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ABSTRACT
The taxonomic status of the sergestid shrimp, Acetes americanus, has been questioned
for several decades. No specific study has been performed thus far to resolve the
incongruences. This species has a wide geographical range in the western Atlantic
and is represented by two formally accepted subspecies: Acetes americanus carolinae,
distributed in North America, and Acetes americanus americanus, present in South
America. However, there are regions where the coexistence of both subspecies has
been reported, such as Central America. This study aimed to genetically compare
specimens of A. a. americanus collected in South America with A. a. carolinae sampled
in North America to check for possible differences and the existence of more than
one subspecies of A. americanus on the Brazilian coast. Based on the sequences of
two informative markers, the cytochrome oxidase I region (COI) and 16S rRNA,
phylogenetic reconstruction demonstrated well-defined clades with high support
values, reinforcing the idea that A. a. americanus is genetically different from A. a.
carolinae. Our hypothesis was corroborated as the specimens collected in Brazil were
divided into two distinct lineages: the first composed of A. a. americanus sensu stricto
(Brazil 1) and the second by Acetes americanus (Brazil 2). The three groups evidenced
in the haplotype network were the same as those observed in the phylogenetic tree. The
morphometric character (height/length of the thelycum) was effective in distinguishing
A. a. Brazil 1 from A. a. carolinae. However, more detailed and conclusive studies
comprising other characteristics to propose and describe a possible new entity are
necessary. To the best of our knowledge, for the first time, the results of this study
provide some insights into the taxonomic status of the sergestid shrimp A. americanus
in the western Atlantic.
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INTRODUCTION
Genus Acetes H. Milne Edwards, 1830 comprises small planktonic shrimps (Wong, 2013),
which are essential components of marine systems (Xiao & Greenwood, 1993). For a long
time, the genus remained poorly understood among decapods concerning phylogeny.
Recently, species have been contextualized in a global phylogeny (Vereshchaka, Lunina &
Olesen, 2016a; Vereshchaka, 2017). Fourteen species of Acetes are recognized worldwide
(De Grave & Fransen, 2011; WoRMS, 2022). Three species occur in the western Atlantic:
Acetes americanus Ortmann, 1893; Acetes marinus (Omori, 1975); and Acetes paraguayensis
Hansen, 1919.

Historically, four subspecies of A. americanus have been identified: A. a. carolinae
Hansen, 1933 (type locality: Cove Beaufort, South Carolina, USA), A. a. louisianensis
(Burkenroad, 1934) (type locality: Louisiana coast, from the west of the Mississippi River to
Timbalier Island, Gulf of Mexico, USA), A. a. limonensis (Burkenroad, 1934) (type locality:
Sweetwater River mouth, Panama), and A. a. americanus (Ortmann, 1893) (type locality:
Tocantins River mouth, Brazil) (Burkenroad, 1934).

However, the subspecies A. a. louisianensis and A. a. limonensis presented intermediate
characteristics of the other two subspecies. Therefore, they were traditionally considered
clinal variants, which are not considered valid (Holthuis, 1948). Currently,A. a. louisianensis
and A. a. limonensis are accepted as synonyms for A. a. americanus (WoRMS, 2022).

The existing taxonomy considers only A. a. carolinae and A. a. americanus as valid
subspecies (Holthuis, 1948). Although these two subspecies are very similar, careful
examination reveals minute morphological differences, as the body and cornea lengths
of the southern representatives (A. a. americanus) are slightly larger than those of the
northern representatives (A. a. carolinae) (Omori, 1975). Taxonomic inconsistencies in the
subspecies of A. americanus have been reported since the 1970s (Omori, 1975). However,
this remains unsolved.

Acetes americanus carolinae is distributed from North Carolina, Florida to the Gulf of
Mexico, Panama, Suriname, and French Guiana (Omori, 1975); A. a. americanusOrtmann,
1893 occurs in Puerto Rico, Panama, Venezuela, Suriname, French Guiana, and Brazil
(D’Incao & Martins, 2000;Mantelatto et al., 2022) (Fig. 1).

The uncertainty regarding the difference in the extant subspecies results from: (a)
insufficient information about the subspecies’ habitats, especially where the two subspecies
co-occur, (b) the small magnitude of morphological divergence among species of the genus
Acetes and (c) the distribution.

Molecular tools were used to elucidate the taxonomic status of several marine
shrimp species, whose morphology is insufficient to clarify their species identity
(Carvalho, Magalhães & Mantelatto, 2014; Tavares & Gusmão, 2016; Carvalho, Magalhães
& Mantelatto, 2020). Combined with morphological data, genetic data allowed the
interpretation of variability patterns along the distribution of some taxa (Silva, Mesquita
& Paula, 2010; Terossi & Mantelatto, 2012; Rossi & Mantelatto, 2013; Teodoro et al., 2016;
Carvalho-Batista et al., 2019; França et al., 2019; Terossi & Mantelatto, 2020; França et al.,
2021). The mitochondrial genes cytochrome c oxidase I (COI) and 16S rRNA have
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Figure 1 Distribution of studied species of Acetes in theWestern Atlantic.Geographic distribution of
the Acetes americanus carolinae (*) (Omori, 1975) and Acetes americanus americanus (+) (D’Incao and
Martins, 2000). The highlighted circles indicate the sites studied by molecular analysis, Acetes americanus
USA (pink), Acetes americanus Brazil 1 (yellow), Acetes americanus Brazil 2 (blue), Acetes petrunkevitchi
(orange) and Acetes paraguayensis (black). Map created by authors using Qgis 3.24.3 (https://www.qgis.org/
en/site/index.html).

