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ABSTRACT
Marine caves possess unique biocoenotic and ecological characteristics. Sessile benthic
species such as sponges associated with cave habitats typically show a marked zonation
from the cave entrance towards the end of the cave. We describe three semi-submerged
karstic caves of 50 to 83m length and 936 to 2,291m3 volume from the poorly explored
cavernicolous fauna of North-East Bulgaria. We surveyed sponge diversity and spatial
variability. Eight demosponge species were identified based on morphological and
molecular data, of which six are known from the adjacent open sea waters of the
Black Sea. Two species, Protosuberites denhartogi van Soest & de Kluijver, 2003 and
Halichondria bowerbanki Burton, 1930, are reported from the Black Sea for the first
time. The spatial sponge distribution inside the caves is in general similar, but shows
some differences in species composition and distribution depending on cave relief and
hydrodynamics. The species composition of sponges of Bulgarian caves is found to be
different fromCrimean caves. Anupdated checklist of the Black Sea sponges is provided.

Subjects Biodiversity, Marine Biology, Zoology
Keywords Bulgaria, The Black Sea, Porifera, Marine caves, Checklist, Karst cave habitat, Extreme
environment, Inventory, Cave-dwelling fauna

INTRODUCTION
During the last decades it has repeatedly been shown that the environmental conditions
in submarine caves produce a rich and diversified biota, and bear several faunistic
peculiarities including ‘relict’ species (Hart, Manning & Iliffe, 1986; Ohtsuka, Hanamura
& Kase, 2002; Manconi, Serusi & Pisera, 2006; Manconi et al., 2009; Manconi & Serusi,
2008; Iliffe & Kornicker, 2009; Pisera & Vacelet, 2010), bathyal forms (Harmelin, 1997;
Vacelet, 1996; Glover et al., 2010; Janssen, Chevaldonné & Martínez Arbizu, 2013), and truly
troglobial taxa (Pansini, 1996; Bussotti et al., 2006; Chevaldonné & Lejeusne, 2003; Lejeusne
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& Chevaldonné, 2005). These faunas are composed of species able to tolerate the cave
conditions and possess adaptive colonization strategies. Moreover, for meiofauna (Todaro
et al., 2006; Janssen, Chevaldonné & Martínez Arbizu, 2013) as well as for macrofauna,
the marine caves represent hotspots of biodiversity and endemicity (Gerovasileiou &
Voultsiadou, 2012). Submerged or partially submerged sea caves are protected by the EU
Habitats Directive as a distinct habitat type (UNEP-MAP-RAC/SPA, 2008; Giakoumi et al.,
2013).

In contrast to submerged marine caves, semi-submerged caves are characterized by
higher hydrodynamics, possess insenvironmental conditions on short and long term, and
are rarely oligotrophic (Corriero et al., 2000). Light and water-movement variations are
related to the peculiar cave characteristics in terms of morphology, dimensions, exposure,
and depth. In the shallow semi-submerged, the rapid decrement of light intensity may
not correspond to a similar decreasing trend of water-movement. It has been shown that
more illuminated sections in caves and shallow and/or semi-submerged caves are more
susceptible to marine biological invasions than darker sections (Gerovasileiou et al., 2016;
Dimarchopoulou, Gerovasileiou & Voultsiadou, 2018).

Sponges (Phylum Porifera) represent one of the most abundant animal phyla in
many benthic ecosystems (Bell & Smith, 2004) and can constitute the dominant sessile
organism group in marine cave environments (Sarà, 1962; Corriero et al., 2000; Richter
et al., 2001; Bell, 2002; Gerovasileiou & Voultsiadou, 2012; Gerovasileiou & Voultsiadou,
2016; Gerovasileiou et al., 2016; Radolović et al., 2015; Ereskovsky, Kovtun & Pronin, 2016).
The sponge fauna of marine semi-submerged caves has been investigated predominantly
in the Mediterranean Sea (Sarà, 1958; Sarà, 1961a; Sarà, 1961b; Laborel & Vacelet, 1959;
Labate, 1964; Vacelet, 1976; Vacelet, 1996; Pansini & Pronzato, 1982; Corriero et al., 1997;
Corriero et al., 2000; Corriero, 1989; Knittweis et al., 2015; Dimarchopoulou, Gerovasileiou
& Voultsiadou, 2018), although a few studies were performed in Ireland (Bell, 2002), in
the Caribbean area (Macintyre et al., 1982; Hart, Manning & Iliffe, 1986; Kobluk & Van
Soest, 1989), and the Black Sea (Ereskovsky, Kovtun & Pronin, 2016). Here, it was clearly
demonstrated that superficial caves do not resemble submerged caves in terms of benthos
diversity and community structure. As submarine caves (submerged and semi-submerged)
are subject to severe temperature alterations attributed to global climate change (Bianchi,
Morri & Russo, 2003), as well as to biological invasions (Gerovasileiou et al., 2016) and
anthropogenic impacts (Nepote et al., 2017), knowledge on the Black Sea sponge diversity
is vital. Submarine caves represent poorly resilient ecosystems (Harmelin, 1980; Lejeusne &
Chevaldonné, 2006), therefore, understanding their recovery capacity after disturbances is
mandatory for conservation.

Our knowledge on the biodiversity of the Black Sea sponges is scarce; data describing
the sponge diversity in its caves is practically non-existent, except for one publication on
Crimean cave sponges (Ereskovsky, Kovtun & Pronin, 2016).

The objectives of the present study are the description of three shallow water semi-
submerged marine caves explored in the Bulgarian Black Sea coast, including the
assessment of their sponge diversity and distribution as groundwork for the environmental
management of coastal zones in the Black Sea.
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Figure 1 Location of the investigated caves in the North-East Bulgaria (Black Sea).
Full-size DOI: 10.7717/peerj.4596/fig-1

MATERIAL & METHODS
The research was carried out in 2016 in three semi-submerged marine caves (Budova,
Tulenova and Temnata dupka) located in Dobrich province of Bulgaria and at the territory
of North-Tyulenovo speleological area of the Eastern-Dobrudzha karst region (Fig. 1). The
primary host rock of the caves is thickly layered or massive limestone ranging in color from
light grey to white.

