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ABSTRACT
Grazing is the main grassland management strategy applied in alpine shrubland
ecosystems on theQinghai-Tibetan Plateau. However, how different intensities of long-
term grazing affect plant diversity, biomass accumulation and carbon (C) stock in these
ecosystems is poorly understood. In this study, alpine shrubland with different long-
term (more than 30 years) grazing intensities (excluded from grazing for 5 years (EX),
light grazing (LG), moderate grazing (MG) and heavy grazing (HG)) on the Qinghai-
Tibetan Plateau were selected to study changes in plant diversity, aboveground biomass
and C accumulation, as well as distribution of C stock among biomass components
and soil depths. A structural equation model was used to illustrate the impact of
grazing on the soil carbon stock (SOC). The results showed that the Shannon–Wiener
diversity index and richness index of herbaceous plants, shrubs, and communities first
significantly increased and then decreased with increasing grazing intensity, reaching
maxima at the LG site. The aboveground and belowground and litter biomass of
understory herbaceous plants, shrubs and communities decreased with increasing
grazing intensity, reaching maxima at the EX site. The aboveground and belowground
biomass C storage decreased with increasing grazing intensity, reaching maxima at the
EX site. The SOC stock and total ecosystem C stock decreased with increasing grazing
intensity, reaching maxima at the EX and LG sites. A structural equationmodel showed
that grazing-induced changes in the belowground biomass of understory herbaceous
plants greatly contributed to the SOC stock decrease. Thus, considering the utilization
and renewal of grassland resources, as well as local economic benefits and ecological
effects, LG may be a more rational grazing intensity for species diversity conservation
and ecosystemC sequestration in alpine shrubland. Our results provide new insights for
incorporating grazing intensity into shrub ecosystem C stock and optimizing grazing
management and grassland ecosystem C management.

Subjects Agricultural Science, Soil Science, Climate Change Biology
Keywords Grazing intensity, Carbon storage, Alpine shrubland, Qinghai-Tibetan Plateau

INTRODUCTION
Grasslands, which constitute the second largest global ecosystem, not only provide
economic and recreational value but also perform critical ecosystem services, such as
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carbon (C) sequestration and mitigating global climate change (David et al., 2018; Fan
et al., 2019). Across the globe, grassland ecosystems store approximately 34% of the
global soil organic carbon (SOC) and thus play an important role in the global C cycle
(Lorenz & Lal, 2018; Viglizzo et al., 2019). In recent years, grassland degradation has been
exacerbated by human disturbance (e.g., overgrazing) and rapid climate change, which
causing considerable losses of SOC (Liu, Yang & Zhang, 2015; Georg et al., 2019; Tian
et al., 2020). Even a small change in grassland SOC stock could significantly alter the
concentration of CO2 in the atmosphere and help mitigate global climate change (Zhao
et al., 2017; Wang et al., 2019). Nevertheless, SOC is a potentially manageable resource,
and the loss of C from soil could be regained by improved management (Six et al., 2007).
Therefore, it is crucial to understand how SOC storage responds to grassland management
practices to better predict the regional C balance and grassland sustainable management
(Li et al., 2018a; Yu et al., 2020).

Grazing is one of themost important landmanagement practices in grasslandsworldwide
(Zhou et al., 2017). Livestock grazing influences grassland SOC dynamics mainly through
impacts on plant C allocation patterns and soil characteristic availability due to soil
compaction by livestock trampling (Wilson et al., 2018). However, the impacts of grazing
on grassland SOC storage are controversial (Sun, Ma & Lu, 2018). For example, grazing
has various effects on the SOC stock in grassland ecosystems, with positive (Hewins et
al., 2018; Dong et al., 2020; Wei et al., 2021), neutral (Fan et al., 2021) and negative effects
(Liu et al., 2021). Nevertheless, the impact of grazing on grassland SOC is a very complex
process regulated by a range of environmental factors (e.g., grassland ecotype, precipitation
and temperature) and management practices (e.g., grazing intensity and duration (Jiang et
al., 2020). In addition, grazing has a hysteretic effect on grassland soil systems, and only on
a long time scale can the ecological effects of grazing be fully reflected (Yang et al., 2013).
Despite a great deal of literature about how to best manage livestock grazing to achieve
ecological and/or production functions (Li et al., 2017; Sun, Ma & Lu, 2018; Cdab et al.,
2020), how grazing, especially its intensity, influences the distribution and sequestration
of C over a longer time scale remains considerably unclear (Zhou et al., 2017; Zubieta et
al., 2021). Therefore, the development of sustainable grazing management strategies over
long time scales, especially the optimal grazing intensity, that increases vegetation diversity
and productivity, enhance ecosystem function and services is becoming a global concern
(Pakeman et al., 2019).

