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ABSTRACT
The mandibles of caridean shrimps have been widely studied in the taxonomy
and functional biology of the group. Within the Palaemonoidea the mandibles
reach a high level of structural diversity reflecting the diverse lifestyles within
the superfamily. However, the majority of studies have been restricted to light
microscopy, with the ultrastructure at finer levels poorly known. This study
investigates the mandible of nine species belonging to six of the recognised families of
the Palaemonoidea using SEM and analyses the results in a phylogenetic and dietary
framework. The results of the study indicate that little phylogenetic information is
conveyed by the structure of the mandible, but that its form is influenced by primary
food sources of each species. With the exception of Anchistioides antiguensis, all
species examined possessed cuticular structures at the distal end of the pars molaris
(molar process). Five types of cuticular structures are recognised herein, each with
a unique form, but variable in number, placement and arrangement. Each type is
presumed to have a different function which is likewise related to diet.

Subjects Biodiversity, Marine Biology, Taxonomy, Zoology
Keywords SEM, Functional biology, Diet, Caridean shrimps, Palaemonidae, Hymenoceridae,
Gnathophyllidae, Desmocarididae, Anchistioididae, Euryrhynchidae

INTRODUCTION
Decapod crustaceans display a wide variety of modified mouthparts that serve both

mechanical and sensory functions and have attracted the attention of taxonomists, system-

aticists and functional biologists for decades (e.g., Borradaile, 1917; Fujino & Miyake, 1968;

Roberts, 1968; Caine, 1975; Coombs & Allen, 1978; Schembri, 1982; Felgenhauer & Abele,

1985; Garm & Høeg, 2001; Garm, Hallberg & Høeg, 2003; Garm, 2004). The semi-rigid,

robust mandible has usually been attributed a solely mechanical function in the breaking

down of food prior to ingestion, but a recent study of larval Palaemon elegans Rathke, 1837

demonstrated that it possesses a variety of sensilla (Geiselbrecht & Melzer, 2013), suggesting

that it may be more complex than previously thought. Indeed, Borradaile (1917) in his

pioneering work on the structure and function of the mouthparts of palaemonid prawns

concluded that “the mandible of the Crustacea is an exceedingly complicated, varied and
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interesting organ, presenting many problems and worthy of a great deal more attention

than it has received.” Nearly a century on and the caridean mandible, although superficially

described in numerous taxonomic works, remains poorly studied at a structural level and

very few studies have focussed on the detailed morphology and potential evolutionary

drivers in relation to the form of the mandible. Recent investigations have added to our

knowledge of the mandible across a range of crustacean taxa but have largely focussed

on larvae (e.g., Heral & Saudray, 1979; Casanova, De Jong & Moreau, 2002; Tziouveli,

Bastos-Gomez & Bellwood, 2011; Geiselbrecht & Melzer, 2013) or are restricted to a single

or a small number of species within a single genus or family (e.g., Fujino & Miyake, 1968;

Caine, 1975; Coombs & Allen, 1978; Mielke, 1984; Felgenhauer & Abele, 1985; Hobbs, 1991;

Moore, Rainbow & Larson, 1993; Richter, 2004; Arndt, Berge & Brandt, 2005; Mekhanikova,

2010). Within the Palaemonoidea, the two most extensive studies on mandibles focus

on the genus Palaemon, using light microscopy to examine its structure and function

(Borradaile, 1917—as Leander) and interspecific variation (Fujino & Miyake, 1968).

Within the infraorder Caridea, the mandible is variously developed (Burukovsky, 1986)

but is frequently comprised of a pars incisivus (incisor process) and pars molaris (molar

process) and may be provided with a palp or not. Both the pars incisivus and the pars

molaris are variable in form ranging from truncated to elongate, straight to markedly

curved, narrow to flared, widely separated to barely separated and many gradations in

between (Burukovsky, 1986). The distal portions of both processes are often provided

with acute or rounded lobes (‘teeth’) or ridges but may be flattened. Either the pars

incisivus or the pars molaris may be reduced or absent or they may be fused together.

Due to this diversity in the development and form, features of the mandible have been

used in the taxonomy of caridean shrimps, particularly in families where few characters

exist to differentiate genera and species, such as in Palaemonidae. Additionally, several

classifications of the Caridea have, in part, also been underpinned by features of the

mandible (Thompson, 1967; Christoffersen, 1990; Chace, 1992).

