.7 89.8 ~ 

Avg Taxonomic 
Distinctness Δ+ 

88.7 88.5 ~ 87.9 88.6 ↑ 90.6 88.8 ~ 88.2 88.8 ~ 82.6 87.5 ~ 

Variation in 
Taxonomic 
Distinctness λ+ 

253.4 256.6 ~ 261.7 269.4 ~ 
251.

9 
259.4 ~ 275.3 269.9 ~ 272.7 282.3 ~ 

Community 
composition 

~ ~ 
Non 

detected ~ ~ 

Increase in 
Pisidia 

longicornis 
abundance 

~ ~ 
Non 

detected 
~ ~ 

Non 
detected 

~ ~ 
Non 

detected 

Beta Diversity  59 53 ↓ 50 48 ~ 58 46 ↓ 48 42 ~ 57 52 ↓ 
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Species accumulation curves constructed for all samples taken on and off the reef (Figure 4.5) 

demonstrates that the asymptote of the curves has not been reached in either habitat, and hence more 

samples will identify more species associated with both reef and sedimentary habitats and it is unclear 

which habitat supports the greatest diversity of macrofauna. The species accumulation curve for S. 

spinulosa reefs is steeper than that for sedimentary habitats which is indicative of a habitat that supports a 

higher species richness, however, differences in the underlying species abundance distribution may also 

be driving this difference in the accumulation curves (Lande et al. 2000). The reduction in between-sample 

variance, or beta diversity, observed in reef habitats (Table 4.8) would explain the difference in the 

species accumulation curves and furthermore, would suggest that there is a high likelihood of the curves 

intersecting if more samples were to be added (Lande et al. 2000).  

 

 

 

 

 

 

 

 

 

Figure 4.5 Species accumulation curves for samples taken from Sabellaria spinulosa reefs (red) and from adjacent 

sedimentary habitats (grey), across all substratum types included in these analyses (sG, msG, gS, smS and S).  

 

Despite the high variance and low replication in some sediment types, significant reef effects were 

detected, most notably in reefs occurring on muddy sandy gravels. The abundance and biomass of 

associated macrofauna was found to be enhanced significantly by the presence of the reefs, whilst 
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species richness remained unchanged and species equitability and diversity were found to decrease in the 

presence of the reefs. The composition of the macrofaunal community associated with S. spinulosa reefs 

occurring on muddy sandy gravels was also found to be significantly different, leading to a small increase 

in taxonomic distinctness. All of these reef effects can be explained by the very high dominance of the 

long clawed porcelain crab, Pisidia longicornis which was present at nearly eight times the density found in 

adjacent sediments. The ecological significance of such high abundances of this species are as yet 

unclear, although P. longicornis is known to be a favoured prey item of many demersal fish species 

(Lopezjamar et al. 1984; Reubens et al. 2013c). That the influence of S. spinulosa reefs has such a 

pronounced effect on P. longicornis where the reefs occur on muddy sandy gravel is in part a reflection of 

the preferred environmental niche of this species. P. longicornis is a crevice dwelling species often found 

in mixed sediments and bryozoan turfs where there are numerous suitable refugia. It should be noted that 

increases in the abundance of this species were observed across all sediment types in the presence of S. 

spinulosa (Table 4.9) and it is likely such increases would be statistically significant if the study were to be 

repeated with a greater degree of sample replication.  

Table 4.9 The average abundance of the long clawed porcelain crab, Pisidia longicornis, on and off Sabellaria 

spinulosa reefs sampled from a range of sediments in the eastern English Channel.  

 Sandy 
Gravel 

Muddy 
Sandy 
Gravel 

Gravelly 
Sand 

Gravelly 
Muddy Sand 

Sand 

Non-
Reef 

Reef Non-
Reef 

Reef Non-
Reef 

Reef Non-
Reef 

Reef Non-
Reef 

Reef 

Average Pisidia 
longicornis 
abundance 
(0.1m2) 

16 47 47 360 3 32 133 613 2 28 

 

An increase in the overall macrofaunal abundance was observed on reefs sampled from sandy gravel, 

muddy sandy gravel and gravelly sand habitats (Table 4.8). A similar enhancement of macrofaunal 

abundance, or macrofaunal density, has been observed in the presence of Lanice conchilega beds 

(Rabaut et al. 2007), dense aggregations of Pygospio elegans (Bolam and Fernandes 2003), kelp 
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holdfasts (Hauser et al. 2006) and Modiolus modiolus beds (Ragnarsson and Burgos 2012) indicating that 

this type of biological enhancement is fairly common amongst biogenic habitat modifiers. Although 

enhancing macrofaunal abundance may not trigger the same conservation response as enhancing 

biodiversity, the ecological significance is likely to be as important, if not more so. That macrofaunal 

species including, predation-prone mobile taxa, are able to inhabit S. spinulosa reefs in higher densities 

than adjacent sedimentary habitats indicates that the reefs provide additional refugia, protecting these 

macrofaunal species from predation. It is also possible however, that the increased abundance of 

macrofauna is linked to an increase in the availability of food. The polychaetes themselves produce faecal 

matter which may contribute to the diet of some members of the community and the reef structures may 

also be acting to trap further particulate matter and plankton, by exerting a degree of drag on the 

surrounding water. It is perhaps most likely though, that the reefs are increasing the volume of available 

habitat. Generally, macrofaunal species only inhabit the top 5-10 cm of sedimentary deposits (Thorson 

1957; Holme 1964; Barnett and Hardy 1967) and since the reefs in this area are estimated to be at least 5-

10 cm in height (Pearce et al. 2007) their presence could feasibly double the habitat available to 

macrofaunal species. Whatever the cause of the increased density of macrofaunal species, is can be 

surmised that the reefs are acting as spatially efficient concentrations of species that would otherwise 

occur across a wider area, and in some instances this translates to an increase in biomass and 

productivity and the associated ecosystem services that this brings (Norling et al. 2007).  

Beta-diversity is arguably the most appropriate measure of biodiversity at the habitat level, since we would 

anticipate a more biodiverse habitat having a higher level of variation between samples than a less 

biodiverse habitat (Anderson et al. 2006; Bevilacqua et al. 2012). This study has shown that the beta-

diversity of S. spinulosa reefs is comparable to muddy sandy gravel and gravelly sand habitats but that it 

is significantly lower than sandy gravel, gravelly muddy sand and sand habitats. This again points to a 

stable and consistent habitat which supports a rich macrofaunal community that is very similar in many 

respects to that found in association with mixed substrata in the eastern English Channel (Rees et al. 

1999).  

Dense polychaete aggregations have generally been found to support a different macrofaunal community 

to that found in adjacent sedimentary habitats, and the presence of the polychaete tubes stabilises and 
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enhance species diversity (Bolam and Fernandes 2003; Rabaut et al. 2007; Van Hoey et al. 2008). It has 

long been assumed that S. spinulosa reefs have a similar structuring effect on the macrobenthos (Holt et 

al. 1998; Jones et al. 2000; Hendrick and Foster-Smith 2006). Where S. spinulosa reefs occur on 

impoverished sediments of the Bristol Channel, there is evidence that they significantly alter the 

macrofaunal community composition and dramatically increase species richness (George and Warwick 

1985). In contrast, this study has demonstrates that the S. spinulosa reefs on Hastings Shingle Bank have 

no discernible effect on the composition of the macrofauna, although they do influence the relative 

abundance of species where they occur on muddy sandy gravels. S. spinulosa reefs have not been found 

to increase biodiversity and in fact have been found to decrease beta-diversity where they occur on certain 

sediment types. Overall the effect of S. spinulosa reefs on sedimentary habitats can be surmised as an 

increase in the density of macrofaunal species that would otherwise be present over a wider area, leading 

to a significant increase in macrofaunal abundance and / or species richness where they occur on certain 

habitat types.  

The six-fold increase in the abundance of the invasive American slipper limpet, Crepidula fornicata, in the 

presence of S. spinulosa reefs, at Hasting Shingle Bank, is particularly noteworthy. This is the first record 

of this association, and the first indication that this habitat could potentially be vulnerable to the impacts of 

this invasive non-native species (Tillin et al. 2010). Crepidula fornicata have caused significant mortalities 

on Mytilus edulis and Ostrea edulis beds where their presence caused a fundamental change in the 

substratum (Barnes et al. 1973; Thieltges et al. 2006). Faeces and pseudofaeces rapidly accumulate 

where C. fornicata is found in high densities, turning a hard substratum into a soft sediment one. This 

change in the nature of the substratum has been found to inhibit the settlement of native oysters (Barnes 

et al. 1973) and could have a similar effect on S. spinulosa.  

This study presents a snapshot of a S. spinulosa reef community at one location at one point in time. 

There are likely to be spatial variations in the influence that S. spinulosa reefs have on macrofaunal 

communities and the relationships identified here may also vary over-time. The Hastings Shingle Bank is 

an active aggregate extraction site, and whilst the reefs included in this study were not being impacted 

directly by extraction activities at the time of sampling, they all have been impacted by these activities in 

the past and are likely to be influenced by increased turbidity associated with the dredging activities at the 
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site on an ongoing basis. The prevalence of S. spinulosa reefs around the perimeter of the active dredge 

area indicates that the impacts of heightened turbidity levels are unlikely to be having a detrimental impact 

on S. spinulosa itself. However, it is possible, if not likely, that the high turbidity levels associated with 

aggregate extraction are having some influence on the fauna associated with the reefs. That the influence 

of S. spinulosa reefs on macrofauna described in this study is contrary to many earlier assertions suggests 

that further work is necessary to clarify the ecosystem functions of this habitat fully. The incorporation of 

sampling from a reef that is not subject to anthropogenic disturbance, or extreme levels of natural 

disturbance, should be a priority for future work in this field.   

This study raises questions about the perceived link between S. spinulosa reefs and enhanced biodiversity 

which represents a very real challenge to biodiversity protection legislation. S. spinulosa reefs can be 

considered as concentrations of species, often in elevated densities, that would likely be present in the 

wider area without them. It would be spatially efficient to protect these habitat types if the aim of 

conservation efforts was to preserve the range of species typically found in sedimentary habitats. 

However, the highest value of S. spinulosa reefs to humans probably lies in the enhancement of biomass 

and productivity that S. spinulosa reefs provide where they occur in certain habitat types but the legislative 

structures to support these arguments, as well as the scientific evidence base, remains poorly developed.  
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Chapter 5. Sabellaria spinulosa reefs as a food source for fish 
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5.1 Introduction 

Biogenic habitats supporting rich faunal assemblages have been found to have an influence on the 

feeding behaviour of local fish populations and to provide important food resources (Jiang and Carbines 

2002; Bender et al. 2013; Rabaut et al. 2013). Similarly, there are indications that Sabellaria spinulosa, 

and the fauna associated with the habitat it creates, may provide an important food source for higher 

trophic levels. The association between the pink shrimp, Pandalus montagui, and S. spinulosa reefs 

reported by Warren and Sheldon (1967) is thought to be based on a predator-prey relationship as has 

been observed in their Russian congeners (Chuhukalo and Shebanova 2008). The shore crab, Carcinus 

maenus, and the shanny, Lipophrys pholis, have been found to prey on sabellariids in the UK (Taylor et al. 

1962; Bamber and Irving 1997) although the importance of S. spinulosa in the diet of these species has 

never been formally investigated. Holt et al. (1998) also suggest that flatfish are likely to feed on S. 

spinulosa which could explain the association between commercially important fisheries and S. spinulosa 

reefs (personal communications with fishermen) although this also has yet to be confirmed by empirical 

evidence. Fauna known to be associated with S. spinulosa reefs such as the long clawed porcelain crab, 

Pisidia longicornis (Chapter 4) can also be an important prey item in the diets of some demersal fish 

species (Lopezjamar et al. 1984).  

A considerable amount of research has been carried out on the diet of individual fish species, although 

efforts have primarily focused on species targeted by commercial fisheries (Hamerlynck and Hostens 

1993; Burke 1996; Bromley et al. 1997; Greenstreet et al. 1998; Cabral 2000; Darnaude et al. 2001; 

Pinnegar et al. 2003; Mollmann et al. 2004; Andersen et al. 2005; Carruthers et al. 2005; Trenkel et al. 

2005; Stafford et al. 2007; De Raedemaecker et al. 2011). Much less is known about the diet of demersal 

fish that have no commercial value (Creutzberg and Witte 1989; Van der veer et al. 1990; King et al. 1994; 

Power and Attrill 2002; Vasconcelos et al. 2004). The aim of this chapter is to investigate the diet of 

demersal fish associated with S. spinulosa reefs and to determine whether the fauna associated with the 

reef habitats, including S. spinulosa itself, are important prey items for this component of the marine food 

web.  

Sabellaria spinulosa reefs are listed under Annex I of the EU Habitats Directive (EC 2013) and in the 

OSPAR list of threatened and declining habitats (OSPAR 2008), and hence targeted destructive sampling 
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of this habitat is not permissible in the UK (Gubbay 2007). A limited amount of incidental trawl sampling of 

S. spinulosa reefs was carried out during the East Coast Regional Environmental Characterisation (REC) 

surveys, where new reefs were identified in areas where there were previously no records of them 

occurring (Limpenny et al. 2011). Fish were retained from all trawls containing a large volume of S. 

spinulosa tubes (>20 l) and the stomach contents were analysed in order to assess the importance of this 

habitat in the diet of demersal fish. It was not possible to retain fish from trawl samples taken from 

adjacent habitats as this sampling was not part of the planned survey cruise and hence the time and 

resources needed to process and store the samples were very limited.  These samples nevertheless can 

provide important insights into the feeding behaviour of fish associated with S. spinulosa reefs, especially 

in the absence of any possibility of a targeted survey.  

The aim of this chapter is to investigate the diet of demersal fish associated with S. spinulosa reefs and to 

determine whether the fauna associated with the reef habitats, including S. spinulosa itself, are important 

prey items for this component of the marine food web.  

The aim of this chapter is to determine whether or not demersal fish feed on S. spinulosa reefs and to 

investigate the commonalities between the diets and feeding behaviours of fish species associated with the 

reefs. To that end, the following hypotheses have been tested:   

 

 

 

Hypothesis B 

H0B: Sabellaria spinulosa and abundant reef fauna (e.g. Pisidia longicornis) are not present in the guts of 

demersal fish sampled from S. spinulosa reefs.  

H1B. S. spinulosa and abundant reef fauna (e.g. Pisidia longicornis) are dominant in the guts of demersal 

fish sampled from S. spinulosa reefs. 
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5.2 Methodology 

5.2.1 Sample Collection and Processing 

Scientific beam trawl (2 m) samples were collected from 21 locations within the Sabellaria spinulosa reefs 

identified in the East Coast REC study area (Figure 2.11). From these trawl samples a total of 287 fish, 

belonging to 16 species, were retained. A separation between the stomach and the intestine of fish is 

often difficult to distinguish and in many species is entirely absent (Beyst et al., 1999), therefore their 

entire gastrointestinal tract was removed and opened before being fixed in a formal-saline solution and 

preserved in 70% Industrial Methylated Spirit (IMS). All food items in the entire gastrointestinal tract were 

identified to the highest level of taxonomic distinction possible, counted and weighed. Owing to the varying 

degrees of digestion, not all prey items could be identified to species level. Consequently, some taxa were 

recorded at genus level or lower, and heads of prey were used to determine the abundance of prey items. 

Despite the varying taxonomic resolution of prey taxa, the data were not aggregated so as to retain 

sufficient resolution to facilitate comparisons with S. spinulosa reef fauna.  

Hypothesis C 

H0B: The diet of demersal fish sampled from S. spinulosa reefs is comparable to published records 

H1B. The diet of demersal fish sampled from S. spinulosa reefs is markedly different from published records 

 

Hypothesis D 

H0C: There is no structure in the diets of demersal fish associated with S. spinulosa reefs 

H1C: There are distinct feeding groups or guilds amongst the demersal fish associated with S. spinulosa 

reefs 
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Ontogenetic shifts in diets are frequently reported in fish species that have been well studied (Cardinale 

2000; Shaheen et al. 2004). However, the diet of many of the species sampled here have not been 

comprehensively documented, if at all. Fish were therefore categorised according to their developmental 

stage (juvenile or adult) based on published records of length at maturity (Lm) as detailed in Table 5.1. As 

no record of the length at maturity could be identified for the long-spined sea scorpion, Tauralus bubalis, 

the developmental stage of individuals included in this study was estimated based on the maximum length 

reported for this species (Table 5.1).  
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Table 5.1 Length at maturity (Lm) of demersal fish used in this study to separate juveniles and adults and the associated 

source. Where length at maturity ranges were reported rather than single values, the middle value was used and 

ranges are reported below in parentheses.  

*Specimens assumed to be adults based on their large size (100-140mm) relative to maximum size (175mm) 

reported by (Wheeler 1978) 

 

 

 

Common Name Scientific Name Lm (mm) Source  

Butterfish Pholis gunnellus 
95 

(90-100) 
(Cattrijsse and Hampel 2000) 

Dover Sole Solea solea 303 (Froese and Pauly 2011) 

Dab Limanda limanda 260  (Froese and Pauly 2011) 

Northern Rockling Ciliata septentrionalis 62 (Froese and Pauly 2011) 

Pogge Agonus cataphractus 100 (Cattrijsse and Hampel 2000) 

Dragonet Callionymus lyra 174 (Froese and Pauly 2011) 

Lesser Weever Echiichthys vipera 95 
(Creutzberg and Witte 1989; Vasconcelos 
et al. 2004) 

Bull rout Myoxocephalus scorpius 
225  

(150-300) 
(Froese and Pauly 2011) 

Whiting Merlangius merlangus 
29 

(28-30) 
(Froese and Pauly 2011) 

Sea scorpion Taurulus bubalis                    N/A*  

Sand Eel Hyperoplus lanceolatus 
130 

(110-150) 
(Froese and Pauly 2011) 

Poor Cod Trisopterus minutus 134 (Froese and Pauly 2011) 

Bib Trisopterus luscus 216 (Froese and Pauly 2011) 

Plaice Pleuronectes platessa 308 (Froese and Pauly 2011) 

Dogfish Scyliorhinus canicula 570 (Froese and Pauly 2011) 

Flounder Platichthys flesus 223 (Froese and Pauly 2011) 
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5.2.2 Dietary Description 

To evaluate the importance of each prey taxon in the diet, a number of standard prey metrics were 

calculated, each of which provides a different insight into the feeding habits of the fish (Hyslop 1980; 

Marshall and Elliott 1997). Numerical abundance (N) provides information regarding feeding behaviour 

whilst weight (W) is thought to reflect the dietary nutritional value and occurrence (O) provides insights into 

the population-wide feeding behaviour (Hyslop 1980; Macdonald and Green 1983; Cortes 1997). Each 

prey taxa was counted, and weighed, and expressed as a percentage of the total number, or weight, of 

prey in the individual. From this the total percentage dietary composition was calculated, which removes 

some of the bias associated with fish size (Cortes 1997). The index of relative importance (IRI) also known 

as the food importance index, was also calculated in accordance with Pinkas et al. (1971): 

IRI = (% N + % W) %O 

The index of relative importance calculates the number of stomachs that contained the prey taxa relative 

to the total number of stomachs that contained prey items and in this way, the importance of small prey 

items taken in large numbers is not overestimated. Because of the difficulties experienced when 

comparing IRI values among prey types (Cortes 1997), the IRI values for each specific prey category (IRIi) 

were then converted to % IRI: 

%IRI = ( 
IRIi 

) 
100 

Σni=1 IRIi 
 

where n is the total number of food categories considered. This index provides a single comprehensive 

measure of diet, is less biased than weight, frequency or number alone, and facilitates comparisons to 

other studies (Cortes 1997). Finally, the Shannon-Wiener prey diversity index (H’) and Pielou’s J’, an 

evenness measure, were computed to provide an indication of niche breadth (Marshall and Elliott 1997). 

5.2.3 Dietary Trend Analysis 

Multivariate analysis of the gut content data were used to investigate the trends in feeding which exist 

amongst the fish species sampled from Sabellaria spinulosa reefs in the southern North Sea, using the 

PRIMER v6 software package (Clarke and Warwick 2001; Clarke and Gorley 2006). The gut content data 



160 
 

(abundance) was standardised and averaged by fish species before being used to construct a 

resemblance matrix based on Bray-Curtis similarity. The resulting resemblance matrix was used to 

construct a group average sorting dendrogram and a SIMPROF test was applied to identify statistically 

significant clusters within the data, testing the null-hypothesis that there is no structure in the diets of these 

fish species (Clarke et al. 2008). A SIMPER test was then carried out on the same data to ascertain the 

prey items contributing most to the similarities within the feeding groups identified using the SIMPROF test 

and the differences between them. 
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5.3 Results & Discussion 

5.3.1 Prey Choice of Demersal Fish Species Associated with Sabellaria spinulosa Reefs 

It is evident from Table 5.2 and Figure 5.1 that there is a significant positive correlation between the 

number of individuals examined and the number of prey items identified for each fish species. Whilst no 

formal assessment of sampling sufficiency has been carried out as part of this study, it is very unlikely that 

sufficient samples have been taken to fully assess the prey choices of all 16 species. However, since 

targeted destructive sampling of S. spinulosa reefs is not permissible due to its conservation status 

serendipitous sampling, as was undertaken here, is the only possibility of assessing the trophic 

interactions related to this habitat. For this reason, all fish retained from S. spinulosa reefs in the East 

Coast REC study site have been subjected to gut content analysis and, where possible, all of the data are 

included in the subsequent analyses.  

 

 

 

 

 

 

 

 

 

Figure 5.1 Regression plot showing the relationship between the numbers of stomachs examined (n) and the total 

number of prey taxa (Ts) identified for each fish species. 
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Table 5.2 Number of each fish (n) sampled from Sabellaria spinulosa reefs in the East Coast REC study site, in the southern North Sea in 2009, with an indication of the fish size interval 

classes (total length, LT) and the developmental stages based on published records of length at maturity (Lm) as listed in Table 5.1. Also shown are a range of feeding indices calculated 

from gut content data: Total prey taxa (Ts), mean prey taxa (S) abundance (N) and weight (W) in g Wet weight per fish and two measures of niche breadth (Shannon-Wieners diversity H’ 

and Pielou’s J’ an evenness measure).  

Species 
Common 
Name 

Developmental 
Stage 

n LT Range (mm) 
Total Prey 
Taxa (Ts) 

Mean Prey / Individual Niche Breadth  

S N W  H' J' 

Pholis gunnellus Butterfish 
Adult 44 100-180 33 3.3 7.1 0.15 2.14 0.61 
Juvenile 2 70 5 3.5 8 0.01 1.32 0.82 

Solea solea Dover Sole 
Adult 4 310-340 12 4 20.3 0.53 1.6 0.67 
Juvenile 41 120-300 34 2.7 8 0.34 2.24 0.63 

Limanda limanda Dab 
Adult 2 260-370 6 3 22.5 2.72 1.29 0.72 
Juvenile 43 90-250 45 3.7 12.8 0.61 2.3 0.6 

Ciliata septentrionalis 
Northern 
Rockling 

Adult 39 70-120 28 2.6 3.5 0.09 2.47 0.74 
Juvenile 1 60 3 3 3 0.01 ~ ~ 

Agonus cataphractus Pogge 
Adult 13 100-140 26 3.3 6.8 0.14 2.7 0.83 
Juvenile 15 70-90 21 3.3 8.1 0.14 2.57 0.84 

Callionymus lyra Dragonet 
Adult 6 180-210 13 2.8 4.2 0.26 2.23 0.87 
Juvenile 18 70-160 26 2.9 7.3 0.15 2.73 0.84 

Echiichthys vipera Lesser Weever 
Adult 9 100-140 15 4 11.3 0.24 2.18 0.79 
Juvenile 11 80-90 17 3.3 9.4 0.16 2.1 0.74 

Myoxocephalus scorpius Bull rout 
Adult 1 270 0 0 0 0 ~ ~ 
Juvenile 11 60-210 18 3.4 4.5 1.15 2.57 0.89 

Merlangius merlangus Whiting 
Adult 1 310 1 1 4 0.01 ~ ~ 
Juvenile 8 130-250 23 4.9 12.5 0.36 2.54 0.81 

Tauralus bubalis Sea scorpion Adult 5 100-140 7 2 3.2 0.45 1.59 0.82 

Hyperoplus lanceolatus Sand Eel 
Adult 2 170-190 3 1.5 7 0.09 0.83 0.75 
Juvenile 2 80-100 1 1 400 0.1 ~ ~ 

Trisopterus minutus Poor Cod Adult 3 140-160 5 2.3 9 0.22 1.51 0.94 
Trisopterus luscus Bib Juvenile 2 140-160 9 5.5 34.5 0.81 1.5 0.68 
Pleuronectes platessa Plaice Juvenile 2 190-220 8 4 11 0.69 1.87 0.9 
Scyliorhinus canicula Dogfish Juvenile 1 120 2 2 4 0.22 ~ ~ 
Platichthys flesus Flounder Adult 1 250 1 1 7 2.68 ~ ~ 
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Pholis gunnellus – Butterfish 

 

Figure 5.2 Photographs of the butterfish, Pholis gunnellus (A) and four of the main prey items identified in the 

stomach contents of 46 specimens collected in association with Sabellaria spinulosa reefs at the East Coast REC 

study site: B) The long clawed porcelain crab, Pisidia longicornis, C) the Ross worm, Sabellaria spinulosa, D) various 

amphipods and E) the amphipod Gammaropsis maculata. 

 

The butterfish, Pholis gunnellus, is a small eel-shaped fish (Figure 5.2) most commonly reported from 

rocky shores but also found at depths of up to 100 m (Dipper 2001; Kay and Dipper 2009; Shorty and 

Gannon 2013). P. gunnellus has been reported in high densities in association kelp beds and reef habitats 

where it is thought they seek refuge from predators, such as the grey Heron Ardea cinerea and the otter, 

Lutra lutra (Sawyer 1967; Carss and Elston 2003; Kay and Dipper 2009). The butterfish has a small head 

with a protruding lower jaw, an upturned mouth and small conical teeth (Sawyer 1967). It has been 

postulated that the diet and feeding behaviour of fish can, to some extent, be predicted based on their 

morphology (Elliott et al. 2002). The upturned mouth and conical teeth of P. gunnellus indicate that it has a 

manipulative mode of feeding and is most likely an ambush predator (Wootton 1990; Elliott et al. 2002). 

The small mouth of P. gunnellus will nevertheless mean that this species is restricted to small prey items.  

There is very little published data on the diet of  P. gunnellus but this species has previously been reported 

to feed primarily on amphipod crustaceans and isopods (Sawyer 1967). However, some fish guides report 

a more generalist diet including a variety of small invertebrates and fish eggs (Wheeler 1978; Dipper 

2001). The diet of P. gunnellus individuals included in this study is summarised overleaf in Table 5.3. 
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Table 5.3 The relative importance of all prey taxa averaged across adult Pholis gunnellus (n=44) and juvenile 

P.gunnellus (n=2) in terms of abundance (%N), biomass (%W), frequency of occurrence (%O), index of relative 

importance (IRI) and overall importance (%IRI). Unidentifiable gut content and parasites were excluded from this 

analysis.  

Adults 

Prey Taxa %N %W %O IRI %IRI 

Pisidia longicornis 45.19 58.70 73 7556 67.96 
Sabellaria spinulosa 16.67 17.02 75 2527 22.73 
AMPHIPODA 7.69 6.31 32 445 4.01 
CRUSTACEA 3.53 9.35 23 293 2.63 
DECAPODA 3.85 3.37 14 98 0.89 
Podoceridae 4.81 0.28 16 81 0.73 
Gammaropsis maculata 3.53 0.38 9 36 0.32 
GASTROPODA 1.28 0.07 9 12 0.11 
Galathea intermedia 1.28 1.33 5 12 0.11 
Melitidae 1.28 0.13 7 10 0.09 
Caprellidae 1.28 0.10 7 9 0.08 
Galathea 0.64 0.89 5 7 0.06 
POLYCHAETA 0.96 0.08 5 5 0.04 
Stenothoidae 0.64 0.06 5 3 0.03 
Mytilidae 0.64 0.02 5 3 0.03 
OSTRACODA 0.64 0.00 5 3 0.03 
Amphilochidae 0.96 0.06 2 2 0.02 
Polynoidae 0.32 0.63 2 2 0.02 
Sthenelais 0.32 0.44 2 2 0.02 
Eualus pusiolus 0.32 0.35 2 2 0.01 
Cancer 0.32 0.17 2 1 0.01 
Iphimedia minuta 0.32 0.08 2 1 0.01 
Plumulariidae 0.32 0.07 2 1 0.01 
Stenothoe marina 0.32 0.03 2 1 0.01 
NEMERTEA 0.32 0.02 2 1 0.01 
OPHIUROIDEA 0.32 0.02 2 1 0.01 
Pseudoprotella phasma 0.32 0.02 2 1 0.01 
Hydroides norvegica 0.32 0.01 2 1 0.01 
Pleustidae 0.32 0.01 2 1 0.01 
Dyopedos monacanthus 0.32 0.00 2 1 0.01 
Polinices 0.32 0.00 2 1 0.01 
Corophiidae 0.32 0.00 2 1 0.01 
Pomatoceros lamarcki 0.32 0.00 2 1 0.01 

 

Juveniles 

Prey Taxa %N %W %O IRI %IRI 

Podoceridae 50.00 10.65 100 6065 36.09 
Abludomelita obtusata 25.00 50.46 100 7546 44.90 
AMPHIPODA 12.50 17.59 50 1505 8.95 
Sabellaria spinulosa 6.25 18.06 50 1215 7.23 
Gammaropsis 6.25 3.24 50 475 2.82 
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Crustaceans made up the majority of the prey consumed by P. gunnellus, in terms of both biomass (%W) 

and abundance (%N) by both adults and juveniles with polychaetes accounting for most of the remainder 

of the diet (Table 5.3). An ontogenetic shift is evident in the diet of this species with adults feeding 

primarily on the long clawed porcelain crab (67.96 IRI%) whilst the juveniles feed on amphipods including 

Abludomelita obtusata (44.90 IRI% ) and species belonging the family Podeceridae (36.09 IRI%). 

Sabellaria spinulosa was an important prey item in the diet in all of the P. gunnellus examined, although 

the relative importance was much higher in the diet of adults (22.73 IRI%) than in juveniles (7.23 IRI%).  

Sabellaria spinulosa has not previously been recorded as a prey item for P. gunnellus (Sawyer 1967; 

Pinnegar 2009). The importance of S. spinulosa in the diet of P. gunnellus sampled from these southern 

North Sea reefs may therefore indicate that this habitat is providing a more accessible food source or one 

that provides a superior source of nutrition. Previous records of the diet of P. gunnellus also indicated a 

more restricted diet than is reported here (Sawyer 1967; Pinnegar 2009) indicating that S. spinulosa reefs 

could also be increasing the variety of prey items available to this species.  

Both adult and juvenile P. gunnellus were found to be homogenous feeders with the two most important 

prey items occurring in the stomach contents of c.75% of adults and 100% of juveniles sampled from the 

S. spinulosa reefs. Alongside the two dominant prey items, a high number of rare prey items were 

identified in the diet of adult P. gunnellus, which is typical of a species exhibiting specialist feeding 

behaviour (Cortes 1997). Juveniles of the same species appear to have a more generalist diet with a more 

even spread of abundance across the prey items identified (J’ = 0.82). However, given the small number 

of stomachs examined (n=2) it is very likely that rare prey items will have been under sampled. 
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Solea solea – Dover Sole 

 

Figure 5.3 Photographs of the Dover sole, Solea solea (A) and four of the main prey items identified in the stomach 

contents of 45 specimens collected in association with Sabellaria spinulosa reefs at the East Coast REC study site: 

B) the Ross worm, Sabellaria spinulosa, C) the Pectinariid worm Lagis koreni D) the Opheliid worm Ophelia borealis 

and E) the Capeteliid worm Notomastus latericeus. 

 

The Dover sole, Solea solea, is a large, distinctive flatfish with a smooth body and rounded head (Figure 

5.3). It is widespread around UK coasts and prefers muddy/sandy areas where it buries itself during the 

day and where its preferred prey, nereid polychaetes or rag worms, are most abundant (Cabral 2000; Kay 

and Dipper 2009).  Dover sole have also been reported to feed on other polychaetes, molluscs and 

crustaceans (Cabral 2000; Darnaude et al. 2001; Rijnsdorp and Vingerhoed 2001; Amezcua et al. 2003; 

De Raedemaecker et al. 2011). S. solea has a sub-terminal mouth which helps it find prey within the 

sediments (El Bakery 2014). Both the upper and lower jaws of S. solea are edentulous, a feature normally 

only observed in herbivorous fish (Gerking 1994). However, S. solea have teeth on both the upper and 

lower surface of the buccal cavity which they use to hold, grasp and tear their food (El Bakery 2014). 

Dover sole have a small mouth relative to their head and this is reflected in the size of the preferred prey 

of infaunal polychaetes.  
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Table 5.4 The relative importance of all prey taxa averaged across all specimens of Solea solea studied (n=45) in 

terms of abundance (%N), biomass (%W), frequency of occurrence (%O), index of relative importance (IRI) and overall 

importance (%IRI). Unidentifiable gut content and parasites were excluded from this analysis.  

Adults 

Prey Taxa %N %W %O IRI %IRI 

Lagis koreni 37.04 62.13 25 2479 34.35 
Pectinariidae 17.28 24.00 50 2064 28.60 
ACTINIARIA 24.69 6.52 50 1560 21.62 
POLYCHAETA 6.17 2.47 50 432 5.99 
Sabellaria spinulosa 6.17 1.37 50 377 5.23 
Ampharetidae 1.23 1.54 25 69 0.96 
Crangon crangon 1.23 0.88 25 53 0.73 
Ampelisca spinipes 1.23 0.41 25 41 0.57 
Crangonidae 1.23 0.26 25 37 0.52 
DECAPODA 1.23 0.20 25 36 0.50 
Mysella bidentata 1.23 0.14 25 34 0.48 
Corophiidae 1.23 0.06 25 32 0.45   

Juveniles 

Prey Taxa %N %W %O IRI %IRI 

Sabellaria spinulosa 30.79 29.80 66 3990 66.39 

POLYCHAETA 5.18 21.02 32 831 13.83 

Pectinariidae 5.49 10.30 17 270 4.49 

AMPHIPODA 22.87 1.12 20 468 7.79 

Sthenelais boa 0.61 11.91 5 61 1.02 

CRUSTACEA 4.27 3.03 10 71 1.19 

Opheliidae 4.27 3.96 5 40 0.67 

Notomastus 0.91 4.16 5 25 0.41 

Atylus swammerdamei 8.54 0.54 12 111 1.84 

Nereididae 0.61 3.33 5 19 0.32 

Eunicidae 1.22 2.28 5 17 0.28 

Sthenelais 0.30 3.02 2 8 0.13 

MYSIDACEA 1.22 0.48 10 17 0.28 

Crangon crangon 0.91 0.67 7 12 0.19 

Gastrosaccus spinifer 1.22 0.48 7 12 0.21 

Crangonidae 1.52 0.43 7 14 0.24 

Echinocyamus pusillus 1.22 0.87 2 5 0.08 

OPHIUROIDEA 1.52 0.10 7 12 0.20 

Lagis koreni 0.61 0.55 2 3 0.05 

Galathea intermedia 0.30 0.57 2 2 0.04 

Crangon 0.61 0.23 5 4 0.07 

Ophiura albida 0.61 0.37 2 2 0.04 

Ampeliscidae 0.30 0.34 2 2 0.03 

DECAPODA 0.61 0.05 5 3 0.05 

Atylus 1.52 0.03 2 4 0.06 

Schistomysis spiritus 0.30 0.11 2 1 0.02 

Gammarellus homari 0.30 0.09 2 1 0.02 

Gammarellus 0.30 0.08 2 1 0.02 

Unciola crenatipalma 0.30 0.03 2 1 0.01 

Pholoe baltica (sensu petersen) 0.30 0.01 2 1 0.01 

Anaitides 0.30 0.01 2 1 0.01 

GASTROPODA 0.30 0.01 2 1 0.01 

Urothoe 0.30 0.00 2 1 0.01 

Eumida 0.30 0.00 2 1 0.01 
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Juvenile S. solea consumed a diverse range of prey (n=34, H’ = 2.24) including polychaetes, crustaceans, 

echinoderms and molluscs (Table 5.4). The majority of the prey taxa were rare, and the diet of juvenile S. 

solea was dominated by S. spinulosa (66.39 %IRI). The diet of adult S. solea showed similarities with the 

diet of juveniles, although the dominant prey was different. Sabellaria spinulosa was still an important prey 

in the diet of adults (5.23 IRI%) but there appears to be an ontogenetic shift towards pectinariid 

polychaetes including Lagis koreni (28.60 IRI% and 34.35 IRI% respectively). 