Alpine shrubland is a widely distributed grassland type on the Qinghai-Tibet Plateau,
and accumulated large amounts of SOC due to high altitude and lower temperatures
(Zhao et al., 2010; Nie et al., 2019). The shrubland is considered the largest uncertain
factor in the C balance in terrestrial ecosystems (Piao et al., 2010). Moreover, the alpine
shrubland on the Qinghai-Tibet Plateau has been severely degraded due to overgrazing
and rapid global climate change, which greatly decreases plant diversity, productivity,
ecosystem services and sustainability (Mhsa et al., 2020). Furthermore, alpine shrubland
is more vulnerable to climate change and human disturbance than other alpine grassland
ecosystems on the Qinghai-Tibet Plateau (Yang et al., 2009). Therefore, it is essential to
explore the appropriate grazing management practices, especially the optimal grazing
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intensity for alpine shrubland ecosystems against the background of global warming, to
better understand the role of shrubland ecosystems in the terrestrial ecosystem C balance.
Currently, there are few studies on the effect of long-term grazing on alpine shrubland,
and little is known about the dynamic changes in the SOC pool in alpine shrubland
under different grazing intensities over a long time scale; thus, further research is needed.
Therefore, precise quantification of the C dynamics of alpine shrubland ecosystems
under different grazing intensities is required to better predict the regional C balance and
sustainable grassland management over a long time scale.

In the current study, we compared the plant biomass C and soil C stocks under different
long-term (more than 30 years) grazing intensities (excluded from grazing for 5 years
(EX), light grazing (LG), medium grazing (MG) and heavy grazing (HG)) in an alpine
shrubland on the Qinghai-Tibet Plateau. We hypothesized that the plant diversity, biomass
and C storage will exhibit a first significantly increased and then decreased pattern with
increasing grazing intensity. The focus of our research was to explore how different grazing
intensities affect C storage in alpine shrubland ecosystems to predict the C balance and
to optimize grazing management strategies to minimize the impacts of climate change on
alpine shrubland to ensure their sustainable development.

MATERIALS AND METHODS OCCURS
Study area
Research was conducted in Qilian Mountain National Park located in Tianzhu Tibetan
Autonomous County (N37◦10′16.97′′, E102◦47′17.31′′, 3,050 m of altitude), Gansu
Province, China (Fig. 1A). This area has a plateau-continental climate with a high
altitude (above 3200 m), low air oxygen content and temperature, intense ultraviolet
radiation and short plant growing period (120 days). The average annual air temperature
is 0.16 ◦C, ranging from a maximum of 11.2 ◦C in July to a minimum of −11.4 ◦C in
January. The mean annual rainfall is 415.0 mm, of which 76% falls during June–September
(Wang et al., 2020). The soil is an alpine chernozem soil. The vegetation type is alpine
shrubland, and the dominant species are Rhododendron thymifolium, Rhododendron
capitatum and Salix oritrepha, and the companion species are Potentilla fruticosa, Caragana
jubata, Rhododendron anthopogonoides and Spiraea alpina. The grassland in the study area
belongs to lightly degraded according to the alpine grassland degradation criteria, and
serves as the local winter and spring pasture (grazing rest during the other time). The
proportion of shrubs and herbs is approximately 40% and 80%, respectively. In September
2019, when the alpine vegetation had reached its maximum biomass, we calculated that the
theoretical carrying capacity of the alpine shrubland in the study area was 3.7 AUM. ha−1

based on the 50% utilization rate. An AUM is the amount of forage required by a 454 kg
cow (requires about 11.8 kg of dry matter forage per day) for one month (Jacoby, 1989).

