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ABSTRACT
Philodendron is the secondmost diverse genus of the Araceae, a tropical monocot family
with significant morphological diversity along its wide geographic distribution in the
Neotropics. Although evolutionary studies of Philodendron were conducted in recent
years, the phylogenetic relationship among its species remains unclear. Additionally,
analyses conducted to date suggested the inclusion of all American representatives
of a closely-related genus, Homalomena, within the Philodendron clade. A thorough
evaluation of the phylogeny and timescale of these lineages is thus necessary to elucidate
the tempo and mode of evolution of this large Neotropical genus and to unveil the
biogeographic history of Philodendron evolution along the Amazonian and Atlantic
rainforests as well as open dry forests of South America. To this end, we have estimated
the molecular phylogeny for 68 Philodendron species, which consists of the largest
sampling assembled to date aiming the study of the evolutionary affinities. We have
also performed ancestral reconstruction of species distribution along biomes. Finally,
we contrasted these results with the inferred timescale ofPhilodendron andHomalomena
lineage diversification. Our estimates indicate that American Homalomena is the sister
clade to Philodendron. The early diversification of Philodendron took place in the
Amazon forest from Early to Middle Miocene, followed by colonization of the Atlantic
forest and the savanna-like landscapes, respectively. Based on the age of the last common
ancestor of Philodendron, the species of this genus diversified by rapid radiations,
leading to its wide extant distribution in the Neotropical region.

Subjects Biodiversity, Ecology, Evolutionary Studies, Genetics, Plant Science
Keywords South America, Andes, Supertree, Amazon, Biogeography, Dispersal

INTRODUCTION
Philodendron is an exclusively Neotropical genus, comprising 482 formally recognized
species (Boyce & Croat, 2013). Their geographic distribution range from Northern Mexico
to Southern Uruguay (Mayo, Bogner & Boyce, 1997), consisting mainly of the biomes of
the Amazonian and Atlantic rainforests and also the open dry forests of South America.
According to Olson et al.’s (2001) classification of terrestrial biomes, South American open
dry forests are composed of the Cerrado (savanna-like landscapes) and Caatinga biomes
(Croat, 1997; Mayo, 1988; Mayo, 1989; Coelho et al., 2016) (Fig. 1). Philodendron species
richness is especially significant in Brazil, where 168 species were described thus far (Coelho
et al., 2016).
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Figure 1 (A) Geographic distribution of Philodendron species along the Neotropical biomes of Ama-
zon, Atlantic forest, Cerrado and Caatinga. (B) Philodendron inflorescence and the flower zones.

AlthoughPhilodendron presents a significantmorphological plasticity, wide leaf variation
and several types of habits (Coelho et al., 2016; Coelho, 2000), the inflorescence morphology
of its representatives is largely conserved. The unisexual flowers in the spadix are clustered
in male, female and sterile zones; located at the basal, median and superior portions,
respectively (Fig. 1B). The spadix, in nearly all of its extension, is surrounded by the spate
(Sakuragui, 2001).

Currently, Philodendron species are grouped into three subgenera according to its
floral and vegetative morphology and anatomy (Mayo, 1991; Mayo, 1988; Croat, 1997),
namely, subgenus Meconostigma (Schott) Engl., which consists of 21 species (Gonçalves
& Salviani, 2002; Croat, Mayo & Boss, 2002;Mayo, 1991); subgenus Pteromischum (Schott)
Mayo, with 75 species (Coelho, 2000) and subgenus Philodendron (Mayo, 1986), comprising
approximately 400 species (Coelho, 2000; Croat, 1997).

Because of the wide geographic range, patterns of distribution along niches, as well
as the characteristic morphology, interest in investigating Philodendron systematics and
evolution has increased in the last decades (Sakuragui, Mayo & Zappi, 2005; Mayo, 1986;
Grayum, 1996; Croat, 1997). Morphological and anatomical characters of flowers has been
of special interest for phylogenetic analysis due to their high level of variability (Sakuragui,
1998). However, the plasticity and convergence of these characters in Philodendron may
increase the probability of homoplasies (Mayo, 1986;Mayo, 1989).