The dominance of S. spinulosa in the diet of juvenile S. solea is reflected in the low evenness value (J’ 

=0.63) and is indicative of specialist feeding behaviour (Cortes 1997). These results differ from earlier 

records of the diet of juvenile S. solea made by Dolbeth et al. (2008) who reported a smaller niche breadth 

(H’ = 1.2) and a diet dominated by errant polychaetes, and Cabral (2000) who identified only 15 prey 

species in a much larger sample of stomachs (n=609), of which the amphipod crustacean Corophium spp. 

was most numerically dominant (IN=56.8) and the nereid, Hediste diversicolor was most abundant in terms 

of biomass (IW=57.9). This disparity in the feeding behaviour and prey preferences of juvenile S. solea 

indicates the presence of a behavioural shift in individuals associated with the S. spinulosa reefs in the 

East Coast REC study area.  

The dominance of polychaetes in the diet of S. solea is consistent with other reports of the dietary 

preferences of this species (Cabral 2000; Rijnsdorp and Vingerhoed 2001; Dolbeth et al. 2008; De 

Raedemaecker et al. 2011) although this is the first record of this species feeding on S. spinulosa. Errant 

polychaetes such as nereids and nephtyds are typically reported as being the dominant prey of S. solea 

(Cabral 2000; Dolbeth et al. 2008) although as these records of the diet of S. solea are from estuarine 

environments it is possible that there is a nearshore / offshore shift in feeding behaviour reflecting prey 

abundances and availability.  
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Limanda limanda – Dab 

 

Figure 5.4 Photographs of the Dab, Limanda limanda (A) and four of the main prey items identified in the stomach 

contents of 45 specimens collected in association with Sabellaria spinulosa reefs at the East Coast REC study site: 

B) the Ross worm, Sabellaria spinulosa, C) a sea anemone, Actiniaria spp. D) some amphipod crustaceans and E) 

the pectinariid worm, Lagis koreni. 

 

The dab, Limanda limanda, is the most abundant flatfish species in the North Sea (Daan et al. 1990). Its 

large eyes, small mouth gape (Figure 5.4) and ability to move quickly, reflect its visual feeding habits 

(Hinz et al. 2005). Dab has an unusual hunting behaviour, pouncing on and biting off parts of invertebrates 

protruding from the substratum such as mollusc siphons and polychaetes (Dipper 2001; Kay and Dipper 

2009). Limanda limanda has also been found to be a highly opportunistic feeder, consuming a wide variety 

of fauna including echinoderms, fish, polychaetes and molluscs (Amezcua et al. 2003; Hinz et al. 2005; De 

Raedemaecker et al. 2011; Schueckel et al. 2011). The opportunistic nature of L. limanda is thought to 

have contributed to its success in the North Sea, where it adapts its feeding behaviour to capitalise on 

prey that have been exposed by bottom trawling (Kaiser and Ramsay 1997).  Dab have small terminal 

mouths which do not protrude, limiting the size of prey they are able to catch and consume (Wheeler 

1978; Dipper 2001) 

Adult L. limanda utilized a small number of prey items (6 taxa) and showed a small niche breadth (H’ = 

1.29) in comparison to juveniles of the same species (H’ =2.3), although this is likely to be at least partly 

attributable to the differing number of stomachs in each class (n = 2 and 43 respectively) (Table 5.2). 
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Table 5.5 The relative importance of all prey taxa averaged across adult (n=2) and juvenile (n=43) Limanda limanda 

in terms of abundance (%N), biomass (%W), frequency of occurrence (%O) ), index of relative importance (IRI) and 

overall importance (%IRI). Unidentifiable gut content and parasites were excluded from this analysis.  

Adults 

Prey Taxa %N %W %O IRI %IRI 

Ophiura ophiura 80.00 97.34 50 8867 88.67 

Crangon crangon 6.67 0.37 50 352 3.52 

Pisidia longicornis 4.44 1.14 50 279 2.79 

ACTINIARIA 4.44 0.65 50 255 2.55 

Crangon allmanni 2.22 0.49 50 136 1.36 

 

 Juveniles 

Prey Taxa %N %W %O IRI %IRI 

Sabellaria spinulosa 40.62 29.69 68 4802 59.63 

ACTINIARIA 20.22 27.52 46 2212 27.48 

AMPHIPODA 11.48 0.99 22 274 3.40 

Pectinariidae 4.01 5.78 20 191 2.37 

DECAPODA 1.82 5.78 20 148 1.84 

POLYCHAETA 1.82 3.73 22 122 1.51 

Pisidia longicornis 2.55 1.48 22 88 1.10 

Atylus swammerdamei 3.28 0.14 10 33 0.41 

CRUSTACEA 1.46 0.39 17 31 0.39 

OPHIUROIDEA 1.28 1.62 10 28 0.35 

Ophiothrix 0.91 8.05 2 22 0.27 

LEPTOLIDA 0.36 3.38 5 18 0.23 

Crangon allmanni 0.55 1.13 7 12 0.15 

OSTEICHTHYES 0.36 1.71 5 10 0.13 

Ophiothrix fragilis 0.18 3.68 2 9 0.12 

PELECYPODA 0.73 0.46 7 9 0.11 

Ampharetidae 0.91 0.61 5 7 0.09 

Crangon crangon 0.36 0.26 5 3 0.04 

Sertulariidae 0.55 0.00 7 4 0.05 

Nereididae 0.18 1.61 2 4 0.05 

Atylidae 1.28 0.06 2 3 0.04 

Pomatoceros lamarcki 0.36 0.02 5 2 0.02 

Campanulariidae 0.36 0.01 5 2 0.02 

Marphysa bellii 0.18 0.56 2 2 0.02 

NEMERTEA 0.18 0.45 2 2 0.02 

Philocheras fasciatus 0.18 0.34 2 1 0.02 

Crangonidae 0.36 0.11 2 1 0.01 

Stenothoe marina 0.36 0.00 2 1 0.01 

Haleciidae 0.18 0.14 2 1 0.01 

Plumulariidae 0.18 0.09 2 1 0.01 

MYSIDACEA 0.18 0.08 2 1 0.01 

Gammarellus homari 0.18 0.05 2 1 0.01 

Phyllodocidae 0.18 0.03 2 1 0.01 

Abludomelita obtusata 0.18 0.02 2 0 0.01 

 

Juvenile L. limanda exploited the widest range of prey fauna (45 taxa) of all the fish groups studied (Table 

5.2) reflecting the opportunistic nature of their feeding. The diet of the juvenile dab was dominated by 
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Sabellaria spinulosa (59.63 IRI%) although sea anemones, Actiniaria spp. also made an important 

contribution (27.43 IRI%) (Table 5.5). Although juvenile dab have a broad dietary niche (H’ = 2.3), most 

prey taxa were rare in the diet with 38 of the 45 prey items having a relative importance index (IRI %) of 

less than 1.This shows good agreement with the dietary records held in the Integrated Database and 

Portal for Fish Stomach Records1 (DAPSTOM) (Pinnegar 2009) which also shows that L. limanda has a 

broad diet including polychaetes, echinoderms, crustaceans and molluscs. However, S. spinulosa was 

only present sporadically in previous records, indicating that this species is able to modify its feeding 

behaviour in order to capitalise on the high density of prey present in these reef habitats. This 

opportunistic feeding behaviour has been reported previously by Kaiser and Ramsay (1997), where dab 

were found to switch their prey to capitalise on fauna released into the environment during the process of 

bottom trawling.   

 

Ciliata septentrionalis – Northern Rockling 

 

Figure 5.5 Photographs of the Northern Rockling, Ciliata septentrionalis (A) and four of the main prey items identified 

in the stomach contents of 40 specimens collected in association with Sabellaria spinulosa reefs at the East Coast 

REC study site: B) the long clawed porcelain crab, Pisidia longicornis, C) the Ross worm, Sabellaria spinulosa, D) 

the amphipod Stenothoe marina and E) the squat lobster Galathea intermedia. 

 

                                                           
1 https://data.gov.uk/dataset/dapstom  
 

https://data.gov.uk/dataset/dapstom
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The northern rockling, Ciliata septentrionalis, is similar in appearance to the five-bearded rockling, Ciliata 

mustela, but has a distinctive frill of papillae above the top lip and the large mouth that reaches back 

behind the eyes (Figure 5.5 & Kay and Dipper 2009). As a small demersal fish it shows a preference for 

benthic invertebrates, particularly the decapods Galathea sp. and Pisidia sp., as well as some mysids and 

polychaetes (Wheeler 1978). It is considered to be relatively rare in comparison to the five-bearded 

rockling, and is not usually found as far offshore as in the present study. No published records or studies 

including the diet of this species have been identified in the peer reviewed literature, making this one of 

the first formal assessments of the diet of this species. 

Adult C. septentrionalis were found to have a broad diet (H’=2.47) consuming a total of 39 prey taxa 

(Table 5.2). Unidentified crustaceans and decapods were the most important prey overall (27.82 %IRI and 

23.12 %IRI respectively) occurring in a large proportion of the guts (41.03 %O, 33.33 %O) as was the 

porcelain crab, Pisidia longicornis (18.42 %IRI) (Table 5.6). These findings show good agreement with 

records contained in DAPSTOM (Pinnegar 2009) which also indicate a preference for crustacean prey 

including P. longicornis. The diet of the single juvenile C. septentrionalis was very similar to the diet of the 

adults although this individual showed a greater reliance on polychaetes (Table 5.6).  
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Table 5.6 The relative importance of all prey taxa averaged across adult (n=39) and juvenile (n=1) Ciliata 

septentrionalis in terms of abundance (%N), biomass (%W), frequency of occurrence (%O), index of relative 

importance (IRI) and overall importance (%IRI). Unidentifiable gut content and parasites were excluded from this 

analysis. 

Adults 

Prey Taxa %N %W %O IRI %IRI 

CRUSTACEA 16.06 17.04 41 1358 28.72 
DECAPODA 12.41 20.38 33 1093 23.12 
Pisidia longicornis 13.14 17.74 28 871 18.42 
POLYCHAETA 12.41 6.48 33 630 13.32 
Thoralus cranchii 5.11 10.86 18 287 6.06 
AMPHIPODA 8.03 0.80 21 181 3.83 
Galathea intermedia 3.65 6.47 10 104 2.20 
Hippolytidae 2.19 4.43 5 34 0.72 
Sabellaria spinulosa 2.92 0.10 10 31 0.65 
Polynoidae 1.46 2.83 5 22 0.47 
Pariambus typicus 5.11 0.12 3 13 0.28 
Stenothoe marina 2.19 0.20 8 18 0.39 
Pandalina brevirostris 0.73 3.62 3 11 0.24 
Praunus 1.46 2.54 3 10 0.22 
Gammaridae 2.19 0.27 5 13 0.27 
Galathea 0.73 2.62 3 9 0.18 
Gammaropsis maculata 1.46 0.34 5 9 0.19 
Caprella linearis 1.46 0.02 5 8 0.16 
Cancer 0.73 0.96 3 4 0.09 
Crangon crangon 0.73 0.82 3 4 0.08 
Pandalidae 0.73 0.63 3 3 0.07 
Ampelisca diadema 0.73 0.44 3 3 0.06 
GASTROPODA 0.73 0.18 3 2 0.05 
Unciola crenatipalma 0.73 0.09 3 2 0.04 
Lysianassidae 0.73 0.01 3 2 0.04 
Amathia lendigera 0.73 0.00 3 2 0.04 
Amphilochidae 0.73 0.00 3 2 0.04 
Podoceridae 0.73 0.00 3 2 0.04 

 

Juveniles 

Prey Taxa %N %W %O IRI %IRI 

POLYCHAETA 33.33 46.32 100 7965 39.82 
CRUSTACEA 33.33 44.21 100 7754 38.77 
AMPHIPODA 33.33 9.47 100 4281 21.40 
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Agonus cataphractus – Pogge 

 

Figure 5.6 Photographs of the Pogge, Agonus cataphractus (A) and four of the main prey items identified in the 

stomach contents of 28 specimens collected in association with Sabellaria spinulosa reefs at the East Coast REC 

study site: B) the long clawed porcelain crab, Pisidia longicornis, C) the brown shrimp, Crangon allmanni D) the 

amphipod, Atylus swammerdami and E) the squat lobster Galathea intermedia. 

 

The pogge or armoured bullhead, Agonus cataphractus (Figure 5.6) is normally found on soft substrata in 

coastal and estuarine areas (Wheeler 1978; Dipper 2001; Power and Attrill 2002; Kay and Dipper 2009). 

Pogge have an inferior or sub-terminal mouth, where the lower jaw is shorter than the upper jaw, 

surrounded by sensory barbels, indicating that it is a bottom feeder. It is one of the smallest fish in this 

study and as it has no commercial importance it has received very little attention in the peer reviewed 

literature (Marshall and Elliott 1997; Power and Attrill 2002; Klimpel et al. 2003). Based on limited 

observations A. cataphractus has been found to feed primarily on crustaceans, including juvenile crabs, 

shrimp and amphipods (Wheeler 1978; Power and Attrill 2002; Klimpel et al. 2003). Power and Attrill 

(2002) found that the abundance of Pogge  in the Thames estuary was influenced by the abundance of 

age-0 dab, Limanda limanda, indicating that these may also be important prey items for this species.  

The dietary niche breadth of adults and juveniles belonging to this species were broadly similar in terms of 

both diversity (H’ = 2.7 and H’ =2.57 respectively) and evenness (J’ = 0.83 and 0.84 respectively) and 

composition (Tables 5.2 and 5.7) indicating that there is no ontogenetic shift in terms of dietary breadth, at 

least between these two categories. 
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Table 5.7 The relative importance of all prey taxa averaged across adult (n=15) and juvenile (n=13) Agonus 

cataphractus in terms of abundance (%N), biomass (%W), frequency of occurrence (%O), index of relative importance 

(IRI) and overall importance (%IRI). Unidentifiable gut content and parasites were excluded from this analysis.  

Adults 

Prey Taxa %N %W %O IRI %IRI 

Pisidia longicornis 21.59 22.95 31 1371 34.74 

CRUSTACEA 6.82 11.74 46 857 21.71 

Crangon allmanni 6.82 13.06 15 306 7.75 

AMPHIPODA 12.50 4.59 15 263 6.66 

Crangonidae 2.27 12.21 15 223 5.65 

Stenothoe marina 7.95 0.49 15 130 3.29 

POLYCHAETA 3.41 1.76 23 119 3.02 

Galathea intermedia 3.41 4.03 15 114 2.90 

Gammarellus homari 6.82 5.82 8 97 2.46 

DECAPODA 3.41 2.37 15 89 2.25 

Thoralus cranchii 1.14 5.64 8 52 1.32 

Soleidae 2.27 4.39 8 51 1.30 

Sabellaria spinulosa 2.27 0.76 15 47 1.18 

Polynoidae 2.27 3.43 8 44 1.11 

Pilumnus hirtellus 1.14 3.82 8 38 0.97 

Isaeidae 2.27 0.96 8 25 0.63 

Abludomelita obtusata 2.27 0.48 8 21 0.54 

Lysianassidae 2.27 0.12 8 18 0.47 

Schistomysis spiritus 1.14 0.38 8 12 0.30 

Atylus swammerdamei 1.14 0.33 8 11 0.29 

Hippolytidae 1.14 0.23 8 11 0.27 

OSTEICHTHYES 1.14 0.18 8 10 0.26 

Gastrosaccus spinifer 1.14 0.10 8 9 0.24 

Podoceridae 1.14 0.07 8 9 0.24 

Gammaropsis 1.14 0.05 8 9 0.23 

OPHIUROIDEA 1.14 0.03 8 9 0.23 

 

Juveniles 

Prey Taxa % N % W % O IRI %IRI 
Pisidia longicornis 15.57 31.30 33 1563 32.70 
DECAPODA 8.20 11.75 47 931 19.47 
AMPHIPODA 13.93 2.11 33 535 11.19 
Crangon crangon 4.92 10.22 27 404 8.45 
POLYCHAETA 5.74 2.97 33 290 6.08 
Galathea intermedia 3.28 8.32 20 232 4.85 
Crangon allmanni 3.28 10.48 13 183 3.84 
Atylus swammerdamei 19.67 3.99 7 158 3.30 
CRUSTACEA 2.46 4.22 20 134 2.79 
Podoceridae 7.38 0.26 13 102 2.13 
CUMACEA 4.10 0.07 13 56 1.16 
Pandalina brevirostris 0.82 5.53 7 42 0.89 
Abludomelita obtusata 2.46 0.66 13 42 0.87 
MYSIDACEA 2.46 1.24 7 25 0.52 
Dyopedos monacanthus 0.82 2.02 7 19 0.40 
Ampelisca spinipes 0.82 2.01 7 19 0.39 
Lepidonotus squamatus 0.82 1.70 7 17 0.35 
Gastrosaccus spinifer 0.82 1.05 7 12 0.26 
Ampeliscidae 0.82 0.06 7 6 0.12 
Phtisica marina 0.82 0.04 7 6 0.12 
Tanaopsis graciloides 0.82 0.03 7 6 0.12 
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Both adult and juvenile Agonus cataphractus consumed a broad array of prey (26 taxa and 21 taxa 

respectively), and exhibited a relatively high level of heterogeneity in their diets with Pisidia longicornis, the 

most important prey taxon in both groups, only being present in around a third of the stomachs analysed. 

Most of the crustaceans identified as being important in the diet of A. cataphractus were small, mobile, 

and predominantly crevice-dwelling animals including a number of amphipod and shrimp species. This 

corresponds well with previous records of A. cataphractus diet (Pinnegar, 2009, Power & Attrill, 2002, 

Wheeler, 1978) and suggests that A. cataphractus may be utilising the high abundance of P. longicornis 

and other small decapods taking refuge in the reef crevices.  
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Callionymus lyra – Dragonet 

 

Figure 5.7 Photographs of the common Dragonet, Callionymus lyra (A) and four of the main prey items identified in 

the stomach contents of 24 specimens collected in association with Sabellaria spinulosa reefs in the East Coast REC 

study site: B) the long clawed porcelain crab, Pisidia longicornis, C) the ross worm, Sabellaria spinulosa, D) the squat 

lobster Galathea intermedia and E) some amphipod crustaceans. 

 

The common dragonet, Callionymus lyra (Figure 5.7) is widely distributed in coastal regions of the UK 

(Van der veer et al. 1990; King et al. 1994; Dolbeth et al. 2008). Like A. cataphractus, the mouth of C. lyra 

is inferior or sub-terminal meaning the lower jaw is shorter than the upper jaw. C. lyra however, lacks the 

sensory barbels of A. cataphractus and has large fleshy lips and a strongly extensible jaw indicating that 

whilst both species are bottom feeders, the precise nature of their feeding behaviour may be very different. 

Divers have observed puffs of muddy water being blown out of the gills of C. lyra which could indicate that 

this species sucks up sediments and filters out the fauna living within it (Dipper 2001). Although this 

species has not received much attention in the literature a small number of studies have reported its 

dietary preferences (Davis 1966; Lopezjamar et al. 1984; Van der veer et al. 1990; King et al. 1994; 

Klimpel et al. 2003; Dolbeth et al. 2008). Callionymus lyra has a varied diet, feeding on polychaetes, 

crustaceans, molluscs and echinoderms (Davis 1966; Lopezjamar et al. 1984; Van der veer et al. 1990; 

King et al. 1994; Dolbeth et al. 2008). Considerable variations have been noted in the relative importance 

of these groups in the diet of C. lyra and this species is therefore assumed to have a high degree of 

dietary adaptability.   

 



178 
 

Table 5.8 The relative importance of all prey taxa averaged across adults (n=6) and juvenile (n=18) Callionymus lyra 

in terms of abundance (%N), biomass (%W), frequency of occurrence (%O), index of relative importance (IRI) and 

overall importance (%IRI). Unidentifiable gut content and parasites were excluded from this analysis.  

Adults 

Prey Taxa %N %W %O IRI %IRI 

OPHIUROIDEA 20.00 23.33 17 722 17.30 
AMPHIPODA 12.00 7.33 33 644 15.43 
Nereididae 4.00 29.70 17 562 13.45 
Sabellaria spinulosa 8.00 5.70 33 457 10.93 
Pisidia longicornis 4.00 16.49 17 342 8.18 
POLYCHAETA 8.00 1.08 33 303 7.25 
CRUSTACEA 8.00 0.41 33 280 6.71 
Paguridae 4.00 11.85 17 264 6.33 
Ampeliscidae 8.00 1.60 17 160 3.83 
Atylus swammerdamei 8.00 0.16 17 136 3.26 
Atylidae 8.00 0.04 17 134 3.21 
GASTROPODA 4.00 2.20 17 103 2.48 
DECAPODA (juv) 4.00 0.12 17 69 1.64 

 

Juveniles 

Prey Taxa % N % W % O IRI %IRI 

Sabellaria spinulosa 11.36 31.14 56 2361 45.60 

AMPHIPODA 25.76 4.22 33 999 19.29 

Pisidia longicornis 9.85 22.23 28 891 17.21 

Galathea 3.03 15.80 17 314 6.06 

CRUSTACEA 3.79 3.96 22 172 3.32 

COPEPODA 20.45 0.02 6 114 2.20 

Sthenelais 1.52 12.85 6 80 1.54 

DECAPODA 2.27 2.10 17 73 1.41 

Gammarellus homari 2.27 1.84 6 23 0.44 

PELECYPODA 1.52 0.19 11 19 0.37 

Crangon allmanni 0.76 2.18 6 16 0.32 

Atylus swammerdamei 2.27 0.30 6 14 0.28 

Pectinariidae 2.27 0.16 6 14 0.26 

Podoceridae 2.27 0.04 6 13 0.25 

POLYCHAETA 0.76 1.02 6 10 0.19 

Melitidae 1.52 0.08 6 9 0.17 

Atylidae 1.52 0.07 6 9 0.17 

Cancer pagurus 0.76 0.78 6 9 0.17 

Gammaropsis maculata 0.76 0.48 6 7 0.13 

Lumbrineridae 0.76 0.15 6 5 0.10 

DECAPODA (juv) 0.76 0.13 6 5 0.10 

Phoxichilidium femoratum 0.76 0.12 6 5 0.09 

Isaeidae 0.76 0.10 6 5 0.09 

Atylus guttatus 0.76 0.02 6 4 0.08 

GASTROPODA 0.76 0.02 6 4 0.08 

Glyceridae 0.76 0.01 6 4 0.08 
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The dietary niche breadth of adults and juveniles belonging to this species were broadly similar in terms of 

both diversity (H’ = 2.23 and H’ =2.73 respectively) and evenness (J’ = 0.87 and 0.84 respectively) 

although differences were observed in the prey composition and relative importance (Tables 5.2 and 5.8). 

Juvenile C. lyra fed on a wider range of prey than adults (Table 5.8) although their diet was more 

dominated by Sabellaria spinulosa which accounted for over 45% of the diet in terms of relative 

importance (IRI%). An ontogenetic shift is evident in this species, with brittle stars, Ophioroidea, being the 

most numerically important (20 N%) and relatively important (17.30 IRI%) prey item in the adult diet, whilst 

being absent from the diet of juveniles. The importance of polychaetes in the diet of both adults and 

juveniles corroborates the findings of Klimpel et al. (2003) although this is the first reported record of S. 

spinulosa in the diet of this species. That C. lyra of both developmental stages are feeding on S. spinulosa 

and fauna associated with the reefs such as Pisidia longicornis and Gammarus homari (Chapter 4) 

demonstrates that this habitat is providing an important prey source for this species.  
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Echiichthys vipera – Lesser Weever Fish 

 

Figure 5.8 Photographs of the Lesser Weever Fish, Echiichthys vipera (A) and four of the main prey items identified 

in the stomach contents of 20 specimens collected in association with Sabellaria spinulosa reefs at the East Coast 

REC study site: B) the ghost shrimp, Schistomysis spiritus, C) the mysid shrimp Gastrosaccus spinifer, D) the 

amphipod Atylus swammerdami and E) the amphipod Gammarellus homari.  

 

The lesser weever fish, Echiichthys vipera, is a common demersal fish in sandy sediments where it buries 

itself during the day (Vasconcelos et al. 2004). The upturned or superior mouth of E. vipera (Figure 5.8) 

reflects its carnivorous nature (Creutzberg and Witte 1989; Vasconcelos et al. 2004). A limited number of 

studies on the diet of E. vipera have shown that its diet is dominated by crustaceans, particularly mysid 

shrimps and amphipods, in keeping with the burrowing behaviour observed in this species (Vasconcelos 

et al. 2004). Both adults and juveniles observed in this study, consumed a moderate number of prey taxa 

(15 and 17 respectively) and this was reflected in the niche breadth indices (Table 5.2: H’ = 2.18, J’=0.79 

and H’ = 2.1, J’ =0.74 respectively). The ghost shrimp, Schistomysis spiritus, was the most important prey 

taxa in the diet of juvenile E. vipera (54.16 IRI%) occurring in 83 % of the guts studied (Table 5.9). This is 

indicates a very homogenous and specialist diet (Cortes 1997). In contrast the amphipod Gammarellus 

homari was the most important prey taxa in the diet of adult E. vipera (32.8 IRI%) although this prey taxon 

was only present in 44% of the guts studied and unidentified amphipods, mysids and crustaceans were 

also identified as important prey items (13.50-17.88 IRI%), indicating a more generalist diet. An 

ontogenetic shift in the diet of E. vipera has previously been reported by Vasconcelos et al. (2004) who 

found that this species consumed an increasing proportion of fish prey with increasing size. 



181 
 

Table 5.9 The relative importance of all prey taxa averaged across adult (n=9) and juvenile (n=11) Echiichthys vipera 

in terms of abundance (%N), biomass (%W), frequency of occurrence (%O), index of relative importance (IRI) and 

overall importance (%IRI). Unidentifiable gut content and parasites were excluded from this analysis.  

Adults 

Prey Taxa %N %W %O IRI %IRI 

Gammarellus homari 31.63 37.46 50 3455 36.61 
AMPHIPODA 16.33 13.02 63 1834 19.44 
MYSIDACEA 13.27 16.08 50 1467 15.55 
CRUSTACEA 10.20 8.28 63 1155 12.24 
Schistomysis spiritus 11.22 11.50 38 852 9.03 
Gastrosaccus spinifer 4.08 7.80 25 297 3.15 
Atylus swammerdamei 5.10 0.35 38 205 2.17 
Crangon 2.04 3.29 13 67 0.71 
Gammarellus 2.04 0.40 13 30 0.32 
Eurydice pulchra 1.02 0.93 13 24 0.26 
DECAPODA (juv) 1.02 0.62 13 21 0.22 
Jassa 1.02 0.19 13 15 0.16 
POLYCHAETA 1.02 0.08 13 14 0.15 
DECAPODA 0.00 0.00 0 0 0.00 
Gadidae 0.00 0.00 0 0 0.00 

 

Juveniles 

Prey Taxa % N % W % O IRI %IRI 

Schistomysis spiritus 21.36 25.20 83 3880 54.16 

MYSIDACEA 21.36 27.50 33 1629 22.74 

Atylus swammerdamei 14.56 2.46 25 426 5.94 

Gammarellus homari 9.71 11.71 17 357 4.98 

DECAPODA (juv) 13.59 3.87 17 291 4.06 

DECAPODA 3.88 0.96 17 81 1.13 

CRUSTACEA 2.91 2.70 25 140 1.96 

OSTEICHTHYES 0.97 12.25 8 110 1.54 

AMPHIPODA 3.88 1.06 17 82 1.15 

Philocheras trispinosus 0.97 5.93 8 58 0.80 

Gastrosaccus spinifer 1.94 3.93 8 49 0.68 

POLYCHAETA 0.97 1.67 8 22 0.31 

Eurydice 0.97 0.40 8 11 0.16 

Bathyporeia 0.97 0.29 8 11 0.15 

Dyopedos monacanthus 0.97 0.05 8 8 0.12 

Atylus 0.97 0.02 8 8 0.12 

 

Fish (Osteichtyes) was recorded in the diet of a single juvenile but were otherwise absent from the diet of 

E. vipera sampled from the S. spinulosa reefs in the East Coast REC study area. This perhaps indicates 

that amphipods and mysids are present in high enough numbers in this habitat, to make them a more 

energetically favourable prey item compared to the more typical prey of sand eels (Pinnegar, 2009).  
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Myoxocephalus scorpius – Bull Rout 

 

Figure 5.9 Photographs of the Bull Rout, Myoxocephalus scorpius (A) and four of the main prey items identified in 

the stomach contents of 12 specimens collected in association with Sabellaria spinulosa reefs at the East Coast REC 

study site: B) the long clawed porcelain crab, Pisidia longicornis, C) the mantis shrimp, Rissoides desmaresti, D) the 

squat lobster, Galathea intermedia and E) the swimming crab, Liocarcinus depurator.  

 

The short-spined sea scorpion or bull rout, Myoxocephalus Scorpius (Figure 5.9) is a commonly 

encountered sea scorpion very similar in appearance to its relative, the long-spined sea scorpion, 

Taurulus bubalis. Both species are ambush predators with large, sub-terminal, protractible mouths and 

they have been reported to consume a range of amphipods, isopods, decapods and fish (Cardinale 2000; 

Kay and Dipper 2009). The large mouth size in M. scorpius means that it is far less limited in the prey it 

can consume than many of the other species included in this study.  

Juvenile M. scorpius consumed a moderate range of prey (18 taxa) and had a broad diet (H’=2.57, 

J’=0.89). Many of the important prey taxa were crustaceans, although polychaetes, fish and nemerteans 

were also contributed to the diet (Table 5.10). This result is in general concordance with the data stored in 

DAPSTOM (Pinnegar 2009) and to the results of previous studies (Cardinale 2000) which also show the 

diet of M. scorpius is dominated by crustaceans. It is interesting to note the occurrence of the mantis 

shrimp, Rissoides desmaresti, in in the same gut as the mud shrimp, Callianassa subterranea. These two 

species live in burrows in cohesive muddy sediments (Vansteenbrugge et al. 2012), a habitat which could 

be provided by the accumulation of silt between the S. spinulosa reef structures, although no such 

association has previously been recorded.  
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Table 5.10 The relative importance of all prey taxa averaged across juvenile Myoxocephalus scorpius (n=11) in terms 

of abundance (%N), biomass (%W), frequency of occurrence (%O), index of relative importance (IRI) and overall 

importance (%IRI). Unidentifiable gut content and parasites were excluded from this analysis.  

 

Juveniles 

Prey Taxa % N % W % O IRI %IRI 

CRUSTACEA 11.36 17.72 45 1322 26.21 

Pisidia longicornis 20.45 1.79 45 1011 20.04 

DECAPODA 11.36 9.94 45 968 19.19 

POLYCHAETA 9.09 2.30 36 414 8.21 

Liocarcinus depurator 2.27 21.02 9 212 4.20 

Rissoides desmaresti 2.27 20.63 9 208 4.13 

Galathea intermedia 9.09 1.40 18 191 3.78 

OSTEICHTHYES 4.55 4.94 18 172 3.42 

Thoralus cranchii 4.55 1.12 18 103 2.04 

Sabellaria spinulosa 4.55 0.01 18 83 1.64 

Crangon crangon 2.27 5.77 9 73 1.45 

Crangon 4.55 2.25 9 62 1.22 

Callianassa subterranea 2.27 4.17 9 59 1.16 

Pilumnus hirtellus 2.27 4.10 9 58 1.15 

Crangon allmanni 2.27 2.67 9 45 0.89 

MYSIDACEA 2.27 0.10 9 22 0.43 

NEMERTEA 2.27 0.06 9 21 0.42 

Corophiidae 2.27 0.01 9 21 0.41 
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Merlangius merlangus – Whiting 

 

Figure 5.10 Photographs of the Whiting, Merlangius merlangus (A) and four of the main prey items identified in the 

stomach contents of 9 specimens collected in association with Sabellaria spinulosa reefs at the East Coast REC 

study site: B) the ghost shrimp, Schistomysis spiritus, C) the brown shrimp, Crangon allmanni, D) the amphipod, 

Atylus swammerdami and E) the Ross worm, Sabellaria spinulosa.  

 

The whiting, Merlangius merlangus (Figure 5.10), is a commercial species of gadoid, common on all UK 

coasts. It has a sub terminal mouth with a shorter lower than upper jaw and numerous small conical teeth. 

The mouth of the whiting is moderate in size relative to its body meaning that it is able to utilise a wide 

range of prey. Juvenile whiting generally eat small crustaceans, such as copepods and mysids, switching 

to larger crustaceans and fish as they grow (Hamerlynck and Hostens 1993; Bromley et al. 1997; Hostens 

and Mees 1999; Pinnegar et al. 2003; Stafford et al. 2007). Large adult whiting are almost entirely 

piscivorous, feeding mainly on sand eels, clupeids and gadoids, including other whiting (Bromley et al. 

1997; Greenstreet et al. 1998).  

Unidentifiable mysid shrimps were found to be the only prey item present in the single adult stomach 

included in this study (Table 5.11), but as only 4 individuals were present, equating to 0.01g Wet Weight, it 

seems likely that this individual had not eaten very recently and this is unlikely to represent the diet of this 

predator group. Juvenile whiting were found to have a relatively broad diet made up of 23 taxa (H’ =2.54; 

Table 5.2) dominated by crustaceans, although fish, polychaetes and hydroids were also present (Table 

5.11). The relative importance of prey was fairly equitable amongst the five most important prey taxa ( 

Amphipoda, Osteichthyes, Atylus swammerdamei, Mysidacea and Crustacea: 10.12 - 18.53 IRI%), 
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indicating a generalist, heterogenous diet (Cortes 1997). The diet of M. merlangus described in this study 

is in general agreement with gut content data held in DAPSTOM (Pinnegar, 2009). Whilst there is no 

evidence of a radical shift in the feeding behaviour or diet of M. merlangus associated with the presence of 

the S. spinulosa reef, this predator is clearly feeding on reef fauna, including S. spinulosa itself. 

 

Table 5.11 The relative importance of all prey taxa averaged across adult (n=1) and juvenile (n=8) Merlangius 

merlangus in terms of abundance (%N), biomass (%W), frequency of occurrence (%O), index of relative importance 

(IRI) and overall importance (%IRI). Unidentifiable gut content and parasites were excluded from this analysis.  

Adults 

Prey Taxa %N %W %O IRI %IRI 

MYSIDACEA 100.00 100.00 100 20000 100.00 
 

Juveniles 

Prey Taxa % N % W % O IRI %IRI 

AMPHIPODA 13.00 2.81 63 988 18.53 

OSTEICHTHYES 3.00 28.24 25 781 14.64 

Atylus swammerdamei 11.00 0.91 50 596 11.17 

MYSIDACEA 10.00 5.71 38 589 11.05 

CRUSTACEA 5.00 5.80 50 540 10.12 

Schistomysis spiritus 8.00 6.41 25 360 6.76 

POLYCHAETA 2.00 7.83 25 246 4.61 

Sabellaria spinulosa 2.00 6.35 25 209 3.92 

Crangon 1.00 13.63 13 183 3.43 

Dyopedos monacanthus 14.00 0.46 13 181 3.39 

Tubularia 1.00 9.98 13 137 2.57 

Atylidae 9.00 0.15 13 114 2.14 

Gastrosaccus spinifer 4.00 1.97 13 75 1.40 

Podoceridae 5.00 0.32 13 67 1.25 

Crangon allmanni 1.00 3.44 13 55 1.04 

Nephtys 1.00 3.34 13 54 1.02 

DECAPODA 3.00 0.23 13 40 0.76 

LEPTOLIDA 1.00 2.18 13 40 0.75 

Stenothoe marina 2.00 0.18 13 27 0.51 

Sertularia 1.00 0.02 13 13 0.24 

CUMACEA 1.00 0.01 13 13 0.24 

Haleciidae 1.00 0.01 13 13 0.24 

Campanulariidae 1.00 0.00 13 13 0.24 
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Taurulus bubalis – Sea Scorpion 

 

Figure 5.11 Photographs of the Sea Scorpion, Taurulus bubalis (A) and four of the main prey items identified in the 

stomach contents of 5 specimens collected in association with Sabellaria spinulosa reefs at the East Coast REC 

study site: B) the long clawed porcelain crab, Pisidia longicornis, C) the scale worm, Harmothoe antilopes 

(Polynoidae), D) the hermit crab, Pagurus bernhardus and E) the Phyllodociid worm, Anaitides lineata.  

 

The long-spined sea scorpion, Taurulus bubalis (Figure 5.11) is a common demersal fish species, very 

similar in appearance to the bull rout, Myoxocephalus scorpius. It is more commonly found on rocky 

shores in pools with seaweed, but can also be found down to depths of 30 m (Kay and Dipper 2009). Like 

M. Scorpius, T. bubalis is an ambush predator with a large, sub-terminal, protractible mouth which would 

allow it to predate a wide range of prey. A total of 5 T. bubalis guts were analysed, all of which are 

assumed to be adults based on their size relative to the maximum reported size (Wheeler 1978) (Table 

5.2). T. bubalis consumed a relatively low diversity of prey (7 taxa) which was reflected in its niche breadth 

(H’ =1.59). This is likely, however, to be an influenced by the very small sample size analysed (n=5).  

The diet of T. bubalis has not been the subject of any formal assessment and there are very few records 

held in DAPSTOM (Pinnegar 2009). However, the few records that do exist, indicate that fish and molluscs 

are the most important prey items for this species, in contrast to the results of this study which indicate 

that crustaceans and polychaetes are important prey for T. bubalis (Table 5.12). The disparity between 

DAPSTOM records and the results of this study indicate that T. bubalis may demonstrate some trophic 

adaptability. The dominance of P. longicornis in the diet of T. bubalis sampled from the S. spinulosa reefs 

in the southern North Sea indicates that this species may be taking advantage of highly abundant prey 
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species associated with this habitat, although examination of more specimens would be required to make 

any firm conclusions about their feeding behaviour. 