Experimental design
The alpine shrubland in our research area was a public grassland before 1984, and was
managed by individual households of herdsmen due to the implementation of the
household responsibility system in 1984. The fences were built since 1984. Therefore,
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Figure 1 Location of the study area (A) and study treatments (B).
Full-size DOI: 10.7717/peerj.12771/fig-1

a natural grazing intensity gradient was formed due to the changes in grazing time and
livestock number. We chose three shady slopes (25–34◦) as three study sites in September
2019, and all sites were located at least 1.0 km away from each other. The soil type, vegetation
community composition and topography are basically the same among the three sites. Our
study design consisted of four grazing intensities, including excluded from grazing for 5
years (EX), lightly grazed (LG), moderately grazed (MG) and heavily grazed (HG) alpine
shrubland (Fig. 1B). The four grazed treatments were randomly assigned within each study
site in a randomized complete block design. The area of each grazed plot was approximately
0.6–0.8 ha. All plots were located at least 60 m between any two plots. From 1984 to 2019,
the LG treatment was grazed freely by Tibetan sheep and yaks as spring-autumn pastures
at intensities of 2.6 ± 0.23 AUM. ha−1, which was below the theoretical capacity. The
MG treatment was grazed freely by Tibetan sheep and yaks as spring-autumn pastures at
intensities of 3.9 ± 0.29 AUM. ha−1, which was basically close to the theoretical capacity.
The HG site continued grazing by Tibetan sheep and yaks throughout the year from 1984
to 2019 at intensities of 7.6 ± 0.37 AUM. ha−1 (approximately two times the theoretical
capacity). The EX site was absolutely excluded from livestock grazing all year round for
more than 5 years. The vegetation and soil characteristics of the study sites are shown in
Table 1.

Field measurements and sampling
During the period from early September to middle September in 2019, when the alpine
shrubs reached their peak biomass (Wang et al., 2021), ten quadrats (5 m ×5 m) were
randomly established approximately 1.5 m from the edge in each grazed plot to investigate
shrub community structure. We surveyed 40 quadrats per grazed treatment and 120
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Table 1 Description of the basic situation of different sampling plots.

Grazing intensity

EX LG MG HG

Shrub Coverage (%) 92.3± 0.87a 88.9± 0.92b 82.0± 0.97c 7.7± 0.65d
Height (cm) 78.6± 1.16a 65± 2.04b 51.5± 1.28c 11.7± 1.05d
Density (individual/m2) 3.4± 0.14a 3.1± 0.11a 2.66± 0.19b 1.18± 0.11c
Dominant
species

Rhododendron
capitatum,
Salix
oritrepha

Rhododendron
capitatum,
Salix
oritrepha

Rhododendron
capitatum,
Rhododendron
thymifolium

Potentilla
fruticosa

Understory herbs Coverage (%) 90.8± 1.0a 85.5± 1.6b 86.6± 2.1ab 61.0± 1.9c
Height (cm) 32.8± 1.3a 21.4± 0.8b 8.6± 0.3c 1.8± 0.1d
Density (individual/m2) 614.8± 27.4b 711.4± 27.2a 657.7± 17.4ab 399.5± 40.6c
Dominant species Polygonum viviparum Elymus nutans Elymus nutans Kobresia humilis
Bulk density (g/cm3) 0.8± 0.01c 0.8± 0.01c 0.9± 0.02b 1.2± 0.04a

0–10 cm
Soil organic carbon (g/kg) 110.8± 3.8a 111.6± 2.2a 85.8± 1.9b 39.5± 1.5c
Bulk density (g/cm3) 0.8± 0.01b 0.8± 0.01b 0.9± 0.04b 1.1± 0.1a