In many decapods, mastication largely occurs in the gastric mill (Caine, 1975).

Patwardhan (1934) expressed an opinion that many carideans lack a complex gastric

mill and thus the mouthparts are correspondingly more developed, although more

recent studies (e.g., Felgenhauer & Abele, 1983) demonstrate the presence of a gastric

mill in a number of caridean families. Regardless, the mandible is involved in the initial

breakdown of food and therefore has a large functional significance and thus its form may

provide insights into the diet or feeding mode of the species. Indeed, species that have

particular dietary regimes or feeding mechanisms tend to have correspondingly specialised

mouthparts (Caine, 1975). During feeding, the pars incisivus is believed to be mostly used

in cutting and slicing of food particles into more manageable portions whilst the pars

molaris is usually thought to have a grinding function (Bauer, 2004), although Felgenhauer

& Abele (1985) found that the mandible of atyid shrimps, that do possess a gastric mill, was

not used for crushing food.

Whilst previous studies on shrimps have investigated mouthpart morphology of a

single genus or species (Borradaile, 1917; Fujino & Miyake, 1968) or between genera
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belonging to the same family (Felgenhauer & Abele, 1985), only the study of Storch, Bluhm

& Arntz (2001) on three Antarctic shrimps has used SEM to investigate differences across

families. The present, SEM-based, study was conceived to investigate the ultrastructure of

the mandible in nine species belonging to nine different genera, across six out of seven

families from the superfamily Palaemonoidea, thus covering a diversity of form and

ecology, to evaluate the potential phylogenetic significance within the superfamily and

the relationship between diet and structure.

MATERIAL AND METHODS
De Grave & Fransen (2011) listed eight families included within the superfamily

Palaemonoidea with the Palaemonidae further split into two subfamilies: the Palae-

moninae and the Pontoniinae. However, the family Kakaducarididae has been recently

synonymised with the Palaemonidae (see Short, Humphrey & Page, 2013) leaving seven

valid families. Three of these families are monogeneric (Anchistioididae, Desmocarididae

and Typhlocarididae) whilst the greatest diversity of both morphology and lifestyle is

found in the subfamily Pontoniinae. No members of the Typhlocarididae were available

for destructive examination via SEM and references to the morphology of the mandible

in Typhlocaris are based on descriptions in the literature (Calman, 1909; Parisi, 1921;

Caroli, 1923; Caroli, 1924; Tsurnamal, 2008). Despite several attempts to process left

mandibles of Euryrhynchus, none survived the sonication stage intact and therefore

observations are based on the right mandible only for this species. All specimens studied

are held in the Zoological Collection of the Oxford University Museum of Natural History

(OUMNH.ZC), with details included in Table 1.

The methods used for preparation of tissue follow those established by Martin, Liu

& Striley (2007) and De Grave & Goulding (2011). Mandibles were carefully dissected

from specimens stored in 75% ethanol. After removal mandibles were passed through a

graded ethanol series to distilled water, subjected to brief (5–15 s) sonication using a light

surfactant, then re-hydrated in graded ethanol to 100%, with drying done via the HMDS

(hexamethyldisilazane) method. Dried specimens were coated with a gold-palladium

mixture in a Polaron E5000 coating unit and observed in a JEOL JSM-5510 microscope.

Terminology of the teeth on the pars molaris refers to their position in situ (see Fujino &

Miyake, 1968), with setal definitions following Garm (2004).

RESULTS
Salient features of each mandible structure are outlined in Tables 2–5 and illustrated in

Figures 1–7; only comparative remarks are detailed below.

The most common form of mandible of those species studied is bipartite, with a well

developed pars incisivus and pars molaris (Table 2). Only in Hymenocera picta Dana, 1852

(Tables 2 and 3; Fig. 4D) is the pars incisivus absent whilst in Gnathophyllum elegans (Risso,

1816) (Tables 2 and 3; Fig. 5A) it is reduced to a vestigial process. In all other species the

structure of the pars incisivus is similar (Table 3) being flattened and provided with teeth

distally. In Pontonia pinnophylax (Otto, 1821), a series of denticles is also present along the

posterior margin (Table 3; Figs. 3A and 3C).
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Table 1 Species and museum accession numbers of specimens examined via SEM in this study.