 

Table 5.12 The relative importance of all prey taxa averaged across adult Taurulus bubalis (n=5) in terms of abundance 

(%N), biomass (%W), frequency of occurrence (%O), index of relative importance (IRI) and overall importance (%IRI) 

and rank. Unidentifiable gut content and parasites were excluded from this analysis.  

Adults 

Prey Taxa % N % W % O IRI %IRI 

Pisidia longicornis 50.00 16.86 80 5349 66.76 

Paguridae 6.25 68.92 20 1503 18.76 

DECAPODA 12.50 11.66 20 483 6.03 

Polynoidae 12.50 1.95 20 289 3.61 

POLYCHAETA 6.25 0.37 20 132 1.65 

Phyllodocidae 6.25 0.20 20 129 1.61 

AMPHIPODA 6.25 0.04 20 126 1.57 
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Hyperoplus laceolatus – Sand Eel 

 

Figure 5.12 Photographs of the Sand Eel, Hyperoplus lanceolatus (A) and three of the prey items identified in the 

stomach contents of 4 specimens collected in association with Sabellaria spinulosa reefs at the East Coast REC 

study site: B) the nereid worm, Nereis zonata, C) some copepods and D) some decapod crustaceans (Pink shrimp, 

Pandalus montagui).  

 

The greater sand eel, Hyperoplus lanceolatus (Figure 5.12) is a shoaling fish that is heavily fished for 

commercial purposes and also provides a significant food source for a number of fish and sea bird species 

(Wanless et al. 1998). This species is often associated with sand banks where it is able to dive down into 

the sand to avoid predation (Wanless et al. 1998). Like other sandeel species, H. lanceolatus has a long 

slender body and a sharply protuberant lower jaw. H. lanceolatus however, lacks the protusible upper jaw 

that other sandeel species have and has a pair of conspicuous teeth in the roof of its mouth (Wheeler 

1978). The significance of the teeth in the roof of its mouth, for feeding, is not yet fully understood but it is 

possible that they help H. lanceolatus to hold a grip on their larger prey, which can include other sandeel 

species (Dipper 2001). H. lanceolatus is classified as both a pelagic and a demersal fish, and is known to 

have a varied diet reflecting the habitats it frequents, feeding on small planktonic fauna and fish, as well as 

benthic invertebrates (Dipper 2001; Kay and Dipper 2009).   

The two juvenile sand eels included in this study were found to be feeding exclusively on calanoid 

copepods (Table 5.13) and had consumed an average of 400 individuals each, indicating that this food 
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source is abundant in this area. Calanoid copepods were also identified as being the most important prey 

item for the two adult sand eels although these contributed very little to the biomass found in the stomachs 

(0.79 %W). Nereid polychaetes and unidentifiable crustaceans were also present in the adults diet and 

contribute most in terms of biomass, 75.29 %W and 23.92 %W respectively.  

Table 5.13 The relative importance of all prey taxa averaged across adult (n=2) and juvenile (n=2) Hyperoplus 

lanceolatus in terms of abundance (%N), biomass (%W), frequency of occurrence (%O), index of relative importance 

(IRI) and overall importance (%IRI). Unidentifiable gut content and parasites were excluded from this analysis.  

Adults 

Prey Taxa % N % W % O IRI %IRI 

COPEPODA 85.71 0.79 50 4325 43.25 

Nereididae 7.14 75.29 50 4122 41.22 

CRUSTACEA 7.14 23.92 50 1553 15.53 

 
Juveniles 

Prey Taxa % N % W % O IRI %IRI 

COPEPODA 100.00 100.00 100 20000 100.00 

 

The diet of Hyperoplus lanceolatus is very different from all other fish species analysed during this study. 

This species consumed a high abundance of very small pelagic prey (Calanoid Copepods) and their diet 

included a very narrow range of prey items (3 taxa), reflected in their low niche breadth (H’ = 0.83 and H’ = 

0 for adults and juveniles respectively). This is, in part, a reflection of the taxonomic discrimination 

afforded to copepods but also indicates that this species is a very specialist feeder. The importance of 

small copepods in the diet of H. lanceolatus corresponds with data held in DAPSTOM, where nearly two 

thirds of the biomass of identifiable material was found to be copepods (Pinnegar 2009). Polychaetes were 

not recorded in the diet of H. lanceolatus from previous studies in the southern North Sea (Pinnegar 2009)  

although this species is noted as feeding on  benthic invertebrates in a number of other sources (Dipper 

2001). It is unlikely that the presence of nereids in the diet of sand eels is directly attributable to the 

presence of the reef habitat since they would be unable penetrate its hard structure. It is, however, 

possible that the sand eels were feeding in sand patches between the reef structures, which may be 

influenced by an overspill of benthic species from adjacent S. spinulosa reef, or they may be feeding on 

pelagic stages of the worm, including reproductive epitokes.    
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Trispoterus minutus – Poor Cod 

 

Figure 5.13 Photographs of the Poor Cod, Trisopterus minutus (A) and three of the prey items identified in the 

stomach contents of 3 specimens collected in association with Sabellaria spinulosa reefs at the East Coast REC 

study site: B) the ghost shrimp, Schistomysis spiritus, C) the brown shrimp, Crangon crangon and D) some 

amphipods.  

 

The poor cod, Trisopterus minutus (Figure 5.13) is a shoaling fish found on all UK coasts. It is a member 

of the Gadoid family and has a broadly similar body and mouth shape to other species belonging to this 

group. Like whiting, poor cod has a terminal mouth, although in this case the upper jaw overlaps the lower 

jaw which is indicative of a fish that feeds primarily on the seabed. T. minutus has been the subject of a 

number of feeding studies and has been found to have considerable overlap in its diet with fellow gadoids 

including bib, Trisopterus luscus, and cod, Gadus morhua (Armstrong 1982). T. minutus exhibits dietary 

partitioning based on size with smaller individuals (70-90mm) feeding on small crustaceans such as 

mysids and shrimps whilst larger individuals (100-190mm) feed on larger crustaceans including crabs and 

small fish (Armstrong 1982; Morte et al. 2001). Polychaetes have also been recorded in the diet of poor 

cod although they were generally not as prolific or abundant in their stomach contents (Armstrong 1982).  

The three adult T. minutus included in this study fed exclusively on crustaceans (Table 5.14) with 

Schistomysis spiritus dominating the diet (47.40 %IRI) alongside unidentified crustaceans (37.42 %IRI) 

and mysid shrimp (10.44 %IRI) (Table 5.14). This is in strong agreement with records in DAPSTOM 

(Pinnegar 2009) as well as published records of T. luscus diet (Armstrong 1982).  
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Table 5.14 The relative importance of all prey taxa averaged across adult Trisopterus minutus (n=3) in terms of 

abundance (%N), biomass (%W), frequency of occurrence (%O), index of relative importance (IRI) and overall 

importance (%IRI). Unidentifiable gut content and parasites were excluded from this analysis.  

Adults 

Prey Taxa % N % W % O IRI %IRI 

Schistomysis spiritus 70.37 55.95 33 4211 47.40 

CRUSTACEA 11.11 22.13 100 3324 37.42 

MYSIDACEA 11.11 16.70 33 927 10.44 

Crangon crangon 3.70 4.40 33 270 3.04 

AMPHIPODA 3.70 0.82 33 151 1.70 
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Trisopterus luscus – Bib 

 

Figure 5.14 Photographs of the Bib, Trisopterus luscus (A) and four of the prey items identified in the stomach 

contents of 2 specimens collected in association with Sabellaria spinulosa reefs at the East Coast REC study site: B) 

the ghost shrimp, Schistomysis spiritus, C) the brown shrimp Crangon allmanni, D) the amphipod Atylus 

swammerdami and E) the squat lobster Galathea intermedia.  

 

The diet of bib, Trisopterus luscus (Figure 5.14), shows considerable overlaps with that of its congener T. 

minutus of the same size (Armstrong 1982). Bib ultimately reach a larger size than T. minutus as adults 

and at this point there is some divergence in their diet with T. luscus as they are able to feed on larger 

prey including crustaceans and fish (Armstrong 1982).  The two T. luscus specimens examined here were 

both juveniles and in the same size range as the T. minutus examined (Table 5.2). They were found to 

have a narrow niche breadth (H’ = 1.27) in comparison to the other fish species studied and fed primarily 

on mysid crustaceans with Schistomysis spiritus being the dominant prey (66.19 %IRI) (Table 5.15). This 

shows good agreement with published records on the diet of juvenile bib (Armstrong 1982; Hamerlynck 

and Hostens 1993; Hostens and Mees 1999; Dolbeth et al. 2008).  
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Table 5.15 The relative importance of all prey taxa averaged across juvenile Trisopterus luscus (n=2) in terms of 

abundance (%N), biomass (%W), frequency of occurrence (%O), index of relative importance (IRI) and overall 

importance (%IRI). Unidentifiable gut content and parasites were excluded from this analysis.  

Juveniles 

Prey Taxa % N % W % O IRI %IRI 

Schistomysis spiritus 57.97 59.46 100 11743 66.19 

MYSIDACEA 20.29 17.11 100 3740 21.08 

AMPHIPODA 13.04 1.07 50 705 3.98 

DECAPODA 1.45 10.24 50 584 3.29 

Galathea intermedia 1.45 5.07 50 326 1.84 

Crangon allmanni 1.45 4.16 50 280 1.58 

Nereididae 1.45 2.03 50 174 0.98 

CRUSTACEA 1.45 0.63 50 104 0.58 

Atylus swammerdamei 1.45 0.24 50 85 0.48 
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Pleuronectes platessa – Plaice 

 

Figure 5.15 Photographs of the Plaice, Pleuronectes platessa (A) and four of the prey items identified in the stomach 

contents of 2 specimens collected in association with Sabellaria spinulosa reefs at the East Coast REC study site: B) 

the ross worm, Sabellaria spinulosa, C) the amphipod Atylus swammerdami, D) the opheliid worm, Ophelia borealis 

and E) the terebellid worm, Lanice conchilega.  

 

The plaice, Pleuronectes platessa, is a particularly distinctive flatfish with orange-red spots on skin that is 

smooth to the touch (Figure 5.15). P. platessa is associated with sandy substrata where it partially buries 

itself to provide camouflage. P. platessa is an ambush predator but is limited in its prey choices by its 

comparatively small mouth. Plaice have been noted as being experts in nipping off the protruding siphons 

of buried bivalves (Wheeler 1978; Dipper 2001) and the fact that they have larger teeth on their lower jaws 

makes them well adapted for this feeding method. Adult plaice also consume whole molluscs, crushing 

them with their strong pharyngeal teeth (Dipper 2001; Amezcua et al. 2003; Kay and Dipper 2009). Plaice 

known to feed on polychaetes, crustaceans, brittle stars and sand eels (Wheeler 1978; Amezcua et al. 

2003).  

The two adult P. platessa included in this study exploited a small range of prey (8 taxa) and their diet was 

dominated by the polychaetes S. spinulosa (39.37 %IRI) and Opehlia (20.81 %IRI) and mysid shrimp 

(17.77 %IRI) (Table 5.16). These results are consistent with records in DAPSTOM (Pinnegar, 2009) and 

those in the peer reviewed literature (Amezcua et al., 2003) although molluscs are notable in their 

absence. Whilst it is impossible to draw any firm conclusions from the analysis of two fish guts, the 

dominance of S. spinulosa in the diet of these individuals does indicate that this species will utilise the 
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reefs as a source of food and that this species may be capable of crushing up the reef structures to 

expose the worms as was previously postulated by Holt et al. (1998). 

Table 5.16 The relative importance of all prey taxa averaged across adult Pleuronectes platessa (n=2) in terms of 

abundance (%N), biomass (%W), frequency of occurrence (%O), index of relative importance (IRI) and overall 

importance (%IRI). Unidentifiable gut content and parasites were excluded from this analysis.  

Juveniles 

Prey Taxa % N % W % O IRI %IRI 

Sabellaria spinulosa 36.36 42.38 50 3937 39.37 

Ophelia 13.64 27.99 50 2081 20.81 

MYSIDACEA 9.09 26.45 50 1777 17.77 

CRUSTACEA 13.64 2.37 50 800 8.00 

Atylus falcatus 9.09 0.25 50 467 4.67 

Terebellidae 9.09 0.19 50 464 4.64 

POLYCHAETA 4.55 0.24 50 239 2.39 

OSTEICHTHYES 4.55 0.13 50 234 2.34 
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Scyliorhinus canicula – Lesser Spotted Dogfish 

 

Figure 5.16 Photographs of the Lesser Spotted Dogfish, Scyliorhinus canicula (A) and two of the prey items 

identified in the stomach contents of 1 specimen collected in association with Sabellaria spinulosa reefs at the East 

Coast REC study site: B) the nereid worm, Nereis zonata and C) the swimming crab Liocarcinus depurator (a 

decapod crustacean). Note that this specimen was dead upon retrieval of the trawl.  

 

The dogfish, Scyliorhinus canicula (Figure 5.16) is a small shallow water shark with an inferior or sub-

terminal mouth, set quite far back on underside of body, indicative of a bottom feeder. Nine different tooth 

types have been recorded from the Smallspotted Catshark. These range from strongly oblique with single 

cusps to erect with five cusps (SharkTrust 2010). S. canicula is a demersal scavenger that shows a 

preference for crustaceans in its diet, although it often relies on fisheries discards as a source of food 

(Olaso et al. 2002) as well as hunting for small demersal fish species (Kay and Dipper 2009). It also tends 

to show a preference for easily accessible prey such as small benthic invertebrates, particularly following a 

period of disturbance such as trawling (Kaiser and Spencer 1994). One S. canicula gut was analysed for 

this study, which was taken from a juvenile that was found to be dead upon retrieval of the trawl (Table 

5.2). A limited range of prey (2 taxa) were found in the single S. canicula gut analysed. The majority of the 

gut biomass was made up by nereid remains which was the most important prey taxon in the diet (70.88 

%IRI) (Table 5.17). The rest of the prey in the S. canicula gut were identified as decapod remains (29.12 

%IRI). The diet observed here is consistent with published records of S. canicula diet (Kaiser and Spencer 

1994; Olaso et al. 2002) and do not indicate any particular reliance on S. spinulosa reefs for food.  
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Table 5.17 The relative importance of all prey taxa of juvenile Scyliorhinus canicula (n=1) in terms of abundance (%N), 

biomass (%W), frequency of occurrence (%O), index of relative importance (IRI) and overall importance (%IRI). 

Unidentifiable gut content and parasites were excluded from this analysis.  

Juveniles 

Prey Taxa % N % W % O IRI %IRI 

Nereididae 50.00 91.76 100 14176 70.88 
DECAPODA 50.00 8.24 100 5824 29.12 
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Platyichthys flesus - Flounder 

 

Figure 5.17 Photographs of the Flounder, Platichthys flesus (A) and the single prey item identified in the stomach 

contents of 1 specimen collected in association with Sabellaria spinulosa reefs at the East Coast REC study site: B) 

the brittle star, Ophiura albida. 

 

The flounder, Platichthys flesus, (Figure 5.17) is an opportunistic feeder that preferentially feeds on the 

most dominant fauna, ranging from polychaetes and oligochaetes to crustaceans, echinoderms and small 

molluscs (Maes et al. 2003; Andersen et al. 2005; Dolbeth et al. 2008; Teixeira et al. 2010). Andersen et 

al. (2005) and Dolbeth et al. (2008) found that juvenile flounder feed preferentially on Corophium spp. 

where they are abundant. Ontogenetic dietary shifts have also been noted in P. flesus with a progression 

in their target prey reflecting their growing body size (Andersen et al. 2005).  As only a single gut content 

was analysed (Table 5.2) it is impossible to draw any conclusions on the dietary preferences of this 

species in the East Coast REC study area, but this result does indicate that high abundances of O. albida 

may be associated with S. spinulosa reefs.  

Table 5.18 The relative importance of all prey taxa of adult Platichthys flesus (n=1) in terms of abundance (%N), 

biomass (%W), frequency of occurrence (%O), index of relative importance (IRI) and overall importance (%IRI). 

Unidentifiable gut content and parasites were excluded from this analysis.  

Juveniles 

Prey Taxa % N % W % O IRI %IRI 

Ophiura albida 100 100 100 20000 100 
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Summary of the Diet of Demersal Fish Associated with Sabellaria spinulosa Reefs 

There is a high degree of variability between the prey choices made by the 16 fish species collected from 

Sabellaria spinulosa reefs in the East Coast REC study area as summarised in Table 5.19. Despite this 

variability, there are some clear indications that the presence of S. spinulosa reefs has some influence on 

the prey available to these fish species.  Of the 16 species included in this study, only three showed signs 

of a possible shift in feeding behaviour that could be related to the presence of S. spinulosa reefs (Table 

5.19). The Dover sole, Solea solea, is known to feed preferentially on infaunal polychaetes such as the 

nereid polychaetes or rag worms and molluscs and its mouth is well adapted for sucking-up and grasping 

this type of prey (Wootton 1990; Gerking 1994; Cabral 2000; Amezcua et al. 2003). In contrast, the Dover 

sole examined in this study were feeding on more epifaunal species, including S. spinulosa, which was the 

most important prey item for the juvenile fish. Trumpet worms, belonging to the family Pectinariidae were 

the most important prey for the adult Dover sole but sea anemones were also found to be an important 

prey item. This indicates a shift in the feeding behaviour of Dover sole towards more epifaunal species, 

especially in the juveniles, which may have been caused by the presence of S. spinulosa reefs (Gerking 

1994). The sea scorpions, Tauralus bubalis, included in this study were all adults and they also showed a 

marked difference in their diet compared with records in DAPSTOM, switching from a predominantly 

piscivorous diet to one that is dominated by crustaceans (Table 5.19). T. bubalis has not however, been 

the subject of any formal feeding studies and there were relatively few records in DAPSTOM so this may 

simply be an indication that this species is a generalist feeder, taking advantage of whatever prey items 

are most abundant. The final species which exhibited a marked difference in its diet compared with 

published records was the poor cod, Trispoterus minutus, which again were all adults. Poor cod are known 

to exhibit dietary partitioning based on size, with juveniles feeding primarily on small crustaceans whilst 

the adults feed on larger crustaceans and fish (Armstrong 1982; Morte et al. 2001). Here the adults were 

found to have a diet dominated by Mysid shrimp which would more typically be associated with juveniles 

of the same species. Mysid shrimp were not recorded in the trawl or grab samples taken serendipitously 

from the reefs in this area as they are too small to be retained in the trawls and would move out of the way 

of a grab (SanVicente and Sorbe 1995; Rappe et al. 2011)., but very high abundances of mysids were 

observed in seabed footage taken of the reef (Limpenny et al. 2011; Pearce et al. 2011b). It is possible 

therefore that this species is utilising a prey item that are available in high abundances in the reef habitat, 
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although the small sample size (n=3) and lack of equivalent samples from adjacent sedimentary habitats 

means it is impossible to make any firm conclusions. 

Possible changes in feeding behaviour which could be related to the presence of the S. spinulosa reef 

were only identified in three species. However, a further 5 of the 24 predator groups studied were feeding 

on S. spinulosa itself including juvenile plaice, dab and Dover sole (Table 5.19). Holt et al. (1998) 

postulated that flatfish could easily obtain S. spinulosa by crunching up their tubes and the results here 

support this assertion, although direct observations would be required to determine the mechanism 

through which they are obtaining this prey. S. spinulosa also formed a key component in the diet of P. 

gunnellus and C. lyra, both of which are important prey items in the diet of higher predators including other 

fish, seabirds and otters (Watt 1995; Greenstreet et al. 1998; Kingston et al. 1999; Carss and Elston 2003; 

Lilliendahl and Solmundsson 2006), providing evidence that this habitat may play an important role in 

supporting marine food webs.  

Furthermore, with only a few exceptions, the demersal fish included in this study were found to be feeding 

on fauna that have been recorded in very high abundances on the reefs, including the porcelain crab P. 

longicornis the amphipods Gamarellus homari, Abuldomelita obtusata and Atylus swammerdamei and 

mysid shrimps (Limpenny et al. 2011; Pearce et al. 2011b). We can conclude then, that fish are utilising 

the S. spinulosa reefs in this area for food and that the reefs play a part in supporting higher trophic levels 

here. Unfortunately, due to the limitations in the sampling employed, it is not possible to assess the 

relative importance of this habitat for fish feeding compared to nearby sedimentary habitats.  
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Table 5.19 Comparison between the three most significant prey taxa (% IRI) in the diets of the demersal fish sampled from Sabellaria spinulosa reefs in the East Coast REC study area, and those 

identified from published records and dietary records held in the Integrated Database and Portal for Fish Stomach Records (DAPSTOM) (Pinnegar 2009). Initial observations regarding possible changes 

to the feeding behaviour of the fish and / or the composition of their diet that could be attributable to the presence of S. spinulosa reefs have also been made. *See earlier sections of this report for details 

of the literature consulted in this review. 

 

 

 

 

 

 

 

 

 

1 2 3 1 2 3

Adult 44 Pisidia longicornis Sabellaria spinulosa AMPHIPODA

Juvenile 2 Abludomelita obtusata Podoceridae AMPHIPODA

Adult 4 Lagis koreni Pectinariidae ACTINIARIA

Juvenile 41 Sabellaria spinulosa POLYCHAETA Pectinariidae

Adult 2 Ophiura ophiura Crangon crangon Pisidia longicornis

Juvenile 43 Sabellaria spinulosa ACTINIARIA AMPHIPODA

Adult 39 CRUSTACEA DECAPODA Pisidia longicornis

Juvenile 1 AMPHIPODA CRUSTACEA POLYCHAETA

Adult 13 Pisidia longicornis CRUSTACEA Crangon almanni

Juvenile 15 Pisidia longicornis DECAPODA AMPHIPODA

Adult 6 OPHIUROIDEA AMPHIPODA Nereidae

Juvenile 18 Sabellaria spinulosa AMPHIPODA Pisidia longicornis

Adult 9 Gammarellus homari AMPHIPODA MYSIDACEA

Juvenile 11 Schistomysis spiritus MYSIDACEA Atylus swammerdamei

Myoxocephalus scorpius Juvenile 11 CRUSTACEA Pisidia longicornis DECAPODA AMPHIPODA ISOPODA DECAPODA No change Feeding on reef fauna

Adult 1 MYSIDACEA ~ ~ OSTEICHTHYES

Juvenile 8 AMPHIPODA OSTEICHTHYES Atylus swammerdamei COPEPODA MYSIDACEA CRUSTACEA

Taurulus bubalis Adult 5 Pisidia longicornis Paguridae DECAPODA OSTEICHTHYES MOLLUSCA Shift to crustaceans Feeding on reef fauna

Adult 2 COPEPODA Nereidae CRUSTACEA OSTEICHTHYES "Benthic Invertebrates"

Juvenile 2 COPEPODA ~ ~ COPEPODA

Trisopterus minutus Adult 3 Schistomysis spiritus CRUSTACEA MYSIDACEA DECAPODA OSTEICHTHYES POLYCHAETA Shift to small crustaceans
Possibly feeding in reef 

fauna

Trisopterus luscus Juvenile 2 Schistomysis spiritus MYSIDACEA AMPHIPODA COPEPODA MYSIDACEA Crangon crangon No change
Possibly feeding in reef 

fauna

Pleuronectes platessa Juvenile 2 Sabellaria spinulosa Ophelia MYSIDACEA MOLLUSCA POLYCHAETA
No change

Feeding on reef fauna 

inc S. spinulosa

Scyliorhinus  canicula Juvenile 1 Nereidae DECAPODA ~ DECAPODA OSTEICHTHYES No change ~

Platichthys flesus Adult 1 Ophiura albida ~ ~ POLYCHAETA OLIGOCHAETA CRUSTACEA No change
Possibly feeding in reef 

fauna

~

Feeding Behaviour Diet

No change Feeding on reef fauna

No change

Feeding on reef fauna 

inc S. spinulosa

Juveniles feeding on S. 

spinulosa

Feeding on reef fauna 

inc S. spinulosa

Feeding on reef fauna  

Feeding on reef fauna

Feeding on reef fauna 

inc S. spinulosa

Feeding on reef fauna

No change

Scientific Name & 

Developmental Stage

No change

Shift from infaunal to 

epifaunal species

No change

No change

No change

No change

MYSIDACEA AMPHIPODACRUSTACEA

CRUSTACEA DECAPODA AMPHIPODA

POLYCHAETA ECHINODERMATA MOLLUSCA

MOLLUSCA POLYCHAETA ECHINODERMATA 

Galathea Pisidia MYSIDACEA 

Most Important Prey Taxa 

(Published Records / DAPSTOM)*

AMPHIPODA ISOPODA "Benthic Invertebrates"

Nereidae POLYCHAETA MOLLUSCA 

Echiichthys vipera

Merlangius merlangus

Hyperoplus lanceolatus

Ciliata septentrionalis

Agonus cataphractus

Callionymus lyra

Pholis gunnellus

Solea solea

Limanda limanda

n

Most Important Prey Taxa 

(%IRI This Study)
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5.3.2 Dietary Trends in Fish Associated with Sabellaria spinulosa reefs   

Multivariate analysis of the gut content data revealed four statistically significant feeding groups, using a 

SIMPROF test set at the 10% significance level, ranging in size from 2 to 5 predator groups (Figure 5.18). 

A SIMPER analysis revealed the prey taxa that contributed to the similarity within each of the feeding 

groups as well as the dissimilarity between them (as summarised in Table 5.19). The four feeding groups 

are represented by different colours in the group sorting dendrogram (Figure 5.18) and have been named 

according to their equivalent feeding mode functional group (FMFG) proposed by (Elliott et al. 2007) and 

the dominant prey species in the corresponding nMDS plot (Figure 5.19). All of the fish included in this 

analysis were identified as being zoobenthivores (ZB), that is fish feeding primarily on invertebrates 

associated with the substratum, and the vast majority of those were identified as feeding mostly on 

epifaunal animals (ZB-E), although one group was found to be feeding mostly on the hyperbenthos (ZB-

H), in this case Mysid shrimp (Elliott et al. 2007).  

Adult Dover sole, Solea solea (SOL (A)), and sea scorpion, Tauralus bubalis (TAU (A)), had quite different 

diets from all of the other fish included in the study and hence did not fall into any of the four feeding 

groups or guilds. Adult Dover sole were feeding on S. spinulosa like the juveniles of this species, but in 

contrast to the juveniles, trumpet worms (Pectinariidae) were their most important prey. The porcelain 

crab, Pisidia longicornis, was found to be the main prey of adult T. bubalis, as it was for many other 

predator groups included in this study. P. longicornis was however, more dominant in the diet of T. bubalis 

and they were also found to feed on hermit crabs which were largely absent from the diet other fish 

included in this analysis.  

The predator groups belonging to the “ZB-H Mysid Feeders” guild were, as the name suggests, feeding 

primarily on mysid shrimps which are known to be an important food resource for demersal fish (Hostens 

and Mees 1999). The majority of the fish belonging to this guild are small gadoids which are known to 

have considerable overlap in their diets (Armstrong 1982; Hamerlynck and Hostens 1993; Greenstreet et 

al. 1998; Hostens and Mees 1999). An interesting addition to this widely recognised feeding group is the 

lesser weever, whose diet has also been reported to contain mysids and amphipods but has not 

previously been linked with gadoids (Vasconcelos et al. 2004).  
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Figure 5.18. Group average sorting dendrogram based on a Bray-Curtis similarity matrix of standardised gut content 

(abundance) data averaged by fish species Pholis gunnellus (PHO), Solea solea (SOL), Limanda limanda (LIM), 

Ciliata septentrionalis (CIL), Agonus cataphractus (AGO), Callionymus lyra (CAL), Echiichthys vipera (ECH), 

Myoxocephalus scorpius (MYO), Merlangius merlangus (MER), Tauralus bubalis (TAU), Hyperoplus lanceolatus 

(HYP), Trisopterus minutus (TRM), Trisopterus luscus (TRL) and Pleuronectes platessa (PLE) and their 

developmental stage, adult (A) and juveniles (J). Overlaid on this cluster are the four statistically significant groups 

identified using a SIMPROF test (5%). Flounder and dogfish were removed from the analysis due to the small 

sample size (n=1). Unidentifiable gut content and parasites were also excluded from the analysis 
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Figure 5.19. Two-dimensional MDS ordination based on a Bray-Curtis similarity matrix of standardised gut content 

(abundance) data averaged by predator group (fish species and development stage; see legend for Figure 5.18 for 

codes). Overlaid on this plot are the feeding groups identified using a SIMPROF test (5%). These groups have been 

named according to their equivalent feeding mode functional group (FMFG) proposed by (Elliott et al. 2007) where 

ZB-H = Zoobenthivore-hyperbenthos and ZB-E = Zoobenthivore-epifauna, and the dominant prey species. Fish 

groups with ≤2 individuals were excluded in this analysis (Table 5.2). Unidentifiable gut content and parasites were 

also excluded from this analysis. 

 

Some mysid species, including the two species identified in stomach contents in this study, Schistomysis 

spiritus and Gastrosccus spinifer, live all or part of their lives associated with the water layer adjacent to 

the seafloor, the suprabenthos or hyperbenthos (Williams and Collins 1984; SanVicente and Sorbe 1995; 

Cunha et al. 1997; Dewicke et al. 2003; Rappe et al. 2011), whilst others are wholly pelagic (Viherluoto 

and Viitasalo 2001). Since many of the mysid shrimp consumed could not be identified to species level it is 

impossible to determine whether or not they were all associated with the S. spinulosa reefs. However, as 

many of the fish belonging to the “ZB-H Mysid Feeders” guild were also feeding on benthic species 

associated with the reefs, it seems likely that the mysids are also associated with the reef in some way. 
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High densities of mysid shrimp were observed in video footage collected from the reefs providing further 

evidence of this association (Limpenny et al. 2011; Pearce et al. 2011b). 

Table 5.20 Summary of the average abundance of prey taxa that contribute to ≥2% of the dissimilarity between the 

diets of demersal fish belonging to the feeding guilds identified by multivariate analysis of the stomach contents of 

demersal fish collected from Sabellaria spinulosa reefs in the East Coast REC study site (Figure 5.18 and Figure 

5.19). The predator groups (defined by fish species and development stage) belonging to each guild (see legend for 

Figure 5.18 for codes) and the average similarity is also shown along with the average similarity within each guild.  

The feeding guilds have been named in accordance with the “Feeding Mode Functional Groups” proposed by (Elliott 

et al. 2007) where ZB-H = Zoobenthivore-hyperbenthos and ZB-E = Zoobenthivore-epifauna. 

 

 

 

 

Feeding Guild
ZB-H 

Mysid Feeders

ZB-E

Pisidia  Feeders

ZB-E

 Sabellaria & Pisidia  Feeders

ZB-E

Sabellaria  Feeders 

Average Similarity 50.12 48.98 57.22 67.09

Predator Groups

TRI (A)

ECH (J)

ECH (A)

MER (J)

CAL (A)

AGO (J)

AGO (A)

CIL (A)

MYO (J)

PHO (A)

CAL (J)

LIM (J)

SOL (J)

Prey Taxa

Sabellaria spinulosa 0.39 2.81 19.95 43.93

Pisidia longicornis 0 14.36 25.87 2.67

CRUSTACEA 16.49 17.96 4.2 3.47

AMPHIPODA 10.29 6.8 10.97 6.13

DECAPODA 1.98 11.19 11.19 2.39

POLYCHAETA 1.4 9.43 1.37 9.28

Schistomysis spiritus 19.96 0.14 0 0.44

MYSIDACEA 17.18 0.41 0 0.83

Atylus swammerdamei 7.37 2.11 2.88 2.06

Gammarellus homari 5.82 1.03 1.44 0.33

ACTINIARIA 0 0 0 8.18

Podoceridae 0.41 1.82 4.93 0

Crangon crangon 4.17 1.79 0 0.48

Pectinariidae 0 0 1.05 4.25

Galathea intermedia 0 3.71 0.42 0.16

Crangon allmanni 0.31 2.75 0.77 0.3

COPEPODA 0 0 3.58 0

PELECYPODA 0 0 2.69 0.48
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Fish from the remaining three groups fed primarily on benthic prey known to be associated with the 

Sabellaria spinulosa reefs (Chapter 4) in the East Coast REC study area. They can be considered as 

three different feeding guilds based on their respective dominant prey taxa. Juvenile Dover sole and dab 

form a feeding guild whose diet is dominated by S. spinulosa (ZB-E Sabellaria Feeders). Adult butterfish, 

P. gunnellus and juvenile dragonet, C. lyra form another feeding guild whose diet is dominated by S. 

spinulosa and P. longicornis in roughly equal proportions (ZB-E Sabellaria and Pisidia Feeders). The 

remaining small demersal fish form a feeding guild whose diet is dominated by P. longicornis (ZB-E Pisidia 

Feeders). 

 

5.4 Conclusions  

The diets of fish sampled from S. spinulosa reefs in the East Coast REC study area are broadly 

comparable to published records, indicating that the presence of the reef is not radically altering fish 

feeding behaviour. Exceptions to this included, Dover sole which appeared to shift its feeding behaviour to 

feed on more epifaunal species including S. spinulosa and sea anemones (Actiniaria). It is not clear 

however, whether this shift has been caused by the increased abundance of these prey items on the reef 

or the fact that the reef has to some extent excluded the sandy substrates in which it would normally hunt 

for its prey (Amezcua et al. 2003). The adult poor cod included in this study also appear to show a shift in 

their feeding behaviour, with a diet more typically associated with juveniles of this species (Armstrong 

1982). The switch from a piscivorous diet to one dominated by small mysid shrimp, may reflect the high 

abundances of mysid shrimp seen in association with the reefs on video footage (Limpenny et al. 2011; 

Pearce et al. 2011b) or it could reflect a decline in its normal target prey species. A similar shift in the 

feeding behaviour of the sea scorpion, Tauralus bubalis, was noted although this species has not been the 

subject of any formal dietary assessments and there were only a very small number of records in 

DAPSTOM. This species was nevertheless found to shift from a piscivorous diet to one dominated by 

crustaceans. Crustaceans are known to be an important component in the diet of demersal fish species 

(Elliott et al. 2002) and given that there is now evidence that this habitat supports an increased abundance 

of crustacean, it does seem likely that it will play some role in supporting marine food webs.  
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Despite the similarities observed between published records and the diets recorded in this study, there 

were notable differences which suggest that most of the fish species included here are feeding on the S. 

spinulosa reefs from which they were sampled. Fish that were feeding directly on the benthos were 

feeding on either S. spinulosa itself or fauna that is typically present in high abundances on S. spinulosa 

reefs (Chapter 4), including Pisidia longicornis and a variety of amphipods and Mysid shrimp. Sabellaria 

spinulosa had not previously been reported as being an important prey item in the diet of any of the fish 

included in this study, although Holt et al. (1998) has previously suggested that flatfish were likely to feed 

on S. spinulosa and a small number of records held in the DAPSTOM database (Pinnegar 2009) indicate 

that S. spinulosa is eaten sporadically by dab, Limanda limanda.  

The fish associated with the reefs form four feeding guilds: ZB-H Mysid Feeders, ZB-E Pisidia Feeders, 

ZB-E Sabellaria and Pisidia Feeders and ZB-E Sabellaria Feeders. Of all of the feeding guilds identified, 

ZB-E Sabellaria Feeders and ZB-E Sabellaria and Pisidia Feeders are the only ones that can be 

unequivocally linked to the reef habitat. S. spinulosa was identified as the main prey item in the diets of 

juvenile Dover sole, plaice, dab and dragonet as well being the second most important prey item for adult 

butterfish. That S. spinulosa was found to be such an important prey item in the diet of so many juvenile 

fish, and a greater proportion of juveniles were sampled from this habitat than adults (1.2:1) especially 

within the gadoids and flatfish species (8.8:1) could indicate that this habitat also provides and important 

nursery ground for some fish species, an aspect of S. spinulosa reef ecology that has not yet been 

considered. S. spinulosa reefs are inherently patchy structures and the gaps within the reef may provide 

important refugia for juvenile fish to escape predation, as is the case in other biogenic habitats (Borg et al. 

2006; Bouma et al. 2009; Rabaut et al. 2010)  

The remaining two benthic feeding guilds seem to be predating selectively on fauna that are associated 

with the reefs in high abundance, including the long clawed porcelain crab, Pisidia longicornis and mysid 

shrimp. However, these species also occur in sedimentary habitats, albeit in smaller numbers (Chapter 4) 

and hence more work would be required to investigate this trophic association more fully. It is assumed 

that the foraging range of the fish sampled here is less than the area of the reef habitats from which they 

were sampled (7.75 km2 – 49.87 km2). However, as this is not known for most of the species included in 
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this study it is possible that these fish are feeding on adjacent sedimentary habitats as well as, or instead 

of, on the reefs themselves.  