Cave descriptions
Geomorphological descriptions of the caves were conducted using classic geological
and hydrobiological methods including three-dimensional mapping (Pronin et al., 2013;
Ereskovsky, Kovtun & Pronin, 2016). The coordinates of the cave entrances were determined
using a Garmin 12XL GPS. Depths were measured with a diving depth gauge (Mares M2)
to an accuracy of 0.1 m. Underwater tunnels, domes and crevices were measured using a
reinforced-plastic ruler. Underwater topographic mapping was conducted by the following
technique: length and azimuth were assessed between survey pegs placed near the marine
cave entrance; then an azimuthal survey was done using an underwater compass and the
survey pegs; cross-sections of each cave were drawn using survey pegs. Photographs were
taken with a Nikon P6000 digital camera.
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Specimen sampling
Visual exploration and sampling were conducted in 2016 at depths varying from the
intertidal zone to 7 m by SCUBA and snorkeling. Sponges were photographed in situ with
a 5 cm scale bar and an inventory number. Depth and water temperature were recorded
by photographing depth gauges at the time of each sampling. Samples were stored in 96%
ethanol. The skeletal architecture was studied by light microscopy using thick, polished
sections obtained by embedding a fragment of the specimen in Araldite R© followed by
sectioning with a low speed saw using a diamond wafering blade and wet-ground on
polishing discs. Spicule measurements were performed on 25 spicules. All surveys of the
caves were digitally recorded using a Sony 3CCD camcorder.

Additional collection of Dysidea fragilis (Montagu, 1818) (BsBul16-9-047/GW30179/6
and BsBul16-9-048/GW30180/6) was realized at the South-East of Bulgaria coast: in Agalina
cape, rocks, canyon (42◦22′43–63′′N–27◦43′23–83′′E) at the depth 4–9 m.

DNA extraction, PCR and sequencing
For molecular taxonomic support of the morphological results we sequenced two markers
frequently used for molecular biodiversity studies of sponges, 5′region of the mitochondrial
cytochrome oxidase subunit 1 (in the following referred to as CO1) and the C-Region of
the nuclear large ribosomal subunit (in the following referred to as 28S) (see e.g., Erpenbeck
et al., 2016). DNA was extracted with the QIAmp mini Kit (Qiagen, Hilden, Germany).
The CO1 fragment was amplified using the primers dgLCO1490 (GGT CAA CAA ATC
ATA AAG AYA TYG G) and dgHCO2198 (TAA ACT TCAG GGT GAC CAA ARA AYC
A) (Meyer & Paulay, 2005). For 28S the primers 28S-C2-fwd (GAA AAG AAC TTT GRA
RAG AGA GT) and 28S-D2-rev (TCC GTG TTT CAA GAC GGG) were used (Chombard,
Boury-Esnault & Tillier, 1998). The 25 µL PCR mix consisted of 5 µL 5x green GoTaq R©

PCR Buffer (Promega Corp, Madison, WI, USA), 4 µL 25 mM MgCl2 (Promega Corp,
Madison, WI, USA), 2 µL 10 mM dNTPs, 2 µL BSA (100 µg/ml), 1 µL each primer (5
µM), 7.8 µL water, 0.2 µL GoTaq R© DNA polymerase (5 u/µl) (Promega Corp, Madison,
WI, USA) and 1–2 µL DNA template. The PCR regime comprised an initial denaturation
phase of 94 ◦C for 3 min followed by 35 cycles of 30 s denaturation at 94 ◦C, 15 s annealing
(45 ◦C for CO1; 51 ◦C for 28S), 60 s elongation at 72 ◦C each and a final elongation at
72 ◦C for 7 min. PCR products were purified with freeze squeeze extractions out of the
agarose gels (Tautz & Renz, 1983) before cycle sequencing using the BigDye-Terminator
Mix v3.1 (Applied Biosystems). Both strands of the template were sequenced on an ABI
3,730 automated sequencer. Raw sequences were basecalled, trimmed and assembled in
CodonCode Aligner v 3.7.1.1 (http://www.codoncode.com). Sequences are deposited in
NCBI Genbank under accession numbers MH157894–MH157912, and with location data,
specimen photos (including in situ photos) and additional morphological information in
the form of thin section photos and spicule preparations in the Sponge Barcoding Database
(SBD, http://www.spongebarcoding.org,Wörheide & Erpenbeck, 2007), accession numbers
SBD #1758–1776.

Phylogenetic analyses were performed after incorporation of all available 28S and
CO1 respectively sequences as currently published in NCBI Genbank and aligned in the
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Sponge Genetree Server (Erpenbeck et al., 2008). Here, secondary structure information as
suggested earlier (Erpenbeck et al., 2007) has been implementedwhere feasible. Phylogenetic
reconstructions were performed with RAxML 7.2.8 as implemented in GENEIOUS 8.1.6
(http://www.geneious.com, Kearse et al., 2012) under the GTRCAT model and 100 rapid
bootstrap replicates.

Data collection and taxonomic updating
The scientific literature concerning sponges and benthic invertebrates of the Black Sea
was reviewed and all biodiversity data were incorporated into a single annotated Porifera
species list along with spatial information. The basis for this was the checklist from previous
work (Ereskovsky, Kovtun & Pronin, 2016), which was substantially supplemented.

RESULTS
All caves investigated are semi-submerged and abrasion karst formed by dense layered
light-gray limestone.