10–20 cm
Soil organic carbon (g/kg) 89.5± 1.9a 89.6± 1.3a 73.7± 2.1b 39.3± 8.4c
Bulk density (g/cm3) 0.9± 0.01b 0.8± 0.01c 0.9± 0.03bc 1.1± 0.03a

20–30 cm
Soil organic carbon (g/kg) 55.0± 2.2a 55.9± 0.8a 48.3± 2.3b 30.6± 0.7c
Bulk density (g/cm3) 1.21± 0.04a 1.2± 0.1a 1.3± 0.1a 1.2± 0.1a

Soil

30–50 cm
Soil organic carbon (g/kg) 35.5± 1.8a 34.3± 2.3a 35.1± 0.1a 28.1± 0.8b

Notes.
EX, excluded from grazing for 5 years; LG, lightly grazed; MG, moderately grazed; HG, heavily grazed; BD, soil bulk density; SM, soil moisture; SOC, soil organic carbon;
TN, soil total nitrogen.
Different lowercase letters in the same line indicate significant differences at different grazing intensities P < 0.05.

quadrats in total. The height, coverage and number (density) of each shrub were measured
in each quadrat in the field. In addition, we chose one standard shrub for each shrub species
in each quadrat and then completely excavated them. According to the method of Deng et
al. (2017), we divided the standard shrubs into four components: leaf, branch, stem and
root. We weighed the fresh weight of all above- and belowground components immediately
by using portable scales in situ and then collected 300–500 g samples of each component in
every standard shrub for moisture and organic carbon content measurement. In addition,
we randomly established ten 50 cm × 50 cm small quadrats (1.5 m from the edge) in each
grazed plot to investigate the aboveground biomass and litter biomass of the understory
herbs community (40 quadrats per treatment, and 120 quadrats in total). All aboveground
green herbs were cut at ground level, and the litter was collected by hand in each small
quadrat.

We collected soil samples in the 0–10, 10–20, 20–30 and 30–50 cm soil layers by using
a 10-cm inner diameter auger in each small quadrat to measure the root biomass of the
herbs. Two cores were collected from each small quadrat and then mixed together to form
one composite sample (10 composite samples per grazed plot and 40 composite samples
in each treatment). We separated the roots by washing the soil samples within a 0.5 mm
mesh bag. The shrub and herbs above- and belowground samples were immediately dried
at 105 ◦C for 30 min and then oven-dried at 70 ◦C until constant weight. The soil bulk
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density of the samples from the 0–10, 10–20, 20–30 and 30–50 cm soil layers was measured
by using a cutting ring (100 cm3 volume) in each of the harvested quadrats (10 per grazed
plot, and 30 per treatment).

Diversity calculation
The Shannon–Wiener diversity index (the diversity of species within a community or
habitat, H ), evenness index (distribution of the number of individuals per species in a
community or habitat, J ), and richness index (the number of species in a community or
habitat, S) of understory herbs and shrubs were calculated using the methods of Lindsey
(1956).

Organic carbon content analysis
The above- and belowground parts of herbs and different shrub components were crushed
and sieved through a 0.5 mm mesh sieve for testing organic carbon after determining the
dry weight. The organic carbon contents of the soil and vegetation were assayed by using
the dichromate oxidation method (Bao, 2000).

Organic carbon storage calculation
The vegetation biomass organic carbon storage was calculated with the following equation
(Deng et al., 2017):

CSV=BV×CV (1)

where CSV is vegetation biomass organic carbon storage (g/m2), BV is vegetation biomass
(g/m2) and CV is the vegetation organic carbon concentration (%).

The soil organic carbon storage was calculated with the following equation (Deng et al.,
2017):

CSS=BD×SOCC×ST×10 (2)

where CSS is soil organic carbon storage (g/m2), BD is soil bulk density (g/m3), SOCC is
soil organic carbon content (g/kg) and ST is soil thickness (cm).

Ecosystem organic carbon storage was considered the sum of the plant, litter, root and
SOC storage.