Full-size DOI: 10.7717/peerj.14751/fig-1

been considered powerful markers for molecular analysis in several studies of decapod
shrimp at species and population levels (Gusmão, Lazoski & Solé-Cava, 2000; Maggioni et
al., 2001; Lavery et al., 2004; Vergamini, Pileggi & Mantelatto, 2011; Terossi & Mantelatto,
2012; Teodoro et al., 2016; Carvalho-Batista et al., 2018; França et al., 2019).

In this study, we compared theA. a. americanus specimens collected from South America
with those of A. a. carolinae sampled in North America using COI and 16S rRNA markers
to test the genetic validity of both subspecies and the possible existence of other entities
distributed along the western Atlantic.
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MATERIALS & METHODS
Sampling of the biological material
The specimens used in this studywere obtained through samplings and loans. All individuals
of A. americanus from Penha/Santa Catarina, Ubatuba, Cananéia, São Vicente/São Paulo,
Macaé/Rio de Janeiro, Baía Formosa/Rio Grande do Norte, and A. petrunkevitchi from
Ubatuba/São Paulo were sampled using a fishing boat equipped with an otter trawl net
with 2mopening and 3m in length. Themesh diameter (interknot distance) was fivemm in
the first half of the net and twomm in the final part. The obtained specimens were collected
under field permit approval by Instituto ChicoMendes de Biodiversidade/ICMBio, number
23008-1 and Permanent License to FLM 11777-2) and deposited in the Crustacean
Collection of the Department of Biology of the Faculty of Philosophy, Sciences, and Letters
of Ribeirão Preto of the University of São Paulo, Brazil (CCDB/FFCLRP/USP) and in the
Crustacean Collection of the Laboratory of Biology of Marine and Freshwater Shrimp,
UNESP, Bauru, Brazil (CCLC/FC/UNESP) (Table 1 and Table S1).

All other specimens used in this study were loaned from scientific collections: Zoology
Museum of the University of São Paulo, São Paulo, Brazil (MZUSP); National Museum
of Natural History, Smithsonian Institution, United States (USNM); National Museum
of the Federal University of Rio de Janeiro (MNRJ); Oceanographic Museum of the
University of Pernambuco, Brazil (MOUFPE); Federal University of Rio Grande (FURG);
Crustacean Collection from the Department of Biology of the Faculty of Philosophy,
Sciences and Letters of Ribeirão Preto, University of São Paulo (CCDB); Collection of
Crustaceans of the Federal University of Sergipe (UFS); Collection of Crustaceans from the
Federal University of Espírito Santo (UFES); Collection of Crustaceans from the PUCRS
Museum of Science and Technology (MCP); Carcinological Collection of the Institute of
Scientific and Technological Research of the State of Amapá, Macapá, AP (IEPA); National
Crustacean Collection, UNAM, Mexico (CNCR); Peabody Museum of Natural History
Yale University, United States (YPM); University of Louisiana at Lafayette, USA (ULLZ);
and Zoological Museum Kiel, Germany (ZMK) (Table 1 and Table S1).

Specimens were morphologically identified following the identification key proposed
by Omori (1975), D’Incao & Martins (2000), Vereshchaka, Lunina & Olesen (2016a), and
Vereshchaka, Olesen & Lunina (2016b), using the shape of the third thoracic sternite
(thelycum) in females and the petasma shape in males.

The names currently used for extant taxa follow the most recent literature (Vereshchaka,
Lunina & Olesen, 2016a; Vereshchaka, Olesen & Lunina, 2016b) and are currently adopted
by WoRMS (2022). Genus Peisos is dealt with differently. A review of the shrimp genera
Acetes, Peisos, and Sicyonella (Vereshchaka, Lunina & Olesen, 2016a) proposed to include
Peisos within the genus Acetes using morphological and phylogenetic information. Later,
in a global phylogeny, Vereshchaka (2017) proposed new families, including Acetidae, to
accommodate all species of Acetes. WoRMS (2022) does not adopt the proposed changes,
that is, Peisos is an accepted genus, and Acetidae does not exist. We can conjecture a
lack of taxonomic reassignment with a proper nomenclatural act in the previous paper.
Considering that we were not able to find a clear justification and to avoid taxonomic
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Table 1 Size dimension relationship of females Acetes americanus. Sample size and ratio between height and length of the third thoracic sternite
of the females of Acetes americanus Ortmann, 1893.

Subspecies Number of
specimens

Locality (Latitud) Catalog
number

Average
± Standard
Deviation

Acetes americanus USA 28 Off Beaufort Inlet, North Car-
olina, United States (34 ◦N)

USNM74550 0.64± 0.08

Acetes americanus USA 2 Cape Lookout, North Carolina,
United States (34◦N)

USNM258701 0.65± 0.07

Acetes americanus USA 6 Beaufort, North Carolina, United
States (34◦N)

YPM005386 0.48± 0.08

Acetes americanus USA 5 Off mouth of North Edisto River,
South Carolina, United States
(32◦N)

USNM258707 0.60± 0.11

Acetes americanus USA 9 Louisiana, Gulf of Mexico, United
States (29◦N)

YPM005387 0.57± 0.08

Acetes americanus USA 17 Laguna de Términos, Frente el
Faro de Xicalango, México (19◦N)

CNCR2402 0.56± 0.11

Acetes americanus Brazil 1 6 Channel at mouth of Bay, Puerto
Rico (18◦N)