The widely recognised gadoid feeding guild, including whiting, Merlangius merlangus and bib, Trispoterus 

luscus (Armstrong 1982; Hamerlynck and Hostens 1993; Greenstreet et al. 1998; Hostens and Mees 

1999) were found to have considerable dietary overlap with the lesser weever, Echiichthys vipera, and 

together formed the ZB-H Mysid Feeder guild. Whilst mysids have previously been recorded as an 

important prey item for the species included in this guild (Armstrong 1982; Hostens and Mees 1999; 

Vasconcelos et al. 2004), this is the first time that the dietary overlap between gadoids and the lesser 

weever has been reported. This could indicate that previous studies investigating the dietary partitioning 

among gadoids have underestimated the competitive pressures exerted on this predator group.  

5.5 Limitations 

A number of limitations have been identified within this study, the most notable being the absence of 

structured sampling to include individuals from on and off the reef habitats. This was not possible due to 

the serendipitous nature in which these samples were obtained, and the limited time and sample 

processing materials available for this additional and unplanned component of the survey cruise. Sampling 

fish on and off the reefs in the same broad area would have facilitated an assessment of the degree to 

which the presence of the reef was influencing both the diet and the feeding behaviour of the fish included 

in this study. Concurrent sampling of prey populations would also have facilitated and investigation into the 

degree of selectivity in the feeding behaviour of the fish studied (Hinz et al. 2005).  

The low numbers of fish specimens examined, has limited both the analyses that could be undertaken and 

the confidence or statistical power of the conclusions made. For example niche breadth (H’) was found to 

be positively correlated with the number of specimens examined in the each group, casting doubt on its 

utility in this context. As S. spinulosa reefs are listed under the Habitats Directive (EC 2013) and the 

OSPAR list of threatened and endangered habitats (OSPAR 2008), direct sampling of this habitat is rarely 

permitted. It might be possible to set traps for fish to sample this component of the marine food web more 

comprehensively, but as such devices usually rely on food bait this is not considered to be the most 

appropriate sampling method for studies relying on gut content analysis. An alternative may be to request 
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that fish are retained from any incidental sampling of this habitat to expand on the analyses presented 

here.  

Ontogenetic shifts in diet are commonplace in marine fish and are a considerable source of variability in 

both feeding behaviour and prey choice. Species were separated based on their developmental stage 

(based on length: Table 5.1), which appears to have been successful as dietary differences were 

detectable at this level for the majority of species studied. However, had a greater number of fish been 

available for inclusion in this study it would have been preferable to investigate ontogenetic shifts for each 

fish population individually, as some species may have more than one shift in their diet. Detailed 

population level investigations would also mean that regional differences in the size structure of fish 

populations would be identified.  

Another limitation of this, and any, study using stomach content analysis is the variability in evacuation or 

digestion rates that exists between different prey types (Andersen and Beyer 2008; Couturier et al. 2013) 

and between different predator species. Although gastric evacuation models have been proposed for 

some well-studied groups such as the gadoids (Andersen 2001) the evacuation rates have not previously 

been studied for many of the species included in this investigation, and hence no attempt was made to 

account for, or quantify this source of variation. A great deal more work on the diets of small demersal fish, 

and on the digestion of individual species would be required before digestion rates could be incorporated 

in studies of this nature. There are recognised differences between the evacuation rates of soft and hard 

bodied prey (Couturier et al. 2013) which could mean that the importance of crustacean prey is 

overestimated. The fact that these analyses were able to detect diets dominated by soft bodied species 

and mixed diets as well as those dominated by hard bodied species must, however, give some confidence 

that dietary preferences are being accurately detected.  
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Chapter 6. Repeated Mapping of Reefs Constructed by Sabellaria spinulosa at an 

Offshore Wind Farm Site  
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6.1 Introduction 

The global environmental benefits of offshore wind energy developments are undisputed and there is 

considerable political support for the continued expansion of this industry (Brennand 2004; Portman et al. 

2009; Saidur et al. 2010; Baltas and Dervos 2012). As in any industry however, there are environmental 

impacts associated with construction, operation and decommissioning activities and it is vital that these 

are given due consideration. The UK currently has the largest installed offshore wind capacity in the world, 

exceeding 3GW (BVG 2013). Predicted expansions in the industry could see this figure rise to 18 GW by 

2020. There has been a greater than tenfold increase in the generation capacity of wind turbines since the 

first wind farm was installed in UK waters, although this has not resulted in an equivalent reduction in the 

overall size of each development. The footprint of individual wind farms has steadily increased in-line with 

the UK governments renewable energy targets (Brennand 2004). Under Round 1 of the UK’s offshore 

wind farm development scheme, administered in December 2000, sites ranged from 4 to 45 km2 (mean 13 

km2) (4COffshore 2013). Under Round 2 of the scheme, development sites ranged in size from 8 to 230 

km2 (mean 70 km2) (4COffshore 2013). Many of the Round 1 and Round 2 sites were subsequently 

extended and nine significantly larger zones were designated for offshore wind development under Round 

3 in January 2010. The Round 3 zones range in size from 162 km2 (Rampion Offshore Wind Farm) to 

8,660 km2 (Dogger Bank) (4COffshore 2013). The ambition is that the larger Round 3 zones will ultimately 

house multiple adjacent wind farms that will collectively produce a total output of 33 GW. The rate at which 

the offshore wind industry is developing and the fact that these developments are occurring against a 

backdrop of unprecedented levels of anthropogenic disturbance (Blaber et al. 2000; RCEP 2004; Kaiser et 

al. 2006; Cardoso et al. 2008; Tappin et al. 2010; Merchant et al. 2012) makes environmental 

consideration all the more important.      

In a widely cited review of the potential impacts of offshore renewable energy developments Gill (2005) 

identified numerous sources of likely environmental damage. Abbasi and Abbasi (2000) concluded that the 

adverse environmental impacts associated with renewable energy sources could be as strongly negative 

as the impacts of conventional energy sources. In contrast, there is a growing body of thought that 

offshore renewable energy developments may enhance the marine environment by creating artificial reef 

habitats, by acting as aggregation devices for fish and by forming de-facto marine reserves by excluding 
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other sea users (Wilhelmsson et al. 2006; Wilson et al. 2007; Wilhelmsson and Malm 2008; Inger et al. 

2009; Wilson and Elliott 2009; Reubens et al. 2011; Reubens et al. 2013a; Reubens et al. 2013b; 

Reubens et al. 2013c; Ashley et al. 2014). This is of course dependent on the environment being given 

careful consideration during the planning and design phases and would only apply where developments 

occur in non-pristine environments.  

Knowledge of the distribution, quality and quantity of habitats and species, is fundamental to our ability to 

protect them (Jackson et al. 2001). Historically, distribution records were based entirely on point 

observations and samples but this changed with the wide acceptance of remote sensing techniques in the 

early 1990s. Remote sensing techniques, most notably sidescan sonar and multibeam echo sounder 

(MBES) systems are now considered the tool of choice when mapping large areas of the seabed (Coggan 

et al. 2007).  These survey tools are able to ensonify large areas of the seabed with 100% coverage at a 

resolution finer than 1m2 (Anderson et al. 2008a). Sidescan sonar and MBES data can be used to define 

roughness characteristics, acoustic properties and morphological features of the seabed which in turn can 

be used to map habitat boundaries (Brown and Blondel 2009). In recent years this mapping process has 

been taken a step further with the incorporation of biological ground-truthing. Acoustic signatures have 

been found to behave as reliable surrogates of biotopes, and with sufficient ground-truthing can be used to 

create full coverage biotope maps with moderate to high levels of confidence (Brown and Collier 2008; 

Ierodiaconou et al. 2011; Micallef et al. 2012). A number of studies have demonstrated the utility of very-

high resolution acoustic data in mapping discrete biological features such as the reefs formed by the tube-

worm Lanice conchilega (Degraer et al. 2008), the horse mussel Modiolus modiolus  (Wildish et al. 1998; 

Lindenbaum et al. 2008) and seagrass beds (Ardizzone et al. 2006).  

Aggregations of the tubiculous polychaete S. spinulosa were identified within the Thanet offshore wind 

farm site during baseline characterisation surveys in 2005 (MESL 2005). Where this species forms reef 

structures, it is considered to be a conservation priority both at a national and European level. S. spinulosa 

reefs are included in the Habitats Directive definition of reef habitats 1070 and may also be afforded 

protection as features of broader physiographic habitats listed under the directive such as Estuaries (EC 

2013). S. spinulosa reefs are also listed in the OSPAR list of threatened and / or declining habitats 

(OSPAR 2008) and are identified as Habitats of Principal Importance under Section 42 of the English 
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Natural Environment and Rural Communities (NERC) Act 2006. Despite being listed as a habitat of 

significant conservation importance the definition of what constitutes an S. spinulosa reef remains a topic 

of much discussion (Hendrick and Foster-Smith 2006; Gubbay 2007). The Habitats Directive defines reefs 

as concretions which arise from the sea floor (EC 2013) whilst the OSPAR definition is based on percent 

cover (30% on mixed substratum, 50% on rock) but also notes that the habitat should be thick and 

persistent and support an epibiota that is distinct from surrounding substrata (OSPAR 2008). Gubbay 

(2007) and Hendrick and Foster-Smith (2006) noted that extent, elevation and patchiness are important 

attributes for defining an S. spinulosa reef and both advocate the use of a sliding scale of “reefiness”. A 

potential relationship between an irregular acoustic signature and the presence of S. spinulosa 

aggregations that are likely to qualify as reefs of conservation significance based on the aforementioned 

definitions was noted in Chapter 5. The aim of this study is to test the relationship between the textured 

signature observed in acoustic data and the presence of S. spinulosa reefs that may qualify for statutory 

protection. 

Although the S. spinulosa aggregations identified at the site were not protected by any formal conservation 

designations, the wind farm developer and the UK statutory nature conservation bodies (Natural England 

and the Joint Nature Conservation Committee (JNCC)) decided at an early stage that it would be 

favourable to protect the best examples of this habitat during the construction phase with a view to the 

wind farm potentially acting as a reserve for this habitat in years to come. The work presented here is one 

of the first examples of an integrated environmental assessment, where conservation agencies and 

marine scientists have actively worked with the developer to facilitate an environmentally responsible 

construction process. It presents the first attempt to map S. spinulosa reef extent and distribution over time 

in relation to a new offshore wind farm development, representing an important step forward in our ability 

to map, monitor and manage sensitive marine habitats in the face of increasing anthropogenic activity.  
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In order to evaluate the feasibility of using remote sensing technology to delineate S. spinulosa reefs and to 

explore the interaction between the reefs and the construction of an offshore wind farm the following 

hypotheses have been tested:   

 

 

Hypothesis E 

H0E: Substrates identified as being possible S. spinulosa reef using high resolution sidescan sonar are 

no more likely to contain S. spinulosa than areas not identified as being possible reef.  

H1E. Sabellaria spinulosa are present in significantly higher densities and cover a greater proportion of 

the substrate in areas identified as possible reef using high resolution sidescan sonar.  

 

Hypothesis F 

H0F: Sabellaria spinulosa reefs are unchanged in terms of their extent and quality (worm density, % cover 

or the diversity of associated macrofauna) following the construction of an offshore windfarm.  

H1F. There is a reduction in S. spinulosa reefs in terms of either their extent or quality (worm density, % 

cover or the diversity of associated macrofauna) associated with the construction of an offshore 

windfarm.  

H2F. There is an enhancement in S. spinulosa reefs in terms of either their extent or quality (worm 

density, % cover or the diversity of associated macrofauna) associated with the construction of an 

offshore windfarm. 
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6.2 Methodology 

High resolution acoustic data and seabed images were collected from across the Thanet Offshore 

Windfarm site, in the southern North Sea, in 2005, 2007 and 2012, corresponding to a baseline, pre-

construction baseline and post-construction survey as detailed in Chapter 2.  

6.2.1 Seabed Image Analysis 

Tube counts 

Estimates of S. spinulosa density were determined using the open source image processing software, 

Image J® (Schindelin et al. 2012). The number of tube openings were used as a proxy for the density of 

live S. spinulosa as animals were completely retracted in the majority of photographs obtained. Image J® 

standard methods for particle counting were adapted for S. spinulosa density estimations. The process 

involved image smoothing and sharpening and overlaying a reference grid. Tube openings were counted 

using the Image J® cell-counting utility. Counts for each image were repeated 3 times and the mean 

calculated. As this method relies on high quality images with low background noise, images collected in 

2005 could not be analysed using this method and 50 of the 268 images collected in 2007 and 2012 also 

had to be excluded from the analysis due to high levels of background noise, poor focus and / or high 

turbidity levels.   

Percent Cover Calculations 

The total percent cover of S. spinulosa structures, including dead and broken tubes, was estimated for 

each image collected in the 2007 and 2012 surveys. Working on the assumption that any structures that 

were intact and growing vertically were living, the percent cover of live S. spinulosa structures was also 

estimated. A grid was overlaid on each image in Photoshop, and a series of reference images were 

produced to aid the consistency of estimations. 

Macrofaunal abundance 

All macrofauna visible in the seabed images were identified to the highest possible taxonomic resolution 

(species level where possible) and their abundance recorded. Colonial species that cannot be accurately 

enumerated were recorded as present or absent (1 or 0 respectively). The World Register of Marine 
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Species (WoRMs; http://www.marinespecies.org/) was used to ensure consistency in the species 

nomenclature. 

 

6.2.2 Habitat Mapping 

The acoustic data were interpreted to provide estimates of the distribution and extent of S. spinulosa reefs 

within the Thanet offshore wind farm site using the presence of an irregular surface texture noted at the 

Hastings Shingle Bank Site in Chapter 5 (Figure 6.1). The side-scan sonar data formed the primary data 

source for mapping the extent and distribution of S. spinulosa reefs, although digital elevation models 

(DEMs) produced from the MBES data, and the associated backscatter data, were used to further aid the 

delineation of reef boundaries. Since the irregular texturing produced by S. spinulosa habitats cannot 

definitively be distinguished from other biogenic structures, ground-truthing data were used to verify the 

species responsible for the putative reefs. For example, during the 2007 surveys an area initially identified 

as potential S. spinulosa reef was subsequently identified as a mussel bed formed by the blue mussel, 

Mytilus edulis. This habitat only occupied a small area, was only captured at one ground-truthing station, 

and has been excluded from the current study.  
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Figure 6.1 High resolution (410 kHz) sidescan sonar snapshot images (EdgeTech 4200FS) of A) Sabellaria 

spinulosa reef; B) Flat sedimentary habitats within the Thanet offshore wind farm site in 2012; C) seabed image 

taken at the same location as A; D) seabed image taken at the same location as B. 

 

6.2.3 Verification of acoustic reef classification  

The detection of S. spinulosa reefs using acoustic data was verified using quantitative measures of S. 

spinulosa tube density and % cover of S. spinulosa structures derived from seabed images. For each 

measure, values within stations were averaged, and then pairwise differences between stations were 

calculated using Euclidean distance. A permutational dispersion test (Anderson 2006) revealed that the 

variance in density was significantly different between the two habitat classes and hence the density data 

was Log(x+1) transformed, before being averaged. The resulting resemblance matrices were analysed 

using a 2-way permutation-based analysis of variance (PERMANOVA; Anderson 2001b; Anderson 2001a; 

McArdle and Anderson 2001) to determine the significance of differences between acoustically-derived 

habitat classes (S. spinulosa reef and sediment) and years (2007 and 2012). This procedure is formally 

equivalent to standard Analysis of Variance, but the flexibility and robustness of the permutation approach 

avoids the necessity for variables to fulfil standard normality assumptions. 
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6.2.4 Impact Assessment  

The impact of the wind farm development on the S. spinulosa reefs and adjacent sedimentary habitats 

was investigated by calculating the relative extent of reefs recorded in the acoustic data in 2005, 2007 and 

2012, and by examining the associated macrofaunal communities. Quantitative macrofaunal abundance 

data extracted from the seabed images collected in 2007 and 2012 were used to calculate a range of 

univariate measures of community structure. These were: S, number of taxa; N, number of individuals; H’, 

Shannon’s diversity and J, Pielou’s J’, an evenness measure. S. spinulosa was removed from the data 

before measures were calculated since the aim was to test for differences in the macrofauna associated 

with the reef rather than in the reef builder itself. Sample values were averaged within sampling stations, 

pairwise differences calculated between stations, and the resulting resemblance matrix analysed using 2-

way PERMANOVA. A permutational dispersion test (PERMDISP; Anderson 2006) revealed that the 

variance in S was significantly different between the two habitat classes and hence a Log (x+1) 

transformation was applied before the number of species (S) was averaged by station.   

Differences in the faunal composition between 2007 and 2012 and between the different acoustic habitat 

classes were also investigated using a 2-way PERMANOVA carried out on a Bray-Curtis similarity matrix 

calculated using untransformed, station-averaged macrofaunal abundance data. Finally, a one-way 

SIMPER analysis was carried out on the same data, using a combined factor of habitat class and year, to 

ascertain which taxa were responsible for the observed differences (Clarke and Warwick 2001; Clarke and 

Gorley 2006; Clarke et al. 2006).   

6.3 Results 

6.3.1 Verification of Acoustic Reef Classification 

Sabellaria spinulosa Density 

The density of S. spinulosa tubes recorded in seabed images was higher in areas identified as S. 

spinulosa reef than in adjacent sedimentary habitats (Figure 6.2a). The range of S. spinulosa densities 

was notably higher in 2012, both within and outside areas that were identified as reef, and much higher 

densities of S. spinulosa were recorded in adjacent sediments in 2012. This suggests that the reef habitats 

became patchier over this time period, and the increase in S. spinulosa density in adjacent sediments 
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could be a precursor to future reef development. Although differences in S. spinulosa densities on and off 

acoustically defined reef habitats were significant, whilst differences between years were not (Table 6.1), 

there is a decrease in the median density of S. spinulosa within reefs between 2007 and 2012, driven by a 

small number of stations sampled in 2007 with densities of > 6,000 individuals per image. The tubes 

identified in these images were very small (< 0.5mm in diameter) indicating that this was a new settlement. 

Tube openings with this diameter were not recorded at any other stations or in any other year. 

Percent cover of Sabellaria spinulosa structures 

The total % cover of S. spinulosa, including dead and broken structures, and the % living S. spinulosa 

structures, were found to differ significantly on and off acoustically-defined areas of reef (Table 6.1). A 

marginally significant difference was also detected in the total % cover between years. The relationship 

between the acoustic reef classification and the % living S. spinulosa (Figure 6.2b) is similar to that 

observed with tube density (Figure 6.2a). The relationship between the acoustic reef classification and the 

total % cover of S. spinulosa (Figure 6.2c), which includes dead and broken up structures, followed the 

same general trend but there was a larger overlap between classes.  

Table 6.1 Summary of a series of Permutational Multivariate Analysis of Variance (PERMANOVA) tests carried out on 

Log (x+1) transformed, station averaged Sabellaria spinulosa tube density and station averaged live and total S. 

spinulosa cover (%) derived from seabed images collected across the Thanet wind farm site in 2007 and 2012 in 

acoustically defined S. spinulosa reefs and adjacent sedimentary habitats. A 2-factor crossed design was tested using 

Type I (sequential) sums of squares with permutations under a reduced model. The test results for interactions between 

habitat class and year (Habitat X Year) are also provided. The Pseudo-F (F) test statistic is provided alongside the 

probability (P) of obtaining that test statistic, generated using permutations. Significant results (P ≤0.05) are highlighted 

in bold font. 

 

  

Acoustic Habitat 
Class 

Year 
Habitat Class x 
Year 

F p F p F p 

S. spinulosa tube density 

(Log (x+1)) 
35.73 0.001 0.05 0.827 0.48 0.477 

Live S. spinulosa cover (%) 27.76 0.001 0.66 0.43 1.22 0.265 

Total S. spinulosa cover (%) (including 
dead and broken up structures) 

12.30 0.002 4.45 0.045* 0.0001 0.987 



220 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2  Box plots showing A) % cover of living Sabellaria spinulosa structures B) total % cover and C) the density 

of S. spinulosa tube openings,  recorded in seabed images taken within acoustically defined S. spinulosa reefs and 

adjacent sedimentary habitats in 2007 and 2012 within the Thanet offshore wind farm site (Figure 2.8). Each of the 

boxes represents the interquartile range of densities recorded whilst the central line represents the median value. 

The upper and lower limits of the density records (Median ± 1.5 x IQR) define the limits of the whiskers and any 

outlying values (< or > Median ± 1.5 x IQR) are represented by a dot. 
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6.3.2. Impact of the wind farm development on benthic habitats 

Sabellaria spinulosa reef extent 

Acoustically-derived maps of the extent and distribution of S. spinulosa reefs in 2005, 2007 and 2012 

(Figure 6.3) show that although there were differences in the areas surveyed between 2005 and 2012 

there was a considerable level of change in the distribution and extent of S. spinulosa reefs during this 

time (Figure 6.3; Table 6.2). Between the baseline characterisation survey undertaken in 2005 and the 

pre-construction survey carried out in 2007 there was a marked decrease in the extent of S. spinulosa reef 

in the southern sector of the development site. However, a new area of reef was detected in the north of 

the site which was of roughly equivalent extent. As this area was not covered by the 2005 high resolution 

acoustic survey it is impossible to know whether or not the reef was present at that time. An increase in 

reef extent was recorded between the 2007 pre-construction survey and the 2012 post-construction 

survey, both in the southern sector and across the site as a whole. The S. spinulosa reefs in the southern 

sector increased in extent by 0.42km2 during this time and the across the site as a whole there was an 

increase of 0.32km2.  

 

Table 6.2 Summary of the extent (km2) of Sabellaria spinulosa reef identified within the Thanet offshore wind farm site 

using high resolution sidescan sonar data (see also Figure 2.8). Note that only the southern sector of the site was 

surveyed using high resolution sidescan sonar in 2005. 

 

 
  

Southern Sector Whole Site 

2005 2007 2012 2007 2012 

Sabellaria spinulosa Reef  (km2) 2.57 0.48 0.90 2.59 2.91 
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Figure 6.3 Charts showing the distribution and extent of Sabellaria spinulosa reefs identified within the Thanet 

Offshore Wind Farm site in 2005 (A), 2007 (B) and 2012 (C) using high resolution sidescan sonar and multibeam 

echo sounder data (MESL 2005; Gardline 2007; MESL 2007b; Gardline 2012; MESL 2012). Also shown are the 

extent of the reduced 2005 acoustic survey and the turbines installed at the site in 2011.   
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Macrofaunal Diversity 

In both 2007 and 2012 numbers of species (S) and Shannon Weiner’s diversity (H’) were significantly 

higher in seabed images taken from within acoustically defined areas of S. spinulosa reef than in samples 

taken from areas identified as being sedimentary habitats (Table 6.3; Table 6.4). These two indices also 

increased between 2007 and 2012. Differences in the numbers of individuals (N) and Pielou’s evenness 

(J’), a measure of the equitability of species abundance, between samples taken on and off acoustically 

defined areas of reef were not significant (Table 6.4).  

Table 6.3 Mean values of macrofaunal diversity indices (S= No. Species, N=No. Individuals, H’ = Shannon’s diversity 

and J’ = Pielou’s evenness) calculated from macrofaunal abundance data obtained from seabed images collected in 

each of the acoustically defined habitat classes (Sabellaria spinulosa reef and sedimentary habitats). S. spinulosa 

abundances were excluded from this analysis. 

 

Table 6.4 Summary of a series of Permutational Multivariate Analysis of Variance (PERMANOVA) tests carried out on 

station averaged diversity indices calculated for macrofaunal abundance data from seabed images collected across 

the Thanet wind farm site in 2007 and 2012 in acoustically defined habitat classes (Sabellaria spinulosa reef and 

sedimentary habitats). A 2-factor crossed design was tested using Type I (sequential) sums of squares with 

permutations under a reduced model. The test results for interactions between habitat class and year (Habitat X Year) 

are also provided. The Pseudo-F (F) test statistic is provided alongside the probability (P) of obtaining that test statistic, 

generated using permutations. Significant results (P≤0.05) are highlighted by bold font. 

  
Acoustic Habitat Class Year Habitat Class x Year 

F p F p F p 

S 24.53 0.001 22.67 0.001 0.13 0.714 

N 1.63 0.216 4.75 0.032 3.37 0.062 

H’ 17.79 0.003 13.4 0.004 0.03 0.851 

J’ 0.51 0.469 0.89 0.362 2.87 0.091 

 

 
S N H’ J’ 

2007 2012 2007 2012 2007 2012 2007 2012 

Mean 
S. spinulosa Reef  3.00 4.74 14.85 15.20 0.69 1.05 0.68 0.74 

Sediment 1.70 3.77 5.90 20.42 0.41 0.81 0.75 0.61 
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Community Composition 

To determine whether observed differences in diversity reflected differences in community composition, 

the Bray-Curtis resemblance matrix derived from macrofaunal abundance data was analysed using 

permutational analysis of variance (Table 6.5). There were statistically significant differences between the 

macrofaunal communities associated with each acoustic habitat class, and between 2007 and 2012. 

SIMPER analysis (Table 6.6) showed that the relative abundance of fauna present was driving the 

differences between the acoustically defined habitat classes and between 2007 and 2012. Whilst 

differences in the abundance of individual taxa recorded in each habitat and year class exist, the taxa 

present remain broadly comparable across all classes.  

Table 6.5 Summary of a Permutational Multivariate Analysis of Variance (PERMANOVA) test carried out on station 

averaged macrofaunal abundance data from seabed images collected across the Thanet wind farm site in 2007 and 

2012 within and outside acoustically defined areas of S. spinulosa reef.  A 2-factor crossed design was tested using 

Type I (sequential) sums of squares with permutations under a reduced model. The test result for the interaction 

between habitat class and year (Habitat X Year) is also provided. The Pseudo-F (F) test statistic is provided alongside 

the probability (P) of obtaining that test statistic, generated using permutations. Also shown are the degrees of freedom 

(df), sums of squares (SS) and mean squares (MS). Significant results (P ≤0.05) are highlighted by bold font. 

 

 

A number of attached epifaunal taxa including anemones belonging to the genus Sagartia, and hydroids 

belonging to the genera Obelia and Halecium were more abundant in samples taken from S. spinulosa 

reefs than in samples taken in sedimentary habitats. These taxa were also more abundant in 2012 than in 

2007. Colonial animals such as the hydroids were only recorded as being present (1) or absent (0), so the 

differences observed in these taxa are likely to be more ecologically significant than the numbers 

presented in Table 6.6 suggest. Some mobile species, such as the brittle star Ophiura albida, the pink 

shrimp Pandalus montagui and the hermit crab Pagurus berhardus, also increased in abundance between 

Source df SS MS Pseudo-F P 

Acoustic Habitat Class 1 7751 7752 2.66 0.011 

Year 1 14531 14531 4.98 0.001 

Habitat Class x Year 1 5334 5334 1.83 0.062 

Residual 62 180800 2916   

Total 65 2084200    
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sediment habitats and reefs, and between 2007 and 2012. In contrast, the queen scallop, Aequipecten 

opercularis, was all but absent from the S. spinulosa reef habitat in 2012 despite being present in high 

numbers in 2007.  

Table 6.6 The average abundance (n) of the taxa that collectively contribute to 90% of the dissimilarity between the 

different acoustic habitat classes and the different years. Determined through a SIMPER analysis on untransformed, 

station averaged macrofaunal abundance recorded from seabed images. Note S. spinulosa itself was excluded from 

this analysis.   

Taxa 
Sediment Reef 

2007 2012 2007 2012 

Ophiura albida 3.19 8.18 2.67 5.97 

Sagartia spp. 1.05 1.43 2.81 3.84 

Aequipecten opercularis 0.13 0.08 6.56 0.43 

Pagurus bernhardus 0.08 0.58 0.26 0.79 

Pandalus montagui 0 0.18 0.15 0.75 

Sagartiogeton laceratus 0.15 7.67 0.59 0.1 

Obelia spp. 0 0.32 0.04 0.57 

Asterias rubens 0.19 0.17 0.33 0.34 

Pisidia longicornis 0.03 0.02 0.52 0.32 

Halecium spp. 0.03 0.3 0.04 0.36 

Pomatoceros spp.  1.13 0.2 0.19 0.11 

Hydrallmania falcata 0 0.25 0 0.04 

 

The common starfish, Asterias rubens, and the long clawed porcelain crab, Pisidia longicornis, were both 

more abundant on the S. spinulosa reefs than in adjacent sedimentary habitats but their abundance 

showed little change between 2007 and 2012. This indicates that the presence of reef has a greater 

influence on the distribution of these species than other elements of the environment that changed 

between 2007 and 2012. Conversely, a dramatic increase in the abundance of the anemone 

Sagartiogeton laceratus was observed between 2007 and 2012 in sedimentary habitats, indicating that 

this species may be responding positively to changes in environmental conditions that occurred during this 

time.   
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6.4 Discussion  

6.4.1 Mapping Sabellaria spinulosa habitats using high resolution acoustic data 

Sidescan sonar technology has been shown to be effective in the detection of small-scale seabed features 

such as seagrass beds, horse mussel beds and Lanice conchilega beds through the discrimination of 

textural differences on the seafloor (Wildish et al. 1998; Ardizzone et al. 2006; Degraer et al. 2008; 

Lindenbaum et al. 2008). This study demonstrates that this technology can also be used to reliably detect 

S. spinulosa reefs. In addition, high resolution multibeam backscatter and bathymetry data were used to 

supplement the sidescan sonar data interpretation and these methods were also found to be successful in 

distinguishing the textural differences between S. spinulosa reefs and surrounding sediments.  All of these 

detection methods rely on textural differences, and hence there will be instances where, for example, S. 

spinulosa reefs occur on rough ground, it is harder and perhaps impossible to differentiate between a reef 

and the surrounding substratum. Other reef habitats such as horse mussel beds and stony reefs can also 

return an irregular signature and therefore some ground truthing will be necessary to confirm the presence 

of S. spinulosa reef, until such a time that the differences between the acoustic signatures of these 

habitats are better understood and quantified (Limpenny et al. 2010).  

S. spinulosa aggregations are visible in both high resolution sidescan sonar and backscatter derived from 

MBES data as an irregular texturing of the seafloor. The precise physical qualities of S. spinulosa reefs 

that generate the irregular acoustic signature is not yet fully understood, but it seems likely that it is a 

combination of both physical and biological factors. The high rigidity of the tube structures would result in 

areas of high reflectivity in the acoustic data, as has been observed in other polychaete reefs (Degraer et 

al. 2008). Conversely the high volume of biological material associated with S. spinulosa reefs, both in 

terms of the reef-building organisms themselves and the associated fauna, would result in low reflectivity 

in the acoustic data, as observed in the acoustic signature of seagrass beds (Ardizzone et al. 2006). This 

combination of high- and low-reflectivity attributes of the reefs is likely to be, at least partially, responsible 

for the irregular texturing observed in the acoustic signature which is characteristic of these habitats.  

Significant differences in tube density and percentage cover (living and total) between samples taken on 

and off the reefs identified in acoustic data, supports this hypothesis. Furthermore, as differences in 

percentage live cover and tube density between samples collected from the S. spinulosa reefs and from 
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adjacent sediments were more pronounced than differences in total cover, which includes broken 

structures, it seems likely that healthier reefs, containing high densities of living worms, will be more 

detectable using these acoustic techniques. Tube densities and percent living cover will be highly 

correlated with each other as only erect tubes can be counted reliably using automated image counting 

techniques, and these are likely to be alive. Both tube density and percent living cover are also likely to be 

correlated with the biomass of S. spinulosa, which may explain the stronger relationship with the acoustic 

signatures. However, it is also possible that aspects of the non-living S. spinulosa cover such as tube 

degradation or horizontal positioning could be responsible for the weaker relationship observed with the 

acoustic signatures.  

Fine sediment, known to collect in the gaps in Sabellariid reef structures (Kirtley and Tanner 1968; 

Cunningham et al. 1994; Pandolfi et al. 1998) may also contribute to the variable reflectivity observed in 

the acoustic signature but this aspect was not measured during the current study. Well-developed S. 

spinulosa aggregations, in terms of size and elevation, are visible not only in the MBES backscatter data 

but also in the digital elevation model (DEM), indicating that a component of the irregular signature 

observed may be caused by variations in the height of these structures as well as by differences in 

reflectivity.  

6.4.2 New insights into the impacts of offshore wind farm developments 

In addition to demonstrating the ability of high resolution acoustic data to detect and delimit S. spinulosa 

reefs, this study provides new insights into the response of these and adjacent sedimentary habitats to an 

offshore wind farm development. Offshore wind farms have previously been reported to increase biomass 

by acting as an artificial reef (Wilhelmsson et al. 2006; Wilson and Elliott 2009; Krone et al. 2013) and by 

acting as fish aggregation devices (Reubens et al. 2011; Reubens et al. 2013a; Reubens et al. 2013c). It 

has also been postulated by some authors that these developments could act as de-facto marine reserves 

(Inger et al. 2009; Ashley et al. 2014). This study provides some evidence for the latter. S. spinulosa reef 

habitats were found to have increased in extent by 0.32km2 18 months after construction at the site had 

been completed. The absence of any significant S. spinulosa reef losses during and after construction 

indicates that the micro-siting of turbines was effective at this site, and that these habitats have not been 

negatively impacted by the development.  
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A decrease in reef extent (2.09km2) was observed in the southern sector of the development site, between 

the 2005 baseline survey and the 2007 pre-construction survey. The reduction in reef extent in the 

absence of any construction activities associated with the wind farm development is indicative of a habitat 

with a high level of natural variability. However, these changes in extent may be attributable to other 

anthropogenic pressures acting on this area, such as commercial fishing. Commercial fishing, and towed 

bottom gear in particular, is widely accepted as having detrimental impacts on the benthos (Kaiser et al. 

2006; Cook et al. 2013) and scars which are very likely to have been caused by paired beam trawlers 

were noted in the high resolution acoustic data collected across this site in 2005 and 2007 (MESL 2005; 

MESL 2007b). It is therefore impossible to separate the natural variation in reef extent and distribution 

from the physical impact of fishing activities that occurred in this area between 2005 and 2007. Future 

monitoring surveys of the Thanet wind farm site may provide important information to help tease apart 

these aspects of reef ecology.  

The diversity of macrofauna supported by both S. spinulosa reefs and adjacent sedimentary habitats was 

significantly higher in 2012 (post-construction) than in 2007 (pre-construction). In the absence of any non-

impacted reference sites it is impossible to attribute the enhancements observed to the presence of the 

wind farm unequivocally. However, this area was known to be targeted by commercial beam trawlers prior 

to the construction of the wind farm and it is likely that this source of anthropogenic disturbance has been 

reduced. Although there are no legislative barriers to commercial fishing in the Thanet offshore wind farm 

site, the presence of the turbines makes towing a beam trawl through the site both dangerous and 

undesirable. It is possible therefore that a reduction in these activities may be responsible for the increase 

in macrofaunal diversity and increase in abundance of epifauna associated with S. spinulosa reefs in this 

area.   

6.4.3 The importance of repeat mapping in support of offshore wind farm developments 

This study demonstrates the application of seabed mapping using acoustics for environmental impact 

assessment, and also demonstrates the importance of these technologies to an emerging offshore 

industry. The Thanet offshore wind farm development exemplifies pro-active environmental consideration 

through the life of the development. Conservation agencies and environmental consultants were actively 

involved in the environmental impact assessment from an early stage, and this has facilitated the 
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protection of an important benthic habitat during construction through influencing the placement of turbines 

and cables. Early indications are that this wind farm is now acting as a de-facto marine reserve for this 

habitat, providing a unique opportunity for scientists and conservation agencies to track the development 

of S. spinulosa reefs over time. There are few (if any) examples of pristine S. spinulosa reefs in the UK, 

that is, reefs that are not being modified by anthropogenic activities, and it is possible that in years to 

come the reefs at this site may recover to a pristine or near pristine state, providing a unique opportunity to 

study the natural variability of this habitat in the absence of fishing.  

Repeated baseline surveys are rare in environmental impact assessment work, but this paper goes some 

way towards demonstrating their potential importance to both the developer and to science in general. It 

has been widely postulated that S. spinulosa aggregations are ephemeral in nature (Holt et al. 1998; 

Hendrick and Foster-Smith 2006) but there have been no studies to date that demonstrate this 

unequivocally. The 2005 and 2007 surveys undertaken at this site are one of the first records of this 

habitat having moved and changed in extent, although the cause of this change may be, at least partly, 

attributable to commercial fishing activities. The change in S. spinulosa distribution and extent between 

the baseline survey and the pre-construction survey also has important implications for the developer. Had 

the pre-construction survey not been carried out, micro-siting of the turbines would have been somewhat 

fruitless as the reefs identified in 2005 were no longer present in 2007 and new reefs had been detected 

elsewhere in the site. Perhaps more critically, the two baseline surveys allow the effects of the 

development to be put into the context of the natural background variability of this habitat. Decreases in 

the extent of S. spinulosa reefs were noted between the first and second baseline survey. Had this not 

been recorded these losses could have been attributed wrongly to the construction of the wind farm, and 

increases in the extent of S. spinulosa reefs following the construction of the wind farm would also have 

gone undetected. Ideally, repeat baselines would be undertaken for many more than two years, in order to 

capture the true temporal variability of the system being studied and to allow for robust Before-After-

Control-Impact (BACI) type assessments to be made. The costs associated with survey work in the marine 

environment, and the timescales of most developments will however, prohibit such an approach in most 

cases.  
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6.4.4 Limitations 

The data presented here were collected as part of the licensing procedures for wind farm developments in 

the UK, and were therefore subject to stringent budgetary and timing constraints. The surveys were 

designed to meet regulatory requirements, which are a compromise between “best science” and the 

financial burden placed on the developer. This inevitably means that there are imperfections in the survey 

design. In this case the most notable gap in the survey design is the lack of any reference areas outside 

the boundary of the wind farm. Had reference sites been placed in suitable areas outside the wind farm 

boundary a better understanding of the natural temporal and spatial variability in reef extent and quality 

could have been gained and it would have been possible to place the findings reported here, in a more 

robust context of background variation. The inclusion of some control areas would have facilitated the 

application of a BACI Paired-Series (BACIPS) survey design which ultimately would have meant that the 

amount of change attributable to the construction of the wind farm could have been estimated (Osenberg 

et al. 2006). 