Statistical analysis
Using the following polynomial regression, we explored the relationships between grazing
intensity and understory herbs, shrubs, and community Shannon–Wiener diversity index,
evenness index and richness index:

y = ax2+bx+ c (3)

where y is the Shannon–Wiener diversity index, evenness index or richness index, x is
grazing intensity, and a, b and c are fitted coefficients.

Using the following polynomial regression, we explored the relationships between
grazing intensity and biomass C storage, SOC storage and ecosystem C storage:

y = dx2+ex+ f (4)
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where y is the biomass C storage, SOC storage or ecosystem C storage, x is grazing intensity,
and d, e and f are fitted coefficients.

Kolmogorov–Smirnov and homogeneity of variance analyses were used to test the
normal distribution and homogeneity of variance of diversity, biomass, organic carbon
content and organic carbon storage, respectively. Then, we used one-way analyses of
variance followed by Tukey’s multiple comparisons test to compare the significant
differences in diversity, biomass, organic carbon content and organic carbon storage
among different grazing treatments at a significance level of P < 0.05. Structural equation
modeling (SEM) was used to test the direct and indirect effects of grazing, soil water
content, above- and belowground biomass of understory herbs, understory herbs diversity
and litter biomass on SOC storage. All statistical analyses were performed with the SPSS
software program ver. 19.0 (SPSS, Chicago, Illinois, USA). All figures were generated with
Origin software ver. 8.5, and the SEM model was constructed with R language ver.4.0.2.

RESULTS
Diversity and biomass at different grazing intensities
As shown in Fig. 2, the Shannon–Wiener diversity index of shrubs (Fig. 2D), communities
(Fig. 2G) and richness index of understory herbs (Fig. 2C), shrubs (Fig. 2F), and
communities (Fig. 2I) first increased and then decreased with increasing grazing intensity,
reaching a maximum at the LG site. The evenness index of understory herbs significantly
decreased along the grazing intensity gradient (Fig. 2B), while there were no significant
differences in the shrub and community evenness indices at different grazing intensities
sites.

The aboveground biomass of understory herbs (UAGB) first increased and then
decreased with increasing grazing intensity, reaching a maximum at the LG site of
6503.04 g/m2 (Table 2). The belowground biomass of understory herbs (UBGB) and
total understory herbs biomass (TUB) significantly decreased with increasing grazing
intensity (P < 0.05), and the highest values appeared at the EX site (Table 2). In terms of
shrubs, there was a significant decrease in leaf and branch biomass, belowground biomass of
shrubs (SBGB) and total shrub biomass (TSB) with increasing grazing intensity (P < 0.05),
reaching their maxima at the EX site, and lower values appeared at the HG site (Table 2).
The litter biomass (LB) and total biomass (TB) decreased with increasing grazing intensity,
with the highest values at the EX site of 523.1 g/m2 and 6503.04 g/m2, respectively.

Carbon accumulation at different grazing intensities
As shown in Fig. 3, the vegetation biomass carbon pool, SOC pool, and ecosystem total
carbon pool were strongly correlated with grazing intensity. UAGBCS, UBGBCS, TUBCS,
SAGBCS, SBGBCS, TSBCS, LBCS and TBCS decreased with increasing grazing intensity
(Figs. 3A–3H). In addition, the 0–10, 10–20, 20–30, 30–50 and 0–50 cm soil layer organic
pools decreased with increasing grazing intensity (Figs. 3I–3M). The ecosystem carbon
storage significantly decreased with increasing grazing density (P < 0.05, F = 46), reaching
the highest value at the EX site at 28356.07 g/m2 (Fig. 3N). Vegetation, root and soil organic
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carbon accounted for 0.6–4.5%, 2.8–7.9% and 87.5–96.6% of the ecosystem carbon pool,
respectively.