USNM134695 to USNM134697 0.24± 0.04

Acetes americanus Brazil 1 17 Playa de Guayanes, Puerto Yabu-
coa, Puerto Rico (18◦N)

USNM186645 to USNM186647 0.22± 0.06

Acetes americanus Brazil 1 20 Off Surinam Coast, Suriname
(6◦N)

USNM103101 to USNM103106 0.29± 0.08

Acetes americanus Brazil 1 26 Maceió,AL, Brazil
(09◦S)

MZUSP21210 0.38± 0.08

Acetes americanus Brazil 1 35 Macaé, RJ, Brazil (22◦S) CCLC0254 0.36± 0.07
Acetes americanus Brazil 1 28 Ubatuba, SP, Brazil (23◦S) CCLC0253 0.40± 0.34
Acetes americanus Brazil 1 13 Rio Grande, RS, Brazil (32◦S) MZUSP 9079 0.33± 0.07
Acetes americanus Brazil 2 35 Macaé, RJ, Brazil (22◦S) CCLC0261 0.79± 0.19
Acetes americanus Brazil 2 34 Cananéia, SP, Brazil (25◦S) CCLC0262 1.03± 0.29

Notes.
CCLC, Crustacean Collection of the Laboratory of Biology of Marine and Freshwater Shrimp, UNESP, Bauru, Brazil; MZUSP, Zoology Museum of the University of São
Paulo, São Paulo, Brazil; USNM, National Museum of Natural History, Smithsonian Institution, United States; CNCR, National Crustacean Collection, UNAM, Mexico;
YPM, Peabody Museum of Natural History Yale University, United States.

instability, we maintained the proposed taxonomic status of Peisos as part of Acetes
following Vereshchaka, Lunina & Olesen (2016a).

DNA extraction and amplification
DNA extraction from the muscular abdominal tissue was performed followingMantelatto,
Robles & Felder (2007); Mantelatto et al. (2009a); Mantelatto et al. (2009b) and Pileggi &
Mantelatto (2010), with specific modifications (Carvalho-Batista et al., 2014). The regions
of interest were amplified by the polymerase chain reactions (PCR) using the primers
described in Table S2. Primers specific for this region were designed due to the difficulty
in the amplification of COI (seeMantelatto et al., 2016 for details) (Table S2).

PCR reactions were performed with a total volume of 25 µL, containing 5 µL of betaine
(5M) (Acros Organics), 4 µL of dNTPs (5 mM), 3 µl of MgCl2 (25 mM), 3 µl of 10X Taq
buffer with KCl (Thermo Scientific), 2 µl of 1% bovine albumin (Sigma), 1 µl of each

Morilhas Simões et al. (2023), PeerJ, DOI 10.7717/peerj.14751 5/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.14751#supp-1
http://dx.doi.org/10.7717/peerj.14751#supp-1
http://dx.doi.org/10.7717/peerj.14751


primer (10 µM), 1 µl of resuspended DNA (50 ng/ ml), and 0.5 µl of recombinant Taq
DNA Polymerase (Thermo Scientific). Themissing volume (25µl) was filled with ultrapure
water. PCRwas performed using anApplied Biosystems c© Veriti 96well thermal cycler. PCR
steps comprised an initial denaturation period of 3 min at 95 ◦C, followed by 40 thermal
cycles [30 s of denaturation at 95 ◦C, 45 s for annealing at variable temperature (42–44 ◦C
for 16S; 44–50 ◦C for COI), 1 min for the extension at 72 ◦C, and final extension for 10
min at 72 ◦C. The obtained results were observed by 1.5% agarose gel electrophoresis and
photographed with Olympus c© C-7070 digital camera in a UV M20 UV transilluminator.

The PCR products were purified using the Sureclean purification kit following the
manufacturer’s protocol. The PCR-purified products were sequenced bidirectionally in
automated sequencers (ABI 3100 Genetic Analyzer) at the Department of Technology of
the Faculty of Sciences Agricultural and Veterinary Sciences of Jaboticabal, São Paulo State
University.

The generated sequences were confirmed and edited (sequence consensus obtained from
sense and antisense) in BioEdit 7.0.7.1 software (Hall, 1999) and aligned using CLUSTAL
W (Thompson, Higging & Gibson, 1994).

Each genetic sample obtained for the analyses was deposited in the scientific collection
of origin (Table S1).

Molecular analyses
A total of 118 sequences used in this study were generated for this project. For the 16S
rRNA region, 52 sequences of 518 bp were obtained, of which 29 were A. a. Brazil 1, nine
were A. a. Brazil 2, five were A. a. carolinae, five were A. paraguayensis, and four were A.
petrunkevitchi. For the COI region, 66 sequences of 589 bp were generated of which 36
were A. a. Brazil 1, 15 were A. a. Brazil 2, six were A. a. carolinae, six were A. paraguayensis,
and three were A. petrunkevitchi.

However, an additional 20 sequences (COI) of A. sibogae, A. japonicus, A. serrulatus,
and A. indicus, two sequences (16S and COI) of A. petrunkevitchi, and two sequences (16S
and COI) of B. faxoni (outgroup) were retrieved from the GenBank database and used
for phylogenetic and genetic distance analyses to complement this study (Table S1). As
there are COI sequences for more Acetes species than 16S sequences available on GenBank,
phylogenetic analysis with the COI gene generated a larger number of clades.