Recently,Gauthier, Barabé & Bruneau (2008) investigated the phylogenetic relationships
of Philodendron species based on three molecular markers, sampling a total of 49 species.
This work comprised the largest taxon sampling of the genus to date. In accordance to
previous analysis (Barabé et al., 2002; Mayo, Bogner & Boyce, 1997), authors questioned
the monophyly of Philodendron, suggesting the inclusion of all American species
of the morphologically similar genus, Homalomena Schott, within the Philodendron
clade. Homalomena species occur in America and Asia and its geographic distribution
partly overlaps with Philodendron in the Neotropics. The inference of the evolutionary
relationships between Philodendron and Homalomena has a significant biogeographic
appeal. If American Homalomena species are indeed more closely related to Philodendron
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than to Asian Homalomena, a single colonization event should be considered. Unveiling
the evolutionary relationships between those lineages is thus necessary to elucidate their
origin and subsequent diversification.

Besides phylogeny, several issues regarding Philodendron evolution remain unclear. For
example, the historical events that led to the wide geographic occurrence along biomes need
a thorough analysis. In this sense, investigating the evolutionary affinities of a large sample
of Philodendron species will shed light on how this lineage diversified along the Amazonian
and Atlantic rainforests, as well as South American open dry forests biomes; namely, the
Cerrado and Caatinga. To this end, we have performed an ancestral area reconstruction
of Philodendron and Homalomena species and estimated the divergence times from a
phylogeny inferred from the largest Philodendron dataset composed to date. We were able
to address the timing and pattern of Philodendron diversification in selected Neotropical
biomes with a focus on the evolutionary relationships between the three Philodendron
subgenera.

MATERIALS AND METHODS
Taxon and gene sampling
We have sequenced new data for 110 extant species of Philodendron and 16 species of
Homalomena of the following molecular markers: the nuclear 18S and external transcribed
spacer (ETS); and the chloroplast trnL intron, trnL-trnF intergenic spacer, the trnK intron
andmaturase K (matK ) genes. Additionally, 13 outgroup species were analyzed, comprising
the genera Cercestis, Culcasia, Colocasia, Dieffenbachia, Heteropsis, Montrichardia,
Nephthytis, Furtadoa and Urospatha. Outgroup choice was based on the close evolutionary
affinity of these genera to Philodendron, as suggested by previous studies. The complete list
of species included in this study, the voucher and GenBank accession numbers were listed
in Tables 1 and 2 of the Supplemental Information 1.

Ancestral biome reconstruction is dependent on the estimated phylogeny and the current
geographic distribution of sampled species terminals. Thus, taxon sampling may impact
the inference of ancestral species distribution along biomes. As indicated in Table S1 we
have sampled all P . subg. Meconostigma species; 82 P . subg. Philodendron species and 7
P . subg. Pteromischum species. Our sampling strategy is representative of the current
Philodendron diversity. Although ∼75% of the sampled species are P . subg. Philodendron
in our analysis, ∼82% of Philodendron species consist of P . subg. Philodendron (Boyce &
Croat, 2013; Coelho et al., 2016).

DNA isolation, amplification and sequencing
Genomic DNA was isolated with QIAGEN DNeasy Blood & Tissue kit from silica-dried
or fresh leaves. Primers used for amplification and sequencing were listed in Table S3.
Sequencing reactions were performed in the Applied Biosystems 3730xl automatic
sequencer and edited with the Geneious 5.5.3 software.

Alignment and phylogenetic analysis
Molecular markers were individually aligned in MAFFT 7 (Katoh & Standley, 2013) and
then manually adjusted in SeaView 4 (Gouy, Guindon & Gascuel, 2010). We estimated
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individual gene trees (Fig. 1, SM) for each molecular marker in MrBayes 3.2.2 (Huelsenbeck
& Ronquist, 2001; Ronquist & Huelsenbeck, 2003) using the GTR + G substitution model.
The Markov chain Monte Carlo (MCMC) algorithm was ran twice for 10,000,000
generations, using four chains. Chains were sampled every 100th cycle and a burn-in
of 20% was applied. A supertree was estimated from the tree topologies of each molecular
marker using the PhySIC_IST algorithm, available at the ATGC-Montpellier online server
(http://www.atgc-montpellier.fr/physic_ist/). Only clades with posterior probability ≥
85% were considered to estimate the supertree. We have used this approach to avoid the
impact of missing data in phylogeny estimation (Scornavacca et al., 2008). As PhySIC_IST
calculates non-plenary supertrees, it removes taxa with significant topological conflict
and/or with small taxon sampling (Scornavacca et al., 2008). The final supertree was thus
composed of 89 terminals, as 50 terminals were discarded due to conflicting resolutions.