Structural equation model of the effects of grazing on carbon storage
The structural equation model for SOC storage showed a good fit (GFI = 0.995, CFI =
0.849, P = 0.000, Figs. 4A, 4B). The path analysis of the structural equationmodel indicated
that litter biomass, above- and belowground biomass of understory herbs had impacts on
SOC storage (Figs. 4A, 4B). On the basis of the standardized values of statistically significant
SEM paths, we obtained the direct, indirect and total effects on SOC storage. Among the
effects on SOC storage, UBGB had the highest direct effect and total effect (0.48 and
0.57, respectively). Therefore, Among the total effects on SOC storage, the belowground
biomass of understory herbs made a much greater contribution than the soil water content,
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Table 2 Differences in biomass (g/m2) in alpine shrubland with different grazing intensities.

Grazing intensity

EX LG MG HG

UAGB 108.1± 1.5b 122.8± 3.5a 70.1± 3.8c 78.9± 3.7c
UBGB 1385.4± 80.1a 1103.1± 29.2b 989.0± 43.3b 666.3± 15.6c

Understory
herbs

TUB 1493.5± 81.0a 1225.9± 29.9b 1059.1± 45.7c 745.2± 16.4d
Leaf 260.9± 6.5a 226.2± 4.2b 160.5± 5.6c 10.9± 0.7d
Branch 497.0± 10.7a 384.4± 6.6b 265.4± 6.1c 17.8± 1.1d
Stem 1152.4± 27.6a 1196.0± 24.1a 959.6± 18.4b 73.9± 2.8c
SAGB 1910.3± 35.0a 1926.6± 28.2a 1385.6± 25.8b 102.6± 4.0c
SBGB 2576.1± 37.3a 2449.0± 48.2b 1798.7± 31.7c 212.4± 8.6d

Shrubs

TSB 4486.4± 51.0a 4375.6± 57.5a 3184.2± 38.5b 315.0± 10.9c
Litter LB 523.1± 6.1a 167.8± 6.3b 86.0± 3.3c 10.0± 0.6d
Total biomass TB 6503.0± 78.6a 5769.3± 74.1b 4329.4± 59.9c 1070.2± 18.8d

Notes.
EX, excluded from grazing for 5 years; LG, lightly grazed; MG, moderately grazed; HG, heavily grazed; UAGB, above-
ground biomass of understory herbaceous plants; UBGB, belowground biomass of understory herbaceous plants; TUB, total
understory herbaceous biomass; SAGB, aboveground biomass of shrubs; SBGB, belowground biomass of shrubs; TSB, total
shrub biomass; LB, litter biomass.
Different letters in the same row denote significant differences at P < 0.05. The values are mean± SE.

understory herbaceous diversity, litter biomass, and aboveground biomass of understory
herbs (Figs. 4A, 4B).

DISCUSSION
Responses of plant diversity and biomass to different grazing
intensities
Grazing is a human-related disturbance factor that can substantially affect ecosystem
functions,mainly altering vegetation growth and composition by livestock foraging,manure
deposition and trampling (Zhou et al., 2017). The grazing gradient, especially on long time
scales, is one of the main factors that changes the species diversity of grassland vegetation
communities (Freitag et al., 2021). In the current research, the Shannon–Wiener diversity
and richness index of understory herbs, shrubs and communities all first significantly
increased and then decreased with increasing grazing intensity, reaching their maxima
at the LG site. Those results support our hypothesis. Grazing may reduce plant diversity
and richness by consuming palatable plant species (Karami et al., 2021). For example,
graminoids, which are palatable to herbivores, have been completely removed from grazed
sites due to livestock grazing (Li et al., 2018b). In addition, grazing exclusion increased
plant coverage and height, especially in dominant species, which might exacerbate the
competition for light and other resources among plant species, thus decreasing plant
species diversity and richness (Wu et al., 2017). Moreover, litter biomass accumulation
may hinder plant reproduction and regeneration, giving rise to community composition
change and biodiversity loss (Tian et al., 2020). In the EX site, litter biomass was largely
accumulated due to removal of the livestock disturbance, which might have negative
impacts on plant diversity and species richness.
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Biomass allocation is the crucial index for the determination of community structure
and function and for comprehending ecosystem service dynamics (Li et al., 2017; Ji, Li &
Li, 2020b). Biomass is mainly determined by local climatic and topographic conditions, soil
characteristics and grazing management strategy (Singh et al., 2020). However, biomass in
the current research was measured at a small scale, and the differences in biomass were
mainly determined by browsing, trampling behavior and manure deposition of livestock
grazing. Grazing could reduce the height and coverage of vegetation via livestock browsing,
finally affecting the total aboveground biomass (Ayuso et al., 2019). In our research, the