The mean nucleotide composition and genetic distances were estimated using MEGA
5.0 software (Tamura et al., 2011) and the Neighbor-Joining dendrogram based on the
Kimura 2-parameter substitution model (Kimura, 1980).

The appropriate models of nucleotide evolution HKY + G for 16S and TPM1uf + G for
COI were selected by Bayesian information criterion (BIC) in jModeltest 2.1.4 (Darriba et
al., 2012). Selected models and estimated parameters (Table S3) were implemented in the
Bayesian inferences and considered for the choice of the closest models in the maximum
likelihood analyses. Belzebub faxoni (Borradaile, 1915) (Superfamily Sergestoidea, Family
Luciferidae) was included as an outgroup following the most recent global phylogeny
(Vereshchaka, Lunina & Olesen, 2016a; Vereshchaka, 2017). Bayesian inference was used
to reconstruct the phylogenetic relationships of the species analyzed, with the two genes
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as distinct partitions in MrBayes v. 3.2.2 (Ronquist et al., 2012). Bayesian inference was
performed with 30 million generations in two independent analyses, with five parallel
chains each, one ‘‘cold’’ and four ‘‘hot’’. The parameters were saved every 1,000 simulations.
The analysis was completed on attaining stationarity (mean standard deviation <0.01) after
the stipulated number of generations. The first quarter of the parameters and trees were
discarded as burn-in (Ronquist, Van Der Mark & Huelsenbeck, 2009). The support values
of the branches were obtained using the a posteriori probability method.

This analysis was performed for the 16S and COI genes separately and a concatenated
matrix of both the trees was generated and edited in the program Figtree v.1.3.1 (Rambaut,
2007).

Population analyses
Only the COI gene was used for population analyses. The use of this gene has been
shown to be efficient in decapod population studies (Gusmão, Lazoski & Solé-Cava, 2005;
Laurenzano, Mantelatto & Schubart, 2013; Rossi & Mantelatto, 2013; Carvalho-Batista et
al., 2014; Teodoro et al., 2015) because it is considered to be more variable (Schubart &
Huber, 2006).

The number of haplotypes was calculated in the DnaSP 4.10.9 software (Rozas & Rozas,
1999). Haplotype networks were constructed using the median-joining method, using
the network program (Bandelt, Forster & Röhl, 1999), based on the data prepared in the
DnaSP. Haplotype and nucleotide diversities, analysis of molecular variance (AMOVA),
and pairwise fixation indices (Fst) (Excoffier, Smouse & Quattro, 1992) were calculated
using Arlequin 3.11 (Excoffier, Laval & Schneider, 2005).

Morphometric analyses
We used only females (281 individuals) of A. americanus for morphometric analyses.
Previous observations focused on the difference in size and shape of the female thelycum
between the subspecies, motivating us to obtain potential information to complement our
study.

Individuals were sexed based on the presence of petasma (first pleopod) in males and
the thelycum (third thoracic sternite) in females (Xiao & Greenwood, 1993).

Morphometric measurements were obtained using a stereo microscope Zeiss c© Stemi
2000C connected to an imaging system Zeiss c© AxioVision, with an error of up to 0.01
mm. We measured the height (HT) and length (LT) of the thelycum and carapace length
(CL).

Following the methodology proposed by Marramà & Kriwet (2017), data were
standardized by calculating the ratio between each measure and carapace length (CL),
removing the effect of size. The log transformation of data (Log (X+1)) was used to
overcome the issue of the non-normal distribution of data by unstretching large-scale
values. Moreover, log transformation is useful to considerably reduce variation due to
ontogeny (allometric effect) since we assumed that specimens of different developmental
stages were subjected to our analyses. A Euclidean distance matrix was constructed using
the log-transformed data. Multivariate analysis of variance (PERMANOVA) was applied
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to test similarities within subspecies and localities (P < 0.005) (Anderson, 2001) using
PRIMER software (version 6; Clarke & Gorley, 2006). A Permanova pairwise post-hoc test
was performed to further investigate the differences between the subspecies (P < 0.005).
Principal component analysis (PCA) was performed to characterize the differences between
groups using the measured parameters (HT/CL and LT/CL ratios). Similarity percentage
tests (SIMPER)were used to evaluatewhichmeasure contributedmore to the differentiation
between subspecies.

RESULTS
Morphological identification of taxonomic entities
All specimens loaned from the United States of America presented characteristics of
the subspecies A. a. carolinae (hereafter named A. a. USA) (Fig. 2C). However, Brazilian
samples fell into two categories: (i) samples exhibiting characteristics of the subspecies A.
a. americanus senso stricto (hereafter named ‘‘A. a. Brazil 1’’; Fig. 2A) and (ii) samples that
exhibited morphological divergence from the nominal subspecies (hereafter named ‘‘A. a.
Brazil 2’’ (Fig. 2B)). The sampling localities of A. a. Brazil 1 and A. a. Brazil 2 are shown in
Fig. 1.

Genetic distance
16S rRNA gene: The intraspecific distances varied from 0% (A. a. USA, A. a. Brazil 2,
and A. petrunkevitchi) to 0.20% (A. paraguayensis) (Table 2). The interspecific distances
between congeneric species varied from 0.99 to 11.8%. The distance to the outgroup was
25.9 to 28.5% (Table 3). Regarding the A. americanus subspecies, the lowest interspecific
distance was between A. a. Brazil 2 and A. a. USA (0.99%). The highest was A. a. Brazil 1
and A. a. USA (2.26%) (Table 3).