In order to assess the stability of the (Philodendron + American Homalomena)
clade, we have calculated the log-likelihoods of alternative topological arrangements
in PhyML 3.0 (Guindon et al., 2009) using the species sampling of the supertree. We
have tested the following topologies: (I) (American Homalomena (P . subg. Philodendron
+P . subg.Meconostigma); (II) (P . subg.Meconostigma (P . subg. Philodendron+ American
Homalomena) and (III) (P . subg. Philodendron (P . subg. Meconostigma + American
Homalomena). The significance of the difference in log-likelihoods between topologies was
tested with the approximately unbiased (AU) and the Shimodaira-Hasegawa (SH) tests
implemented in CONSEL 1.2.0 (Shimodaira & Hasegawa, 2001).

Divergence time inference
Dating Philodendron evolutionary history is difficult mainly because of the scarcity of the
fossil record (Loss-Oliveira et al., 2014). For instance, Dilcher & Daghlian (1977), based
on fossilized leaves, described a putative P. subg. Meconostigma fossil from the Eocene
of Tennessee (56.0–33.9 Ma). However, Mayo (1991) identified the referred fossil as
a Peltranda. Thus, we have decided not to use this fossil as calibration information.
Alternatively, in order to estimate divergence times, we have assigned a prior on the rate
of nucleotide substitution. We were then prompted to infer the evolutionary rates of
plastid coding regions of monocots using a large sample of publicly available chloroplast
genomes. Nuclear genes were excluded from dating analysis because of the absence of prior
information on evolutionary rates.

To estimate monocots substitution rate, we used chloroplast genomes from 154
Liliopsida species retrieved from the GenBank (Table S4). All orthologous coding regions
were concatenated into a single supermatrix. Maximum likelihood phylogentic
reconstruction was implemented in RaxML 7.0.3 (Stamatakis, 2006) under GTR model.
Molecular dating of monocots (Liliopsida) was conducted under a Bayesian framework,
using fossil information obtained from Iles et al. (2015) (Table S5). Because the number
of terminals used was large, rate estimation was conducted with the MCMCTree program
of PAML 4.8 package (Yang, 2007) using the approximate likelihood calculation (Dos
Reis & Yang, 2011) and the uncorrelated model of evolution of rates. In MCMCTree,
posterior distributions were obtained via MCMC; chains were sampled every 500th cycle
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until 50,000 trees were collected. We performed two independent replicates to check
for convergence of the estimates. Calibration information for Liliopsida was entered as
minimum and maximum bounds of uniform priors. The estimated mean substitution rate
was inferred at 3.26×10−9 substitutions/site/year (s/s/y). This value is significantly higher
than the previous estimate of Palmer (1991), which reported an average substitution rate
of 0.7×10−9 s/s/y for angiosperm platids. As the credibility interval of our estimate was
large, we adopted a Gaussian prior for evolutionary rates with a 95% highest probability
density (HPD) interval that included maximum and minimum values of our estimate and
that of Palmer’s.

Dating analysis of Philodendron andHomalomena species was performed in BEAST using
a relaxed molecular clock with evolutionary rates modeled by an uncorrelated lognormal
distribution; the GTR+G�model of sequence was applied. The MCMC algorithm was ran
for 50,000,000 generations and sampled every 1,000th cycle, with a burn-in of 20%.