The acoustic data collected as part of this study was acquired by two different contractors, using different 

equipment. Even in the two years where the data were collected by the same contractor using the same 

equipment (2007 and 2012) the interpretation was undertaken by different individuals. The use of different 

equipment and different personnel introduces a number of sources of potential error. Time-series data are 

a very valuable commodity in the marine environment (Frost et al. 2006) unfortunately, where data are 

collected as part of a licensing and/or monitoring requirement the error levels associated with 

requirements to reduce costs and deliver outputs within short timescales may significantly reduce their 

scientific value. Efforts to standardise the way that acoustic data are collected across Europe will help to 

reduce levels of error and subjective differences in interpretation between contractors and scientists 

(Coggan et al. 2007). There is also a considerable amount of research currently underway to develop 

mechanisms of automated acoustic data classification which may ultimately remove the subjectivity of 

manual interpretation and allow for much more homogeneous time-series assessments (Brown and Collier 

2008; McGonigle et al. 2009; Brown et al. 2011). 

It was not possible to use the seabed images collected in 2005 because of the poor image quality, caused 

in part by the very high levels of turbidity experienced at this site. As photographic technology advances it 
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is likely that our ability to monitor the environment remotely will also advance. However, there are 

limitations to this sampling technique which will not change. For example, it is not possible to identify all 

taxa to species level from seabed images alone. Many species, including colonial hydroids, can only be 

identified reliably to the species level using a stereo-microscope because important morphological 

differences are not visible to the human eye. Other taxa, such as tubiculous polychaetes, cannot be 

identified to the species level because the animals themselves are concealed within their tubes. In this 

study the identification of sea anemones was particularly problematic. Sagartia spp. could not be identified 

to species as this requires detailed examination their anatomy (e.g. tentacle positioning) as well as 

knowledge of the substratum upon which they are attached. The latter could not be determined reliably 

from all images because of the high level of habitat heterogeneity. Both S. elegans and S. troglodytes 

were present across the site but could not be separated consistently. In many instances the loss of 

species-specific information will not be significant but in this instance it is likely that failure to detect 

differences in the relative abundance of these two species may have masked important information about 

the environmental changes that occurred between 2007 and 2012.  

Seabed imagery is also limited to the assessment of epifaunal taxa, as most infauna will not be visible 

from the surface of any given substratum. Grab sampling would have facilitated a more complete 

assessment of the faunal assemblages in the area, and the potential impacts of the wind farm 

development. Statutory advice is to avoid direct (destructive) sampling of S. spinulosa habitats as this is 

thought to be more damaging than using remote sampling systems. However, there is no evidence to 

support this assertion as most drop-camera systems come into direct contact with the seabed and it is 

likely that they also cause some damage to the habitat. A mini Hamon grab, as would typically be used to 

sample the benthos offshore (Ware et al. 2011) removes an area of 0.1m2 which would equate to              

2 X 10-4 % of the smallest (0.48 km2) area of reef identified at this site, in 2007 (Table 6.2) representing an 

incredibly small loss of habitat. Furthermore, evidence collected from an aggregate extraction site in the 

English Channel (Pearce et al. 2007) indicates that these habitats are able to recover from physical 

disturbance in a very short period of time. A limited amount of direct sampling would therefore be unlikely 

to cause long-lasting damage to the habitat, and the contributions this could make to its future 

management are thought to outweigh the risks. 
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Evidence presented here indicates that offshore wind farms may have positive impacts on benthic 

communities, possibly through the exclusion of other more damaging activities such as fishing. However, 

this study only considers one site, and only one post-construction survey has been undertaken to date. 

The effects of the Thanet offshore wind farm on associated benthic assemblages may not yet have been 

fully realised, and we cannot yet be confident that the apparent enhancements in S. spinulosa reef habitat 

extent and diversity are attributable to the development. The impacts of offshore developments may also 

be very site specific, so caution should be exercised when extrapolating the results presented here to 

other wind farm sites.  

6.5 Conclusions 

High resolution acoustic data have been shown to successfully discriminate S. spinulosa reefs from 

surrounding sedimentary habitats. Significant differences in the density of S. spinulosa tubes, and both 

living and total percent cover of S .spinulosa structures, were observed between reef and non-reef 

habitats delineated using high-resolution acoustic imaging, validating the use of this survey technique in 

environmental assessment work. 

The extent of S. spinulosa reefs identified within the Thanet offshore wind farm site increased between the 

pre-construction survey in 2007 and the post-construction survey in 2012, indicating that the wind farm 

may be providing some protection to this habitat. The diversity of macrofauna associated with the S. 

spinulosa reefs at the site was greater than that observed in adjacent sedimentary habitats, suggesting 

that increasing the extent of this habitat will have a positive impact on the benthic biodiversity at this site. 

An increase in the diversity of macrofauna associated with both the S. spinulosa reefs and the 

sedimentary habitats at this site between 2007 and 2012 provides evidence that the wind farm is acting as 

a de-facto marine reserve, by reducing other pressures. 
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Chapter 7. General Discussion 
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7.1 Summary of Findings 

Reef habitats built by the tubiculous polychaete Sabellaria spinulosa have been identified as a habitat with 

significant conservation importance, based on their historic decline across Europe and the assumption 

that, like many other biogenic reef systems, S. spinulosa reefs enhance biodiversity. S. spinulosa reefs are 

listed in Annex I of the European Habitats Directive, the OSPAR list of threatened and declining species 

and habitats, and are included in national conservation legislation. However, despite the high conservation 

status of this habitat, very little work had been undertaken, prior to this study, to explore the role that S. 

spinulosa reefs play in marine ecosystems or their sensitivity to anthropogenic disturbance. Although it 

was not possible to address all of the known information gaps that exist relating to the ecology of S. 

spinulosa reefs, the following four broad aims were identified as the key first steps to providing a scientific 

grounding for the management and conservation of this habitat: 

1. Investigate the reproductive mode and life cycle of Sabellaria spinulosa  

2. Establish the degree to which Sabellaria spinulosa reefs influence the composition and nature of 

the macrobenthos  

3. Determine whether or not demersal fish feed on S. spinulosa reefs and investigate the 

commonalities between the diets and feeding behaviours of fish species associated with the reefs 

4. Evaluate the feasibility of using remote sensing technology to delineate S. spinulosa reefs and 

explore the interaction between the reefs and the construction of an offshore wind farm.  

Elucidating the reproductive cycle of S. spinulosa was not initially identified as a primary aim of this thesis. 

However, given the paucity of our knowledge in this area and the implications for the management of S. 

spinulosa reefs, additional sampling and analyses were undertaken in a serendipitous manner allowing for 

a preliminary investigation into the reproductive cycle. Observations made here of the reproductive 

ecology and population dynamics of the reef building organism indicate that S. spinulosa have a high 

reproductive output and fast early growth rates which are traits typical of r-strategists. This means that S. 

spinulosa have a high capacity to adapt to changes in the environment and to recover from adverse 

impacts. However, since many of the life-history traits of S. spinulosa including mortality and recruitment 

rates are not yet known, this species should not be considered as wholly opportunistic. It should also be 
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noted that these traits belong to the species and not necessarily the reef habitats that it creates. It is not 

yet known how long it takes for stable S. spinulosa reefs to develop, although some of the evidence 

presented here suggests that reefs can develop in a matter of months in some areas.  

In contrast to the congener S. alveolata, female S. spinulosa were found to contain eggs in all stages of 

development, throughout the year. Ripe males were also present throughout most of the year. The 

availability of larvae in the water column and the reproductive state of individuals studied indicate that this 

species is able to reproduce throughout much of the year and that it either has a protracted spawning 

period or several shorter ones. This species was found to have a main spawning event between 

December and February which has important implication from a management and monitoring perspective. 

It is normally recommended that benthic monitoring is carried out between April and September, after 

major settlement events, to ensure that impacts on recruitment are detected (JNCC 2004). However, given 

that S. spinulosa may have its main spawning event as late as February a survey in April could feasibly 

precede or coincide with the main settlement event. Surveys of this habitat should therefore be undertaken 

between June and September to allow time for the new settlement to grow to a size that would be retained 

in a grab sample (>1 mm) or be visible in seabed images. Where this is not possible the timing of the main 

settlement can at least be taken into account when interpreting the results of the survey. From a 

management perspective, this information can also be used to inform the timing of activities (e.g. 

construction or cable burial) that could impact on settlement such that the main settlement is protected.  

Further evidence of the resilience of S. spinulosa reefs was obtained through a time-series study at the 

Thanet Offshore Windfarm development site. Surveys of the reef extent immediately before, and 

approximately 18 months after, construction of the windfarm revealed that the extent of S. spinulosa reef 

increased after construction, despite extensive cable laying and turbine piling activities. The densest area 

of reef was avoided during construction which appears to have ensured an adequate supply of larvae to 

facilitate re-colonisation after works on the site had been completed. However, it is not possible to rule out 

S. spinulosa reefs outside the site surveyed as the source of new recruitments as the hydrodynamics of 

the area have not been studied in detail. S. spinulosa reefs in the Thanet site were found to have reduced 

in their extent between the two baseline surveys, prior to any construction work related to the windfarm.  

Although the source of this decline is unclear the area was targeted by commercial fisheries (local 
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fishermen, personal comms) and apparent trawl damage was evident in the side-scan sonar data 

collected from this site (Figure 7.1). It is unclear whether or not commercial fishing activities will be 

reduced by the presence of the windfarm in the longer term, but the enhancement observed at this site 

does provide strong evidence that the extent of reefs in this area was being limited by these activities. 

That the reefs continue to exist in this area, albeit as widely dispersed patches, despite ongoing fishing 

pressures is however, considered to provide further evidence of their ability to recover quickly from 

physical impacts. Although it seems unlikely that the S. spinulosa reefs have reached a stable / climax 

community under the ongoing pressure of bottom trawling.  

 

Figure 7.1 Sidescan sonar image showing parallel linear depressions in an area of Sabellaria spinulosa reef at the 

Thanet offshore windfarm site in 2005, thought to be the scars of a twin beam trawl. 

  

It has been widely postulated across the grey literature that S. spinulosa reefs enhance biodiversity and 

provide a habitat for species that would not otherwise exist in the area (Jones 1998; Foster-Smith and 

White 2001; Foster-Smith and Hendrick 2003; UKBAP 2007b; BRIG 2008). Detailed investigations into the 

macrofauna associated with S. spinulosa reefs in the eastern English Channel presented in this study 

found little evidence to support these assumptions. S. spinulosa reefs were found to support a higher 

density of species found more sporadically in the surrounding sedimentary deposits, most notably, the 

long clawed porcelain crab, Pisidia longicornis. This study raises questions about the perceived link 

between S. spinulosa reefs and enhanced biodiversity which represents a very real challenge to 

biodiversity protection legislation. S. spinulosa reefs can be considered as concentrations of species, often 

in elevated densities, that would likely be present in the wider area without them. It would be spatially 

5m  
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efficient to protect these habitat types if the aim of conservation efforts was to preserve the range of 

species typically found in sedimentary habitats. However, the highest value of S. spinulosa reefs to 

humans probably lies in the enhancement of biomass and productivity that S. spinulosa reefs provide 

where they occur in certain habitat types, but the legislative structures to support these arguments, as well 

as the scientific evidence base, remains poorly developed.  

The focus of marine conservation in the UK, and Europe, has for many years been on preserving 

biodiversity hotspots (JNCC 2013) based on the assumption that high biodiversity is commensurate with a 

healthy, functional and resistant marine environment (Stachowicz et al. 2002; Hooper et al. 2005; 

Cardinale et al. 2006; Cardinale et al. 2013). More recently there has been a move away from simply 

conserving biodiversity hotspots in favour of an MPA network that encompasses the full range of 

representative habitats and species (Payne et al. 2016) as well as to consider ecosystems in a more 

holistic way for example by identifying and measuring components which collectively give a measure of 

ecosystem functioning or ‘health’ (Tett et al. 2013). This is also reflected in the requirement to establish / 

work towards ’Good Environmental Status’ as defined in the European Marine Strategy Framework 

Directive (2008) (Borja et al. 2011b; Borja et al. 2013). The original premise for the protection of S. 

spinulosa reefs was that this habitat supports and elevated biodiversity (including species that would not 

otherwise occur) and that it had suffered significant decline, primarily in the Wadden Sea (Riesen and 

Reise 1982; Reise and Schubert 1987). The results presented here could call into question the validity of 

the high conservation status awarded to S. spinulosa reefs, at least on the basis of elevated biodiversity. 

However, that this habitat acts to concentrate benthic species and hence biomass is likely to have some 

ecological significance which may be better recognised in the new wave of holistic conservation 

objectives. It should also be noted that we cannot be sure that the reefs included in this study represent 

stable, climax communities and hence it is possible that we have yet to document the full influence that 

this habitat can have on the wider ecosystem.  
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Examination of the gut content of demersal fish sampled from S. spinulosa reefs in the southern North Sea 

revealed that a number of species were feeding on S. spinulosa itself, whilst others were feeding on 

species that were very abundant on the reefs, including Pisidia longicornis. Fish samples were not 

available from adjacent sedimentary habitats to allow quantitative comparisons but comparisons with diets 

reported in the grey and published literature indicate that the reefs may have some influence on feeding 

behaviour as well as dietary composition, and this is an area that certainly warrants further investigation. A 

high abundance of juvenile flatfish was noted in association with S. spinulosa reefs in the southern North 

Sea leading suggesting that S. spinulosa reefs may also provide an important nursery habitat. The use of 

S. spinulosa reef habitat for feeding and as a nursery area for these species would qualify it as an 

Essential Fish Habitat (EFH), a concept developed to bring together disparate efforts to conserve the 

marine environment and manage fisheries in America (Peterson et al. 2000; Rosenberg et al. 2000). The 

concept of EFH is now starting to filter into UK marine conservation and management efforts, reflecting the 

paradigm shift from conserving specific species and habitats to a more holistic ecosystem approach 

(Bergmann et al. 2004; Tett et al. 2013; MMO 2016). This is the first time that a link has been made 

between S. spinulosa reefs and demersal fish and expanding this to explore the relationship more fully 

would help to inform future assessments of EFH which ultimately will feed into the UK marine plans (MMO 

2016). A more complete understanding of the ecological value of S. spinulosa reefs is also likely to ease 

compliance amongst developers who are currently required to spend considerable sums of money 

identifying and monitoring any reefs that coincide with their activities.  

The   aspects of S. spinulosa reef ecology that have been investigated as part of this thesis are 

summarised in a conceptual model (Figure 7.2)  which illustrates how the different components of 

research are linked with one another as well as the socio-political landscape. 
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Figure 7.2 Conceptual model of Sabellaria spinulosa reef and its interactions with the natural and human environment. Aspects of reef ecology that have been studied as part of this thesis are 

highlighted in red. 
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7.2 Study Limitations 

Sabellaria spinulosa reefs are a predominantly subtidal feature, meaning that they are logistically difficult 

and expensive to study. The biggest limitation common to all of the observations and investigations 

presented here is the low level of sample replication. None of these studies were carried out at more than 

one location, meaning that there is a limit to the extrapolative power. Similarly, there was little temporal 

replication. The surveys at the Thanet offshore windfarm site were repeated in three different years and 

larval sampling was undertaken at eight intervals over the course of 18 months at the Cutline site. 

However, examination of fish diets was carried out using fish collected on just one sampling event, as 

were studies into the relationship between the presence of S. spinulosa reefs and macrofaunal diversity in 

the eastern English Channel. It is likely that there will be an element of temporal variation both in the 

macrofaunal communities associated with S. spinulosa reefs and in the feeding behaviour of fish 

associated with the reefs. If the reefs are acting as a nursery for some flatfish species this is also likely to 

have a temporal element, and there may be certain times of the year where this function is more important 

than others.  

Sampling was further limited by restrictions imposed because of the conservation status of this habitat. 

Some quantitative sampling of the reefs was carried out at the Hastings Shingle Bank which has provided 

a valuable insight into the relationship between reefs and the associated macrofauna. Quantitative grab 

sampling was not permitted at the Thanet Offshore Windfarm site and hence the associated impact 

assessment was limited to aspects of the reef that could be measured from remote observations collected 

using high resolution side-scan sonar and seabed imagery.  

Reference sampling was also missing from a number of the studies presented here. Fish stomach data 

was only examined from fish retained from trawl samples on S. spinulosa reefs. This sampling was carried 

out on a serendipitous basis when S. spinulosa reefs were incidentally trawled as part of a much broader 

seabed characterisation exercise. Because this sampling was not planned before the research cruise 

there were limited resources on board with which to retain samples, and limited time in the schedule to 

process them on-board. The decision was made, therefore, to focus on fish associated with reef habitats 

knowing that there would be limited opportunities to sample reefs with this gear in the future. Whilst this 

data has proven to be valuable in ascertaining the role of S. spinulosa reefs in the marine ecosystem, 
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samples taken from adjacent sedimentary habitats at the same time would have allowed for a more 

powerful and more in-depth analysis of the influence that this habitat has on fish feeding behaviour and 

diet.  

Sample preservation also presented some challenges in this study, where samples were collected for one 

purpose but were subsequently used for multiple purposes. Grab samples collected from the Hastings 

Shingle Bank site, for example, were collected with the primary aim of investigating the macrofaunal 

communities, but the S. spinulosa themselves were subsequently used for cohort analysis. Anterior width 

proved to be the most useful metric to analyse population structure but it is possible that whilst the adults 

stop growing in width that they continue to grow in length – something that would be difficult to ascertain 

from the specimens used since many individual were damaged during sample processing. Had population 

dynamics been the main aim of the sampling the tubes could have been dissolved in acid which would 

have preserved the worms better. This method however, dissolves mollusc shells and the hard parts of 

crustaceans which would have made macrofaunal analysis very difficult.  

7.3 Knowledge Gaps and Future Research Priorities 

7.3.1 Natural Variation and Reef Dynamics 

One of the major limitations to this study was the lack of repetition and the absence of any ‘control reefs’, 

that is, S. spinulosa reefs that are not being modified in some way by anthropogenic activity. In the 

absence of any control reefs the analytical power of studies like the ones presented here are significantly 

limited as it is impossible to differentiate between natural variance and anthropogenic influence. The 

ephemeral nature of S. spinulosa reefs is often stated as fact (Holt et al. 1995; Holt et al. 1998; Hendrick 

and Foster-Smith 2006; Hendrick 2007) and perhaps more worryingly is sometimes offered as a reason to 

reduce the specifications of monitoring programmes associated with MPAs and marine developments or to 

remove the requirement for them altogether (see for example: Jenkins et al. 2015). Despite the wide 

acceptance of their ephemeral nature there are currently no empirical data to support this theory. 

Anecdotal evidence does suggest that S. spinulosa reefs come and go, or shift from one area to another 

on an annual basis (Limpenny et al. 2010; Jenkins et al. 2015) as was noted in Chapter 6. However, all of 

these observations have been made in areas that are subject to the physical impacts of bottom trawling, 

an activity which S. spinulosa reefs are particularly vulnerable to (Gibb et al. 2014). Monitoring S. 
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spinulosa reefs that are pristine or that are subject only to minimal anthropogenic disturbance would allow 

us to establish the extent to which this habitat is ephemeral, and over what timescale. It would also allow 

us to establish whether or not S. spinulosa reefs exhibit a cycle of development and decay comparable to 

reefs built by its congener S. alveolata (Gruet and Bodeur 1995). Quantifying the natural variability that 

exists within this habitat in terms of its extent, patchiness and elevation, and associated faunal 

communities would allow us to put the results of studies such as those presented here into a meaningful 

context and ongoing monitoring of the ‘control reefs’ would provide reference points against which 

changes associated with marine developments, or those observed within MPAs, could be assessed.  

It has been postulated by some (David Connor personal comms) that the S. spinulosa reefs we are 

observing today are a far cry from the climax reef communities observed in years gone by and it is 

possible, like so many aspects of the marine environment, that our perception of S. spinulosa reefs has 

suffered from the ‘shifting baseline syndrome’ first introduced by Pauly (1995) in relation to fisheries. The 

‘shifting baseline syndrome’ essentially describes the way our collective perception of what a pristine 

environment looks like is diluted with each new generation, based on what they and the preceding 

generation have observed. The scientific community are only just starting to form a view of what a typical 

S. spinulosa reef looks like and this will be based primarily on observations made over the last 10-20 

years, as before this time, the tools for observing these habitats remotely were poorly developed and only 

rarely utilised. Our view of what a typical S. spinulosa reef looks like will therefore also be based on our 

observations of reefs that have to some extent been modified by anthropogenic activities so it is very likely 

that what we consider to be ‘healthy reefs’ are in fact degraded. Monitoring S. spinulosa reefs in the 

absence of any anthropogenic disturbance would therefore be required to fully investigate the climax reef 

community.  

This study has highlighted the potential to use S. spinulosa reefs within offshore windfarms as a proxy for 

pristine reefs, since the pressures from mobile fishing are much reduced (Ashley et al. 2014) and similar 

opportunities no doubt exist in other industries. The inclusion of closed ‘Reference Areas’ has also been 

proposed as part of the Marine Conservation Zone (MCZ) network, although the concept is still under 
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discussion2. It is also likely that once the Common Fisheries Policy (CFP) reforms are actuated, and 

fishing activities start to be regulated within the UKs MPA network, that designated S. spinulosa reefs will 

be allowed to recover and MPA condition monitoring may then itself perform many of the functions of a 

control reef, outlined above.  Another aspect of reef dynamics that has not been explored in this study, or 

elsewhere, is that of connectivity. This will become increasingly pertinent as the management of 

designated sites starts to take effect, since it will be necessary to determine whether damage to reefs that 

sit outside the MPA will have an impact on the integrity of the reefs within it. To date studies of connectivity 

have focussed on hydrodynamic modelling (Ayata et al. 2009), however, this method of assessment 

generally assumes that the species in questions is a broadcast spawner in the truest sense. Observations 

made here indicate that the gametes of S. spinulosa may stay loosely associated with the reef, possibly as 

a means of increasing fertilisation success. This possible reproductive adaptation would need to be 

researched further before connectivity of reefs could be modelled accurately based on hydrodynamics. It 

might also be useful to explore the potential application of genetic techniques to look at the relatedness of 

populations in different reef areas. This type of analysis has been applied successfully in a fisheries 

context (Prodöhl and Bailie 2015) but has yet to be tested on marine invertebrates.  

Underpinning our understanding of reef dynamics is an understanding of the biology of the reef-builder 

itself. This study has demonstrated how a combination of larval sampling and histological examination of 

adult worms can be used to advance our understanding of the reproductive cycle of S. spinulosa and a 

series of targeted, geographically separate surveys, undertaken at monthly intervals would be a useful 

extension of this work. The precise nature and timing of the reproductive cycle of S. spinulosa have 

important management implications since they will have a significant influence on the species ability to 

recover from anthropogenic disturbances. Understanding when and if there are time which S. spinulosa 

habitats may be more sensitive to certain activities (i.e. during settlement periods) may also allow for more 

successful mitigation measures to be designed. Similarly, understanding the timing of the main spawning 

and settlement periods helps to inform the timing and interpretation of monitoring surveys.   

                                                           
2 https://www.gov.uk/government/publications/2010-to-2015-government-policy-marine-environment/2010-to-2015-
government-policy-marine-environment#appendix-4-marine-protected-areas 
 

https://www.gov.uk/government/publications/2010-to-2015-government-policy-marine-environment/2010-to-2015-government-policy-marine-environment#appendix-4-marine-protected-areas
https://www.gov.uk/government/publications/2010-to-2015-government-policy-marine-environment/2010-to-2015-government-policy-marine-environment#appendix-4-marine-protected-areas
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7.3.2 Ecosystem Value 

One of the main aims of this thesis was to explore the ecosystem functions of S. spinulosa, focusing on 

macrofaunal communities associated with the reefs as well as the use of the reefs by demersal fish. 

Examination of the associated macrobenthic communities revealed that the reefs increase the 

concentration of benthic invertebrates, in terms of both abundance and species. Biodiversity in its truest 

sense was not found to be enhanced by the presence of the reefs and, in contrast to most of the 

conservation literature, these reefs to not appear to support fauna that would not otherwise be present. 

This study looked at species composition and diversity indices derived from species abundance data 

which is a useful starting point for understanding the interactions between S. spinulosa reefs and the wider 

macrofaunal community. However, a useful extension of this work would be to explore the data further 

using different and more complex indices such as the AZTI Marine Biotic Index (AMBI) which provides a 

measure of benthic ecological quality (Borja et al. 2011a) or by applying functional traits to the data (Frid 

et al. 2008) Each of these measures would provide more information on the state of the reef and it how it 

is functioning within the ecosystem.  

Serendipitous sampling undertaken as part of this study allowed for a preliminary assessment of the use 

of S. spinulosa reefs by demersal fish which indicated that most species were feeding either on the reef 

builder itself or on the crustacean communities that are known to be present in very high densities on the 

reefs (Limpenny et al. 2011; Pearce et al. 2011b). Comparisons were made with published records of fish 

stomach data but no quantitative comparisons were possible. If comparable data could be sourced, the 

analysis presented could be extended to explore further the possibility that the presence of S. spinulosa 

reefs influences the feeding behaviour of demersal fish and to begin to understand the extent to which 

these habitats support these higher trophic levels. This could be achieved by creating comparative food 

webs (Elliott et al. 2002) or testing for statistically significant differences in the diets of demersal fish. The 

feeding behaviour of the fish, in terms of specialisation, could also be examined through the construction 

of Costello or Tokeshi plots (Marshall and Elliott 1997) 

The examination of stomach contents has its limitations in terms of understanding the degree to which 

demersal fish are utilising S. spinulosa reef to feed, since, with the exception of the reef builder itself, it is 

impossible to determine where the prey items have originated from. Many of the fish examined here were, 
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for example, feeding on the long-clawed porcelain crab, Pisidia longicornis. This species has been 

recorded in very high densities in association with S. spinulosa reefs. However, P. longicornis is a crevice 

dwelling crab and hence the high abundance of this species on the reef may not translate to a high 

abundance of available prey. This species is also known to occur in the mixed gravelly sediments adjacent 

to the reefs. Stable isotope analysis might help to determine whether or not prey are being consumed from 

the reef or from nearby sediments, but it may also be necessary to observe fish feeding in-situ by 

deploying a seabed camera trap. Holt et al. (1998) postulated that flatfish were able to crunch up the tubes 

of S. spinulosa to obtain the worms and this hypothesis could also be tested through the use of seabed 

cameras. The presence or absence of sediment in the guts of fish eating S. spinulosa (not recorded in this 

study) could also provide useful evidence of the feeding mechanisms employed by these species to 

exploit the reef. 

This study has shown that some demersal fish species feed upon S. spinulosa and many more feed on 

prey items that are abundant on the reefs created by S. spinulosa.  The prevalence of S. spinulosa in the 

diet of juvenile flatfish (dab, plaice and Dover sole) and the high ratios of juvenile flatfish to adults also 

suggests that this habitat could be used a nursery ground by these species and that they perhaps utilise 

the gaps in the reef as areas of refuge. Establishing the use of S. spinulosa reefs as a nursery for flatfish 

and other demersal fish species would be best achieved using a Baited Remote Underwater Video 

(BRUV) system as this could be deployed for a day or two at time and would not cause any undue 

damage to the reef itself.  

7.3.3 Sensitivity to Anthropogenic Disturbance 

Surveys of S. spinulosa reefs at the Thanet offshore windfarm site, carried out before and after 

construction, indicate that the reefs have not been adversely impacted by the construction and operation 

of the wind farm, and could even benefit from the presence of the turbines, which are thought to reduce 

pressures from bottom trawling. Similarly, a survey of the Hastings Shingle Bank aggregate extraction site 

demonstrated that S. spinulosa reefs had colonised an area where dredging activities had ceased for only 

a few months (Pearce et al. 2007) It is however, impossible to put these observation into context without 

any ‘control reefs’ or without a better understanding of the impacts of fishing. S. spinulosa reefs are 

generally considered to be sensitive to bottom trawling and indeed the physical impact of a single trawl 



246 
 

pass is evident in sidescan sonar data collected from this habitat (Figure 7.1). However, S. spinulosa 

reefs do continue to exist in the eastern English Channel and the southern North Sea despite relatively 

high levels of commercial fishing (Breen et al. 2015). This suggests that, whilst fishing pressure may be 

preventing S. spinulosa reefs from developing into continuous stable reef features or climax communities 

(see earlier discussion), the reefs are able to tolerate current fishing levels to a certain degree. It is unlikely 

to be possible to explore the tolerance of S. spinulosa reefs to different levels of fishing in an experimental 

way because of the sampling restrictions placed on this habitat. However, there may be opportunities to 

monitor S. spinulosa reefs for which fishing pressures have been removed, through MPA management 

measures or some other mechanism, and in doing so it may be possible to ascertain what the impact of 

previous fishing activity was.  

There is anecdotal evidence that S. spinulosa is tolerant of high levels of turbidity and even that it thrives 

in these conditions, for example, reefs have been identified in close proximity to an active aggregate 

extraction area (Chapter 4). Laboratory experiments have also found that S. spinulosa is tolerant of 

certain levels of burial  (Last et al. 2011b) but these studies have yet to be linked to sedimentation levels 

experienced by reefs in the wild. Increased turbidity and sedimentation levels are associated with almost 

any anthropogenic activity occurring in the marine environment it would therefore assist in the 

management of this habitat if the tolerance of the reefs investigated more fully, and in-situ. Because it is 

the habitat that is of interest, rather than the reef builder itself it would also be pertinent to look at latent 

impacts on the reef community so as to fully understand the implications of burial events.  

The temperature tolerance of S. spinulosa is undoubtedly broad, however in light of the predicted 

temperature changes associated with climate change (Hiscock et al. 2004; Bulling et al. 2010) this would 

seem a pertinent area for future research. Bamber and Irving (1997) reported that S. alveolata maintained 

higher metabolic rates and tube-building activity in the vicinity of the cooling water outflow of Hinkley point, 

which is usually 8 to 12°C above ambient water temperatures. Assuming S. spinulosa would have the 

same response to temperature fluctuations caused by global warming, this could cause an increase in the 

metabolism and tube building activity which could expand the distribution and size of reefs built by this 

species. S. spinulosa was identified as having a very broad biogeographical range (Achari 1974), although 

all of the species identifications to date have been based on morphological features of the worm. Genetic 
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analysis of S. spinulosa specimens collected from around the world would not only serve to confirm the 

geographical range of this species but in turn this may also provide further clues with regards to the 

species tolerance to different climates and its likely response to future climate change.  

7.4 Conclusions 

Despite the limitations associated with subtidal sampling, this study has gone some way towards 

elucidating the relationship between S. spinulosa reefs and the associated macrofauna. Although it has 

been widely accepted, until now, that S. spinulosa reefs enhance biodiversity this study has found that 

their ecological value is actually in their ability to increase macrofaunal biomass, rather than biodiversity. 

The relatively high biomass of S. spinulosa reefs translates to an important prey resource for demersal fish 

which may be particularly important for juvenile flatfish. S. spinulosa was also previously assumed to have 

essentially the same reproductive cycle as its congener S. alveolata, but this study has demonstrated a 

significant difference in that female S. spinulosa were frequently found to contain eggs in all stages of 

development at the same time, in contrast with S. alveolata where egg development has been observed to 

be synchronous (Culloty et al. 2010). S. spinulosa would therefore appear to be much better adapted to 

environmental change and to have a much greater capacity to recover from physical damage. This is, 

perhaps, a trait that has evolved in response to a life in a dynamic environment.  Studies of S. spinulosa 

reefs at an offshore windfarm site have demonstrated the ability of this habitat to recover from the physical 

damage of construction and to be able to withstand longer-term impacts from fishing. There is however, 

some evidence to suggest that both the extent of the reef and the diversity of macrofauna associated with 

them was limited by commercial fishing. Given that none of the reefs included in this study were protected 

from commercial fishing activities and most were also exposed to physical impacts originating from other 

offshore developments, including aggregated extraction and the construction of offshore windfarms, it is 

possible, if not likely, that the climax reef community has yet to be documented. As marine conservation 

legislation continues to develop examples of this habitat are beginning to be afforded protection from all 

sources of anthropogenic disturbance. This presents a unique and highly valuable opportunity to study the 

successional development of S. spinulosa reefs and to gain a more complete understanding of their 

influence and ecological functioning in the marine ecosystem in the absence of any anthropogenic 

disturbance.  



248 
 

 

References 

4COffshore (2013) Global Offshore Wind Farms Database. http://www.4coffshore.com/offshorewind/ 

Abbasi SA, Abbasi N (2000) The likely adverse environmental impacts of renewable energy sources. 

Applied Energy 65: 121-144 doi 10.1016/s0306-2619(99)00077-x 

Achari KG (1974) Polychaetes of the family Sabellariidae with special reference to their intertidal habitat. 

Proceedings of the Indian National Science Academy 35: 442-455. 

http://insa.nic.in/writereaddata/UpLoadedFiles/PINSA/Vol38B_1972_5and6_Art16.pdf 

Amezcua F, Nash RDM, Veale L (2003) Feeding habits of the Order Pleuronectiformes and its relation to 

the sediment type in the north Irish Sea. J Mar Biol Assoc UK 83: 593-601 doi 

10.1017/S0025315403007525h 

Andersen BS, Carli JD, Gronkjaer P, Stottrup JG (2005) Feeding ecology and growth of age 0 year 

Platichthys flesus (L.) in a vegetated and a bare sand habitat in a nutrient rich fjord. J Fish Biol 

66: 531-552 doi 10.1111/j.1095-8649.2005.00620.x 

Andersen NG (2001) A gastric evacuation model for three predatory gadoids and implications of using 

pooled field data of stomach contents to estimate food rations. J Fish Biol 59: 1198-1217 doi 

10.1006/jfbi.2001.1731 

Andersen NG, Beyer JE (2008) Predicting ingestion times of individual prey from information about 

stomach contents of predatory fishes in the field. Fisheries Research 92: 1-10 doi 

10.1016/j.fishres.2007.12.004 

Anderson JT, Van Holliday D, Kloser R, Reid DG, Simard Y (2008a) Acoustic seabed classification: 

current practice and future directions. ICES J Mar Sci 65: 1004-1011 doi 10.1093/icesjms/fsn061 

Anderson MJ (2001a) A new method for non-parametric multivariate analysis of variance. Austral Ecology 

26: 32-46 doi 10.1111/j.1442-9993.2001.01070.pp.x 

http://www.4coffshore.com/offshorewind/


249 
 

Anderson MJ (2001b) Permutation tests for univariate or multivariate analysis of variance and regression. 

Canadian Journal of Fisheries and Aquatic Sciences 58: 626-639 doi 10.1139/cjfas-58-3-626 

Anderson MJ (2006) Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62: 

245-253 doi 10.1111/j.1541-0420.2005.00440.x 

Anderson MJ, Diebel CE, Blom WM, Landers TJ (2005) Consistency and variation in kelp holdfast 

assemblages: Spatial patterns of biodiversity for the major phyla at different taxonomic 

resolutions. Journal of Experimental Marine Biology and Ecology 320: 35-56 doi 

10.1016/j.jembe.2004.12.023 

Anderson MJ, Ellingsen KE, McArdle BH (2006) Multivariate dispersion as a measure of beta diversity. 