COI gene: The intraspecific distances varied from 0.02% (A. a. Brazil 1) to 0.97% (A.
paraguayensis) (Table 2). The interspecific distances between the congeneric species varied
from 4.86 to 22.3%. The distance to the outgroup was 21.8 to 25.5% (Table 3). Regarding
the A. americanus subspecies, the lowest interspecific distance was between A. a. Brazil 1
and A. a. USA (4.86%). The highest was A. a. Brazil 2 and A. a. USA (8.08%) (Table 3).

Phylogenetic analyses
The 16S rRNA phylogenetic analyses showed the following clades (Fig. 3): Clade 1, formed
by A. paraguayensis sampled in north Brazil (Santarém and Porto de Moz/Pará); Clade 2,
formed by A. petrunkevitchi sampled in southeast Brazil (São Vicente and Ubatuba/São
Paulo); Clade 3, formed by A. a. USA sampled in the United States (Lumcon/LA and Horn
Island/MS); Clade 4, formed by A. a. Brazil 2 sampled in southeast Brazil (Cananéia/São
Paulo and Macaé/Rio de Janeiro); Clade 5, formed by A. a. Brazil 1 sampled in the south
(Penha/Santa Catarina), southeast (Ubatuba, São Vicente and Cananéia/São Paulo, Macaé/
Rio de Janeiro, Anchieta/Espirito Santo) and northeast Brazil (Baía Formosa/Rio Grande
do Norte).

Based on the COI sequences, the phylogenetic analysis revealed the following clades (Fig.
4): Clade 1, formed byA. a. Brazil 1 sampled in the south (Penha/Santa Catarina), southeast
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Figure 2 Color photos of estudied species of Acetes. Lateral view of Acetes americanus Ortmann, 1893.
(A) Female of the Acetes americanus Brazil 1 (CCLC 0260); (B) female of the Acetes americanus Brazil 2
(CCLC 0255); (C) male of the Acetes americanus USA (CCLC 0268). CCLC: Crustacean Collection of the
Laboratory of Biology of Marine and Freshwater Shrimp. Photo credit: Régis Augusto Pescinelli.

Full-size DOI: 10.7717/peerj.14751/fig-2
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Table 2 Intraspecific genetic distance from 16S and COI genes. Average intraspecific genetic distance
(%) from 16S and Cytochrome Oxidase 1 (COI) gene± standard deviation.

Subspecies and species 16S COI
Genetic distance
(± standard deviation)

Genetic distance
(± standard deviation)

Acetes americanus USA 0.00 (± 0.000) 0.18 (± 0.001)
Acetes americanus Brazil 1 0.01 (± 0.001) 0.02 (± 0.000)
Acetes americanus Brazil 2 0.00 (± 0.000) 0.26 (± 0.001)
Acetes paraguayensis 0.20 (± 0.0012) 0.97 (± 0.003)
Acetes petrunkevitchi 0.00 (± 0.000) 0.26 (± 0.001)

Table 3 Interspecific distance from 16S and COI genes between species of Acetes. Matrix of average interspecific distance (%) from 16S (below)
and Cytochrome Oxidase 1 (COI) gene (above) between species of Acetes (numbers on top)± standard deviation (values on bottom).

Acetes
americanus
Brazil 1

Acetes
americanus
Brazil 2

Acetes
americanus
USA

Acetes
paraguayensis

Acetes
petrunkevitchi

Belzebub
faxoni

Acetes americanus Brazil 1 6.44
(± 0.011)

4.86
(± 0.010)

22.1
(± 0.023)

19.0
(± 0.019)

21.8
(± 0.021)

Acetes americanus
Brazil 2

1.97
(± 0.006)

8.08
(± 0.013)

22.0
(± 0.023)

20.2
(± 0.020)

22.9
(± 0.021)

Acetes americanus
USA

2.26
(± 0.007)

0.99
(± 0.004)

23.3
(± 0.023)

21.6
(± 0.022)

23.7
(± 0.022)

Acetes paraguayensis 7.93
(± 0.012)

8.38
(± 0.013)

8.04
(± 0.013)

21.4
(± 0.021)

25.5
(± 0.021)

Acetes petrunkevitchi 11.8
(± 0.016)

11.1
(± 0.015)

11.4
(± 0.015)

10.0
(± 0.015)

25.4
(± 0.019)

Belzebub faxoni 26.6
(± 0.026)

25.9
(± 0.026)

26.3
(± 0.027)

28.5
(± 0.028)

27.5
(± 0.026)

(Ubatuba and Cananéia/São Paulo, Macaé/Rio de Janeiro, Anchieta/Espirito Santo) and
northeast Brazil (Baía Formosa/Rio Grande do Norte, Maceió/Alagoas); Clade 2, formed
by A. a. USA sampled in the United States (Lumcon/LA and Horn Island/MS); Clade 3,
formed by A. a. Brazil 2 sampled in southeast Brazil (Cananéia/SP and Macaé/RJ); Clade
4, formed by A. sibogae sampled in Peninsula Malaysia; Clade 5, formed by A. japonicus
sampled in Peninsula Malaysia; Clade 6, formed by A. serrulatus sampled in Peninsula
Malaysia; Clade 7, formed by A. paraguayensis sampled in north Brazil (Santarém and
Porto de Moz/Pará); Clade 8, formed by A. petrunkevitchi sampled in southeast Brazil
(Ubatuba/SP); Clade 9, formed by A. indicus sampled in Peninsula Malaysia.