Budova cave
The cave (PB-105/532) is a semi-submerged cavity with entrance coordinates 43◦30′18–8′′N
and 28◦35′35–6′′E (Table 1, Fig. 2). Its lower part is flooded with sea-water to a depth of
4.5 m in the entrance decreasing to 1 m towards the end. In the entrance the ceiling is 8 m
above the water surface. Maximum width of the cave observed in the entrance is 8.4 m.
A big boulder is located at the entrance and a smaller one is in the siphon. The siphon
has a sharp rise and further rises gently in the S-W direction above the sea level. The roof
of the cave is uneven. The walls have uneven relief with numerous smooth protrusions.
The limestone in the walls is corroded. The wall is smoother under water, forming niches
along the bottom. The bottom of the cave from the entrance to siphon is almost even and
covered with boulders. In the farthest part of the Southern branch, the bottom is rocky.
The Northern branch is covered with sand and small well-rounded limestone pebbles. The
entire bottom of the cave, except for small areas at the very end, is flooded by seawater.

The cave is hardly accessible when the Eastern and Southern winds blow due to strong
wave action. In the inner reaches of the cave wave action is less, allowing for abundant
incrustation of aquatic organisms in the wall niches and the small branches of the cave.
Illumination is very limited in most parts of the cave, except for the part near the small
entrance where the visibility extends to about 10–15 m. However, under the water surface,
where diffused light penetrates further, the entrance to the cave can be seen from a distance
of 70–80 m in good weather conditions. The roommost distant from the entrance is totally
dark.

Sponges
The species Dysidea incrustans (Schmidt, 1862) dominant from the cave entrance as far
as section A–A1 (up to 10–15 m deep), on rocky walls and large rocks at the bottom.
These sponges are generally bright blue in color with uneven, convex surface, especially
towards the illumination. The sponge surface is reticulated and conulose with the conules
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Figure 2 Budova Cave in the North-East Bulgaria, Black Sea.
Full-size DOI: 10.7717/peerj.4596/fig-2

Table 1 Main characteristics of investigated underwater caves fromNorth-East Bulgaria.

Caves Submerged Semi-submerged Length (m) Area (m2) Volume (m3) Depth (m)

Budova No Yes 50.2 240.2 936.4 3.5 to 1
Tulenova No Yes 83 692 2,150 4 to 1.2
Temnata dupka No Yes 73.7 344.5 2,291 3 to 0.5

1–3 mm high and 3–5 mm apart. Oscula with transparent apical part are scattered. In
most cases they are flat crust in shape, with sizes varying from 5 to 15 cm in diameter
with a thickness of 1 cm (Figs. 3A, 3B; Video S1). The skeleton network is irregular with
meshes of 200–600 µm in diameter formed by ascending primary fibers (70–90 µm in
diameter, cored with foreign material), and secondary fibers (5–30 µm in diameter, lacking
inclusions) (Fig. 4A). This species also inhabits the large rocks at the bottom of the cave. In
the dimly lighted zones of the cave between sections A–A1 and B–B1, D. incrustans occurs
less frequently and can display a flattened habitus and pale violet color.

A similar distribution pattern is exhibited by Protosuberites denhartogi van Soest, de
Kluijver, 2003, an encrusting and mustard yellow in color sponge (Figs. 3A, 3D; Video
S1), which covers not only the rocky surface but harbors colonies of different barnacles
species. The sponge surface is even, smooth and slightly hispid. Consistency is compact.
Ectosomal skeleton is lacking special architecture, with short tylostyles, oriented parallel
to the surface. At the surface the spicule bundles usually support projecting spicule tufts.
The choanosomal skeleton consists of tylostyles arranged perpendicularly to the substrate,
with the heads directed to the substrate (Fig. 4B). In thicker specimens, basal spicules are
overlain by spicule bundles that anastomose and may run either perpendicular or parallel
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Figure 3 Sponges from the Budova Cave. (A) Dysidea incrustans and Protosuberites denhartogi at Cave
entrance. (B) Dysidea incrustans in situ blue morph (cave entrance). (C) Dysidea incrustans in situ pale
morph in middle part of the Cave. (D) Protosuberites denhartogi in situ. (E) Clathria (Microciona) cleis-
tochela in situ; (F) Halichondria bowerbanki in situ; (G) Haliclona sp. 1 in situ; (H) Haliclona sp. 2 in situ;
(I) Pione cf. vastifica. Photographs by Oleg A. Kovtun.

Full-size DOI: 10.7717/peerj.4596/fig-3

to the substrate. Overall spicule density is high. The megascleres are tylostyles, considerably
variable but overlapping in size, without distinct size categories, 110–258.7–456 × 4–6.3–
11 µm. Microscleres are absent.

In this part of the cave the surface of P. denhartogi can reach more than 40 cm2 with not
more than 1-3 mm thickness. In the middle part of the cave the surface of P. denhartogi is
reduced to 2–5 cm2.

Another common species in the entrance area is Clathria (Microciona) cleistochela
(Topsent, 1925) as a thin, orange crust up to 20–30 cm in diameter (Fig. 3D; Video S1). Its
ectosomal skeleton is composed of monactinal auxiliary spicules in one or two categories
forming sparse, paratangential structures. The choanosomal skeletal tracts are usually
enclosed within spongin fibers and embedded megascleres and are erect on basal layer.
The skeleton of the sponge consists of megascleres in form of ectosomal subtylostyles
(175–320 µm long) and choanosomal subtylostyles of two-dimensional categories: large
(up to 475 µm long) and small (up to 175 µm long); and microscleres in form of numerous
isochelae (13–15 µm in length) and toxas of the same size category (about 150 µm in
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Figure 4 Skeleton and spicular complement of Bulgarian cave sponges. (A) Dysidea incrustans. (B) Pro-
tosuberites denhartogi. (C) Spicules of Clathria (Microciona) cleistochela: a, isochela; b, toxas; c,d, small
choanosomal subtylostyles; e,f, large choanosomal subtylostyles; g,h, ectosomal subtylostyles. (D) Skeleton
of Halichondria bowerbanki and skeleton. (E) Skeleton of Haliclona sp. 1. (F) Skeleton of Haliclona sp. 2.
(G) Skeleton of Haliclona sp. 3. (H) Spicules of Pione cf. vastifica. Photographs by Alexander Ereskovsky.

Full-size DOI: 10.7717/peerj.4596/fig-4
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length) (Fig. 4C). In the middle part of the cave the surface of this species is reduced to
3–7 cm in diameter, where it is covered by numerous Spirorbis polychaetes.