Biome shifts
To unveil how Philodendron species colonized the Amazon forest, Atlantic forest, Cerrado
and Caatinga, we conducted a Bayesian Binary MCMC (BBM) (Yu, Harris & He, 2012;
Ronquist & Huelsenbeck, 2003) implemented in Reconstruct Ancestral State in Phylogenies
2.1b (RASP) software (Yu, Harris & He, 2012). The input tree topology was the supertree
estimated in PhySIC_IST. BBM chains were ran for 10,000,000 generations and were
sampled every 1,000th cycle. State frequencies were estimated under the F81 model with
gamma rate variation. Information on the occurrence of each Philodendron species along
Neotropical biomes was obtained from Coelho et al. (2016) and from the (Team) CATE
Araceae (http://araceae.e-monocot.org).

RESULTS
The Homalomena genus was not recovered as monophyletic; the Asian Homalomena
clustered within a single group and the American representatives clustered independently,
as sister to Philodendron species (Fig. 2). Although our analysis failed to support the
monophyly of Philodendronwith significant statistical support, the topological arrangement
in which Philodendron is a monophyletic genus was significantly supported by the AU and
SH tests (p < 0.05, Fig. 3, Table 6S). Within Philodendron, subg. Meconostigma was
recovered as monophyletic (Fig. 2, node D), whereas subg. Philodendron was recovered as
polyphyletic (Fig. 2, node E). Finally, the monophyly of P . subg. Pteromischum was not
inferred, because Pteromischum species clustered with P . subg. Philodendron species.

We estimated that the last common ancestor (LCA) of Philodendron diversified in the
Amazon forest (Fig. 4, node B) at ca. 8.6 Ma (6.8–12.1 Ma) 95% HPD. Thus, we inferred
that the LCA of Philodendon diversified from Middle to Late Miocene. This also suggests
that the divergence between Philodendron and the American Homalomena occurred in a
short period of time after this American lineage diverged from the Asian Homalomena
(Fig. 4, nodes B and A, respectively).

The earliest events of Philodendron diversification occurred exclusively in the Amazon
forest (e.g., Fig. 4, nodes C, D, E, F). The ancestors of Atlantic forest lineages were inferred
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Figure 2 Supertree of Philodendron andHomalomena species.
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Figure 3 Phylogeny of Philodendron andHomalomena corroborated by the approximately unbiased
(AU) test.

to have been distributed in the Amazon (Fig. 4, nodes I, J and nodes G, H). This pattern
of Amazonian ancestry of Atlantic forest lineages was also observed in some terminal
branches. For instance, from node K to P. loefgrenii and from node L to P. imbe.

On the other hand, themajority of Cerrado species evolved fromAtlantic forest ancestors
(Fig. 4, nodes J and M; node N to P. rhizomatosum and P. pachyphyllum). In subgenus
Meconostigma, the age of early species diversification into Atlantic forest was dated at
3.7 Ma (5.6–2.7 Ma) (Fig. 4, node J), whereas in the P . subg. Philodendron early lineage
diversification occurred at 4.1 Ma (5.5–3.0 Ma) (Fig. 4, node J). Therefore, during a
period of 5.0–6.0 Ma, Philodendron species occupied exclusively the Amazon forest. The
diversification into Cerrado biome occurred later, at approximately 1.7 Ma (3.3–1.1 Ma)
(Fig. 4, node M).

DISCUSSION
Phylogenetic relationship between Philodendron and Homalomena
In this study, Asian Homalomena was recovered as sister to the (Philodendron + American
Homalomena) clade, and Furtadoa mixta clustered with the Asian Homalomena clade. The
evolutionary affinities of American Homalomena, P . subg. Meconostigma and P . subg.
Philodendron were not strongly supported. However, the topological arrangement in which
Philodendron is a monophyletic genus was statistically significant by the AU and SH tests,
suggesting the monophyly of Philodendron.