Wang et al. (2022), PeerJ, DOI 10.7717/peerj.12771 10/19

https://peerj.com
https://doi.org/10.7717/peerj.12771/fig-3
http://dx.doi.org/10.7717/peerj.12771


  
 

-0
.7

1**

Grazing

HC

SOC 
storage

SW

UBGBUAGBLB

0.13NS

0.
16

N
S

-0.07NS

0.
22

N
S

-0
.6

0*

-0
.5

7*

0.41NS

-0
.0

2N
S

(A)

SW HC UAGB UBGB LB
-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

P
at

h 
co

ef
fi

ci
en

ts

 Direct effect

 Indirect effect

 Total effect

(B)

Figure 4 Effects of livestock grazing on soil organic carbon storage calculated by the structural equa-
tion model (A). Direct, indirect and total effects of grazing, abiotic and biotic driving factors on soil C
storage (B).Note: SW, soil water content; UAGB, aboveground biomass of understory herbaceous plants;
UBGB, belowground biomass of understory herbaceous plants; LB, litter biomass; HC, understory herba-
ceous plant diversity; LB, litter mass. *, P < 0.01; **, P < 0.001; NS, no significant difference (P > 0.05).

Full-size DOI: 10.7717/peerj.12771/fig-4

shrub aboveground biomass, understory herb aboveground biomass and litter biomass at
the EX and LG sites were significantly higher than those at the MG and HG sites. Dominant
plants at the EX site significantly increased without external interference (herbivore hoof
trampling and browsing), thus increasing aboveground biomass and further accumulating
litter biomass (Li et al., 2017). In additional, with the increasing of grazing intensity, large
areas of photosynthetic organs loss due to grazing, inhibited photosynthesis of these
plants, thus reducing the compensation of aboveground biomass, and finally led to the
decrease of aboveground biomass (Seabloom, Borer & Tilman, 2020). This phenomenon
is most obvious at the HG site, livestock browsing decreased temporary or permanent
reproduction and regeneration of plants, leading to lower aboveground and litter biomass
(Sun, Ma & Lu, 2018). Below-ground biomass is an important component of grassland
ecosystem because of its important process functions, such as regulating plant growth
and development, storing nutrients, supplying above-ground water (Laskar et al., 2020).
Grazing decreased root biomass compared with nongrazing in the current study, which
was more pronounced at the HG site. These results are consistent with those of a previous
study (Cdab et al., 2020). This was mainly because trampling by livestock compacted the
soil, creating an anaerobic environment that limited plant growth, especially root growth
(Sugai et al., 2020).