In the middle part of the cave beyond section B–B1, where the marked narrowing of
the entrance leads to a drastic reduction of incoming light, the bottom part of the wall
is encrusted by the green-gray species Halichondria bowerbanki Burton, 1930 (Fig. 3E;
Video S1). This sponge is moderately firm and compressible in consistence. The oscules
are highly variable in size and position. The ectosomal skeleton is tangential with spicules
arranged disorderly or in tight bundles, leaving open spaces between spicule bundles.
The choanosomal skeleton is largely confused. It consists of oxea tracts running toward
the surface and anastomose at intervals (Fig. 4D). These tracts contain between 6 and 12
spicules. The spicules are oxea megascleres only: long, thin, straight or gently curved at the
midpoint and varying considerably in size from 135 to 390 µm long and 3.7 to 13.1 µm
wide.

In the same cave zone there is a rare Haliclona (referred to as Haliclona sp. 1 hereafter),
a flat sponge of grey-blue color (Fig. 3F; Video S1) with diameters of 7–10 cm, and with
small outstretched oscular chimneys of about 5–8 mm. The sponge surface is even and
smooth, slightly hispid due to projecting spicules. The ectosomal skeleton is a rather
regular, tangential, unispicular, with isotropic reticulation; the choanosomal skeleton is a
regular, unispicular, paucispicular reticulation (Fig. 4E). The spicules are exclusively oxeas
of uniform shape and size: 64–100 × 2–4 µm. No microscleres are present.

The inner, dark parts of the cave are inhabited by small oval and pale blue D. incrustans
(Fig. 3C), and a different, large encrusting Haliclona species (referred to as Haliclona sp.
2). Haliclona sp. 2 has ivory color with long, fine outgrowths at the surface (Fig. 3G;
Video S1). The sponge surface is hispid due to projecting spicules. The ectosomal and
choanosomal skeletons are tangential. Primary multispicular and secondary unispicular
tracts have a regular, triangular reticulation (Fig. 4F). The spicules constitute exclusively
megascleres oxeas of uniform shape and size: 150–190× 6.5–9 µm. In this dark part of the
cave numerous small crusts (1–3 cm in diameter) of P. denhartogi are present. Finally in
the terminal and totally obscured post-syphon zone small individuals of P. denhartogi and
big specimens of Haliclona sp. 2 with outgrowths were observed.

The walls of the cave have been perforated by the boring sponges Pione cf. vastifica
(Hancock, 1849) (Fig. 3H). The choanosomal skeleton of P. cf. vastifica consists of
randomly arranged microspined oxeas and scattered tylostyles and oxeas, sometimes
arranged in bundles. The superficial skeleton is organized by spirasters parallel arranged to
the surface (Fig. 4H). The skeleton of the papillae is composed by tylostyles (160–340 µm
long and 3–9 µm in diameter) and spiraster microscleres. The spirasters are 8–25 µm long
and 1–2 µm in diameter, straight or with a bent shaft and truncated ends and small spines.
Additional microscleres are microspined oxeas with slightly bent shaft of 60–140 µm length
and 2–6 µm in diameter.

The vertical distribution pattern of sponges in the post-syphon area is typical for an
open-water area: the largest number of sponges is found in the lower and middle parts
of the cliffs, while the upper 2–3 m of rock is almost free of sponges due to the strong
hydrodynamic effects of storm activity in this zone.
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Tulenova cave
This cave (PB-105/550) has the principal entrance coordinates 43◦29′40–52′′N and
28◦35′05–58′′E (Table 1, Fig. 5). The Southern part of the cave is situated from the
entrance to A–A1. Then the main part turns almost 90◦. Large caverns and niches, about
0.5 m high, are present in the Southern part of the cave. The surfaces of the walls are
uneven, with an angular, flat roof. On the South side at a depth of about 0.5 m a smooth
rocky ledge is present. The wall between the ledge and the flat roof of the cave is very
uneven, sloping, with large niches and ledges. The parts North of A–A1, on which the
mainsail narrows, and the connection to the Eastern part are similar in nature. After the
restriction on C the cave is expanding rapidly and reaches its maximum width of 18 m
with rounded and smooth outlines. Its bottom is covered with sand and gently rises above
sea level. The water depth at the input reaches 3.5 m. With growing distance from the
cave entrance water depth gradually decreases. Most of the bottom of the cave is flooded.
Almost the entire bottom of the cave halts limestone boulders. Sometimes there are small
areas of rock bottom—smooth ledges located at a depth of 0.5 m. On the far side of the
cave there is a large sand and pebble beach with detritus and a height of 1 m.

Sponges
The sponge distribution in the entrance zone of the cave is different from that of the
rocks outside the cave entrance. The entrance of the cave is completely exposed to waves
and light, so the cave per se begins with section A–A1, where the distribution of sponges is
typical of dark areas. At the entrance the small pale-blue spongeDysidea incrustans (Fig. 6A;
Video S2) is reduced in number. However, Protosuberites denhartogi (Fig. 6C; Video S2)
constitute the dominant species in this part of the cave with a projective cover about
60–70%. The sponges overgrow Spirorbis polychaetes, barnacles, and mussels. Behind
section A–A1, the Eastern side of the cave differs from the Western in the abundance of
epibionts. The Eastern wall of the cave, rich in different niches and cavities, is more densely
populated by sponges. Up to section C–C1 P. denhartogi is the dominant sponge species,
but only in the upper and middle part of the cave. From the middle to the depth part, a
flat white-gray Haliclona sp. 2 (Fig. 6F; Video S2) is more abundant in niches and recesses
as well as on the mussel shells. In relatively hydrological calm zones some individuals
of Haliclona sp. 2 have long outgrowths beginning from the peripheral part of oscular
tubes. D. incrustans is quite numerous in the deep zone of the cave; the individuals of this
species have rater small dimensions and pale-blue color and inhabit the shells of numerous
mussels. Specimens of Haliclona sp. 1 are found in the same zone. This species has small
size (2–5 cm), and white color (Fig. 6E; Video S2). There is also a third Haliclona species,
Haliclona sp. 3, with a characteristic violet-blue colour (Fig. 4G; Video S2). The sponge
surface is slightly hispid due to projecting ends of choanosomal tracts in varied positions.
The choanosomal skeleton is regular, consists of primary multispicular (3–4 spicules)
and secondary unispicular tracts form triangular meshes (Fig. 6G). Spicules include only
slender and fusiform oxeas: 120–145 × 3.7–5 µm and no microscleres.