The phylogenetic tree constructed based on the concatenated data (16S rRNA and COI)
generated the same clades observed in the phylogenetic tree constructed with 16S rRNA
and COI separately. In addition, A. a. USA and A. a. Brazil 2 were sister clades (Fig. 5),
whereas COI, A. a. USA was a sister clade of A. a. Brazil 1 (Fig. 4).

The phylogenetic trees constructed (16S rRNA, COI, and concatenated data) resulted
in the formation of two distinct clades of A. americanus sampled in Brazil with a high
support value, in contrast to the clade formed by A. a. carolinae sampled in the United
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Figure 3 Phylogenetic reconstruction of Acetes based on 16mtmarker. Phylogenetic tree of Bayesian
inference for the Acetes species based on the 16S region with Bayesian posterior probabilities indicated
(only posterior probabilities> 50% are shown).

Full-size DOI: 10.7717/peerj.14751/fig-3

States. Furthermore, the A. americanus group appears to be a sister taxon to all other Acetes
(Fig. 4).

Population analyses
The haplotype network exhibited a genetic structure in the three groups, corresponding to
those observed in the phylogenetic trees (Fig. 6). Available COI sequences of A. americanus
(N = 57) resulted in 12 haplotypes of which six were unique, that is, represented by a
single individual. ‘‘Brazil 1′′presented the lowest haplotype (h= 0.11) and nucleotide
(π = 0.00022) diversities. This group included 34 individuals sharing one haplotype and
two individuals with unique haplotypes. ‘‘USA’’ and ‘‘Brazil 2’’ presented similar high
haplotype (h= 0.73 and h= 0.76, respectively) and nucleotide diversities (π = 0.00181
and π = 0.00277, respectively).
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Figure 4 Phylogenetic reconstruction of Acetes based on COImarker. Phylogenetic tree of Bayesian in-
ference for the Acetes species based on the COI region with Bayesian posterior probabilities indicated (only
posterior probabilities> 50% are shown).

Full-size DOI: 10.7717/peerj.14751/fig-4

Analysis of molecular variance (AMOVA) did no detect genetic structuring of any
subspecies among the location studied (p> 0.05) (Table 4).

Morphometric analysis
The ratio between the height and length of the thelycumwas determined for several western
Atlantic locations (Table 1). The ratio values were higher in A. a. USA and A. a. Brazil
2 than in A. a. Brazil 1 (Table 1). The studied A. americanus groups (BR1, BR2, and the
USA) were morphologically different (P = 0.0002) (Table 5). Permanova Pairwise tests
indicated that at least one of the taxonomic entities is different from the others (P = 0.0001)
(Table 6). However, when comparing A. americanus groups with each other, Pairwise tests
indicated that there was a statistically significant difference only between Brazil 1 and Brazil
2 (t = 3.1563; p= 0.0018).
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Figure 5 Pylogenetic reconstruction of Acetes based on concatenated markers. Phylogenetic tree of
Bayesian inference for the Acetes species based on 16S and COI concatenated data with Bayesian posterior
probabilities indicated (only posterior probabilities> 50% are shown).

Full-size DOI: 10.7717/peerj.14751/fig-5

The PCA visualization plot shows that A. a. Brazil 1 is more similar to A. a. Brazil 2
than to A. a. USA (Fig. 7). A simplified Simper test showed that the LT/CL RATIO was
responsible for the differences between subspecies, contributing more than 73% for Brazil
1, more than 53% for Brazil 2 and more than 61% for the USA (Table 7; Fig. 7).

DISCUSSION
Our analyses revealed the existence of three lineages of A. americanus: A. a. Brazil 1 sensu
stricto, A. a. Brazil 2, and A. a. USA. Through molecular analysis, we were also able to
identify and contextualize another species of Acetes that occurs in Brazil, A. paraguayensis.
Therefore, mitochondrial DNA can be considered an efficient tool for solving taxonomic
identification of the genus Acetes at species level.

One of the species concepts widely accepted in systematics (Tsoi, Wang & Chu, 2005)
is defined as a group of mating individuals or having the potential for it differing from
other groups because they are reproductively isolated (Mayr, 1942). However, there are
several alternative concepts of species (De Queiroz, 2007). The haplotype network results
suggest that there are three possible lineages for A. americanus: A. a. Brazil 1 sensu stricto,
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Figure 6 Haplotype network (COI region) showing the groups of Acetes.Haplotype network (COI
region) according to a median-joining analysis, indicating the distribution of 12 haplotypes of Acetes
americanus Ortmann, 1893. The size of the circle of each haplotype is proportionate to its frequency in the
sample. Each small dash represents a mutational step.

Full-size DOI: 10.7717/peerj.14751/fig-6

Table 4 Molecular variance with specimens of Acetes americanus. Analysis of molecular variance (AMOVA) performed with specimens of Acetes
americanus.

Acetes
americanus
Brazil 1

Acetes
americanus
Brazil 2

Acetes
americanus
USA

Among locations −14.82 8.65 −12.50
Variation source (%)

Within locations 114.82 91.35 112.50

FST (P) −0.1482 (0.967) 0.0865 (0.152) −0.125 (1.000)

Notes.
*Significant values, P < 0.05.

A. a. Brazil 2, and A. a. USA. Population-based analyses of mitochondrial DNA indicate
that entities are reproductively isolated when gene flow is low (Tsoi, Wang & Chu, 2005).
The low level of gene flow is essential evidence for speciation (Futuyma, 1998). Therefore,
the non-sharing of haplotypes found in this study indicates that A. a. Brazil 1, A. a. Brazil
2, and A. a. USA are genetically distinct, with a low gene flow between them.
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Table 5 Permanova analysis of Acetes americanus groups. Results of Permanova analysis considering
Acetes americanus groups (BR1, BR2 and USA).