Responses of C storage to different grazing intensities
Similar to biomass changes, biomass carbon storage decreased with increasing grazing
intensity, and the result does not support our hypothesis. Shrub and understory vegetation
fixed carbon mainly through photosynthesis (Griebel et al., 2020). Grazing reduced the
biomass of photosynthetic organs, such as leaves, branches and stems, reducing the access
rate and the ability of grassland primary productivity to fix carbon (Dibar et al., 2020).
Analysis of ecosystem carbon storage revealed that soil was the largest reservoir regardless
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of the grazing intensity, accounting for 87.5%–96.6% of the ecosystem carbon pool in the
current research. In line with previous studies (Zhou et al., 2017; Abdalla et al., 2018), the
0–10, 10–20, 20–30 and 0–50 cm layer SOC storage all showed a decreased pattern with
increasing grazing intensity, and the results do not support our hypothesis. In the alpine
shrubland, the patterns of SOC stock may be attributed, at least in part, to grazing (Alberti
et al., 2017). Livestock grazing, on the one hand, reduced vegetation residues returned
to the soil (Ji et al., 2020a), weakened photosynthetic energy to the soil due to greater
consumption of photosynthetic tissue (Tian et al., 2020), and enhanced the outflow of
energy and nutrition from the soil-grassland ecosystem to primary consumers (Wang,
2016), which reduced potential carbon inputs to the soil. On the other hand, livestock
hoof trampling promoted soil respiration and mineralization (Ma, Ding & Li, 2016),
thereby increasing soil organic carbon loss, especially at the HG site. Generally, SOC stock
are affected by plant aboveground and belowground biomass, litter accumulation and
decomposition (Kumar et al., 2021). In the current study, we found that the belowground
biomass made a much greater contribution than the litter biomass and aboveground
biomass to soil carbon sequestration. This is mainly because of the rapid growth and
turnover of fine roots, which have a short life cycle and can decompose into the soil in
a short time. In addition, the root mass could directly increase the input of soil organic
matter through root exudates. Moreover, the root biomass is much larger than the litter
biomass and aboveground biomass (the root/ shoot ratio was ranging from 1.9 to 4.8 in
current study), and thus, the greater biomass likely results in more carbon input into the
soil.

The alpine shrubland ecosystem carbon pool showed a decreased pattern with increasing
grazing intensity, reaching the highest value at the excluded from grazing for 5 years site.
The results do not support our hypothesis. Our result was agreedwith the result ofHan et al.
(2008), who reported that the carbon storage declined as grazing intensity increased in the
meadow steppe of Inner Mongolia, China. Higher grazing intensity is generally expected to
lead to greater organic carbon loss, because greater removal of plant species/photosynthetic
tissue and greater reduction of material/energy input, hence reduces C inputs to carbon
storage of the ecosystem (Mcsherry & Ritchie, 2013). Grazing exclusion has been widely
adopted as a grassland restoration measure in response to the national policy of returning
grazing land to grassland in China (Wang et al., 2020). From the perspective of operating
cost and ecosystem carbon storage, grazing exclusion within a short period of time (5 years)
was a low-cost and most effective approach for grassland restoration. However, some other
researchers have believed that ecosystem carbon storage begins to show a downward trend
after reaching a certain peak value with the extension of exclusion time (Li et al., 2018b). In
addition, considering that a dilemma exists between the utilization and renewal of grassland
resources after grazing exclusion, grazing exclusion should be implemented with caution
on the Tibetan Plateau and other similar areas (Sun et al., 2020). Although the carbon
storage of alpine shrubland ecosystem at the EX site higher than that at LG, MG and HG
sites in the current research, LG is a valid grazing management practice for enhancing
ecosystem carbon storage in consideration of ecological effects and economic effects. The
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result has been approved by Li et al. (2021), who suggested that LG was beneficial for the
sustainable development of grassland ecosystems.

CONCLUSION
A grazing intensity gradient in an alpine shrubland on the Qinghai-Tibetan Plateau
resulted in a significant decrease in plant biomass and the plant carbon pool from the EX
site to the HG site. Shrubs play a vital role in ecosystem carbon accumulation compared
with understory herbs, and the ligneous components (roots, stems and branches) of
shrubs significantly decreased with increasing grazing intensity on long time scales.
Moreover, SOC accumulation mainly occurred in the surface soil, the SOC stock showed
a parabolic decreasing pattern with increasing grazing intensity on long time scales, and
the belowground biomass of understory herbs was the driving factor for the SOC stock. In
addition, the ecosystem carbon pool showed a parabolic decreasing pattern with increasing
grazing intensity on long time scales. The total ecosystem carbon at the EX and LG sites was
significantly higher than that at the MG and HG sites, accompanied by the aboveground
and belowground biomass and SOC stock. Considering that grazing is the main grassland
use in the utilization and renewal of grassland resources, as well as considering the local
economic benefits and ecological effects, LG offers a valid grazing management practice
to enhance ecosystem carbon storage. Our research incorporating grazing intensity into
shrub ecosystem carbon sinks and sources has great implications for grassland ecosystem
carbon management.
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