The rare species Halichondria bowerbanki (Fig. 6D; Video S2) is also found in this zone.
This sponge has distinct dermal membrane and chains of oscula at the surface. In addition
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Figure 5 Tulenova Cave in the North-East Bulgaria, Black Sea.
Full-size DOI: 10.7717/peerj.4596/fig-5
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Figure 6 Sponges from the Tulenova Cave. (A) Dysidea incrustans in situ blue morph at Cave entrance.
(B) Clathria (Microciona) cleistochela in situ (arrow); (C) Protosuberites denhartogi in situ. (D) Halichon-
dria bowerbanki in situ; (E) Haliclona sp. 1 in situ; (F) Haliclona sp. 2 with outgrowths (arrow) in situ; (G)
Haliclona sp. 3 in situ. Photographs by Oleg A. Kovtun.

Full-size DOI: 10.7717/peerj.4596/fig-6
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Figure 7 Temnata dupka Cave in the North-East Bulgaria, Black Sea.
Full-size DOI: 10.7717/peerj.4596/fig-7

the encrusting sponge Clathria cleistochela (Fig. 6B; Video S2) is found on vertical walls
side. This species species has small size and is rare in Tulenova Cave. The rocks in the
niches are also perforated by the boring sponge Pione cf. vastifica.

Temnata dupka cave
The cave (PB-105/496) entrance is located at 43◦30′15′′N, and 28◦35′32–16′′E (Table 1,
Fig. 7). This cave is a large wave-cut niche with trapezoidal shape. On the far side of
the cave, there are several branches/niches. Two of them, in the terminal wall, have
small dimensions. The other two branches, extending in the North-East and South-West
directions, are comparatively large—the South-West branch has a length of about 30 m.
The bottom falls slightly, but then is raised again to a dead end. The height from the water
surface to the arch of the dome is 2.5 m with water depths of 1.5 m. The North-East branch
length of 16 m is very different. Its water depth at the end of branch reaches 3.5 m. The
cross section is rectangular only at the beginning of the branch, and at the middle part it
is close to triangular. The surfaces of the walls are more angular, although projections are
smoothed. The roof is uneven. The maximum height of the cave at the entrance is 15 m (of
which 3 m are flooded). Basically, the cave height comprises about 7–9 m and a maximum
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width of 18.5 m. The bottom of the main part of the cave is almost flat, slightly rising in
the end of cave and covered with boulders, pebbles and sand. The entire bottom is flooded.
The water depth in the entrance parts is up to 3 m, in the North-Eastern branch about 2
m, in the South-West branch maximum depth is 1.4 m, in the end 0.5 m. During storms
the access to the cave is difficult.

Sponges
Numerous blue coloredDysidea incrustans specimens inhabit the entrance area of the cave,
as well as the surrounding rocks (Fig. 8A: Video S3). Similarly to other caves, Protosuberites
denhartogi is one of dominant species in this area with a projective cover about 30–40%
(Fig. 8C; Video S3). In the middle part of the cave individuals of D. incrustans are small
in the beginning, very thin, of whitish color, and very numerous (Fig. 8B; Video S3).
The number of this species decreases in the North-Eastern outgrowth of the cave. Here,
they often grow on mussels. In this area there are many big individuals of Haliclona sp. 1
with violet-whitish color and relatively big oscula. The sponges have various shapes from
oval to irregular (dimension ranging from 3 × 5 cm to 5 × 10 cm) (Fig. 8E; Video S3).
In the North-Eastern outgrowth of the cave large, encrusting Halichondria bowerbanki
specimens are found (Fig. 8D; Video S3), while on vertical walls in the middle part, several
P. denhartogi and Clathria cleistochela (Fig. 8C; Video S3) specimens can be observed.
EncrustingHaliclona sp. 3 of blue-gray color with prominent oscular chimneys up to 8 mm
(Fig. 8G; Video S3) was rarely found. In the Western outgrowth of the cave there are many
small blue D. incrustans, rare small P. denhartogi and encrusting Haliclona sp. 2 of ivory
colour. Pione cf. vastifica perforates the surface of rocks and the shells of old mollusks.

Molecular results
DNA of the relevant sponge species has successfully been extracted, amplified and 28S and
CO1 sequenced. The final trees comprised 1,108 (28S) and 2,531 taxa (CO1) respectively.
Relevant excerpts of the phylogenetic trees are displayed in Figs. 9A–9D. The samples
fall into the four orders Haplosclerida, Dictyoceratida (Dysideidae), Suberitida, and
Poecilosclerida (Microcionidae) as expected. Protosuberites denhartogi results in a distinct
monophyletic clade with other conspecifics. Halichondria bowerbanki is identical to a
previously published H. bowerbanki from the North Sea (HQ379241). For Dysidea spp.,
Haliclona spp. and Clathria cleistochela, no conspecific, or identical 28S counterpart was
found.

DISCUSSION
Geological and morphological features of the caves
In spite of a high number of underwater caves in northern and western parts of the Black
Sea (Pronin, 2010; Pronin, 2011) biological investigations were conducted up to now only
for the Bulgarian coast and the Crimean Tarkhankut Peninsula (Kovtun & Makarov, 2011;
Petrjachev & Kovtun, 2011; Vorobyova et al., 2012; Ereskovsky, Kovtun & Pronin, 2016); this
work). These two areas are similar in their geological structure, despite their separation of
about 400 km. The morphological structure of their coastlines is also similar, displaying
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Figure 8 Sponges from the Temnata dupka Cave. (A) Dysidea incrustans in situ blue morph at Cave en-
trance. (B) Dysidea incrustans in situ pale morph middle part of the Cave. (C) Clathria (Microciona) cleis-
tochela (C) and Protosuberites denhartogi (P) in situ. (D) Halichondria bowerbanki in situ; (E) Haliclona sp.
1 in situ; (F) Haliclona sp. 2 in situ; (G) Haliclona sp. 3 in situ. Photographs by Oleg A. Kovtun.