Species Accession number

Family Palaemonidae

Subfamily Palaemoninae

Palaemon macrodactylus Rathbun, 1902 OUMNH.ZC 2006-01-0039

Macrobrachium nipponense
(De Haan, 1849 (in De Haan, 1833–1850))

OUMNH.ZC 2012-01-0060

Subfamily Pontoniinae

Pontonia pinnophylax (Otto, 1821) OUMNH.ZC 2008-11-0081

Periclimenaeus caraibicus Holthuis, 1951 OUMNH.ZC 2009-01-0101

Gnathophyllidae

Gnathophyllum elegans (Risso, 1816) OUMNH.ZC 2011-09-0005

Hymenoceridae

Hymenocera picta Dana, 1852 OUMNH.ZC 2010-04-0017

Desmocarididae

Desmocaris bislineata Powell, 1977 OUMNH.ZC 2009-19-0001

Euryrhynchidae

Euryrhynchus wrzesniowskii Miers, 1877 OUMNH.ZC 2006-21-0001

Anchistioididae

Anchistioides antiguensis Schmitt, 1924 OUMNH.ZC 2007-14-0001

Table 2 Summary of the features of the mandibles examined in this study.

Pars molaris Pars incisivus Cuticular structures Mandibular
palp

Palaemon macrodactylus + + Type I +

Macrobrachium nipponense + + Type I +

Pontonia pinnophylax + + Type I −

Periclimenaeus caraibicus + + Type II −

Gnathophyllumelegans + +/v Type III −

Hymenocera picta + − Type IV −

Desmocaris bislineata + + Type V −

Euryrhynchus wrzesniowskii + + Type I −

Anchistioides antiguensis + + − −

Notes.
+, present; −, absent; v, vestigial.

A mandibular palp is present only in Palaemon macrodactylus Rathbun, 1902 (Table 2)

and Macrobrachium nipponense (De Haan, 1849 (in De Haan, 1833–1850)) (Table 2; Fig.

2C). In both these species the structure of the palp is similar, being three segmented (but

see Fujino & Miyake, 1968 for discussion on variation in this character in P. macrodactylus),

with the distal segment being more slender and slightly longer than the basal and

penultimate segments. Distally-serrulate setae are present (Fig. 1D) on all segments of

the palp but most numerous on the distal segment.
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Figure 1 Palaemonidae (Palaemoninae): Palaemon macrodactylus. (A) pars molaris of right mandible;
(B) Type I cuticular structures of right mandible; (C) detail of Type I cuticular structures of right
mandible; (D) distally serrulate setae of mandible palp of right mandible; (E) pars molaris of left
mandible; (F) lateral row of Type I cuticular structures of left mandible. Scale bars indicate 200 µm (A),
100 µm (E), 10 µm (C and D) or 20 µm (B and F). u.o.t., upper outer tooth; u.i.t., upper inner tooth;
l.o.t., lower outer tooth; l.i.t., lower inner tooth.

A great diversity of form is present in the pars molaris. In all species examined,

the pars molaris is well developed and ranges from rounded (P. macrodactylus, M.

nipponense, Periclimenaeus caraibicus Holthuis, 1951, H. picta), oval (G. elegans, Desmocaris

bislineata Powell, 1977, Euryrhynchus wrzesniowskii Miers, 1877), slightly squared

(P. pinnophylax, Anchistioides antiguensis (Schmitt, 1924) right) to roughly triangular

(A. antiguensis left) in cross-section. Most are roughly parallel sided but those of H. picta
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Figure 2 Palaemonidae (Palaemoninae): Macrobrachium nipponense. (A) pars molaris of right
mandible; (B) Type I cuticular structures of right mandible; (C) left mandible; (D) pars molaris of left
mandible. Scale bars indicate 500 µm (C), 100 µm (A and D) or 50 µm (B). u.o.t., upper outer tooth;
u.i.t., upper inner tooth; l.o.t., lower outer tooth; l.i.t., lower inner tooth.

and G. elegans are strongly curved, that of D. bislineata has convex lateral margins and in

A. antiguensis the pars molaris is strongly flared distally. Teeth are present distally on most

mandibles (Palaemon, Figs. 1A and 1E; Macrobrachium, Figs. 2A, 2C and 2D; Pontonia,

Figs. 3B and 3D; Anchistioides, Figs. 7D–7F; Hymenocera, Figs. 4E and 4F; Gnathophyllum,