Previous studies have reported conflicting results concerning the monophyly of
Philodendron and the phylogenetic status of American Homalomena (Fig. 5). For instance,
Barabé et al. (2002), based on the trnL intron and the trnL-trnF intergenic spacer, proposed
P. subg. Philodendron as a paraphyletic group and was unable to solve the (P . subg.
Meconostigma + Asian + American Homalomena) polytomy (Fig. 5A). Gauthier, Barabé
& Bruneau (2008) recovered the American Homalomena as sister to Philodendron and the
AsianHomalomena as sister to the (AmericanHomalomena+Philodendron) clade, although
their Bayesian analysis inferred a paraphyletic Philodendron, with P . subg. Pteromischum
sister to the AmericanHomalomena (Figs. 5B and 5C, respectively). Alternatively,Cusimano
et al. (2011) recovered a monophyletic Philodendron, with Homalomena as sister lineage
of Furtadoa (Fig. 5D). Recently, Yeng et al. (2013) estimated the Homalomena phylogeny
based on the nuclear ITS marker and also sampled Philodendron species. In the ML and
Bayesian trees reported in their study, P . subg. Pteromischum was closely related to the
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Figure 4 Ancestral biome reconstructions and divergence time estimates of Philodendron andHoma-
lomena lineages. The epoch intervals followed the international chronostatigraphic chart (Cohen et al.,
2015) and are indicated by dashed lines.
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Figure 5 Phylogenetic relationships between Philodendron andHomalomena recovered by previ-
ous studies. (A) Barabé et al. (2002); (B) Gauthier, Barabé & Bruneau (2008) using the maximum parsi-
mony method; (C) Gauthier, Barabé & Bruneau (2008) using Bayesian analysis; (D) Cusimano et al. (2011)
(2011); (E) Yeng et al. (2013).

American Homalomena, whereas P . subg. Meconostigma and P . subg. Philodendron were
recovered as sister taxa (Fig. 5E).

Discrepancies between previous works and our analysis may be due to different choice of
phylogenetic methods, markers and taxon sampling. Gauthier, Barabé & Bruneau (2008)
was the only study intended to investigate specifically the systematics of Philodendron
genus. When compared to their analysis, our study included a larger sampling of taxa
and molecular markers with the aim of estimating the phylogeny of Philodendron and
Homalomena species; it is also the first analysis that used a supertree approach to this end.

Our phylogeny characteristically presents short branch lengths within the Philodendron
clade. The high frequency of polytomies indicates the genetic similarity among terminals,
which is further corroborated by the ease in obtaining artificial hybrids between different
species. This corroborates a scenario of low genetic differentiation and low reproductive
isolation (Carlsen, 2011).

Philodendron diversification may also consist of several recent rapid radiation events.
Phylogenetic reconstruction under this scenario is challenging, because of a significant
amount of substitutions is needed to accumulate within short periods of time (Maddison
& Knowles, 2006). However, morphological variation of Philodendron is remarkable,
which seems contradictory considering the previously discussed features. However, it
has been extensively discussed that morphological variation is not a suitable proxy for
genetic variation (e.g., Prud’Homme et al., 2011; Houle, Govindaraju & Omholt, 2010).
Many environmental and epigenetic factors may can increase phenotypic variation even in
the absence of DNA sequence variation (Prud’Homme et al., 2011). Evidently, we cannot
rule out the possibility that DNA regions that present significant genetic differences between
species were not sampled in this work.
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Diversification of Philodendron and Homalomena
Although the chronology of Philodendron divergence was not extensively focused
by previous studies, Nauheimer, Metzler & Renner (2012) analyzed the global history
of the entire Araceae family based on a supermatrix composed of five chloroplast
markers and several well-established calibration points. Their analysis included a single
Philodendron species and estimated age of the Philodendron/AsianHomalomena divergence
at approximately 20.0 Ma (ranging from 31.0–9.0 Ma). This study, however, also included
a single species of Asian Homalomena.

The wide range of the posterior distribution credibility intervals of Nauheimer, Metzler
& Renner (2012) hampers the proposition of putative biogeographic scenarios for the
evolution of Philodendron, American and Asian Homalomena. Differences between their
timescale and the divergence times proposed in this study might therefore be due to
methodological differences caused by their reduced taxonomic sampling. Nevertheless,
both our estimate of the age of the Philodendron divergence from Asian Homalomena and
that ofNauheimer, Metzler & Renner (2012) suggests that this event took place when South
America was essentially an isolated continent.