Full-size DOI: 10.7717/peerj.4596/fig-8
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Figure 9 Excerpts from theMaximum Likelihood phylogenetic reconstructions of in total 1,108 se-
quences in 28S rDNA (C-region) for species collected in the Bulgarian caves. (A) Halichondria bower-
banki and Protosuberites denhartogi; (B) Dysidea spp.; (C) Clathria cleistochela; (D) Dysidea spp. Numbers
on branches indicate bootstrap support >70. Taxon names in bold are specimens newly sequenced and re-
ferred to in this work. Numbers following taxon names indicate either Genbank accession numbers or col-
lection numbers of the Bavarian State collections for Paleontology and Geology ([SNSB-BSPG.]GWxxxxx)
plus field collection numbers (BsBulxxxx). The scale bar indicates substitutions per site for all figures.

Full-size DOI: 10.7717/peerj.4596/fig-9

Ereskovsky et al. (2018), PeerJ, DOI 10.7717/peerj.4596 16/30

https://peerj.com
https://doi.org/10.7717/peerj.4596/fig-9
http://dx.doi.org/10.7717/peerj.4596


Table 2 Comparison of shallow-water semi-submerged caves of Tarkhankut (Crimea) and North-East Bulgaria.

Crimea Length
(m)

Depth
(m)

Area
(m2)

Width
of the
enter (m)

Sponge
species
number

Bulgaria Length
(m)

Depth
(m)

Area
(m2)

Width
of the
enter (m)

Sponge
species
number

Love 101 4–1.2 1,168 27 7 Tulenova 83 4–1.2 692 19 8
PK-356 24 3–0.8 130 7 4 Temnata dupka 74 3–0.5 345 19 8
PK-324 9 2.5–1 40 4 4 Budova 50 3.5–1 240 8 7

steep banks of 15-40 m height, vertically extending into the sea. Below sea level we find
cliffs of up to 6 m before the bottom becomes shallow.

The Bulgarian sites are nearly straight, stretching fromNorth to South, and the entrances
to the caves are exposed to the East (Pronin et al., 2013). Due to the straightness of the
banks, these areas very often undergo strong wave disturbances. The coastline of the
Tarkhankut is oriented East-West, and the entrances to the caves are exposed to the South
(Kovtun & Pronin, 2011a; Kovtun & Pronin, 2011b; Pronin, 2011).

The sea coastal cliffs in the Bulgarian and Crimean regions are composed of medium-
Sarmatian limestones with identical structures of its layers. Their largest caves, including
those mentioned in this paper, are formed in the lower part of the coastal cliffs in dense
monolithic or thick-layered limestone. Consequently, the shallow-water semi-submerged
caves located on these two shores are morphologically similar.

The shallow semi-submerged caves of Crimea are different in their morphometric
parameters (Ereskovsky, Kovtun & Pronin, 2016). Their length differ by factor 10 and the
area by factor 29 (from 9 m in the cave PK-324, to 101 m in the cave ‘‘Love’’) (Table 2).
The Bulgarian caves studied in this work are more homogeneous, their differences are
smaller, their length differ by factor 1.7, and the area differs in 2.7 times (caves of Budova
and Tulenova) (Table 2).

Sponge fauna
The analysis of the sponge material reveals that the shallow-water caves in Bulgaria differ in
species diversity from caves in Crimea (caves: Love, PK 356, PK 324) (Ereskovsky, Kovtun
& Pronin, 2016). In particular, Geodia stellosa Czerniavsky, 1880 ordinary inhabitant of the
caves of Tarkhankut is absent from the Bulgarian caves, while Halichondria bowerbanki
often found in Bulgaria, was not reported from caves of Crimea (Table 3). At the same
time, the caves of Bulgaria are more diverse in Haliclona species: seven morphotypes,
representing at least three molecularly distinguishable species, are found (Fig. 9). Our
observations show that some species in Bulgarian caves reach larger size (e.g.,Halichondria
bowerbanki, Dysidea incrustans, Protosuberites denhartogi).

For all three investigated caves sponge distribution is similar in the entrance zone. The
dominant species here areD. incrustans and P. denhartogi that cover not only rocky surface,
but also the clusters of mussels and different barnacles species. Both sponge species are
encrusting a the surface of more than 40 cm2.D. incrustans is generally bright blue in color,
like D. fragilis in the entrance of the caves in Crimea (Ereskovsky, Kovtun & Pronin, 2016).
However, at the entrance of Tulenova cave, D. incrustans specimens are small and reduced
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Table 3 Taxonomical composition and distribution of Black Sea sponge fauna.Numbers refer to the references given at the bottom of this table.

Sponge taxon Sponge distribution in Black Sea

Romania Bulgaria Turkey Georgia Russia Ukraine
NW

Crimea Crimea caves

Class Calcarea
Subclass Calcaronea
Order Leucosolenida
Family Sycettidae

Sycon ciliatum (Fabricius, 1780) 1, 16 1 2 3 4, 26
Sycon setosum Schmidt, 1862 1 2 5
Sycon tuba Lendenfeld, 1891 2
Sycon cf. vigilans Sarà & Gaino, 1971 28 Unpubl

Class Demospongiae
Order Tetractinellida
Family Geodiidae

Geodia stellosa Czerniavsky, 1880 6 6 6 5, 9
Stelletta sp. 29

Order Suberitida
Family Suberitidae

Suberites domuncula (Olivi, 1792) 1 1 2 9 8, 9 9, 10
Suberites carnosus (Johnston, 1842) 1, 6 6 2 6 4 4
Protosuberites brevispinus (de Laubenfels,
1951)