Fig. 5D), whilst in others these are fused to form lip-like structures (Euryrhynchus, Figs. 7A

and 7B; Periclimenaeus, Figs. 4A–4C) and in Desmocaris no teeth are present and the distal

end is a ridged plate (Figs. 6A–6B and 6D–6F). The form of the teeth is highly variable, with

spine-like teeth being present in Hymenocera (Figs. 4E and 4F), a blade like tooth being

present in Gnathophyllum (Fig. 5D) and more lobate teeth present in the other species. The

lobate teeth may be reduced to low mounds or massively produced with the tips entire or

bifid as well as all gradations in between. Significant differences in the arrangement and

structure of the teeth are also noted between the left and right mandibles. Typically four

teeth are present although in some species these are modified such that they are difficult to

discern.

In addition to the teeth and cusps mentioned above, the distal end of the pars molaris of

most mandibles examined here were found to be covered, to a greater or lesser degree,

by numerous filamentous structures, which are flexible to semi-rigid and frequently
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Figure 3 Palaemonidae (Pontoniinae): Pontonia pinnophylax. (A) pars incisivus of right mandible
(denticles indicated by white arrow); (B) pars molaris of right mandible; (C) pars incisivus of left mandible
(denticles indicated by white arrow); (D) pars molaris of left mandible; (E) Type I cuticular structures of
left mandible; (F) Type I cuticular structures of right mandible. Scale bars indicate 100 µm (B and D),
50 µm (C) or 20 µm (A, E and F).

developed into rows (Figs. 1B–1C, 1F, 2A–2B, 3E, 3F, 4B–4C, 4E–4F, 5A–5D, 6A–6F

and 7A–7C). The individual filaments do not conform to any described form of seta

nor to the definitions of setae in Watling (1989) or Garm (2004), in particular lacking a

complete basal articulation and a continuous lumen. The arrangement, placement and

ultra-structure of these cuticular structures (CS) is highly variable, but can be broadly

classified into five types.
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Figure 4 Palaemonidae: Periclimenaeus caraibicus and Hymenoceridae: Hymenocera picta. Palae-
monidae (Pontoniinae): Periclimenaeus caraibicus, (A) pars molaris of right mandible; (B) pars molaris of
right mandible (spine-like tuft of Type II cuticular structures indicated by white arrow); (C) pars molaris
of left mandible. Hymenoceridae: Hymenocera picta, (D) right mandible; (E) distal end of pars molaris of
right mandible; (F) distal end of pars molaris of left mandible. Scale bars indicate 20 µm (A and B), 100
µm (D), 50 µm (C, E and F).

Type I CS are semi rigid, parallel sided or slightly tapered distally and between 40

and 60 µm long and 3–6 µm wide and tend to form rows. They are found in Palaemon

(Figs. 1B–1C and 1F), Macrobrachium (Figs. 2A, 2B and 2D), Pontonia (Figs. 3B and

3D–3F) and Euryrhynchus (Figs. 7A–7C). In Euryrhynchus, shorter structures are also

present (Fig. 7C), but these appear structurally similar to Type I and are herein regarded as

the same type.
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Figure 5 Gnathophyllidae: Gnathophyllum elegans. (A) pars molaris of right mandible (vestigial pars
incisivus indicated by white arrow); (B) Type III cuticular structures of right mandible; (C) detail of Type
III cuticular structures of right mandible; (D) pars molaris of left mandible. Scale bars indicate 20 µm (B),
10 µm (C), 100 µm (A and D).

Type II CS are found only in Periclimenaeus. These appear more rigid and slightly

stouter than Type I structures and form tufts rather than rows (Figs. 4B and 4C).

Type III CS are found in Gnathophyllum. They are approximately 60 µm long and 5 µm

wide, highly flexible, taper strongly distally with a “feathered” inner margin and have a

weak constriction basally (Figs. 5A–5D). They form a dense covering over the entirety of

the distal end of the pars molaris.

Type IV CS (Figs. 4E–4F) are very similar to Type III differing chiefly in lacking a

feathered inner margin and a weak basal constriction. They are exclusively found in

Hymenocera.

Type V CS are unique to Desmocaris and are the most highly modified. They comprise

about 12 finger-like projections arising from a basal column (Figs. 6B–6D and 6F).

The details of the positioning and arrangement of the cuticular structures are presented

in Table 5 and the figures referred to therein. No cuticular structures were observed on the

mandibles of Anchistioides antiguensis.