Ecology Letters 9: 683-693 doi 10.1111/j.1461-0248.2006.00926.x 

Anderson MJ, Gorley RN (2008) Analysing multivariate responses to complex experimental designs using 

PERMANOVA+ for PRIMER: Detecting multivariate Changes - design and analysis of monitoring 

and experiments, Plymouth 

Anderson MJ, Gorley RN, Clarke KR (2008b) PERMANOVA+ for PRIMER: Guide to Software and 

Statistical Methods, Plymouth 

Anthony EJ (2002) Long-term marine bedload segregation, and sandy versus gravelly Holocene 

shorelines in the eastern English Channel. Marine Geology 187: 221-234 doi 10.1016/s0025-

3227(02)00381-x 

Ardizzone G, Belluscio A, Maiorano L (2006) Long-term change in the structure of a Posidonia oceanica 

landscape and its reference for a monitoring plan. Marine Ecology-an Evolutionary Perspective 

27: 299-309 doi 10.1111/j.1439-0485.2006.00128.x 

Armstrong MJ (1982) The predator-prey relationships of Irish Sea Poor Cod (Trispoterus minutus L.), 

Pouting (Trisopterus luscus L.) and Cod (Gadhus morhua L.). Journal Du Conseil 40: 135-152 doi 

10.1093/icesjms/40.2.135 



250 
 

Ashley MC, Mangi SC, Rodwell LD (2014) The potential of offshore windfarms to act as marine protected 

areas – A systematic review of current evidence. Marine Policy 45: 301-309 doi 

10.1016/j.marpol.2013.09.002 

Attrill MJ, Ramsay PM, Thomas RM, Trett MW (1996) An estuarine biodiversity hot-spot. J Mar Biol Assoc 

UK 76: 161-175 doi 10.1017/S002531540002909X 

Ayata SD, Ellien C, Dumas F, Dubois S, Thiebaut E (2009) Modelling larval dispersal and settlement of the 

reef-building polychaete Sabellaria alveolata: Role of hydroclimatic processes on the 

sustainability of biogenic reefs. Cont Shelf Res 29: 1605-1623 doi 10.1016/j.csr.2009.05.002 

Bailey-Brock JH, Kirtley DW, Nishi E, Pohler SMJ (2007) Neosabellaria vitiensis, n. sp (Annelida : 

Polychaeta : Sabellariidae), from shallow water of Suva Harbor, Fiji. Pac Sci 61: 399-406 doi 

10.2984/1534-6188(2007)61[399:nvnsap]2.0.co;2 

Baltas AE, Dervos AN (2012) Special framework for the spatial planning & the sustainable development of 

renewable energy sources. Renewable Energy 48: 358-363 doi 10.1016/j.renene.2012.05.015 

Bamber RN, Irving PW (1997) The differential growth of Sabellaria alveolata (L.) reefs at a power station 

outfall. Polychaete Research 17: 9-14 

Barnes RSK, Couglan J, Holmes J (1973) A preliminary survey of macroscopic bottom fauna of the Solent, 

with particular reference to Crepidula fornicata and Ostrea edulis. Proceedings of the 

Malocological Society 40: 253-275  

Barnett PRO, Hardy BLS (1967) A diver-operated quantitative bottom sampler for sand macrofauna. 

Helgolander Wissenschaftliche Meeresuntersuchungen 15: 396-398  

Barrios LM, Chambers SJ, Ismail N, Guzman HM, Mair JM (2009) Distribution of Idanthyrsus cretus 

(Polychaeta: Sabellariidae) in the Tropical Eastern Pacific and application of PCR-RAPD for 

population analysis. In: Maciolek NJ, Blake JA (eds) Proceedings of the 9th International 

Polychaete Conference. Magnolia Press, Auckland, pp 487-503 doi 

10.11646/zoosymposia.2.1.34 

http://dx.doi.org/10.1016/j.marpol.2013.09.002


251 
 

Beaumont NJ, Austen MC, Atkins JP, Burdon D, Degraer S, Dentinho TP, Derous S, Holm P, Horton T, 

van Ierland E, Marboe AH, Starkey DJ, Townsend M, Zarzycki T (2007) Identification, definition 

and quantification of goods and services provided by marine biodiversity: Implications for the 

ecosystem approach. Mar Pollut Bull 54: 253-265 doi 10.1016/j.marpolbul.2006.12.003 

Beaumont NJ, Austen MC, Mangi SC, Townsend M (2008) Economic valuation for the conservation of 

marine biodiversity. Mar Pollut Bull 56: 386-396 doi 10.1016/j.marpolbul.2007.11.013 

Bender MG, Pie MR, Rezende EL, Mouillot D, Floeter SR (2013) Biogeographic, historical and 

environmental influences on the taxonomic and functional structure of Atlantic reef fish 

assemblages. Global Ecology and Biogeography 22: 1173-1182 doi 10.1111/geb.12099 

Bergmann M, Hinz H, Blyth RE, Kaiser MJ, Rogers SI, Armstrong M (2004) Using knowledge from fishers 

and fisheries scientists to identify possible groundfish 'Essential fish Habitats' Fisheries Research 

66: 373-379 doi 10.1016/j.fishres.2003.07.007 

Bevilacqua S, Plicanti A, Sandulli R, Terlizzi A (2012) Measuring more of beta-diversity: Quantifying 

patterns of variation in assemblage heterogeneity. An insight from marine benthic assemblages. 

Ecological Indicators 18: 140-148 doi 10.1016/j.ecolind.2011.11.006 

Bhaud MR, Fernandez-Alamo MA (2001) First description of the larvae of Dianthyrsus (Sabellariidae, 

Polychaeta) from the Gulf of California and Bahia de Banderas, Mexico. Bull Mar Sci 68: 221-232  

Blaber SJM, Cyrus DP, Albaret JJ, Ching CV, Day JW, Elliott M, Fonseca MS, Hoss DE, Orensanz J, 

Potter IC, Silvert W (2000) Effects of fishing on the structure and functioning of estuarine and 

nearshore ecosystems. ICES J Mar Sci 57: 590-602 doi 10.1006/jmsc.2000.0723 

Bolam SG, Fernandes TF (2002) Dense aggregations of tube-building polychaetes: response to small-

scale disturbances. Journal of Experimental Marine Biology and Ecology 269: 197-222 doi 

10.1016/S0022-0981(02)00003-5 

http://dx.doi.org/10.1016/S0022-0981(02)00003-5


252 
 

Bolam SG, Fernandes TF (2003) Dense aggregations of Pygospio elegans (Claparede): effect on 

macrofaunal community structure and sediments. Journal of Sea Research 49: 171-185 doi 

10.1016/s1385-1101(03)00007-8 

Bolam SG, Fernandes TF, Read P, Raffaelli D (2000) Effects of macroalgal mats on intertidal sandflats: an 

experimental study. Journal of Experimental Marine Biology and Ecology 249: 123-137 doi 

10.1016/s0022-0981(00)00185-4 

Borg JA, Rowden AA, Attrill MJ, Schembri PJ, Jones MB (2006) Wanted dead or alive: high diversity of 

macroinvertebrates associated with living and 'dead' Posidonia oceanica matte. Mar Biol 149: 

667-677 doi 10.1007/s00227-006-0250-3 

Borja A, Barbone E, Basset A, Borgersen G, Brkljacic M, Elliott M, Mikel Garmendia J, Marques JC, Mazik 

K, Muxika I, Magalhaes Neto J, Norling K, German Rodriguez J, Rosati I, Rygg B, Teixeira H, 

Trayanova A (2011a) Response of single benthic metrics and multi-metric methods to 

anthropogenic pressure gradients, in five distinct European coastal and transitional ecosystems. 

Mar Pollut Bull 62: 499-513 doi 10.1016/j.marpolbul.2010.12.009 

Borja A, Elliott M, Andersen JH, Cardoso AC, Carstensen J, Ferreira JG, Heiskanen A-S, Marques JC, 

Neto JM, Teixeira H, Uusitalo L, Uyarra MC, Zampoukas N (2013) Good Environmental Status of 

marine ecosystems: What is it and how do we know when we have attained it? Mar Pollut Bull 76: 

16-27 doi 10.1016/j.marpolbul.2013.08.042 

Borja Á, Galparsoro I, Irigoien X, Iriondo A, Menchaca I, Muxika I, Pascual M, Quincoces I, Revilla M, 

Germán Rodríguez J, Santurtún M, Solaun O, Uriarte A, Valencia V, Zorita I (2011b) 

Implementation of the European Marine Strategy Framework Directive: A methodological 

approach for the assessment of environmental status, from the Basque Country (Bay of Biscay). 

Mar Pollut Bull 62: 889-904 doi 10.1016/j.marpolbul.2011.03.031 

Bouma TJ, Ortells V, Ysebaert T (2009) Comparing biodiversity effects among ecosystem engineers of 

contrasting strength: macrofauna diversity in Zostera noltii and Spartina anglica vegetations. 

Helgoland Marine Research 63: 3-18 doi 10.1007/s10152-008-0133-8 

http://dx.doi.org/10.1016/j.marpolbul.2011.03.031


253 
 

Bradshaw C, Collins P, Brand AR (2003) To what extent does upright sessile epifauna affect benthic 

biodiversity and community composition? Mar Biol 143: 783-791 doi 10.1007/s00227-003-1115-7 

Braithwaite CJR, Robinson RJ, Jones G (2006) Sabellarids: a hidden danger or an aid to subsea 

pipelines? Quarterly Journal of Engineering Geology and Hydrogeology 39: 259-265 doi 

10.1144/1470-9236/05-057 

Breen P, Vanstaen K, Clark RWE (2015) Mapping inshore fishing activity using aerial, land, and vessel-

based sighting information ICES J Mar Sci 72: 467-479 doi 10.1093/icesjms/fsu115  

Bremec C, Carcedo C, Piccolo MC, dos Santos E, Fiori S (2013) Sabellaria nanella (Sabellariidae): from 

solitary subtidal to intertidal reef-building worm at Monte Hermoso, Argentina (39 degrees S, 

south-west Atlantic). J Mar Biol Assoc UK 93: 81-86 doi 10.1017/s0025315412000550 

Bremec CS, Giberto DA (2004) New records of two species of Sabellaria (Polychaeta: Sabellariidae) from 

the Argentinean biogeographic province. Revista de Biologia Marina y Oceangraphia 39: 101-105  

Brennand TP (2004) Renewable energy in the United Kingdom: policies and prospects. Energy for 

Sustainable Development 8: 82-92 doi 10.1016/S0973-0826(08)60393-2 

BRIG (2008) Sabellaria spinulosa Reefs: UK Biodiversity Action Plan Priority Habitat Descriptions, 

Peterborough, Joint Nature Conservation Committee (JNCC). http://jncc.defra.gov.uk/page-5706 

Bromley PJ, Watson T, Hislop JRG (1997) Diel feeding patterns and the development of food webs in 

pelagic 0-group cod (Gadus morhua L.), haddock (Melanogrammus aeglefinus L.), whiting 

(Merlangius merlangus L.), saithe (Pollachius virens L.), and Norway pout (Trisopterus esmarkii 

Nilsson) in the northern North Sea. ICES J Mar Sci 54: 846-853 doi 10.1006/jmsc.1996.0211 

Brown CJ, Blondel P (2009) Developments in the application of multibeam sonar backscatter for seafloor 

habitat mapping. Applied Acoustics 70: 1242-1247 doi 10.1016/j.apacoust.2008.08.004 

https://doi.org/10.1093/icesjms/fsu115


254 
 

Brown CJ, Collier JS (2008) Mapping benthic habitat in regions of gradational substrata: An automated 

approach utilising geophysical, geological, and biological relationships. Estuar Coast Shelf Sci 

78: 203-214 doi 10.1016/j.ecss.2007.11.026 

Brown CJ, Hewer A, Meadows WJ, Limpenny DS, Cooper KM, Rees HL (2004) Mapping seabed biotopes 

at Hastings Shingle Bank, Eastern English Channel. Part 1. Assessment using sidescan sonar. J 

Mar Biol Assoc UK 84: 481-488 doi 10.1017/S002531540400949Xh 

Brown CJ, Todd BJ, Kostylev VE, Pickrill RA (2011) Image-based classification of multibeam sonar 

backscatter data for objective surficial sediment mapping of Georges Bank, Canada. Cont Shelf 

Res 31: S110-S119 doi 10.1016/j.csr.2010.02.009 

Buhl-Mortensen L, Buhl-Mortensen P, Dolan MFJ, Dannheim J, Bellec V, Holte B (2012) Habitat 

complexity and bottom fauna composition at different scales on the continental shelf and slope of 

northern Norway. Hydrobiologia 685: 191-219 doi 10.1007/s10750-011-0988-6 

Burke JS (1996) Role of feeding and prey distribution of summer and southern flounder in selection of 

estuarine nursery habitats (vol 47, pg 355, 1995). J Fish Biol 48: 310-310  

BVG (2013) Building an Industry: Updated scenarioas for industrial development, London, RenewableUK 

and The Crown Estate 

https://hub.globalccsinstitute.com/sites/default/files/publications/115688/building-industry-

updated-scenarios-industrial-development.pdf 

Cabral HN (2000) Comparative feeding ecology of sympatric Solea solea and S. senegalensis, within the 

nursery areas of the Tagus estuary, Portugal. J Fish Biol 57: 1550-1562 doi 

10.1006/jfbi.2000.1408 

Caline B, Gruet Y, Legendre C, Le Rhun J, L'Homer A, Mathieu R, Zbinden R (1992) The Sabellariid 

Reefs in the Bay of Mont Saint-Michel, France. Ecology, Geomorphology, Sedimentology and 

Geologic Implications. Florida Oceanographic Society, Florida 



255 
 

Callaway R (2003) Juveniles stick to adults: recruitment of the tube-dwelling polychaete Lanice conchilega 

(Pallas, 1766). Hydrobiologia 503: 121-130 doi 10.1023/b:hydr.0000008494.20908.87 

Callaway R (2006) Tube worms promote community change. Mar Ecol-Prog Ser 308: 49-60 doi 

10.3354/meps308049 

Cardinale BJ, Gross K, Fritschie K, Flombaum P, Fox JW, Rixen C, van Ruijven J, Reich PB, Scherer-

Lorenzen M, Wilsey BJ (2013) Biodiversity simultaneously enhances the production and stability 

of community biomass, but the effects are independent. Ecology 94: 1697-1707 doi 10.1890/12-

1334.1 

Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL, Sankaran M, Jouseau C (2006) Effects of 

biodiversity on the functioning of trophic groups and ecosystems. Nature 443: 989-992 doi 

10.1038/nature05202 

Cardinale M (2000) Ontogenetic diet shifts of bull-rout, Myoxocephalus scorpius (L.), in the south-western 

Baltic Sea. Journal of Applied Ichthyology-Zeitschrift Fur Angewandte Ichthyologie 16: 231-239 

doi 10.1046/j.1439-0426.2000.00231.x 

Cardoso PG, Raffaelli D, Lillebo AI, Verdelhos T, Pardal MA (2008) The impact of extreme flooding events 

and anthropogenic stressors on the macrobenthic communities' dynamics. Estuar Coast Shelf Sci 

76: 553-565 doi 10.1016/j.ecss.2007.07.026 

Carruthers EH, Neilson JD, Waters C, Perley P (2005) Long-term changes in the feeding of Pollachius 

virens on the Scotian Shelf: responses to a dynamic ecosystem. J Fish Biol 66: 327-347 doi 

10.1111/j.1095-8649.2004.00594.x 

Carss DN, Elston DA (2003) Patterns of association between algae, fishes and grey herons Ardea cinerea 

in the rocky littoral zone of a Scottish sea loch. Estuar Coast Shelf Sci 58: 265-277 doi 

10.1016/s0272-7714(03)00079-9 

Cattrijsse A, Hampel H (2000) Nursery Function Westerschelde: Life History and Habitat Use Tables, 

Ghent, University of Ghent. 



256 
 

https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjG65v7r

NLWAhVSKFAKHVLvAJIQFggrMAA&url=http%3A%2F%2Fwww.vliz.be%2Fimisdocs%2Fpublica

tions%2F115989.pdf&usg=AOvVaw2Q6eNcHv-tamutL7CAedya 

Cefas (2002) Guidelines for the conduct of benthic studies at aggregate dredging studies, London, 

Department for Transport, local Government and the Regions. 

http://www.marbef.org/qa/documents/ConductofsurveysatMAEsites.pdf 

Chapman ND, Moore CG, Harries DB, Lyndon AR (2007) Recruitment patterns of Serpula vermicularis L. 

(Polychaeta, Serpulidae) in Loch Creran, Scotland. Estuar Coast Shelf Sci 73: 598-606 doi 

10.1016/j.ecss.2007.03.001 

Chen C, Dai CF (2009) Subtidal Sabellarid reefs in Hualien, eastern Taiwan. Coral Reefs 28: 275-275 doi 

10.1007/s00338-008-0448-6 

Chuhukalo VI, Shebanova MA (2008) Feeding habits of several mass shrimp species in the Sea of 

Okhotsk. Russian Journal of Marine Biology 34: 468-471 doi 10.1134/s1063074008070055 

Clarke KR (1993) Nonparametric multivariate analyses of changes in community structure. Aust J Ecol 18: 

117-143 doi 10.1111/j.1442-9993.1993.tb00438.x 

Clarke KR, Ainsworth M (1993) A method of linking multivariate community structure to environmental 

variables. Mar Ecol-Prog Ser 92: 205-219 doi 10.3354/meps092205 

Clarke KR, Gorley RN (2006) Primer V6. User Manual/Tutorial. PRMER-E, Plymouth 

Clarke KR, Somerfield PJ, Airoldi L, Warwick RM (2006) Exploring interactions by second-stage 

community analyses. Journal of Experimental Marine Biology and Ecology 338: 179-192 doi 

10.1016/j.jembe.2006.06.019 

Clarke KR, Somerfield PJ, Gorley RN (2008) Testing of null hypotheses in exploratory community 

analyses: similarity profiles and biota-environment linkage. Journal of Experimental Marine 

Biology and Ecology 366: 56-69 doi 10.1016/j.jembe.2008.07.009 



257 
 

Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and 

interpretation, 2nd Edition, Plymouth 

Cochrane SKJ, Connor DW, Nilsson P, Mitchell I, Reker J, Franco J, Valavanis V, Moncheva S, Ekebom 

J, Nygaard K, Santos RS, Naberhaus I, Packeiser T, Van de Bund W, Cardoso AC (2010) Marine 

Strategy Framework Directive. Guidance on the interpretation and application of Decriptor 1. 

Biological Diveristy. Report by Task Group 1 on Biological Diveristy, Ispra, Italy, European 

Commisions Joint Research Centre. http://ec.europa.eu/environment/marine/pdf/1-Task-group-1-

Report-on-Biological-Diversity.pdf 

Coggan R, Populus J, White J, Sheehan K, Fitzpatrick F, Piel S (2007) Review of Standards and Protocols 

for Seabed Mapping., Peterborough, Mapping European Seabed Habitats (MESH). 

https://www.researchgate.net/profile/Jonathan_White12/publication/269630850_Review_of_stand

ards_and_protocols_for_seabed_habitat_mapping/links/55e06b7608ae2fac471b6de3/Review-of-

standards-and-protocols-for-seabed-habitat-mapping.pdf 

Collins K (2005) Dorset marine habitat surveys: Maerl, worm reefs, brittlestars, sea fans and seagrass, 

2005 field report. University of Southampton, Southampton 

Condie H (2009) The impact of burial on Sabellaria spinulosa and Mytilus edulis, in the context of marine 

aggregate extraction. MSc Marine Environmental Management., York, Univeristy of York 

Connor DW, Allen JH, Golding N, Howell KL, Lieberknecht LM, Northen KO, Reker JB (2004) The Marine 

Habitat Classification for Britain and Ireland Version 04.05, Peterbourgh, Joint Nature 

Conservation Committee (JNCC) http://jncc.defra.gov.uk/pdf/04_05_introduction.pdf 

Connor DW, Hiscock K (1996) Data Collection Methods. In: Hiscock K (ed) Marine Nature Conservation 

Review: Rationale and Methods. Joint Nature Conservation Committee (JNCC), Peterborough 

Cook RL, Farinas-Franco JM, Gell FR, Holt RHF, Holt T, Lindenbaum C, Porter JS, Seed R, Skates LR, 

Stringell TB, Sanderson WG (2013) The substantial first impact of bottom fishing on rare 



258 
 

biodiversity hotspots: a dilema for evidence-based conservation. Plos One 8(8): 1-10 doi 

10.1371/journal.pone.0069904 

Cooper K, Boyd S, Eggleton J, Limpenny D, Rees H, Vanstaen K (2007) Recovery of the seabed following 

marine aggregate dredging on the Hastings Shingle Bank off the southeast coast of England. 

Estuar Coast Shelf Sci 75: 547-558 doi 10.1016/j.ecss.2007.06.004 

Cooper KM, Frojan CRSB, Defew E, Curtis M, Fleddum A, Brooks L, Paterson DM (2008) Assessment of 

ecosystem function following marine aggregate dredging. Journal of Experimental Marine Biology 

and Ecology 366: 82-91 doi 10.1016/j.jembe.2008.07.011 

Cork M, Adnitt C, Staniland R, Davison A (2006) Creation and Management of Marine Protected Areas in 

Northern Ireland, Environment and Heritage Service Research and Development Series 

Cortes E (1997) A critical review of methods of studying fish feeding based on analysis of stomach 

contents: Application to elasmobranch fishes. Canadian Journal of Fisheries and Aquatic 

Sciences 54: 726-738 doi 10.1139/cjfas-54-3-726 

Cosentino A, Giacobbe S (2006) A case study of mollusc and polychaete soft-bottom assemblages 

submitted to sedimentary instability in the Mediterranean Sea. Marine Ecology-an Evolutionary 

Perspective 27: 170-183 doi 10.1111/j.1439-0485.2006.00088.x 

Cotter E, O'Riordan RM, Myers AA (2003) A histological study of reproduction in the serpulids 

Pomatoceros triqueter and Pomatoceros lamarckii (Annelida : Polychaeta). Mar Biol 142: 905-

914 doi 10.1007/s00227-002-0987-2 

Couturier CS, Andersen NG, Audet C, Chabot D (2013) Prey exoskeletons influence the course of gastric 

evacuation in Atlantic cod Gadus morhua. J Fish Biol 82: 789-805 doi 10.1111/jfb.12005 

Cranfield HJ, Rowden AA, Smith DJ, Gordon DP, Michael KP (2004) Macrofaunal assemblages of benthic 

habitats of different complexity and the proposition of a model of biogenic reef habitat 

regeneration in Foveaux Strait, New Zealand. Journal of Sea Research 52: 109-125 doi 

10.1016/j.seares.2003.12.003 



259 
 

Creutzberg F, Witte JI (1989) An attempt to estimate the predatory pressure exerted by the lesser weever, 

Trachinus vipera Cuvier, in the Southern North Sea. J Fish Biol 34: 429-449 doi 10.1111/j.1095-

8649.1989.tb03325.x 

Crisp DJ (1964) The effects of the severe winter of 1962-63 on marine life in Britain. J Anim Ecol 33: 165-

210 doi 10.2307/2355 

Culloty SC, Favier E, Ni Riada M, Ramsay NF, O'Riordan RM (2010) Reproduction of the biogenic reef-

forming honeycomb worm Sabellaria alveolata in Ireland. J Mar Biol Assoc UK 90: 503-507 doi 

10.1017/s0025315409990932 

Cunha MR, Sorbe JC, Bernardes C (1997) On the structure of the neritic suprabenthic communities from 

the Portuguese continental margin. Mar Ecol-Prog Ser 157: 119-137 doi 10.3354/meps157119 

Cunningham PN, Hawkins SJ, Jones HD, Burrows MT (1994) The geographical distribution of Sabellaria 

alveolata (L.) in England, Wales and Scotland, with investigations into the community structure of 

and the effects of trampling on Sabellaria alveolata colonies, Peterborough 

Curtis LA (1978) Aspects of population-dynamics of the polychaete Sabellaria vulgaris (Verill), in Delaware 

Bay. Estuaries 1: 73-84 doi 10.2307/1351595 

Daan N, Bromley PJ, Hislop JRG, Nielsen NA (1990) Ecology of North Sea Fish. Neth J Sea Res 26: 343-

386 doi 10.1016/0077-7579(90)90096-y 

Dame R (2005) Oyster reefs as complex ecological systems. In: Dame RF, Olenin S (eds) Comparative 

Roles of Suspension-Feeders in Ecosystems. NATO Science Series IV: Earth and Environmental 

Series, vol 47. Springer, Dordrecht, pp 331-343 doi 10.1007/1-4020-3030-4_19 

Darnaude AM, Harmelin-Vivien ML, Salen-Picard C (2001) Food partitioning among flatfish (Pisces : 

Pleuronectiforms) juveniles in a Mediterranean coastal shallow sandy area. J Mar Biol Assoc UK 

81: 119-127 doi 10.1017/s0025315401003460 



260 
 

Daro MH, Polk P (1973) The autecology of Polydora ciliata along the Belgian coast. Neth J Sea Res 6 (1-

2): 130-140 doi 10.1016/0077-7579(73)90008-2 

Davies AJ, Last KS, Attard K, Hendrick VJ (2009) Maintaining turbidity and current flow in laboratory 

aquarium studies, a case study using Sabellaria spinulosa. Journal of Experimental Marine 

Biology and Ecology 370: 35-40 doi 10.1016/j.jembe.2008.11.015 

Davies BR, Stuart V, Devilliers M (1989) The filtration activity of a serpulid polychaete population 

(Ficopomatus enigmaticus (Fauvel)) and its effects on water-quality in a coastal marina. Estuar 

Coast Shelf Sci 29: 613-620 doi 10.1016/0272-7714(89)90014-0 

Davies J, Baxter J, Bradley M, Connor DW, Khan J, Murray E, Sanderson W, Turnbull C, Vincent M (2001) 

Marine Monitoring Handbook, UK Marine SACs Project 405 pp, ISBN 1 85716 550 0 

http://jncc.defra.gov.uk/PDF/MMH-mmh_0601.pdf 

Davis WP (1966) A Review of the Dragonets (Pisces: Callionymidae) of the Western Atlantic. Bull Mar Sci 

16: 834-862  

Day JH (1967) A monograph on the polychaeta of southern Africa Part 2: Sedentaria, London 

De Assis JE, Alonso C, De Brito RJ, Dos Santos AS, Christoffersen ML (2012) Polychaetous Annelids 

from the coast of Paraiba State, Brazil. Revista Nordestina de Biologia 21: 3-45  

De Boer RB, Nagtegaal PJC, Duyvis EM (1977) Pressure solution experiments on quartz sand. 

Geochimica et Cosmochimica Acta 41: 257-264 doi 10.1016/0016-7037(77)90233-2 

De Jong F, Bakker JF, van Berkel CJM, Dankers NMJA, Dahl K, Gatje C, Marencic H, Potel P (1999) 

Wadden Sea Quality Status Report. Wadden Sea Ecosystem No.9, Wilhelmshaven, Common 

Wadden Sea Secretariat, trilateral Monitoring and Assessment Group, Qulaity Status Report 

Group 

http://dx.doi.org/10.1016/0016-7037(77)90233-2


261 
 

De Raedemaecker F, O'Connor I, Brophy D, Black A (2011) Macrobenthic prey availability and the 

potential for food competition between 0 year group Pleuronectes platessa and Limanda limanda. 

J Fish Biol 79: 1918-1939 doi 10.1111/j.1095-8649.2011.03134.x 

Defra (2013) Revised Approach to the Management of Commercial Fisheries in European Marine Sites: 

Overarching Policy and Delivery Document. Department for Environment, Food and Rural Affairs 

(Defra) 

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/345970/REVISED_

APPROACH_Policy_and_Delivery.pdf 

Degraer S, Moerkerke G, Rabaut M, Van Hoey G, Du Four I, Vincx M, Henriet JP, Van Lancker V (2008) 

Very-high resolution side-scan sonar mapping of biogenic reefs of the tube-worm Lanice 

conchilega. Remote Sensing of Environment 112: 3323-3328 doi 10.1016/j.rse.2007.12.012 

Derous S, Austen M, Claus S, Daan N, Dauvin JC, Deneudt K, Depestele J, Desroy N, Heessen H, 

Hostens K, Marboe AH, Lescrauwaet AK, Moreno MP, Moulaert I, Paelinckx D, Rabaut M, Rees 

H, Ressurreicao A, Roff J, Santosi PT, Tatarek A, Ter Hofstede R, Vincx M, Zarzycki T, Degraer 

S, Speybroeck J, Stienen EWM (2007) Building on the concept of marine biological valuation with 

respect to translating it to a practical protocol: Viewpoints derived from a joint ENCORA-MARBEF 

initiative. Oceanologia 49: 579-586  

Devlin MJ, Barry J, Mills DK, Gowen RJ, Foden J, Sivyer D, Tett P (2008) Relationships between 

suspended particulate material, light attenuation and Secchi depth in UK marine waters. Estuar 

Coast Shelf Sci 79: 429-439 doi 10.1016/j.ecss.2008.04.024 

Dewicke A, Cattrijsse A, Mees J, Vincx M (2003) Spatial patterns of the hyperbenthos of subtidal 

sandbanks in the southern North Sea. Journal of Sea Research 49: 27-45 doi 10.1016/s1385-

1101(02)00167-3 

Dias AS, Paula J (2001) Associated fauna of Sabellaria alveolata colonies on the central coast of Portugal. 

J Mar Biol Assoc UK 81: 169-170 doi 10.1017/s0025315401003538 



262 
 

Dipper F (2001) British Sea Fishes. Underwater Wold Publications Ltd, Middlesex 

Dix JK, Lambkin DO, Thomas MD, Cazenave PW (2007) Modelling exclusion zones for marine aggregate 

dredging. English Heritage ALSF Project No. 3365. School of Ocean and Earth Science, 

Univeristy of Southampton, UK  

Dodd J, Baxter L, Hughes DJ (2009) Mapping Serpula vermicularis (Polychaeta: Serpulidae) aggregations 

in Loch Teacuis, western Scotland, a new record. Mar Biol Res 5: 200-205 doi 

10.1080/17451000802345858 

DOENI (2005) Northern Ireland Habitat Action Plan Sabellaria spinulosa reefs Department of the 

Environment Northern Ireland (DOENI) https://www.daera-

ni.gov.uk/sites/default/files/publications/doe/natural-plan-habitat-action-sabellaria-spinulosa_0.pdf 

Dolbeth M, Martinho F, Leitao R, Cabral H, Pardal MA (2008) Feeding patterns of the dominant benthic 

and demersal fish community in a temperate estuary. J Fish Biol 72: 2500-2517 doi 

10.1111/j.1095-8649.2008.01856.x 

Dubois S, Barillé L, Cognie B (2009) Feeding response of the polychaete Sabellaria alveolata 

(Sabellariidae) to changes in seston concentration. Journal of Experimental Marine Biology and 

Ecology 376: 94-101 doi 10.1016/j.jembe.2009.06.017 

Dubois S, Commito JA, Olivier F, Retière C (2006) Effects of epibionts on Sabellaria alveolata (L.) 

biogenic reefs and their associated fauna in the Bay of Mont Saint-Michel. Estuarine, Coastal and 

Shelf Science 68: 635-646 doi 10.1016/j.ecss.2006.03.010 

Dubois S, Comtet T, Retiere C, Thiebaut E (2007) Distribution and retention of Sabellaria alveolata larvae 

(Polychaeta : Sabellariidae) in the Bay of Mont-Saint-Michel, France. Mar Ecol-Prog Ser 346: 

243-254 doi 10.3354/meps07011 

Dubois S, Retiere C, Olivier F (2002) Biodiversity associated with Sabellaria alveolata (Polychaeta : 

Sabellariidae) reefs: effects of human disturbances. J Mar Biol Assoc UK 82: 817-826 doi 

10.1017/s0025315402006185 

http://dx.doi.org/10.1016/j.ecss.2006.03.010


263 
 

EC (2013) Interpretation Manual of European Union Habitats EUR28. Nature. ENV B.3. European 

Comission DG Environment 

http://ec.europa.eu/environment/nature/legislation/habitatsdirective/docs/Int_Manual_EU28.pdf 

Eckdale AA, Lewis DW (1993) Sabelariid reefs in Ruby Bay, New Zealand:  A modern analogue of 

Skolithos "Piperock" that is not produced by burrowing activity. Palaios 8: 614-620 doi 

10.2307/3515037 

Eckelbarger KJ (1976) Larval development and population aspects of the reef-building polychaete 

Phragmatopoma lapidosa from the east coast of Florida. Bull Mar Sci 26: 117-132  

Eckelbarger KJ (1977) Larval development of Sabellaria floridensis from Florida and Phragmatopoma 

californica (Polychaeta - Sabellariidae), with a key to Sabellariid larvae of Florida and a review of 

development in the family. Bull Mar Sci 27: 241-255  

Eckelbarger KJ (1978a) Metamorphosis and settlement in the Sabellariidae. In: Chia FS, Rice ME (eds) 

Settlement and Metamorphosis of Marine Invertebrate Larvae. Elsevier, New York, pp 145-164 

Eckelbarger KJ (1978b) Oogenesis in the polychaete Phragmatopoma lapidosa, unique mode of yolk 

formation in a spiralian Am Zool 18: 646-646  

Eckelbarger KJ (1979) Ultrastructure evidence for both autosynthetic and heterosynthetic yolk formation in 

the oocytes of an Annelid (Phragmatopoma lapidosa, Polychaeta) Tissue Cell 11: 425-443 doi 

10.1016/0040-8166(79)90054-5 

Eckelbarger KJ (1984) Ultrastructure of spermatogenesis in the reef-building polychaete Phragmatopoma 

lapidosa (Sabellariidae) with special reference to acrosome morphogenesis. Journal of 

Ultrastructure Research 89: 146-164 doi 10.1016/s0022-5320(84)80011-8 

Eckelbarger KJ, Chia FS (1976) Scanning electron microscope study of life-history of Phragmatopoma 

lapidosa (polychaeta, Sabellariidae). Am Zool 16: 213-213  



264 
 

EEA (2007) The European Nature Information System (EUNIS) habitat classification European 

Environment Agency http://eunis.eea.europa.eu/habitats.jsp 

El Bakery NSER (2014) Morphological study of the asymmetrical buccal cavity of the flatfish common 

solea (Solea solea) and its relation to the type of feeding. Asian Pacific Journal of Tropical 

Biomedicine 4: 13-17 doi 10.1016/S2221-1691(14)60201-X 

Eleftheriou A, McIntyre AD (2005) Methods for the Study of Marine Benthos 3rd Edition. Wiley-Blackwell 

Oxford 

Elliott M, Hemingway KL, Costello MJ, Duhamel S, Hostens K, Labropoulou M, Marshall S, Winkler H 

(2002) Links between Fish and Other Trophic Levels. In: Elliott M, Hemingway KL (eds) Fishes in 

Estuaries. Blackwell Science, Oxford, pp 124-195 

Elliott M, Whitfield AK, Potter IC, Blaber SJM, Cyrus DP, Nordlie FG, Harrison T (2007) The guild 

approach to categorizing estuarine fish assemblages: a global review. Fish and Fisheries 8 (3): 

241-268 doi 10.1111/j.1467-2679.2007.00253.x 

EMU (2008) Area 401/2 Lowestoft extension Sabellaria spinulosa survey, Southampton, Hanson 

Aggregates Marine Limited 

Fauchald K (1977) The Polychaete Worms: Definitions and keys to the orders, families and genera, 

Natural History Museum of Los Angeles, Science Series 28 198 pp 

https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjxvN_Ch

NTWAhUKKFAKHfu5BFkQFggmMAA&url=http%3A%2F%2Fwww.vliz.be%2Fimisdocs%2Fpublic

ations%2F123110.pdf&usg=AOvVaw3ELMwdXi3aVkammkC5kP1e 

Fischer A (1974) Stages and stage distribution in early oogenesis in the annelid, Playnereis dumerilii. Cell 

Tissue Res 156: 35-45  

Fischer A (1975) The structure of symplastic early oocytes and their enveloping shetath cells in the 

polychaete, Platynereris dumerilii. Cell Tissue Res 160: 327-343  



265 
 

Fisher RA (1939) A comparison of samples with possibly unequal variances. Annals of Eugenics 9: 174-

180 doi 10.1111/j.1469-1809.1939.tb02205.x 

Folk RL (1954) The distinction between grain size and mineral composition in sedimentary rock 

nomenclature. J Geol 62: 344-359  

Fornos JJ, Forteza V, MartinezTaberner A (1997) Modern polychaete reefs in Western Mediterranean 

lagoons: Ficopomatus enigmaticus (Fauvel) in the Albufera of Menorca, Balearic Islands. 