The isolation of the South American continent persisted from approximately 130.0 Ma
(Smith & Klicka, 2010) to 3.5 Ma (Vilela et al., 2014), with the rise of the Panamanian land
bridge. Therefore, from the Early to Middle Miocene there was no land connection
with North America, Asia or Africa (Oliveira, Molina & Marroig, 2010). If dispersal,
rather then vicariance, is the most plausible hypothesis to explain Philodendron and
American Homalomena colonization of the Neotropics, hypotheses on the possible routes
of colonization should be investigated. Based on the continental arrangement during
the Miocene, we propose that the dispersal of Philodendron and American Homalomena
ancestor could have followed four possible routes (Fig. 6): (1) from Asia to North America
through the Bering Strait; (2) from Africa to the Neotropics by crossing the Atlantic ocean;
(3) from Asia to Neotropics by crossing Pacific ocean; and (4) from Asia to Neotropics ,
also by crossing the Atlantic ocean.

The Araceae fossil record is currently assigned to Florida, Russia, Germany, United
Kingdom, Venezuela, Yemen, Colombia and Canada (Shufeldt, 1917; Berry, 1936;
Bogner, Hoffman & Aulenback, 2005; Chandler, 1964; Dorofeev, 1963; As-Saruri, Whybrow
& Collinson, 1999; Wilde & Frankenhauser, 1998; Wing et al., 2009; Stockey, Rothwell &
Johnson, 2007). However, as none of the fossil specimens was described as closely related to
Philodendron or Homalomena, the Araceae fossil record fails to corroborate any dispersal
hypothesis in particular.

Considering route 1, although theBering Strait have connectedAsia to theNorthAmerica
during most of the Cenozoic period (Butzin et al., 2011), there is no evidence of extant
Philodendron and Homalomena in North America or North Asia. Route 2 involves long-
distance oceanic dispersal through ca. 2,000 km—the minimum distance between Africa
and the Neotropics (Oliveira, Molina & Marroig, 2010)—through Atlantic paleocurrents,
which were probably stronger than Pacific currents. This hypothesis is congruent with the
clustering of Philodendron and American Homalomena into a single clade, assuming Africa
as the center of diversification of Asian and AmericanHomalomena, as well as Philodendron.
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Figure 6 Putative dispersal routes of the ancestor of Philodendron and AmericanHomalomena to the
Neotropical region during theMiocene.

However, we should conisder that the last recent common ancestor of Philodendron and
Homalomena was distributed in Africa. On the other hand, this hypothesis is corroborated
by the distribution of the extant Philodendron and Homalomena species. Givnish and
colleagues (2004) also suggested two long-distance dispersal events through the Atlantic,
but in the opposite direction. Their analysis indicated that Bromeliaceae and Rapateaceae
arose in the Guayana Shield of northern South America and reached tropical west Africa
via long-distance dispersal at ca. 6–8 Ma.

When considering long-distance dispersal events, it is crucial to evaluate their viability
as related with the plant’s ability to produce dispersal structures that would tolerate aquatic
and saline conditions for long periods of time (Lo, Norman & Sun, 2014). Although such
features have not been evualuated for Philodendron and Homalomena, some Homalomena
species inhabits swamp forests and open swamps. Thus, features that would favor their
survival in waterlogged environments could also influence their maintenance in seawater.

Although route 3 is geographically unlikely due to the 8,000 km distance between
Asia and the Neotropics through the Pacific Ocean (Oliveira, Molina & Marroig, 2010), it
cannot be completely discarded because it is corroborated by the extant distribution of
Homalomena and Philodendron. Finally, route 4 suggests the dispersal through the Atlantic
ocean from Asia to the Neotropics. This is also an improbable hypothesis because the
African continent would act as a barrier between Asia and the Neotropics, requiring the
dispersal through both the Indian and the Atlantic oceans.

The extant distribution of Philodendron and Homalomena species and the scarcity of
fossil information challenge the proposition of a scenario for the origin of Philodendron
and American Homalomena in the Neotropics. However, the biological and geographical
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information provided to date indicates a long-distance oceanic dispersal through the
Atlantic, as suggested by route 2, as the most plausible hypothesis to explain Philodendron
and American Homalomena colonization of the Neotropics.