1, 25

Protosuberites denhartogi van Soest &
de Kluijver, 2003

27a

Protosuberites mereuiManconi, 2016 Unpubl Unpubl Unpubl
Protosuberites prototypus Swartschewsky,
1905

1, 6 9 8 8, 10 7

Family Halichondriidae
Halichondria panicea (Pallas, 1766) 1 1, 22 6 9 8 8
Halichondria bowerbanki Burton, 1930 27a

Halichondria (Halichondria) foraminosa
(Czerniavsky, 1880)

9

Halichondria (Halichondria) longispicula
(Czerniavsky, 1880)

9

Halichondria (Halichondria) pontica
(Czerniavsky, 1880)

9 9 10

Hymeniacidon luxurians (Lieberkühn,
1859)

10

Hymeniacidon perlevis (Montagu, 1818) 18, 22 4 4 4 8
Order Clionaida
Family Clionaidae

Pione cf. vastifica (Hancock, 1849) 1, 6 1, 27a 9 11 9, 10 7
Cliona lobataHancock, 1849 1, 6

(continued on next page)
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Table 3 (continued)

Sponge taxon Sponge distribution in Black Sea

Romania Bulgaria Turkey Georgia Russia Ukraine
NW

Crimea Crimea caves

Order Poecilosclerida
Family Mycalidae

Mycale (Aegogropila) contarenii
(Lieberkühn, 1859)

1 8 9 8 4, 9

Mycale (Aegogropila) dubia (Czerniavsky,
1880)

9

Mycale (Aegogropila) syrinx (Schmidt,
1862)

16 1 3 4 4, 26

Mycale stepanovii (Czerniavsky, 1880) 9
Mycale lobimana (Czerniavsky, 1880) 9
Mycale jophon (Swartschewsky, 1905) 10
Mycale muscoides (Czerniavsky, 1880) 8 8, 9, 10
Mycale (Mycale) simplex (Czerniavsky,
1880)

9

Family Myxillidae
Myxilla (Myxilla) swartschewskii Burton,
1930

1 4 6 4

Family Tedaniidae
Tedania (Tedania) anhelans (Olivi, 1792) 1 1 2 9

Family Coelosphaeridae
Lissodendoryx (Lissodendoryx) variisclera
(Swartschewsky, 1905)

1, 6 24 6 8, 9

Family Crellidae
Crella (Crella) elegans (Schmidt, 1862) 10, 26
Crella (Yvesia) gracilis (Alander, 1942) 1 4 6 8

Family Hymedesmiidae
Hymedesmia (Stylopus) coriacea (Fristedt,
1885)

8 8 8, 10

Hymedesmia (Hymedesmia) pansa
Bowerbank, 1882

17

Hymedesmia (Hymedesmia) veneta
(Schmidt, 1862)

10

Family Microcionidae
Clathria (Microciona) cleistochela
(Topsent, 1925)

12 1, 27a 13

Antho (Antho) involvens (Schmidt, 1864) 9
Order Haplosclerida
Family Chalinidae

Chalinula limbata (Montagu, 1818) 1
Chalinula renieroides Schmidt, 1868 17
Haliclona alba (Schmidt, 1862) 1 2 9 9
Haliclona albapontica (Czerniavsky,
1880)

9

Haliclona boutschinskii (Kudelin, 1910) 14
Haliclona cribrosa (Czerniavsky, 1880) 9
Haliclona curiosa (Swartschewsky, 1905) 10

(continued on next page)
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Table 3 (continued)

Sponge taxon Sponge distribution in Black Sea

Romania Bulgaria Turkey Georgia Russia Ukraine
NW

Crimea Crimea caves

Haliclona cylindrigera (Czerniavsky,
1880)

9

Haliclona densa (Lendenfeld, 1887) 1, 6 1, 6 10
Haliclona flavescens (Topsent, 1893) 1 1, 19, 25 4 8 7
Haliclona foraminosa (Czerniavsky, 1880) 9 9
Haliclona (Halichoclona) fulva (Topsent,
1893)

17

Haliclona gracilis (Miklucho-Maclay,
1870)

1, 6 3 6 8

Haliclona inflata var. taurica
(Czerniavsky, 1880)

9, 10

Haliclona informis var. taurica
(Czerniavsky, 1880)

1 9 9, 10, 26

Haliclona irregularis (Czerniavsky, 1880) 9 10
Haliclona odessana (Kudelin, 1910) 14
Haliclona palmata (sensu Lieberkühn,
1859)

9 9, 10

Haliclona nigricans (Czerniavsky, 1880) 9
Haliclona pontica (Czerniavsky, 1880) 8 9
Haliclona (Rhizoniera) rosea (Bowerbank,
1866)

17

Haliclona schmidti (Czerniavsky, 1880) 9
Haliclona transitans (Czerniavsky, 1880) 9
Haliclona tubulifera (Swartschewsky,
1905)

1 10

Haliclona (Gellius) angulata (Bowerbank,
1866)

6 6 15 15

Haliclona (Haliclona) simulans
(Johnston, 1842)

1 6 26

Haliclona (Reniera) aquaeductus var. tau-
rica (Czerniavsky, 1880)

1, 6 1, 6 2 6 10

Haliclona (Reniera) cinerea (Grant, 1826) 1, 6 1, 6 6 6 5
Haliclona (Reniera) cratera (Schmidt,
1862)

6 2

Haliclona (Rhizoniera) grossa (Schmidt,
1864)

6 2 10

Haliclona (Soestella) implexa (Schmidt,
1868)

1, 6 1 11 5

Haliclona sp.1 27a

Haliclona sp.2 27a

Haliclona sp.3 27a

Haliclona sp.4(2) 7
Family Petrosiidae

Petrosia (Petrosia) clavata (Esper, 1794) 26
Petrosia coriacea Swartschewsky, 1905 10

(continued on next page)
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Table 3 (continued)

Sponge taxon Sponge distribution in Black Sea

Romania Bulgaria Turkey Georgia Russia Ukraine
NW

Crimea Crimea caves

Petrosia ficiformis (Poiret, 1789) 1 1 11 11 11
Petrosia (Petrosia) intermedia
(Czerniavsky, 1880)