Source Df SS MS Pseudo-F P(perm) perms

Subspecies 1 1.3898E−2 1.3898E−2 7.1277 0.0058 9927
Locality 12 13.679 1.1399 584.6 0.0001 9909
Res 266 0.51867 1.9499E−3

Notes.
D.f., degrees of freedom; SS, sum of squares; MS, mean square; Pseudo-F, statistic; P(perm), probability; Perms, permu-
tations performed.

Table 6 Permanova Pairwise test of Acetes americanus groups. Results of the Permanova Pairwise test
considering Acetes americanus groups (BR1, BR2 and USA).

Source df SS MS Pseudo-F P(perm) Unique
perms

Subspecies 2 7.843 3.9215 76.786 0.0001 9949
Res 278 14.198 5,11E+02
Total 280 22.041

Notes.
D.f., degrees of freedom; SS, sum of squares; MS, mean square; Pseudo-F, statistic; P(perm), probability; Perms, permu-
tations performed.

Figure 7 Principal component analysis depicting the morphometric groups of Acetes. (A) Principal
Component Analysis (PCA) of the variation in thelycum morphology of the Acetes americanus groups (A.
americanus USA, A. americanus Brazil 1 and A. americanus Brazil 2); (B) An enlarged area of the image
‘‘A’’.

Full-size DOI: 10.7717/peerj.14751/fig-7

TheA. a. Brazil 1 individuals sampled in several Brazilian regions (northeast: RN, AL, SE;
southeast: ES, RJ, SP; south: SC) shared haplotypes between them, indicating the existence
of gene flow among these populations. Recent studies on other decapod crustaceans have
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Table 7 Results of similarity percentages analysis of body dimensions. Results of SIMPER (Similarity
Percentages) analysis.

Species Average
Abundance

Average
Similarity

Sim/SD Contrib% Cum.%

Group Acetes americanus carolinae (USA)
Average similarity: 67.12

LT/CL ratio 0.46 41.37 2.03 61.64 61.64
HT/CL ratio 0.30 25.75 1.89 38.36 100.00

Group Acetes americanus ’’BRAZIL 1’’
Average similarity: 63.52

LT/CL ratio 0.24 46.81 1.91 73.69 73.69
HT/CL ratio 0.08 16.71 1.89 26.31 100.00

Group Acetes americanus ’’BRAZIL 2’’
Average similarity: 89.83

LT/CL ratio 0.07 47.63 7.97 53.03 53.03
HT/CL ratio 0.06 42.20 7.71 46.97 100.00

Notes.
CL, Carapace Length; HT, height of the third thoracic sternite; LT, length of the third thoracic sternite; SD, Standard Devi-
ation.

also shown genetic homogeneity among populations sampled along the western Atlantic,
along the Brazilian coast (Laurenzano, Farias & Schubart, 2012; Terossi & Mantelatto, 2012;
Rossi & Mantelatto, 2013; Wieman et al., 2013; Laurenzano, Mantelatto & Schubart, 2013;
Carvalho-Batista et al., 2014; Teodoro et al., 2015; Nishikawa, Negri & Mantelatto, 2021).
A potential reason for population homogeneity can be ascribed to the high dispersion
capacity of planktonic larvae and the absence of barriers to gene flow. Although nothing
is known about the larval dispersal of A. americanus, the dispersal power is high for
species of the genus Acetes, as they exhibit long planktonic larval stages (∼6 weeks) before
becoming juveniles and adults (Rao, 1968). This premise has also been proposed for the
other decapods tested (see references above).

The levels of genetic divergence (COI) among congeneric species of the crustaceans
may vary up to 17%, a high value compared to other animal groups (Costa et al., 2007).
Lepidopteran insects have a genetic divergence among congeneric species of only 6.1%
(Hebert, Ratnasingham &Waard, 2003). Bird species show a variation of 7.93% (Hebert
et al., 2004a), and fish have a 9.93% divergence (Ward et al., 2005). For sergestid shrimp,
the rate of genetic divergence (COI) was also high. The genetic divergence found between
A. indicus, A. serrulatus, A. japonicus, and A. sibogae ranged from 14.6 to 20.47% (Wong,
2013).

Our results indicated genetic divergence values (COI) from 4.86 to 8.08% between
the A. americanus subspecies, which are low when compared with the studies mentioned
above. However, if we compare these results to those of studies of cryptic or closely related
shrimp species, these values are similar. Species morphologically similar displayed genetic
divergences of 2.4 to 7% and were considered different (Gusmão, Lazoski & Solé-Cava,
2000; Lavery et al., 2004; Tsoi, Wang & Chu, 2005; Lagrue et al., 2014). Carvalho-Batista et
al. (2019) found higher genetic divergence values (up to 13.5%) among the genus Seabob
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Xiphopenaeus. However, among some closely related Xiphopenaeus species, the variation
ranged from 2.7–3.3%.

The intraspecific distance (COI) (0.02–0.97%) was lower than the interspecific (4.86–
22.3%) for Acetes americanus subspecies. This difference, known as the gap, is used by the
DNA barcode technique to differentiate species (Hebert et al., 2004b;Ward, 2009;Carvalho-
Batista et al., 2019), which reinforces that the three lineages analyzed can potentially be
considered as different taxonomic entities, pending future morphological characterization.
This study showed variation between A. americanus subspecies (0.99–2.26%) similar to the
ones previously reported for penaeid shrimps (Costa et al., 2007; Silva, Mesquita & Paula,
2010).