Paleogeogr Paleoclimatol Paleoecol 128: 175-186 doi 10.1016/s0031-0182(96)00045-4 

Foster-Smith RL (2001) Sabellaria spinulosa reef in the Wash and North Norfolk Coast cSAC: Part II fine 

scale maping of the spatial and temporal distribution of reefs and the development of tehcniques 

for monitoring condition, Peterborough 

Foster-Smith RL, Brown CJ, Meadows WJ, White WH, Limpenny DS (2004) Mapping seabed biotopes at 

two spatial scales in the eastern English Channel. Part 2. Comparison of two acoustic ground 

discrimination systems. J Mar Biol Assoc UK 84: 489-500 doi 10.1017/S0025315404009506h 

Foster-Smith RL, Hendrick VJ (2003) Sabellaria spinulosa reef in the Wash and North Norfolk cSAC and 

its approaches: Part III summary of kowledge, reccomended monitoring strategies and 

outstanding research requirements Peterborough 

Foster-Smith RL, White WH (2001) Sabellaria spinulosa reef in the Wash and North Norfolk Coast cSAC 

and its approaches: Part I, mapping techniques and ecological assessment, Peterborough 

Franzen A (1956) On spermiogenesis, morphology of the spermatozoon, and biology of fertilization among 

invertebrates. Zoologiska bidrag från Uppsala 31: 355-482  

Frid CLJ, Paramor OAL, Brockington S, Bremner J (2008) Incorporating ecological functioning into 

designation and management of marine protected areas. In: Davenport J. et al. (eds) Challenges 

to Marine Ecosystems. Hydrobiologia, 606: 69-79 doi 10.1007/978-1-4020-8808-7_7 

Froese R, Pauly DE (2011) Fishbase. World Wide Web electronic publication. www.fishbase.org 

http://www.fishbase.org/


266 
 

Frost M, Jefferson R, Hawkins S (2006) The evaluation of time series: Their scientific value and 

contribution to policy needs, Plymouth, Occasional Publication No.22. Marine Biological 

Association of the United Kingdom (MBA). 94pp 

http://mba.ac.uk/MECN/MECN_MEMBERS/downloads/MECN_WK2005_Plym/MECN%20Works

hop%20report%202005%20final.pdf 

Gardline (2007) Thanet offshore wind farm debris survey August / September 2007 Survey Report, Great 

Yarmouth, Thanet Offshore Wind Ltd 

Gardline (2012) Thanet offshore wind farm post construction geophysical surveys - Spring 2012, Great 

Yarmouth, Thanet Offshore Wind Ltd 

Garwood PR (1982) Polychaeta - Sedentaria and Archianellida. Dove Marine Laboratory Third Series 23: 

350  

Gatt Støttrup J, Stenberg C, Dahl K, Dahl Kristenson L, Richardson K (2014) Restoration of a Temperate 

Reef: Effects on the Fish Community. Open Journal of Ecology 4: 1045-1059 doi 

10.4236/oje.2014.416086 

George CL, Warwick RM (1985) Annual macrofauna production in a hard-bottom reef community. J Mar 

Biol Assoc UK 65: 713-735 doi 10.1017/S0025315400052553 

Gerking SD (1994) Feeding Ecology of Fish. Academic Press ISBN: 978-0-12-280780-0 

Gherardi F (1996) Gastropod shells or polychaete tubes? The hermit crab Discorsopagurus schmitti's 

housing dilemma. Ecoscience 3: 154-164 doi 10.1080/11956860.1996.11682326 

Gherardi F, Cassidy PM (1994) Sabellarian tubes as the housing of the hermit crab Discorsopagurus 

schmitti. Can J Zool-Rev Can Zool 72: 526-532 doi 10.1139/z94-070 

Giangrande A (1997) Polychaete reproductive patterns, life cycles and life histories: An overview. 

Oceanography and Marine Biology: An Annual Review 35: 323-386  



267 
 

Gibb N, Tillin HM, Pearce B, Tyler-Walters H (2014) Assessing the sensitivity of Sabellaria spinulosa reef 

biotopes to pressures associated with marine activities. JNCC Report No. 504. Joint Nature 

Conservation Committee (JNCC), Peterborough 

http://jncc.defra.gov.uk/PDF/JNCC_Report_504_web.pdf 

Gill AB (2005) Offshore renewable energy: ecological implications of generating electricity in the coastal 

zone. J Appl Ecol 42: 605-615 doi 10.1111/j.1365-2664.2005.01060.x 

Godet L, Fournier J, Jaffre M, Desroy N (2011) Influence of stability and fragmentation of a worm-reef on 

benthic macrofauna. Estuar Coast Shelf Sci 92: 472-479 doi 10.1016/j.ecss.2011.02.003 

Godet L, Toupoint N, Olivier F, Fournier J, Retiere C (2008) Considering the functional value of common 

marine species as a conservation stake: The case of sandmason worm Lanice conchilega (Pallas 

1766) (Annelida, Polychaeta) beds. Ambio 37: 347-355 doi 10.1579/07-a-317.1 

Gore RH, Scotto LE, Becker LJ (1978) Community composition, stability and trophic partitioning in 

decapod crustaceans inhabiting some sub-tropical Sabellariid worm reefs - studies on decapod 

crustacea from the Indian River region of Florida. Bull Mar Sci 28: 221-248  

Grahame J, Branch GM (1985) Reproductive patterns of marine invertebrates. Oceanogr Mar Biol 23: 

373-398  

Gray JS, Elliott M (2009) Ecology of Marine Sediments: from Science to Management Oxford University 

Press, Oxford ISBN: 978-0198569022 

Green DS, Crowe TP (2013) Physical and biological effects of introduced oysters on biodiversity in an 

intertidal boulder field. Mar Ecol-Prog Ser 482: 119-132 doi 10.3354/meps10241 

Greenstreet SPR, McMillan JA, Armstrong E (1998) Seasonal variation in the importance of pelagic fish in 

the diet of piscivorous fish in the Moray Firth, NE Scotland: a response to variation in prey 

abundance? ICES J Mar Sci 55: 121-133 doi 10.1006/jmsc.1997.0258 



268 
 

Gruet Y (1970) Faune assoiee des "recifs" edifies par l'Annelide Sabellaria alveolata (Linne) en baie du 

Mont Saint-Michel: banc des Hermelles. Extrait des Mem Soc Sc de Cherbourg T-LIV: 1-21  

Gruet Y (1971) Morpholgie, croissance et faune associee des recifs de Sabellaria alveolata (Linne) de la 

Bernierie-en-Retz (Loire Atlantique. Station Marine d'Endoume: Extrait de Tethys 3  

Gruet Y (1977) Rocky shore communities at Sion-Sur-L'Ocean (Vendee) and associated fauna of 

Sabellaria reefs (Sabellaria alveolata (Linne), Annelida, Polychaeta). Bulletin D Ecologie 8: 37-55  

Gruet Y (1982) Recherches sur l'ecologie des recifs d'hermelles edifies par l'annelide polychaete 

Sabellaria alveolata (Linne). Institut des Sciences de la Nature, Nantes 

Gruet Y (1984) Granulometric evolution of the sand tube in relation to grwth of the polychaete annelid 

Sabellaria alveolata (Linne) (Sabellariidae). Ophelia 23: 181-193 doi 

10.1080/00785326.1984.10426613 

Gruet Y (1986a) First experimental data on the dropping-out of opercular setae of the annelida polychaeta 

Sabellaria alveolata (Linne). Comptes Rendus Acad Sci Ser III-Sci Vie-Life Sci 302: 375-378  

Gruet Y (1986b) Spatiotemporal changes of Sabellarian reefs built by the sedentary polychaete Sabellaria 

alveolata (Linne). Mar Ecol-Pubbl Stn Zool Napoli 7: 303-319 doi 10.1111/j.1439-

0485.1986.tb00166.x 

Gruet Y (1991) Loss of opercular paleae in the polychaete annelid Sabellaria alveolata (Linne) 

(Sabellariidae). Ophelia: 333-342  

Gruet Y, Baudet J (1997) Mortalities massives subies par les populations du Polychaete Sabellaria 

alveolata (Linne) du delta de maree de Formentine (Vendee) suite a des froids exceptionnels. 

Bulletin de la Societe de Sciences Naturelles de l'Ouest de la France 19: 19-28  

Gruet Y, Bodeur Y (1994) Selection des grains de sable selon leur nature et leur forme par Sabellaria 

alveolata Linne (Polychaete: Sabellariidae) lors de la reconstruction experimentale de son tube. 



269 
 

In: Dauvin JC, Laubier L, Reish DJ (eds) 4eme Conference Internationale des Polychaetes. 

Memoirs de Musee Nationale Histoire Naturelle, Paris, pp 425-432 

Gruet Y, Bodeur Y (1995) Ecological conditions of modern Sabellarian reefs development: geological 

implications 2nd European Regional Meeting on Reefs in the Past, Present and Future ISRS. 

Publications du Service Geologiques du Luxembourg, Luxembourg, pp 73-80 

Gruet Y, Bodeur Y (1997) Les Recifs D'Hermelles. In: Dauvin JC (ed) Les Biocenoses Marine Littorales 

Francaises des Cotes Atlantique, Manch et Mer du Nord: Synthese, Menaces et Perspectives. 

Museum National D'Histoire Naturelle, Paris 

Gruet Y, Lassus P (1983) Maturation and breeding cycle in a natural population of Sabellaria alveolata 

(Linne), Annelida -Polychaeta. Ann Inst Oceanogr 59: 127-140  

Gruet Y, Vovelle J, Grasset M (1987) Biomineral components of a tube cement of Sabellaria alveolata (L.), 

(Annelida, Polychaeta) Can J Zool-Rev Can Zool 65: 837-842  

Gubbay S (2007) Defining and managing Sabellaria spinulosa reefs: Report of an inter-agency workshop 

1-2 May, 2007. JNCC Report No. 405., Peterborough, Joint Nature Conservation Committtee 

(JNCC) http://jncc.defra.gov.uk/pdf/405_web.pdf 

Hall-Spencer J, Allain V, Fossa JH (2002) Trawling damage to Northeast Atlantic ancient coral reefs. Proc 

R Soc B-Biol Sci 269: 507-511 doi 10.1098/rspb.2001.1910 

Hall-Spencer JM, Grall J, Moore PG, Atkinson RJA (2003) Bivalve fishing and maerl-bed conservation in 

France and the UK - retrospect and prospect. Aquatic Conservation-Marine and Freshwater 

Ecosystems 13: S33-S41 doi 10.1002/aqc.566 

Hall-Spencer JM, Moore PG (2000) Limaria hians (Mollusca : Limacea): a neglected reef-forming keystone 

species. Aquatic Conservation-Marine and Freshwater Ecosystems 10: 267-277 doi 

10.1002/1099-0755(200007/08)10:4<267::aid-aqc407>3.0.co;2-b 



270 
 

Hamerlynck O, Hostens K (1993) Growth, feeding, production and consumption in 0-group bib 

(Trisopterus luscus L.) and whiting (Merlangius merlangus L.) in a shallow coastal area of the 

south west Netherlands. ICES J Mar Sci 50: 81-91 doi 10.1006/jmsc.1993.1009 

Harper JL, Hawksworth DL (1994) Biodiveristy - Measurement and Estimation. Preface. Philosophical 

Transactions of the Royal Society of London Series B-Biological Sciences 345: 5-12 doi 

10.1098/rstb.1994.0081 

Hartmann-Schröder G (1971) Annelida, Borstenwürmer, Polychaeta. Gustav Fisher, Jena ISBN 3-437-

35038-2. 648 pp 

Haskoning (2005) Chapter 6. Hydrodynamics and Geomorphology Thanet Offshore Wind Farm 

Environmental Statement. Thanet Offshore Wind Ltd 

Hauser A, Attrill MJ, Cotton PA (2006) Effects of habitat complexity on the diversity and abundance of 

macrofauna colonising artificial kelp holdfasts. Mar Ecol-Prog Ser 325: 93-100 doi 

10.3354/meps325093 

Hayward P, Ryland J (1998) Handbook of the Marine Fauna of North-West Europe. Oxford University 

Press, Oxford ISBN: 978-0198540557 

Heip C, Craeymeersch JA (1995) Benthic community structures in the North Sea. Helgol Meeresunters 49: 

313-328 doi 10.1007/bf02368359 

Hendrick VJ (2007) An appraisal of Sabellaria spinulosa reefs in relation to their management and 

conservation. PhD Thesis. School of Marine Science and Technology, University of Newcastle 

Upon Tyne, Newcastle Upon Tyne 

Hendrick VJ, Foster-Smith RL (2006) Sabellaria spinulosa reef: a scoring system for evaluating 'reefiness' 

in the context of the Habitats Directive. J Mar Biol Assoc UK 86: 665-677 doi 

10.1017/s0025315406013555 



271 
 

Hewitt JE, Anderson MJ, Thrush SF (2005) Assessing and monitoring ecological community health in 

marine systems. Ecological Applications 15: 942-953 doi 10.1890/04-0732 

Hinz H, Kroencke I, Ehrich S (2005) The feeding strategy of dab Limanda limanda in the southern North 

Sea: linking stomach contents to prey availability in the environment. J Fish Biol 67: 125-145 doi 

10.1111/j.1095-8649.2005.00918.x 

Hiscock K (2003) Ross worm Sabellaria spinulosa – notes on status and marine natural heritage 

importance Marine Life Information Network, Marine Biological Association of the UK 

Hoare R, Hiscock K (1974) An ecological survey of the rocky coast adjacent to a bromine extraction works. 

Estuarine and Coastal Marine Science 2: 329-348 doi 10.1016/0302-3524(74)90003-6 

Holme NA (1964) Methods of sampling the benthos. Advances in Marine Biology 2: 171-260 doi 

10.1016/S0065-2881(08)60033-4 

Holt JT, James ID (1999) A simulation of the southern North Sea in comparison with measurements from 

the North Sea Project Part 2 Suspended Particulate Matter. Cont Shelf Res 19: 1617-1642 doi 

10.1016/s0278-4343(99)00032-1 

Holt TJ, Hartnoll RG, Hawkins SJ (1995) Sensitivity and vulnerability to man-induced change of selected 

communities: Intertidal brown algal shrubs, Zostera beds and Sabellaria spinulosa reefs., 

Peterborough http://publications.naturalengland.org.uk/publication/59034 

Holt TJ, Rees IE, Hawkins SJ, Seed R (1998) Biogenic Reefs (Volume IX). An overview of dynamic and 

sensitivity characteristics for conservation management of marine SACs., Oban 

http://www.ukmarinesac.org.uk/pdfs/biogreef.pdf 

Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, 

Naeem S, Schmid B, Setala H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of 

biodiversity on ecosystem functioning: A consensus of current knowledge. Ecological 

Monographs 75: 3-35 doi 10.1890/04-0922 

http://dx.doi.org/10.1016/0302-3524(74)90003-6


272 
 

Horne DJ (1982) The Ostracod fauna of an intertidal Sabellaria reef at Blue Anchor, Somerset, England. 

Estuar Coast Shelf Sci 15: 671-674 doi 10.1016/0272-7714(82)90078-6 

Hostens K, Mees J (1999) The mysid-feeding guild of demersal fishes in the brackish zone of the 

Westerschelde estuary. J Fish Biol 55: 704-719 doi 10.1111/j.1095-8649.1999.tb00712.x 

Hutchings P, Capa M, Peart R (2012) Revision of the Australian Sabellariidae (Polychaeta) and 

description of eight new species. Zootaxa 3306: 1-60 ISBN 978-1-86977-899-6 

Hyslop EJ (1980) Stomach contents analysis - a review of methods and their applications. J Fish Biol 17: 

411-429 doi 10.1111/j.1095-8649.1980.tb02775.x 

IEEM (2006) Guidelines for Ecological Impact Assessment in the United Kingdom. Institute of Ecology and 

Environmental Management 

IEEM (2010) Guidelines for Ecological Impact Assessment in Britain and Ireland: Marine and Coastal. 

Institute of Ecology and Environmental Management 

Ieno EN, Solan M, Batty P, Pierce GJ (2006) How biodiversity affects ecosystem functioning: roles of 

infaunal species richness, identity and density in the marine benthos. Mar Ecol-Prog Ser 311: 

263-271 doi 10.3354/meps311263 

Ierodiaconou D, Monk J, Rattray A, Laurenson L, Versace VL (2011) Comparison of automated 

classification techniques for predicting benthic biological communities using hydroacoustics and 

video observations. Cont Shelf Res 31: S28-S38 doi 10.1016/j.csr.2010.01.012 

Inger R, Attrill MJ, Bearhop S, Broderick AC, Grecian WJ, Hodgson DJ, Mills C, Sheehan E, Votier SC, 

Witt MJ, Godley BJ (2009) Marine renewable energy: potential benefits to biodiversity? An urgent 

call for research. J Appl Ecol 46: 1145-1153 doi 10.1111/j.1365-2664.2009.01697.x 

IPC (2011) Advice Note 10: Habitats Regulations Assessment Relevant to Nationally Significant 

Infrastructure Projects Infrastructure Planning Commission 20pp 



273 
 

https://infrastructure.planninginspectorate.gov.uk/wp-content/uploads/2013/09/Advice-note-10-

HRA.pdf 

Jackson A, Hiscock K (2008) Sabellaria spinulosa. Ross Worm. Marine Life Information Network: Biology 

and Sensitivity Key Information Sub-Programme. Marine Biological Association of the United 

Kingdom Plymouth http://www.marlin.ac.uk/speciesfullreview.php?speciesID=4278.  

Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, 

Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan HS, Pandolfi JM, Peterson CH, 

Steneck RS, Tegner MJ, Warner RR (2001) Historical overfishing and the recent collapse of 

coastal ecosystems. Science 293: 629-638 doi 10.1126/science.1059199 

Jägersten G (1972) Evolution of the metazoan life-cycle. Academic Press, New York ISBN: 978-

0123799500 

Jenkins C, Eggleton J, Albrecht J, Barry J, Duncan G, Golding N, O'Connor J (2015) North Norfolk 

Sandbank and Saturn Reef cSAC/SCI Management Investigation Report 

http://jncc.defra.gov.uk/pdf/Web_Cefas_JNCC_No.7_a.pdf 

Jennings S, Kaiser MJ (1998) The effects of fishing on marine ecosystems. In: Blaxter JHS, Southward 

AJ, Tyler PA (eds) Advances in Marine Biology, Vol 34, pp 201-352 doi 10.1016/s0065-

2881(08)60212-6 

Jiang WM, Carbines G (2002) Diet of blue cod, Parapercis colias, living on undisturbed biogenic reefs and 

on seabed modified by oyster dredging in Foveaux Strait, New Zealand. Aquatic Conservation-

Marine and Freshwater Ecosystems 12: 257-272 doi 10.1002/aqc.495 

JNCC (2004) Common Standards Monitoring for Inshore Sublittoral Sediment Habitats Version August 

2004. Joint Nature Conservation Committee (JNCC), Peterborough 28 pp. 

http://jncc.defra.gov.uk/PDF/CSM_marine_sublittoral_sediment.pdf 

http://www.marlin.ac.uk/speciesfullreview.php?speciesID=4278


274 
 

JNCC (2013) Third Report by the United Kingdom under Article 17 on the implementation of the Directive 

from January 2007 to December 2012 Conservation status assessment for Habitat: H1170 -

Reefs http://jncc.defra.gov.uk/article17 

JNCC, Defra (2012) UK Post-2010 Biodiversity Framework. Joint Nature Conservation Committee (JNCC) 

and Department for Environment, Food and Rural Affairs (Defra) on behalf of the Four Countries' 

Biodiversity Group http://jncc.defra.gov.uk/pdf/UK_Post2010_Bio-Fwork.pdf 

Jones LA (1998) Ecological functioning and integrity of marine ecosystems: Sabellaria spinulosa reefs. 

Oslo and Paris Commissions IMPACT 1998, Peterborough, Joint Nature Conservation 

Committee (JNCC) 

Jones LA, Hiscock K, Connor DW (2000) Marine Habitat Reviews. A summary of ecological requirements 

and sensitivity characteristics for the conservation and management of marine SACs., 

Peterborough http://www.ukmarinesac.org.uk/pdfs/marine-habitats-review.pdf 

Kaiser MJ, Clarke KR, Hinz H, Austen MCV, Somerfield PJ, Karakassis I (2006) Global analysis of 

response and recovery of benthic biota to fishing. Mar Ecol-Prog Ser 311: 1-14 doi 

10.3354/meps311001 

Kaiser MJ, Collie JS, Hall SJ, Jennings S, Poiner IR (2003) Impacts of fishing gear on marine benthic 

habitats. Food & Agricul Organization United Nations, Rome doi 10.1079/9780851996332.0197 

Kaiser MJ, Ramsay K (1997) Opportunistic feeding by dabs within areas of trawl disturbance: Possible 

implications for increased survival. Mar Ecol-Prog Ser 152: 307-310 doi 10.3354/meps152307 

Kaiser MJ, Spencer BE (1994) Fish scavenging behaviour in recently trawled areas. Mar Ecol-Prog Ser 

112: 41-49 doi 10.3354/meps112041 

Kalmus H (1931) Bewegungsstudien an den larven von Sabellaria spinulosa. Leuck.  Zeitschrift fur 

vergleichende Physiologie Berlin 15: 165-192  



275 
 

Kay P, Dipper F (2009) A Field Guide to the Marine Fishes of Wales and Adjacent Waters. Marine Wildlife, 

Llanfairfechan 256pp ISBN: 978-0956204806 

Keene WC (1980) The importance of a reef-forming polychaete, Mercierella enigmatica Fauvel, in the 

oxygen and nutrient dynamics of a hypereutrophic sub-tropical lagoon. Estuarine and Coastal 

Marine Science 11: 167-178 doi 10.1016/s0302-3524(80)80039-9 

Killeen IJ, Light JM (2000) Sabellaria, a polychaete host for the gastropods Noemiamea dolioliformis and 

Graphis albida. J Mar Biol Assoc UK 80: 571-573 doi 10.1017/s0025315400002381 

King PA, Fives JM, McGrath D (1994) Reproduction, growth and feeding of the Dragonet, Callionymus lyra 

(teleostei, Callionymidae), in Galway Bay, Ireland. J Mar Biol Assoc UK 74: 513-526 doi 

10.1017/S0025315400047639 

Kingston S, O'Connell M, Fairley JS (1999) Diet of otters Lutra lutra on Inishmore, Aran Islands, west 

coast of Ireland. Biology and Environment-Proceedings of the Royal Irish Academy 99B: 173-182 

http://lutra22.w.interiowo.pl/diet.pdf 

Kirtley DW (1994) A review and taxonomic revision of the family Sabellariidae Johnston 1865 (Annelida; 

Polychaeta) Sabecon Press, Florida 

Kirtley DW, Tanner W (1968) Sabellariid worms: builders of a major reef type. Journal of Sedimentary 

Research 38: 73-78 doi 10.1306/74D718D9-2B21-11D7-8648000102C1865D 

Klimpel S, Seehagen A, Palm HW (2003) Metazoan parasites and feeding behaviour of four small-sized 

fish species from the central North Sea. Parasitology Research 91: 290-297 doi 10.1007/s00436-

003-0957-8 

Kraus NC, McDougal WG (1996) The effects of seawalls on the beach Part 1: An updated literature 

review. J Coast Res 12: 691-701 ISSN 0749-0208 



276 
 

Krone R, Gutow L, Joschko TJ, Schroeder A (2013) Epifauna dynamics at an offshore foundation - 

Implications of future wind power farming in the North Sea. Mar Environ Res 85: 1-12 doi 

10.1016/j.marenvres.2012.12.004 

La Porta B, Nicoletti L (2009) Sabellaria alveolata (Linnaeus) reefs in the central Tyrrhenian Sea (Italy) 

and associated polychaete fauna. In: Maciolek NJ, Blake JA (eds) Proceedings of the 9th 

International Polychaete Conference. Magnolia Press, Auckland, pp 527-536 doi 

10.11646/zoosymposia.2.1.36 

Lana PD, Gruet Y (1989) Sabellaria wilsoni sp.n (Polychaeta, Sabellariidae) from the southeast coast of 

Brazil. Zool Scr 18: 239-244 doi 10.1111/j.1463-6409.1989.tb00449.x 

Lande R, DeVries PJ, Walla T (2000) When species accumulation curves intersect: implications for 

ranking diversity using small samples. Oikos 89 (3): 601-605 doi 10.1034/j.1600-

0706.2000.890320.x 

Last KS, Hendrick VJ, Beveridge CM (2011a) Hinkley Point; Tolerance of Sabellaria spinulosa to Aqueous 

Chlorine. Centre for Envrionment, Fisheries and Aquaculture Science (Cefas) and EDF Energy 

as part of the British Energy Estuarine & Marine Studies (BEEMS) programme 

https://infrastructure.planninginspectorate.gov.uk/wp-

content/ipc/uploads/projects/EN010001/EN010001-005144-HPC-NNBPEA-XX-000-RET-

000124%201.pdf 

Last KS, Hendrick VJ, Beveridge CM, Davies AJ (2011b) Measuring the effects of suspended particulate 

matter and smothering on the behaviour, growth and survival of key species found in 

areasassociated with aggregate dredging. Project MEPF 08/P76., London 

Lechapt JP, Gruet Y (1993) Bathysabellaria neocaledoniensis, a new genus and species of Sabellariidae 

(Annelida, Polychaeta) from bathyal zones off New Caledonia (Southwest Pacific Ocean). Zool 

Scr 22: 243-247 doi 10.1111/j.1463-6409.1993.tb00355.x 



277 
 

Lechapt JP, Kirtley DW (1996) Bathysabellaria spinifera (Polychaeta: Sabellariidae), a new species from 

deep water off New Caledonia, southwest Pacific Ocean. Proc Biol Soc Wash 109: 560-574  

Lechapt JP, Kirtley DW (1998) New species of bathyal and abyssal Sabellariidae (Annelida : Polychaeta) 

from near New Caledonia (southwest Pacific Ocean). Proc Biol Soc Wash 111: 807-822  

Lilliendahl K, Solmundsson J (2006) Feeding ecology of sympatric European shags Phalacrocorax 

aristotelis and great cormorants P-carbo in Iceland. Mar Biol 149: 979-990 doi 10.1007/s00227-

006-0259-7 

Limpenny DS, Foster-Smith RL, Edwards TM, Hendrick VJ, Diesing M, Eggleton JD, Meadows WJ, 

Crutchfield Z, Pfeifer S, Reach IS (2010) Best methods for identifying and evaluating Sabellaria 

spinulosa and cobble reef. Aggregate Levy Sustainability Fund (ALSF) Project MAL0008., 

Peterborough 

Limpenny SE, Barrio Frojan C, Cotterill C, Foster-Smith R, Pearce B, Tizzard L, Limpenny DS, Long D, 

Walmsley S, Kirby S, Baker K, Meadows WJ, Rees J, Hill JM, Wilson C, Leivers M, Churchley S, 

Russell J, Birchenough AC, Green SL, Law RJ (2011) The East Coast Regional Environmental 

Characterisation (REC). Cefas Open Report 08/04, Lowestoft 

Lindeboom HJ, Geurts van Kessel AJM, Berkenbosch A (2005) Areas of Special Ecological Values in the 

Dutch Continental Shelf. Report RIKZ/2005.008 Alterra Report nr. 1203. Alterra Wageningen UR 

and Ministerie van Verkeer en Waterstaat Rijkswaterstaat  

Lindenbaum C, Bennell JD, Rees ELS, McClean D, Cook W, Wheeler AJ, Sanderson WG (2008) Small-

scale variation within a Modiolus modiolus (Mollusca : Bivalvia) reef in the Irish Sea: I. Seabed 

mapping and reef morphology. J Mar Biol Assoc UK 88: 133-141 doi 

10.1017/s0025315408000374 

Linero-Arana I (2013) New records of Sabellariidae (Annelida: Polychaeta) from the Caribbean Sea. 

Interciencia 38: 382-386  



278 
 

Lopezjamar E, Iglesias J, Otero JJ (1984) Contribution of infauna and mussel raft epifauna to demersal 

fish diets. Mar Ecol-Prog Ser 15: 13-18 doi 10.3354/meps015013 

MacArthur R (1960) On the relative abundance of species. The American Naturalist 94: 25-36 doi 

10.1086/282106 

Macdonald JS, Green RH (1983) Redundancy of variables used to describe importance of prey species in 

fish diets. Canadian Journal of Fisheries and Aquatic Sciences 40: 635-637 doi 10.1139/f83-083 

Maes J, de Brabandere L, Ollevier F, Mees J (2003) The diet and consumption of dominant fish species in 

the upper Scheldt estuary, Belgium. J Mar Biol Assoc UK 83: 603-612 doi 

10.1017/S0025315403007537h 

Magurran AE (2004) Measuring Biological Diversity. Blackwell Publishing, Oxford ISBN: 978-0632056330 

Magurran AE, McGill, B.J. (2011) Biological Diversity Frontiers in Measurement and Assessment. Oxford 

University Press, Oxford ISBN: 978-0199580675 

Manjon-Cabeza ME, Garcia-Raso JE (1998) Population structure and growth of the hermit crab Diogenes 

pugilator (Decapoda : Anomura : Diogenidae) from the northeastern Atlantic. J Crustac Biol 18: 

753-762 doi 10.2307/1549152 

Marchand Y, Cazoulat R (2003) Biological reef survey using spot satellite data classification by cellular 

automata method - Bay of Mont Saint-Michel (France). Comput Geosci 29: 413-421 doi 

10.1016/s0098-3004(02)00116-4 

Marshall S, Elliott M (1997) A comparison of univariate and multivariate numerical and graphical 

techniques for determining inter- and intraspecific feeding relationships in estuarine fish. J Fish 

Biol 51: 526-545 doi 10.1111/j.1095-8649.1997.tb01510.x 

Maurer BA, McGill BJ (2011) Measurement of species diversity. In: Maguran AE, McGill BJ (eds) 

Biological Diversity: fontiers in measurement and assessment. Oxford University Press, New 

York, pp 345 



279 
 

MBA (1957) Plymouth Marine Fauna 457, Plymouth, Marine Biological Association of the UK (MBA) 

McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: A comment on distance-

based redundancy analysis. Ecology 82: 290-297 doi 10.1890/0012-

9658(2001)082[0290:fmmtcd]2.0.co;2 

McCarthy DA, Kramer P, Price JR, Donato CL (2008) The ecological importance of a recently discovered 

intertidal Sabellariid reef in St. Croix, US Virgin Islands. Caribb J Sci 44: 223-227 doi 

10.18475/cjos.v44i2.a10 

McGonigle C, Brown C, Quinn R, Grabowski J (2009) Evaluation of image-based multibeam sonar 

backscatter classification for benthic habitat discrimination and mapping at Stanton Banks, UK. 

Estuar Coast Shelf Sci 81: 423-437 doi 10.1016/j.ecss.2008.11.017 

McIntosh WC (1922) A monograph of British Marine Annelids Volume IV, Part 1. Polychaeta - Hermellidae 

to Sabellariidae, London, The Ray Society London doi 10.5962/bhl.title.54725 

MEA (2005) Millenium Ecosystem Assessment. http://www.maweb.org/en/Index.aspx 

Mellett CL, Hodgson DM, Lang A, Mauz B, Selby I, Plater AJ (2012) Preservation of a drowned gravel 

barrier complex: A landscape evolution study from the north-eastern English Channel. Marine 

Geology 315–318: 115-131 doi 10.1016/j.margeo.2012.04.008 

Mellin C, Huchery C, Caley MJ, Meekan MG, Bradshaw CJA (2010) Reef size and isolation determine the 

temporal stability of coral reef fish populations. Ecology 91: 3138-3145 doi 10.1890/10-0267.1 

Merchant ND, Witt MJ, Blondel P, Godley BJ, Smith GH (2012) Assessing sound exposure from shipping 

in coastal waters using a single hydrophone and Automatic Identification System (AIS) data. Mar 

Pollut Bull 64: 1320-1329 doi 10.1016/j.marpolbul.2012.05.004 

MESL (2005) Thanet Offshore Windfarm, Benthic & Intertidal Resource Survey. Marine Ecological 

Surveys Limited, Bath, Haskoning UK Limited 

http://www.maweb.org/en/Index.aspx
http://dx.doi.org/10.1016/j.margeo.2012.04.008


280 
 

MESL (2006) Hastings Shingle Bank Area 366-370. benthic Monitoring Report. Marine Ecological Surveys 

Limited, Bath, The Resource Management Association (RMA) 

MESL (2007a) Predictive Framework for Assessment of Recoverability of Marine Benthic Communities 

Following Cessation of Aggregate Dredging. project No MEPF 04/02., Lowestoft, Marine 

Aggregate Levy Sustainability Fund (MALSF) 

MESL (2007b) Thanet offshore wind farm benthic and conservation resources survey, Peterborough, 

Haskoning UK Ltd acting on behalf of Vattenfall 

MESL (2012) Thanet offshore wind farm: A post-construction monitoring survey of benthic resources. 

Marine Ecological Surveys Limited, Peterborough, Haskoning UK Ltd acting on behalf of 

Vattenfall. 

Mettam C, Conneely ME, White SJ (1994) Benthic macrofauna and sediments in the Severn Estuary. Biol 

J Linnean Soc 51: 71-81 doi 10.1111/j.1095-8312.1994.tb00945.x 

Micallef A, Le Bas TP, Huvenne VAI, Blondel P, Huehnerbach V, Deidun A (2012) A multi-method 

approach for benthic habitat mapping of shallow coastal areas with high-resolution multibeam 

data. Cont Shelf Res 39-40: 14-26 doi 10.1016/j.csr.2012.03.008 

Milazzo M, Rodolfo-Metalpa R, Chan VBS, Fine M, Alessi C, Thiyagarajan V, Hall-Spencer JM, Chemello 

R (2014) Ocean acidification impairs vermetid reef recruitment. Scientific Reports 4 doi 

10.1038/srep04189 

Miller DC (2001) Pre-construction Sabellaria vulgaris baseline monitoring at Broadkill Beach sand 

placement site. University of Delaware, Sussex County, Delaware 

http://www.nap.usace.army.mil/Portals/39/docs/Civil/Deepening/Biological/Sabellaria%20Monitori

ng%202001.pdf 

Mitchell S, Akesson L, Uncles R (2012) Observations of turbidity in the Thames Estuary, United Kingdom. 

Water and Environment Journal 26: 511-520 doi 10.1111/j.1747-6593.2012.00311.x 



281 
 

MMO (2016) Follow on to the Development of Spatial Models of Essential Fish Habitat for the South 

Inshore and Offshore Marine Plan Areas. A report produced for the Marine Management 

Organisation, pp 142. MMO Project No: 1096. ISBN: 978-1-909452-40-4. 

Mollmann C, Kornilovs G, Fetter M, Koster FW (2004) Feeding ecology of central Baltic Sea herring and 

sprat. J Fish Biol 65: 1563-1581 doi 10.1111/j.0022-1112.2004.00566.x 

Moore CG, Bates CR, Mair JM, Saunders GR, Harries DB, Lyndon AR (2009) Mapping serpulid worm 

reefs (Polychaeta: Serpulidae) for conservation management. Aquatic Conservation-Marine and 

Freshwater Ecosystems 19: 226-236 doi 10.1002/aqc.959 

Morte MS, Redon MJ, Sanz-Brau A (2001) Feeding habits of Trisopterus minutus capelanus (Gadidae) off 

the eastern coast of Spain (western Mediterranean). Mar Ecol-Pubbl Stn Zool Napoli 22: 215-229 

doi 10.1046/j.1439-0485.2001.01731.x 

Multer HG, Milliman JD (1967) Geologic aspects of Sabellarian reefs, Southeastern Florida. Bull Mar Sci 

17: 257-267  

Naylor LA, Viles HA (2000) A temperate reef builder: an evaluation of the growth, morphology and 

composition of Sabellaria alveolata (L.) colonies on carbonate platforms in South Wales. In: 

Insalaco E, Skelton PW, Palmer TJ (eds) Carbonate Platform Systems: Components and 

Interactions. Geological Soc Publishing House, Bath, pp 9-19 

NE, JNCC (2009) Marine Conservation Zone Project: Ecological Network Guidance. Natural England (NE) 

and the Joint Nature Conservation Committee (JNCC), Peterborough 

http://jncc.defra.gov.uk/PDF/100705_ENG_v10.pdf 

Newell RC, Seiderer LJ, Hitchcock DR (1998) The impact of dredging works on coastal waters: A review of 

the sensitivity to disturbance and subsequent recovery of biological resources on the sea bed. 

Oceanogr Mar Biol 36: 127-178  

Newell RC, Seiderer LJ, Robinson JE (2001) Animal : sediment relationships in coastal deposits of the 

eastern English Channel. J Mar Biol Assoc UK 81: 1-9 doi 10.1017/s0025315401003344 



282 
 

Newell RC, Seiderer LJ, Robinson JE, Simpson NM, Pearce B, Reeds KA (2004) Impacts of Overboard 

Screening on Seabed & Associated Benthic Biological Community Structure in relation to Marine 

Aggregate Extraction. Project No. SAMP.1.022. Marine Ecological Surveys Ltd 

Nishi E, Bailey-Brock JH, Dos Santos AS, Tachikawa H, Kupriyanova EK (2010) Sabellaria isumiensis n. 

sp (Annelida: Polychaeta: Sabellariidae) from shallow waters off Onjuku, Boso Peninsula, Japan, 

and re-descriptions of three Indo-West Pacific sabellariid species. Zootaxa: 1-25  

Nishi E, Kato T, Hayashi I (2004) Sabellaria tottoriensis n. sp (Annelida : Polychaeta : Sabellariidae) from 

shallow water off Tottori, the Sea of Japan. Zool Sci 21: 211-217 doi 10.2108/zsj.21.211 

Nishi E, Nishihira M (1999) Use of annual density banding to estimate longevity of infauna of massive 

corals. Fisheries Science 65: 48-56 doi 10.2331/fishsci.65.48 

Nishi E, Nunez J (1999) A new species of shallow water Sabellariidae (Annelida: Polychaeta) from 

Madeira Island, Portugal and Canary Islands, Spain. Life and Marine Sciences 17: 37-42  

Noffke A, Hertweck G, Kroncke I, Wehrmann A (2009) Particle size selection and tube structure of the 

polychaete Owenia fusiformis. Estuar Coast Shelf Sci 81: 160-168 doi 

10.1016/j.ecss.2008.10.010 

Noji CIM, Noji TT (1991) Tube lawns of spionid polychaetes and their significance for recolonisation of 

disturbed benthic substrates. Meeresforschung-Reports on Marine Research 33: 235-246  

Norling K, Rosenberg R, Hulth S, Gremare A, Bonsdorff E (2007) Importance of functional biodiversity and 

species-specific traits of benthic fauna for ecosystem functions in marine sediment. Mar Ecol-

Prog Ser 332: 11-23 doi 10.3354/meps332011 

NRA (1994) Wash Zone Report: A Monitoring Review, Huntington, UK. National Rivers Authority. 