9 9, 10

Family Phloeodictyidae
Oceanapia ascidia (Schmidt, 1870) 6 6 5, 10

Order Dictyoceratida
Family Dysideidae

Dysidea fragilis (Montagu, 1818) 1,6 1, 20, 21,
23, 25

2 6 8, 26 7

Dysidea elegans var. pontica (Czerniavsky,
1880)

9 6 4

Dysidea avara (Schmidt, 1862) 9 9
Dysidea incrustans (Schmidt, 1862) 27a 9 9
Dysidea pallescens (Schmidt, 1862) 9

Family Irciniidae
Ircinia variabilis (Schmidt, 1862) 17

Family Spongiidae
Spongia (Spongia) officinalis Linnaeus,
1759

6 2

Order Chondrillida
Family Halisarcidae

Halisarca dujardini Johnston, 1842 2 9 9

Notes.
1, Gomoiu & Skolka, 1998; 2, Topaloğlu & Evcen, 2014; 3, Terentiev, 1998; 4, Kaminskaya, 1968; 5, Kiseleva & Kostenko, 2004; 6, Bačescu, Muller & Gomoiu, 1971; 7, Ereskovsky,
Kovtun & Pronin, 2016; 8, Kaminskaya, 1961; 9, Czerniavsky, 1880; 10, Swartschewsky, 1905; 11, Kaminskaya, 1967; 12, Skolka & Gomoiu, 2004; 13, Ereskovsky & Kovtun, 2013; 14,
Kudelin, 1910; 15, Kaminskaya, 1966; 16, Begun, Teacă & Gomoiu, 2010; 17, Evcen et al., 2016; 18, Christie et al., 1994; 19, Elenkov, Popov & Andreev, 1999; 20, Christie et al., 1992;
21, De Rosa et al., 2000; 22, Elenkov, Popov & Andreev, 1999; 23, Elenkov et al., 1994; 24, Elenkov et al., 1996; 25, Laubenfels, 1951; 26, Galtsoff, 1923; 27, this work; 28, F Azevedo,
pers. comm., 2017; 29, P Cardenas, pers. comm., 2017.

aSponges from the caves of Bulgaria.

in number, because this zone is completely exposed to the waves and sunlight. In the same
zone of Budova cave, numerous small individuals of Clathria cleistochela develop.

In the middle part of the caves, a relatively hydrological calm zone with drastic reduction
of incoming light, other sponge species with more thickened and soft body contribute to
the diversity, like Haliclona spp. 1–3, and Halichondria bowerbanki. For Haliclona spp.
small outstretched oscular chimneys, and long, fine outgrowths are found at the surface.
The latter is similar to hydrological calm zones of Crimea underwater caves (Ereskovsky,
Kovtun & Pronin, 2016). In this zone D. incrustans and P. denhartogi become small and
very thin and their abundance decreases towards the inner part of caves.

So far, 87 species belonging to the classes Demospongiae and Calcarea (Table 3) are
described from the Black Sea. This number is low number compared to the Mediterranean
Sea, which harbors more than 650 species from all four poriferan classes (Pansini & Longo,
2003). For the coastal zone of Bulgaria some 37 species have been reported, which constitute
42.5% of the known Black Sea sponge fauna. Of these, only eight sponge species (21.6%)
inhabit the shallow-water semi-submerged caves (Table 4). The use of combine genetic
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Table 4 Sponges frommarine caves from the North-East of Bulgaria and their spatial distribution in
relation to the entrance to the cave.

No Sponges Budova Tulenova Temnata
dupka

1 Dysidea incrustans (Schmidt, 1862) 0–37 m 0–33 m 0–6 m
2 Protosuberites denhartogi van Soest, de Kluijver, 2003 0–42 m 0–33 m 0–70 m
3 Clathria (Microciona) cleistochela (Topsent, 1925) 0–22 m 22–25 m 9–22 m
4 Pione cf vastifica (Hancock, 1849) 6–35 m 22–33 m 22–70 m
5 Halichondria bowerbanki Burton, 1930 20–30 m 22–33 m 22–28 m
6 Haliclona sp. 1 20–28 m 25–33 m 22–28 m
7 Haliclona sp. 2 31–42 m 22–33 m 22–70 m
8 Haliclona sp. 3 No 25 m 12–15 m

and morphology analyses allowed us for the first time for the Black Sea to identify two
species: Protosuberites denhartogi and Halichondria bowerbanki.

In general, semi-submerged caves host a characteristic lower abundance of sponge
diversity in comparison to fully submerged marine caves. This is rather a consequence of
higher hydrodynamics and instable environmental conditions than oligotrophy, which is
rare in this type of caves. Sponge species composition in caves of Bulgaria as well as Crimea
is different from those studied in the Mediterranean (Pouliquen, 1972; Balduzzi et al., 1989;
Harmelin & Vacelet, 1997; Arko-Pijevac et al., 2001; Gerovasileiou & Voultsiadou, 2012;
Gerovasileiou & Voultsiadou, 2016; Manconi et al., 2013), probably due to the geographic
isolation of the Black Sea and the differences in the hydro-chemical parameters of the
milieu.

The study of sponges from caves of the Black Sea is just at its beginning. At present, only
two areas have been surveyed: the West of Crimea and the North-East of Bulgaria. In total
15 species (17.2% from all Black Sea sponges) were reported from caves, of which only
Pione cf vastifica and Clathria cheilochela inhabit the caves of both regions. This percentage
is rather small compared to the 311 species (45.7% of the Mediterranean poriferans),
representing all four sponge classes, which have been recorded in Mediterranean marine
caves (Gerovasileiou & Voultsiadou, 2012).

The present study of underwater cave sponge assemblages in the Black Sea fills regional
knowledge gaps for a habitat of special conservation interest. The results of our study
highlight the need for (1) further study of the Black Sea underwater caves, and (2) a deep
revision of the sponge fauna present in this sea.
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