Comparing only the measures of the height/length ratio of the female thelycum (Table
1), our results corroboratedOmori (1975), which also found that this measurement differed
between the two subspecies (A. a. americanus e A. a. carolinae). The values found byOmori
(1975) for A. a. carolinae were 0.56–0.80 (mean 0.68) for North Carolina, 0.50–0.83 (0.66)
for Louisiana and Texas, 0.70 and 0.53 for Panama and Suriname specimens, respectively,
and values of 0.21–0.31 for specimens of A. a. americanus collected in Santos/SP. In our
study, A. a. USA also presented higher values of height/length of the thelycum when
compared to A. a. Brazil 1. However, we revealed the presence of A. a. Brazil 2 on the
Brazilian coast showing high values of the height/length of the thelycum (Table 1).
Therefore, if only this character is analyzed, the individual could be misidentified with A.
a. USA.

PCA analysis showed a separation of the three subspecies groups (Brazil 1, Brazil 2
and USA) when considering thelycum measurements and the carapace length. In the
transition areas where the subspecies occur, however, individuals from Suriname and
Puerto Rico identified as A.a. Brazil 1 were close to A. a.USA, and individuals fromMexico
identified as A. a. USA were close A. a. Brazil 1 and A. a. Brazil 2. These results point to
an interesting geographic pattern, with the separation between individuals collected in the
south (Terminos Mexico) and the north of the Gulf of Mexico - GOM (Louisiana). The
two portions of the GOM have different water temperatures and have been separated into
distinct biogeographic provinces by different authors (Boschi, 2000; Briggs & Bowen, 2012).
Additionally, within the GOM, different cyclonic and anti-ciclonic flows occur separating
the circulation in each locality (Schmitz Jr et al., 2005) which may be responsible for
maintaining the isolation within each one of them. Therefore, this result can be associated
with responses to the environmental conditions of the region, as phenotypic variations
can be caused by both genetic information and environmental variations (Templeton,
2006). Considering these results, the molecular identification of the subspecies from these
transition areas, using the protocols of this study, would be recommended to clarify this
issue.

Acetes americanus Brazil 1 is genetically different from A. a. USA. In addition, the
specimens sampled in Brazil formed two distinct clades: the first was composed of A. a.
Brazil 1 and the second ofA. a.Brazil 2. As stated earlier,A. a.Brazil 1 exhibits the diagnostic
characteristics of A. americanus americanus, whereas A. a. Brazil 2 exhibits characteristics
similar to those of A. amecicanus carolinae. Phylogenetic and population analyses pointed
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to the divergence of A. a. Brazil 2 from A. a. USA. Usually, a single characteristic to be
fixed after reproductive isolation is sufficient for the diagnosis of a species (Mink & Sites Jr,
1996). However, no morphological characteristics that can discriminate these subspecies
have been detected thus far. Several studies have shown that many species with few or no
morphological characteristics are distinguished by genetic differences (Reuschel, Cuesta &
Schubart, 2010; Puillandre et al., 2011; Carvalho, Magalhães & Mantelatto, 2014;Delić et al.,
2017; Mandai et al., 2018). A study focusing on the morphological characteristics used to
discriminate A. americanus in Brazil should clarify and provide more information about
this new possible taxonomic entity. Furthermore, the hypothesis that A. a. Brazil 2 is a
different entity, previously described (A. a. louisianensis or A. a. limonensis), cannot be
disregarded.

General phylogeny
A previous phylogenetic study of Acetes proposed that the Acetes clade without A.
petrunkevitchi (former Peisos petrunkevitchi) never gained robust support, thus considering
Peisos as a junior synonym of Acetes (Vereshchaka, Lunina & Olesen, 2016a). Although we
carried out an analysis with a robust but limited number of samples, our results confirmed
the phylogenetic positioning recovered by both 16S rRNA and COI genes and indicated
that A. petrunkevitchi is part of the Acetes group, but in all analyses forming a single clade
of ‘‘Acetes paraguayensis + A. petrunkevitchi’’, with a high support value for 16S rRNA and
concatenated data. As only mitochondrial genes were used, further studies adding nuclear
markers should be carried out to test the topology recovered herein.

However, recent studies about the morphology of the male reproductive system and
spermatophore of A. petrunkevitchi differed from those of A. americanus, A. marinus and
A. paraguayensis, which remains open the discussion about the inclusion of Peisos in the
Acetes group (Salti, 2020).

The global morphological phylogeny proposed for the superfamily Sergestoidea showed
significant changes in taxonomy, with the description of three new families, particularly
because the family Sergestidae was not considered monophyletic (Vereshchaka, 2017). As a
result, A. americanus was classified in the new family Acetidae, as proposed by Vereshchaka
(2017). The author proposed that a single clade of A. marinus and A. paraguayensis within
Acetidae received high bootstrap support. Our concatenatedmolecular phylogeny indicated
a close relationship between A. paraguayensis and A. petrunkevitchi in a separate clade, as
mentioned above. Additional samples of these species, including A. marinus, confirm
this hypothesis. This molecular reconstruction sheds light on the unsolved evolutionary
relations between the species of the genus Acetes, which should be investigated using more
comprehensive integrated studies and the addition of nuclear markers.
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