Early diversification of Philodendron species
According to our analysis, the last common ancestor of Philodendron and the American
Homalomena was distributed in the Amazon forest about 8.6 Ma (11.1–6.8 Ma) during
the Middle/Late Miocene. Interestingly, this time estimate is very close to the age of the
divergence between the (Philodendron/American Homalomena) clade from the Asian
Homalomena (Fig. 4, node A). The Middle and Late Miocene were characterized by
wetland expansion into western Central Amazonia, which fragmented the rainforest and
formed extensive wetlands (Jaramillo et al., 2010). According to our analysis, Philodendron
earliest divergence events took place in this scenario. The Amazon forest, from the Late
Miocene to the beginning of Pliocene, was composed of a diverse and well-structured
forest. The Amazon river landscape was well established; this probably allowed the
extensive development of the Amazonian terra firme forest (Jaramillo et al., 2010). This
scenario is compatible with the biology of extant species of Philodendron because a well-
structured forest would allow the development of epiphyte and hemiepiphyte species, such
as Philodendron.

Philodendron diversification along Neotropical biomes
Our results suggest that Philodendron species occurred exclusively at the Amazon forest
for ca. 5.0–6.0 Ma. During the Pliocene, as result of the glacial cycles, climate cooling
and drying permitted the expansion of the open savanna areas, mostly represented by
the ‘dry diagonal’, which is constituted by the Caatinga, Cerrado and Chaco biomes. This
consisted of a crucial event, because it resulted in the isolation of the Atlantic forest in
the east coast of South America (DaSilva & Pinto-da-Rocha, 2013), which is synchronous
to the inferred age of the early diversification of Philodendron in this biome. This also
corroborates the hypothesis that the Atlantic forest taxa present a closer biogeographic
relationship with the Amazon forest, as proposed by Amorim & Pires (1996) and Eberhard
& Bermingham (2005). After the separation between Atlantic and Amazon forests during
the Pliocene, species dispersal might have been common through the forest patches
(DaSilva & Pinto-da-Rocha, 2013).

Roig-Juñent & Coscarón (2001) and Porzecanski & Cracraft (2005) suggested that the
Atlantic rainforest also presents similarities in organismal composition with the Cerrado
biome. This association would have been a result of dispersal events through gallery forests.
The history of the formation of Cerrado biome is still uncertain (Zanella, 2013; Werneck,
2011), but our analysis indicated that the ancestors of Philodendron clades from the Cerrado
were distributed in the Atlantic forest. Therefore, we also corroborate the hypothesis of
lineage dispersal from the Atlantic forest to the Cerrado biome. These events would have
occurred after the colonization the Atlantic forest by Philodendron species.
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Final considerations on Philodendron evolution
Given the significant morphological diversity of Philodendron, its widespread distribution
in the Neotropics and the age of the Araceae family (∼140.0 Ma, Nauheimer, Metzler &
Renner, 2012), it would be expected that the origin of this genus was older. In sharp contrast,
we have estimated phylogenies with very short branch lengths and very recent divergence
times. A similar scenario was reported by Carlsen & Croat (2013) for Anthurium, which is
the most diverse Araceae genus, and also by Nagalingum and colleagues (2011) for cycads.
Therefore, the inferred tempo andmode of evolution of Philodendron species were reported
in several plant families.

CONCLUSION
The present work was the first attempt to establish a chronological background for the
diversification of this highly diverse genus and to suggest possible routes of colonization of
the ancestors of Neotropical Philodendron and Homalomena. Philodendron was statistically
supported as a monophyletic genus, sister to American Homalomena by AU and SH
tests. The last common ancestor of Philodendon diversified from the Middle to the Late
Miocene in the Amazon forest, where the earliest events of Philodendron diversification
occurred. Amazon was also the exclusive biome occupied by Philodendron species during a
5.0–6.0 million years period. Atlantic forest lineages of P . subg.Meconostigma and P . subg.
Philodendron diverged from Amazonian ancestors. On the other hand, the majority of
Cerrado species evolved from Atlantic forest ancestors, from the Late Miocene to the
Pliocene.
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