ODPM (2005) A Practical Guide to the Strategic Environmental Assessment Directive: Practical guidance 

on applying European Directive 2001/42/EC “on the assessment of the effects of certain plans 

and programmes on the environment”. Office of the Deputy Prime Minister, London 



283 
 

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/7657/practicalguid

esea.pdf 

Olaso I, Sanchez F, Rodriguez-Cabello C, Velasco F (2002) The feeding behaviour of some demersal fish 

species in response to artificial discarding. Sci Mar 66: 301-311  

Olive PJW (1985) Covariability of reproductive traits in marine invertebrates: implications for the phylogeny 

of te hlower invertebrates. In: Conway Morris S (ed) The origins and relationships of lower 

invertebrates. Oxford University Press, Oxford, pp 42-59 doi 10.1016/S0169-5347(97)01285-8 

Olsgard F, Schaanning MT, Widdicombe S, Kendall MA, Austen MC (2008) Effects of bottom trawling on 

ecosystem functioning. Journal of Experimental Marine Biology and Ecology 366: 123-133 doi 

10.1016/j.jembe.2008.07.036 

Osenberg CW, Bolker BM, White J-SS, St Mary CM, Shima JS (2006) Statistical Issues and Study Design 

in Ecological Restorations: Lessons Learned from Marine Reserves. In: Falk DA, Palmer MA, 

Zedler JB (eds) Foundations of Restoration Ecology. Island Press, Washington, USA, pp 280-302 

http://www1.inecol.edu.mx/repara/download/III_1_FoundationsofRestorationEcologyThe%20Scie

nceandPracticeof%20EcologicalRestoration.pdf 

OSPAR (2003) Criteria for the Identification of Species and Habitats in need of Protection and their 

Method of Application (The Texel-Faial Criteria). OSPAR 03/17/1-E, Annex 5, Bremen 

http://jncc.defra.gov.uk/pdf/ANNEX05_Texel_Faial%20criteria.pdf 

OSPAR (2008) Sabellaria spinulosa reefs. Case Reports for the OSPAR List of threatened and / or 

declining species and habitats. OSPAR Commission 

https://qsr2010.ospar.org/media/assessments/p00358_case_reports_species_and_habitats_200

8.pdf 

OSPAR (2013) Background document for Sabellaria spinulosa reefs. OSPAR Commission Biodiversity 

Series. OSPAR Commission, London 

https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjFgvWSt

http://dx.doi.org/10.1016/j.jembe.2008.07.036


284 
 

9TWAhWC2BoKHTOnCRUQFggmMAA&url=https%3A%2F%2Fwww.ospar.org%2Fdocuments%

3Fd%3D7342&usg=AOvVaw0LSoo74lgWA1UVfR23cQh7 

Pandolfi JM, Robertson DR, Kirtley DW (1998) Roles of worms in reef-building. Coral Reefs 17: 120-120 

doi 10.1007/s003380050105 

Pawlik JR (1986) Chemical induction of larval settlement and metamorphosis in the reef-building tube 

worm Phragmatopoma californica (Sabellariidae, Polychaeta) Mar Biol 91: 59-68 doi 

10.1007/bf00397571 

Pawlik JR (1988a) Larval settlement and metamorphosis of two gregarious Sabellariid polychaetes -  

Sabellaria alveolata compared with Phragmatopoma californica. J Mar Biol Assoc UK 68: 101-

124 doi 10.1017/S002531540005013X 

Pawlik JR (1988b) Larval settlement and metamorphosis of Sabellariid polychetes, with special reference 

to Phragmatopoma lapidosa, a reef-building species, and Sabellaria floridensis, a non-gregarious 

species. Bull Mar Sci 43: 41-60  

Pawlik JR, Butman CA (1993) Settlement of a marine tube worm as a function of current velocity - 

interacting effects of hydrodynamics and behavior. Limnol Oceanogr 38: 1730-1740 doi 

10.4319/lo.1993.38.8.1730 

Pawlik JR, Butman CA, Starczak VR (1991) Hydrodynamic facilitation of gregarious settlement of a reef-

building tube worm. Science 251: 421-424 doi 10.1126/science.251.4992.421 

Pawlik JR, Chia FS (1991) Larval settlement of Sabellaria cementarium Moore, and comparisons with 

other species of Sabellariid polychaetes. Can J Zool-Rev Can Zool 69: 765-770 doi 10.1139/z91-

110 

Pawlik JR, Faulkner DJ (1986) Specific free fatty-acids induce larval settlement and metamorphosis of the 

reef-building tube worm Phragmatopoma californica (Fewkes). Journal of Experimental Marine 

Biology and Ecology 102: 301-310 doi 10.1016/0022-0981(86)90183-8 



285 
 

Pawlik JR, Faulkner DJ (1988) The gregarious settlement of Sabellariid polychaetes: New perspectives on 

chemical cues. . In: Thompson MF, Sarojini R, Nagabhushanam R (eds) Marine Biodeteriation: 

Advanced Techniques Applicable to the Indian Ocean. Oxford & IBH Publishing, New Dehli, pp 

475-487 

Payne O, Chesworth J, Highfield J (2016) Review of the MCZ Features of Conservation Importance. Joint 

Nature Conservation Committee (JNCC) and Natural England (NE), Peterborough 

http://jncc.defra.gov.uk/pdf/20160512_MCZReviewFOCI_v7.0.pdf 

Pearce B, Farinas JM, Wilson C, Pitts J, deBurgh A, Somerfield PJ (2014) Repeated mapping of reefs 

constructed by Sabellaria spinulosa Leuckart 1849 at an offshore wind farm site. Cont Shelf Res 

83: 3-13 doi 10.1016/j.csr.2014.02.003 

Pearce B, Hill JM, Grubb L, Harper G (2011a) Impacts of Marine Aggregate Dredging on Adjacent 

Sabellaria spinulosa Aggregations and other benthic fauna. Project No. MEPF 08/P39. Marine 

Ecological Surveys Ltd (MESL), Bath 

Pearce B, Hill JM, Wilson C, Griffin R, Earnshaw S, Pitts J (2011b) Sabellaria spinulosa Reef Ecology and 

Ecosystems Services, London https://www.thecrownestate.co.uk/media/5692/sabellaria-

spinulosa-reef-ecology-and-ecosystem-services.pdf 

Pearce B, Taylor J, Seiderer LJ (2007) Recoverability of Sabellaria spinulosa Following Aggregate 

Extraction. Project No. MAL0027. Marine Ecological Surveys Ltd, Bath 

Pearson TH (2001) Functional group ecology in soft-sediment marine benthos: The role of bioturbation. In: 

Gibson RB, Barnes M, Atkinson RJA (eds) Oceanography and Marine Biology, Vol 39, pp 233-

267 

Pearson TH, Rosenberg R (1978) Macrobenthic succession in relation to organic enrichment and pollution 

of the marine environment. Oceanography and Marine Biology: An Annual Review 16: 229-311  

Pechenik JA (1999) On the advantages and disadvantages of larval stages in benthic marine invertebrate 

life cycles. Mar Ecol-Prog Ser 177: 269-297 doi 10.3354/meps177269 



286 
 

Peterson CH, Summerson HC, Thomson E, Lenihan HS, Grabowski J, Manning L, Micheli F, Johnson G 

(2000) Synthesis of linkages between benthic and fish communities as a key to protecting 

essential fish habitat. Bull Mar Sci 66: 759-774  

Phillips Dales R (1967) Annelids. Hutchinson & Co. Ltd, London ISBN: 9780090688128 

Pietrzak JD, de Boer GJ, Eleveld MA (2011) Mechanisms controlling the intra-annual mesoscale variability 

of SST and SPM in the southern North Sea. Cont Shelf Res 31: 594-610 doi 

10.1016/j.csr.2010.12.014 

Pinnegar JK (2009) DAPSTOM - An integrated database and portal for fish stomach records. Database 

Version 2.5, Phase 2 Final Report., Lowestoft 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.177.5371&rep=rep1&type=pdf 

Pinnegar JK, Trenkel VM, Tidd AN, Dawson WA, Du Buit MH (2003) Does diet in Celtic Sea fishes reflect 

prey availability? J Fish Biol 63: 197-212 doi 10.1046/j.1095-8649.2003.00204.x 

Pohler SMJ (2004) The Sabellariid worm colonies of Suva Lagoon, Fiji. South Pacific Journal of Natural 

History 22: 36-42 http://www.publish.csiro.au/sp/pdf/sp04006 

Portman ME, Duff JA, Koeppel J, Reisert J, Higgins ME (2009) Offshore wind energy development in the 

exclusive economic zone: Legal and policy supports and impediments in Germany and the US. 

Energy Policy 37: 3596-3607 doi 10.1016/j.enpol.2009.04.023 

Posey MH, Pregnall AM, Graham RA (1984) A brief description of a subtidal Sabellariid (Polychaeta) reef 

on the southern Oregon coast. Pac Sci 38: 28-33  

Power M, Attrill MJ (2002) Factors affecting long-term trends in the estuarine abundance of pogge 

(Agonus cataphractus). Estuar Coast Shelf Sci 54: 941-949 doi 10.1006/ecss.2001.0866 

Prodöhl PA, Bailie D (2015) Application of genetic tagging for the management and conservation of 

European lobster  Homarus gammarus stocks. 



287 
 

http://www.shellfish.org.uk/files/Presentations/2015/PRODOHL.pdf. Queens University Belfast, 

Belfast 

Queiros AM, Hiddink JG, Kaiser MJ, Hinz H (2006) Effects of chronic bottom trawling disturbance on 

benthic biomass, production and size spectra in different habitats. Journal of Experimental Marine 

Biology and Ecology 335: 91-103 doi 10.1016/j.jembe.2006.03.001 

Rabaut M, Calderon MA, van de Moortel L, van Dalfsen J, Vincx M, Degraer S, Desroy N (2013) The role 

of structuring benthos for juvenile flatfish. Journal of Sea Research 84: 70-76 doi 

10.1016/j.seares.2012.07.008 

Rabaut M, Guilini K, Van Hoey G, Magda V, Degraer S (2007) A bio-engineered soft-bottom environment: 

The impact of Lanice conchilega on the benthic species-specific densities and community 

structure. Estuar Coast Shelf Sci 75: 525-536 doi 10.1016/j.ecss.2007.05.041 

Rabaut M, Van de Moortel L, Vincx M, Degraer S (2010) Biogenic reefs as structuring factor in 

Pleuronectes platessa (Plaice) nursery. Journal of Sea Research 64: 102-106 doi 

10.1016/j.seares.2009.10.009 

Rabaut M, Vincx M, Degraer S (2009) Do Lanice conchilega (sandmason) aggregations classify as reefs? 

Quantifying habitat modifying effects. Helgoland Marine Research 63: 37-46 doi 10.1007/s10152-

008-0137-4 

Ragnarsson SA, Raffaelli D (1999) Effects of the mussel Mytilus edulis L. on the invertebrate fauna of 

sediments. Journal of Experimental Marine Biology and Ecology 241: 31-43 doi 10.1016/s0022-

0981(99)00063-5 

Rappe K, Fockedey N, Van Colen C, Cattrijsse A, Mees J, Vincx M (2011) Spatial distribution and general 

population characteristics of mysid shrimps in the Westerschelde estuary (SW Netherlands). 

Estuar Coast Shelf Sci 91: 187-197 doi 10.1016/j.ecss.2010.10.017 

Raven C (1961) Oogenesis: The Storage of Developmet Information. Pergamon Press, New York 

http://www.shellfish.org.uk/files/Presentations/2015/PRODOHL.pdf


288 
 

RCEP (2004) Turning the Tide: Adderessing the Impact of Fisheries on the Marine Environment. Royal 

Commission on Environmental Polution. The Staionary Office, London 

Rees EIS, Bergmann M, Galanidi M, Hinz H, Shucksmith R, Kaiser MJ (2005) An enriched Chaetopterus 

tube mat biotope in the eastern English Channel. J Mar Biol Assoc UK 85: 323-326 doi 

10.1017/S0025315405011215h 

Rees HL, Dare PJ (1993) Sources of mortality and associated life-cycle traits of selected benthic species: 

a review. Fisheries Research Data Report Number 33. Ministry of Agriculture, Fisheries and 

Food, Directorate of Research, Lowestoft 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.214.1089&rep=rep1&type=pdf 

Rees HL, Pendle MA, Waldcock R, Limpenny DS, Boyd SE (1999) A comparison of benthic biodiversity in 

the North Sea, English Channel, and Celtic Seas. ICES J Mar Sci 56: 228-246 doi 

10.1006/jmsc.1998.0438 

Reise K, Schubert A (1987) Macrobenthic turnover in the subtidal Wadden Sea - The Norderaue revisted 

after 60 years. Helgol Meeresunters 41: 69-82 doi 10.1007/bf02365100 

Reubens JT, Braeckman U, Vanaverbeke J, Van Colen C, Degraer S, Vincx M (2013a) Aggregation at 

windmill artificial reefs: CPUE of Atlantic cod (Gadus morhua) and pouting (Trisopterus luscus) at 

different habitats in the Belgian part of the North Sea. Fisheries Research 139: 28-34 doi 

10.1016/j.fishres.2012.10.011 

Reubens JT, Degraer S, Vincx M (2011) Aggregation and feeding behaviour of pouting (Trisopterus 

luscus) at wind turbines in the Belgian part of the North Sea. Fisheries Research 108: 223-227 

doi 10.1016/j.fishres.2010.11.025 

Reubens JT, Pasotti F, Degraer S, Vincx M (2013b) Residency, site fidelity and habitat use of Atlantic cod 

(Gadus morhua) at an offshore wind farm using acoustic telemetry. Mar Environ Res 90: 128-135 

doi 10.1016/j.marenvres.2013.07.001 



289 
 

Reubens JT, Vandendriessche S, Zenner AN, Degraer S, Vincx M (2013c) Offshore wind farms as 

productive sites or ecological traps for gadoid fishes? - Impact on growth, condition index and diet 

composition. Mar Environ Res 90: 66-74 doi 10.1016/j.marenvres.2013.05.013 

Reuter M, Piller WE, Kroh A, Harzhauser M (2009) Foraminifera recycling in worm reefs. Coral Reefs 29: 

57-57 doi 10.1007/s00338-009-0523-7 

Riesen W, Reise K (1982) Macrobenthos of the subtidal Wadden Sea - revisted after 55 years. Helgol 

Meeresunters 35: 409-423 doi 10.1007/bf01999132 

Rijnsdorp AD, Vingerhoed B (2001) Feeding of plaice Pleuronectes platessa L. and sole Solea solea (L.) 

in relation to the effects of bottom trawling. Journal of Sea Research 45: 219-229 doi 

10.1016/s1385-1101(01)00047-8 

Robert A, Gruet Y, Lassus P (1979) Quelques aspects de la biologie des Hermelles, Sabellaria alveolata 

(Linne), Annelide Polychaete Sedentaire; Etude de leur reproduction. CRDP de Nantes, Biologie 

Geologie 1: 3-14  

Roeckmann C, St. John MA, Schneider UA, Tol RSJ (2007) Testing the implications of a permanent or 

seasonal marine reserve on the population dynamics of Eastern Baltic cod under varying 

environmental conditions. Fisheries Research 85: 1-13 doi 10.1016/j.fishres.2006.11.035 

Rosenberg A, Bigford TE, Leathery S, Hill RL, Bickers K (2000) Ecosystem Approaches to Fishery 

Management Through Essential Fish Habitat. Bull Mar Sci 66: 535-542  

Saidur R, Islam MR, Rahim NA, Solangi KH (2010) A review on global wind energy policy. Renewable & 

Sustainable Energy Reviews 14: 1744-1762 doi 10.1016/j.rser.2010.03.007 

SanVicente C, Sorbe JC (1995) Biology of the suprabenthic mysid Schistomysis spiritus (Norman, 1860) in 

the southeastern part of the Bay of Biscay. Sci Mar 59: 71-86  

Sawyer PJ (1967) Intertidal Life-History of the Rock Gunnel, Pholis gunnellus in the Western Atlantic. 

Copeia 1: 55-61 doi 10.2307/1442176 



290 
 

Schafer W (1972) Ecology and Paleoecology of Marine Invertebrates. Oliver & Boyd, Edinburgh 

Schueckel S, Sell A, Kroencke I, Reiss H (2011) Diet composition and resource partitioning in two small 

flatfish species in the German Bight. Journal of Sea Research 66: 195-204 doi 

10.1016/j.seares.2011.06.003 

Schwartz MW, Brigham CA, Hoeksema JD, Lyons KG, Mills MH, van Mantgem PJ (2000) Linking 

biodiversity to ecosystem function: implications for conservation ecology. Oecologia 122: 297-305 

doi 10.1007/s004420050035 

Seiderer LJ, Newell RC (1999) Analysis of the relationship between sediment composition and benthic 

community structure in coastal deposits: Implications for marine aggregate dredging. ICES J Mar 

Sci 56: 757-765 doi 10.1006/jmsc.1999.0495 

Shaheen PA, Manderson JP, Fahay MP (2004) Stage-specific spatial and temporal variability in the diets 

of larval winter flounder (Pseudopleuronectes americanus) in a northeastern US estuarine 

nursery. Estuaries 27: 958-965 doi 10.1007/bf02803422 

SharkTrust (2010) An Illustrated Compendium of Sharks, Skates, Rays and Chimaera. Chapter 1: The 

British Isles and Northeast Atlantic. Part 2: Sharks. 

Sheader M (1998) Grazing predation on a population of Ampelisca tenuicornis (Gammaridae : 

Amphipoda) off the south coast of England. Mar Ecol-Prog Ser 164: 253-262 doi 

10.3354/meps164253 

Sheehan EV, Stevens TF, Gall SC, Cousens SL, Attrill MJ (2013) Recovery of a Temperate Reef 

Assemblage in a Marine Protected Area following the Exclusion of Towed Demersal Fishing. Plos 

One 8 doi 10.1371/journal.pone.0083883 

Shirose LJ, Brooks RJ (1995) Age structure, mortality, and longevity in syntopic populations of three 

species of ranid frogs in central Ontario. Can J Zool-Rev Can Zool 73: 1878-1886 doi 

10.1139/z95-220 



291 
 

Shorty JT, Gannon DP (2013) Habitat Selection by the Rock Gunnel, Pholis gunnellus L. (Pholidae). 

Northeastern Naturalist 20: 155-170 doi 10.1656/045.020.0113 

Simmons SA, Zimmer RK, Zimmer CA (2005) Life in the lee: Local distributions and orientations of 

honeycomb worms along the California coast. J Mar Res 63: 623-643 doi 

10.1357/0022240054307911 

Skilleter GA, Cameron B, Zharikov Y, Boland D, McPhee DP (2006) Effects of physical disturbance on 

infaunal and epifaunal assemblages in subtropical, intertidal seagrass beds. Mar Ecol-Prog Ser 

308: 61-78 doi 10.3354/meps308061 

Sloan NJB, Irlandi EA (2008) Burial tolerances of reef-building Sabellariid worms from the east coast of 

Florida. Estuar Coast Shelf Sci 77: 337-344 doi 10.1016/j.ecss.2007.09.020 

Smith PR, Chia FS (1985) Metamorphosis of the Sabellariid polychaete Sabellaria cementariuum Moore - 

A histological analysis. Can J Zool-Rev Can Zool 63: 2852-2866  

SNH (2013) A Handbook on Environmental Impact Assessment: guidance for Competent Authorities, 

Consultees and others involved in the Environmental Impact Assessment Process in Scotland. 

4th Edition. Scottish Natural Heritage 

http://www.snh.org.uk/pdfs/publications/heritagemanagement/EIA.pdf 

Soeffker M, Sloman KA, Hall-Spencer JM (2011) In situ observations of fish associated with coral reefs off 

Ireland. Deep-Sea Research Part I-Oceanographic Research Papers 58: 818-825 doi 

10.1016/j.dsr.2011.06.002 

Somers IF, Kirkwood GP (1991) Population ecology of the grooved tiger prawn, Penaeus semisulcatus, in 

the north-western gulf of Carpentaria, Australia - growth, movement, age structure and infestation 

by the bopyrid parasite Epipenaeon ingens. Australian Journal of Marine and Freshwater 

Research 42: 349-367  



292 
 

Sotheran IS, FosterSmith RL, Davies J (1997) Mapping of marine benthic habitats using image processing 

techniques within a raster-based geographic information system. Estuar Coast Shelf Sci 44: 25-

31 doi 10.1016/S0272-7714(97)80004-2 

Souza Dos Santos A, Riul P, Dos Santos Brasil AC, Christoffersen ML (2011) Encrusting Sabellariidae 

(Annelida: Polychaeta) in rhodolith beds, with description of a new species of Sabellaria from the 

Brazilian coast. J Mar Biol Assoc UK 91: 425-438 doi 10.1017/s0025315410000780 

Stachowicz JJ, Fried H, Osman RW, Whitlatch RB (2002) Biodiversity, invasion resistance, and marine 

ecosystem function: Reconciling pattern and process. Ecology 83: 2575-2590 doi 10.1890/0012-

9658(2002)083[2575:BIRAME]2.0.CO;2 

Stafford R, Whittaker C, Velterop R, Wade O, Pinnegar JK (2007) Programme 13: North Sea Whiting 

Stomach Contents. Centre for Environment, Fisheries and Aquaculture Science (Cefas), 

Lowestoft 

Sveshnikov VA (1985) Spectrums of life forms of Polychaeta (Annelida). Doklady Akademii Nauk Sssr 

285: 1265-1268  

Tanner WF (1960) Perched barrier islands. Southeastern Geology 2: 83-84  

Tappin AD, Barriada JL, Braungardt CB, Evans EH, Patey MD, Achterberg EP (2010) Dissolved silver in 

European estuarine and coastal waters. Water Research 44: 4204-4216 doi 

10.1016/j.watres.2010.05.022 

Taylor AM, Mauchline J, Ritson EB (1962) Notes on the radioecology of Sellafield beach. PG Report 353, 

Warrington 

TCE (2013) Offshore Wind Energy> Our Portfolio> Round 3 Wind Farms. 

http://www.thecrownestate.co.uk/energy-infrastructure/offshore-wind-energy/our-portfolio/round-

3-wind-farms/ 

http://www.thecrownestate.co.uk/energy-infrastructure/offshore-wind-energy/our-portfolio/round-3-wind-farms/
http://www.thecrownestate.co.uk/energy-infrastructure/offshore-wind-energy/our-portfolio/round-3-wind-farms/


293 
 

Teixeira CM, Batista MI, Cabral HN (2010) Diet, growth and reproduction of four flatfishes on the 

Portuguese coast. Sci Mar 74: 223-233 doi 10.3989/scimar.2010.74n2223 

Tett P, Gowen RJ, Painting SJ, Elliot M, Forster R, Mills DK, Bresnan E, Capuzzo E, Fernandes TF, 

Foden J, Geider RJ, Gilpin LC, Huxham M, McQuatters-Gollop AL, Malcolm SJ, Saux-Picart S, 

Platt T, Racault M-F, Sathyendranath S, van der Molen J, Wilkinson M (2013) Framework for 

understanding marine ecosystem health. Mar Ecol-Prog Ser 494: 1-27 doi 10.3354/meps10539 

Thieltges DW (2005) Benefit from an invader: American slipper limpet Crepidula fornicata reduces star fish 

predation on basibiont European mussels. Hydrobiologia 541: 241-244 doi 10.1007/s10750-004-

4671-z 

Thieltges DW, Strasser M, Reise K (2006) How bad are invaders in coastal waters? The case of the 

American slipper limpet Crepidula fornicata in western Europe. Biological Invasions 8: 1673-1680 

doi 10.1007/s10530-005-5279-6 

Thomas FIM (1994a) Morphology and orientation of tube extensions on aggregations of the polychaete 

annelid Phragmatopoma californica. Mar Biol 119: 525-534 doi 10.1007/bf00354314 

Thomas FIM (1994b) Transport and mixing of gametes in 3 free-spawning polychaete annelids, 

Phragmatopoma claifornica (Fewkes), Sabellaria cementarium (Moore) and Schizobranchia 

insignis (Bush). Journal of Experimental Marine Biology and Ecology 179: 11-27 doi 

10.1016/0022-0981(94)90014-0 

Thorson G (1946) Reproduction and larval development of Danish marine bottom invertebrates, with 

special reference to the planktonic larvae in the sound (Oresund). C.A. Reitzels Forlag, 

Kopenhagen 

Thorson GE (1957) Sampling the benthos. Memoirs of the Geological Society of America 67: 61-73  

Tillin HM, Hull SC, Tyler-Walters H (2010) Accessing and developing the required biophysical datasets 

and data layers for Marine Protected Areas network planning and wider marine spatial planning 

purposes: Report No 22 Task 3A Development of a Sensitivity Matrix (pressures-MCZ/MPA 



294 
 

features), Report to the Department of Environment, Food and Rural Affairs, ABPmer and the 

Marine Life Information Network (MarLIN), Plymouth 

http://www.marlin.ac.uk/assets/pdf/MB0102_Task3-PublishedReport.pdf 

Toonen RJ, Pawlik JR (1996) Settlement of the tube worm Hydroides dianthus (Polychaeta: Serpulidae): 

Cues for gregarious settlement. Mar Biol 126: 725-733 doi 10.1007/bf00351339 

Toonen RJ, Pawlik JR (2001) Settlement of the gregarious tube worm Hydroides dianthus (Polychaeta : 

Serpulidae). II. Testing the desperate larva hypothesis. Mar Ecol-Prog Ser 224: 115-131 doi 

10.3354/meps224115 

Trebilco R, Dulvy NK, Stewart H, Salomon AK (2015) The role of habitat complexity in shaping the size 

structure of a temperate reef fish community. Mar Ecol-Prog Ser 532: 197-211 doi 

10.3354/meps11330 

Trenkel VM, Pinnegar JK, Dawson WA, du Buit MH, Tidd AN (2005) Spatial and temporal structure of 

predator-prey relationships in the Celtic Sea fish community. Mar Ecol-Prog Ser 299: 257-268 doi 

10.3354/meps299257 

Trigg C, Harries D, Lyndon A, Moore CG (2011) Community composition and diversity of two Limaria 

hians (Mollusca: Limacea) beds on the west coast of Scotland. J Mar Biol Assoc UK 91: 1403-

1412 doi 10.1017/s0025315410002158 

UKBAP (2007a) Conserving Biodiverity - the UK Approach. Department for Environment, Food and Rural 

Affairs (Defra), London http://jncc.defra.gov.uk/PDF/UKBAP_ConBio-UKApproach-2007.pdf 

UKBAP (2007b) Habitat Action Plan: Sabellaria spinulosa Reefs. Department for Environment, Food and 

Rural Affairs (Defra) http://jncc.defra.gov.uk/pdf/UKBAP_BAPHabitats-47-

SabellariaSpinulosaReefs.pdf 

Uncles RJ, Mitchell SB (2011) Turbidity in the Thames Estuary: How turbid do we expect it to be? 

Hydrobiologia 672: 91-103 doi 10.1007/s10750-011-0757-6 



295 
 

Uncles RJ, Stephens JA, Law DJ (2006) Turbidity maximum in the macrotidal, highly turbid Humber 

Estuary, UK: Flocs, fluid mud, stationary suspensions and tidal bores. Estuar Coast Shelf Sci 67: 

30-52 doi 10.1016/j.ecss.2005.10.013 

Unicomarine (1998) Results of the biological sampling of the areas around the deep water approach 

channel to Harwich and Felixtowe Docks: 1992 and 1996. Harwich Haven Authority, Harwich 

Van der Meer J (1997) Sampling design of monitoring programmes for marine benthos: A comparison 

between the use of fixed versus randomly selected stations. Journal of Sea Research 37: 167-

179 doi 10.1016/s1385-1101(97)00007-5 

Van der veer HW, Creutzberg F, Dapper R, Duineveld GCA, Fonds M, Kuipers BR, Vannoort GJ, Witte JIJ 

(1990) On the ecology of the dragonet Callionymus lyra in the southern North Sea. Neth J Sea 

Res 26: 139-150 doi 10.1016/0077-7579(90)90063-m 

Van Hoey G, Guilini K, Rabaut M, Vincx M, Degraer S (2008) Ecological implications of the presence of 

the tube-building polychaete Lanice conchilega on soft-bottom benthic ecosystems. Mar Biol 154: 

1009-1019 doi 10.1007/s00227-008-0992-1 

Vansteenbrugge L, Van Ginderdeuren K, Van Regenmortel T, Hostens K, Vincx M (2012) Larval mantis 

shrimp Rissoides desmaresti (RISSO, 1816) (Stomatopoda) in the Belgian part of the North Sea. 

Belgian Journal of Zoology 142: 154-158  

Vasconcelos R, Prista N, Cabral H, Costa MJ (2004) Feeding ecology of the lesser weever, Echiichthys 

vipera (Cuvier, 1829), on the western coast of Portugal. J Appl Ichthyol 20: 211-216 doi 

10.1111/j.1439-0426.2004.00547.x 

Viherluoto M, Viitasalo M (2001) Effect of light on the feeding rates of pelagic and littoral mysid shrimps: a 

trade-off between feeding success and predation avoidance. Journal of Experimental Marine 

Biology and Ecology 261: 237-244 doi 10.1016/s0022-0981(01)00277-5 



296 
 

Vinn O, Ten Hove HA, Mutvei H, Kirsimae K (2008) Ultrastructure and mineral composition of serpulid 

tubes (Polychaeta, Annelida). Zool J Linn Soc 154: 633-650 doi 10.1111/j.1096-

3642.2008.00421.x 

Vorberg R (2000) Effects of shrimp fisheries on reefs of Sabellaria spinulosa (Polychaeta). ICES J Mar Sci 

57: 1416-1420 doi 10.1006/jmsc.2000.0920 

Walker A, Rees EI (1980) Benthic ecology of Dublin Bay in relation to sludge dumping: Fauna. Irish 

Fisheries Investigations Series B Marine 22, Dublin 

http://oar.marine.ie/bitstream/10793/146/1/No%2022%201980%20Benthic%20ecology%20of%20

Dublin%20bay%20in%20relation%20to%20sludge%20dumping%20fauna.pdf 

Wanless S, Harris MP, Greenstreet SPR (1998) Summer sandeel consumption by seabirds breeding in 

the Firth of Forth, south-east Scotland. ICES J Mar Sci 55: 1141-1151 doi 

10.1006/jmsc.1998.0372 

Ware SJ, Kenny A, Curtis M, Barrio Frojan C, Cooper K, Reach I, Bussell J, Service M, Boyd A, Sotheran 

I, Egerton J, Seiderer LJ, Pearce B (2011) Guidelines for the Conduct of Benthic Studies at 

Marine Aggregate Extraction Sites (2nd Edition) 

Warren PJ, Sheldon RW (1967) Feeding and migration patterns of the pink shrimp, Pandalus montagui, in 

the estuary of the River Crouch, England. Journal of the Fisheries Research Board of Canada 24: 

569-580 doi 10.1139/f67-049 

Warwick RM, Clarke KR (2001) Practical measures of marine biodiversity based on relatedness of 

species. Oceanography and Marine Biology, Vol 39 39: 207-231  

Warwick RM, George CL, Davies JR (1978) Annual macrofauna production in a venus community. 

Estuarine and Coastal Marine Science 7: 215-241 doi 10.1016/0302-3524(78)90107-x 

Warwick RM, Somerfield PJ (2010) The structure and functioning of the benthic macrofauna of the Bristol 

Channel and Severn Estuary, with predicted effects of a tidal barrage. Mar Pollut Bull 61: 92-99 

doi 10.1016/j.marpolbul.2009.12.016 



297 
 

Watt J (1995) Seasonal and area-related variations in the diet of Otters Lutra lutra on Mull. Journal of 

Zoology 237: 179-194 doi 10.1111/j.1469-7998.1995.tb02757.x 

Wells HW (1970a) Sabellaria reef masses in Delaware Bay. Chesapeake Science 11: 258-260 doi 

10.2307/1351102 

Wells RMG (1970b) The feeding biology of Sabellaria. Tane 16: 131-134 

http://www.thebookshelf.auckland.ac.nz/docs/Tane/Tane-

16/14%20The%20feeding%20biology%20of%20Sabellaria.pdf 

Wheeler A (1978) Key to the Fishes of Northern Europe. Frederick Warne & Co. Ltd, London 

Wilding C, Durkin O, Lacey C, Philpott E, Adams L, Chaniotis PD, Wiles PTV, Seeley R, Neilly M, Dargie 

J, Crawford-Avis OT (2012) Descriptions of Marine Protected Area (MPA) search features. 

MarLIN (Marine Life Information Network), SMRU Ltd., Scottish Natural Heritage and the Joint 

Nature Conservation Committee, for the Scottish Marine Protected Areas Project 

http://jncc.defra.gov.uk/pdf/Scottish%20MPA%20Project%20-

%20MPA%20search%20features%20description%20catalogue%20-%20interim%20report%20-

Feb%202013.pdf 

Wildish DJ, Fader GBJ, Lawton P, MacDonald AJ (1998) The acoustic detection and characteristics of 

sublittoral bivalve reefs in the Bay of Fundy. Cont Shelf Res 18: 105-113 doi 10.1016/s0278-

4343(98)80002-2 

Wilhelmsson D, Malm T (2008) Fouling assemblages on offshore wind power plants and adjacent 

substrata. Estuar Coast Shelf Sci 79: 459-466 doi 10.1016/j.ecss.2008.04.020 

Wilhelmsson D, Malm T, Ohman MC (2006) The influence of offshore windpower on demersal fish. ICES J 

Mar Sci 63: 775-784 doi 10.1016/j.icesjms.2006.02.001 

Williams R, Collins NR (1984) Distribution and variability in abundance of Schistomysis spiritus (Crustcea, 

Mysidacea) in the Bristol Channel in relation to environmental variables, with comments on other 

mysids. Mar Biol 80: 197-206 doi 10.1007/bf02180187 



298 
 

Wilson DP (1929) The lavae of British Sabellarians. J Mar Biol Assoc UK 16: 221-268 doi 

10.1017/S0025315400029787 

Wilson DP (1968) Settlement behaviour of the larvae of Sabellaria alveolata (L.). J Mar Biol Assoc UK 48: 

387-435 doi 10.1017/S0025315400034561 

Wilson DP (1970a) Additional observations on larval growth and settlement of Sabellaria alveolata. J Mar 

Biol Assoc UK 50: 1-31 doi 10.1017/S0025315400000576 

Wilson DP (1970b) Larvae of Sabellaria spinulosa and their settlement behaviour. J Mar Biol Assoc UK 

50: 33-52 doi 10.1017/S0025315400000588 

Wilson DP (1971) Sabellaria colonies at Duckpool, North Cornwall, 1961-1970. J Mar Biol Assoc UK 51: 

509-580 doi 10.1017/S002531540001496X 

Wilson DP (1974) Sabellaria colonies at Duckpool, North Cornwall, 1971-1972, with a note for May 1973. J 

Mar Biol Assoc UK 54: 393-436 doi 10.1017/S0025315400058628 

Wilson DP (1976) Sabellaria alveolata (L) at Duckpool, North Cornwall, 1975. J Mar Biol Assoc UK 56: 

305-310 doi 10.1017/S0025315400018920 

Wilson DP (1977) Distribution, development and settlement of sabellarian polychaete Lygdamis muratus 

(Allen) near Plymouth. J Mar Biol Assoc UK 57: 761-792 doi 10.1017/S0025315400025157 

Wilson JC, Elliott M (2009) The Habitat-creation Potential of Offshore Wind Farms. Wind Energy 12: 203-

212 doi 10.1002/we.324 

Wilson MFJ, O'Connell B, Brown C, Guinan JC, Grehan AJ (2007) Multiscale terrain analysis of multibeam 

bathymetry data for habitat mapping on the continental slope. Marine Geodesy 30: 3-35 doi 

10.1080/01490410701295962 

Wilson WH (1991) Sexual reproductive modes in polychaetes - classification and diversity. Bull Mar Sci 

48: 500-516  



299 
 

Wolff WJ (2000) Causes of Extirpations in the Wadden Sea, an Estuarine Area in The Netherlands. 

Conservation Biology 14: 876-885 doi 10.1046/j.1523-1739.2000.98203.x 

Wootton JR (1990) Ecology of Teleost Fish. Chapman and Hall, London ISBN: 978-0-412-84590-1 

Zale AV, Merrifield SG (1989) Species Profiles: Life histories and enviromental requirements of coastal 

fishes and invertebrates (South Florida) - Reef building tube worm. US Army Corps of Engineers, 

Florida http://www.dtic.mil/docs/citations/ADA224840 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



300 
 



301 
 



302 
 



303 
 



304 
 



305 
 



306 
 



307 
 



308 
 



309 
 



310 
 

 