These cuticular structures have been noted in several light microscopy studies or

taxonomic descriptions (e.g. Borradaile, 1917; Fujino & Miyake, 1968; Felgenhauer & Abele,

1985; Storch, Bluhm & Arntz, 2001; Fransen, 2006), where the elements have typically been
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Figure 6 Desmocarididae: Desmocaris bislineata. (A) Right mandible; (B) pars molaris of right
mandible; (C) detail of Type V cuticular structures of right mandible; (D) pars molaris of left mandible;
(E) distal end of pars molaris of left mandible; (F) distal end of pars molaris of left mandible. Scale bars
indicate 100 µm (A, B and D), 20 µm (C), 50 µm (E and F).

referred to as setae or bristles, but no detailed study of these features has been conducted to

date. In some species setules are also present on the disto-lateral margins (Figs. 4F, 6B–6C

and 6E–6F).

DISCUSSION
The ecology of palaemonoid shrimp ranges from freshwater to marine habitats and from

free-living species to obligate, or loose, associations with a variety of other invertebrates

including cnidarians, sponges, echinoderms, molluscs and ascidians. The diversity of
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Figure 7 Euryrhynchidae: Euryrhynchus wrzesniowskii and Anchistioididae: Anchistioides antiguen-
sis. Euryrhynchidae: Euryrhynchus wrzesniowskii, (A) pars molaris of right mandible; (B) pars molaris
of right mandible; (C) Type I cuticular structures of right mandible. Anchistioididae: Anchistioides
antiguensis, (D) right mandible; (E) pars molaris of right mandible; (F) left mandible. Scale bars indicate
10 µm (C), 100 µm (A, B, D, E and F). u.o.t., upper outer tooth; u.i.t., upper inner tooth; l.o.t., lower
outer tooth; l.i.t., lower inner tooth.

lifestyles and feeding strategies within palaemonoid shrimps has resulted in a large range

of morphological adaptations, including the mouthparts and they therefore provide an

ideal model group to propose hypotheses related to the evolution of these structures.

The hypotheses addressed here were that the structure of the mandible should convey

information on the species’ diet and/or may potentially shed light on the phylogenetic

relationships of the taxa.
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Table 3 Details of the pars incisivus of each species examined.

Right form Anterior margin Posterior margin Teeth Left form Anterior margin Posterior margin Teeth

Palaemon

macrodactylus

About twice as tall as

wide

Strongly convex Straight to slightly

concave

3, approximately

equal, widely-spaced,

triangular.

About twice as tall as

wide

Strongly convex Straight to slightly

concave

4, widely-spaced,

triangular, outer teeth

slightly larger than inner

teeth.

Macrobrachium

nipponense

Fig. 2C

Very broad, wider

than long in middle

portion

Strongly convex Concave 3, approximately

equal, widely-spaced,

triangular.

Very broad, wider

than long in middle

portion

Strongly convex Straight 3, very robust, triangular,

anterior most tooth acute,

remaining teeth with

rounded tip.

Pontonia

pinnophylax

Figs. 3A and 3C

Elongate, slender,

equal in length

to pars molaris,

strongly curved

distally.

Straight, roughly

parallel with

posterior

Straight, roughly

parallel with

anterior with seven

denticles

4, triangular, outer

teeth larger and

broader than inner

teeth.

Elongate, slender,

equal in length

to pars molaris,

strongly curved

distally.

Straight roughly

parallel with

posterior

Straight, roughly

parallel with

anterior with five

denticles

5, triangular, acute,

posterior-most the

largest, remaining teeth

approximately equal size.

Periclimenaeus

caraibicus

Slender, ribbon-like,

slightly twisted and

slightly shorter than

pars molaris

Straight roughly

parallel with

poserior

Straight roughly

parallel with

anterior

Distally damaged in

present specimen,

detail from Holthuis

(1951): Small acute

teeth present distally,

about 10 in number.

Laminar in form,

slightly curved and

slightly shorter than

pars molaris.

Convex Concave Distal margin broadly

rounded, tapering

posteriorally, armed with

11 small, acute teeth.

Gnathophyllum

elegans Fig. 5A

Vestigial – – – Vestigial – – –

Hymenocera picta Absent – – – Absent – – –

(continued on next page)
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Table 3 (continued)

Right form Anterior margin Posterior margin Teeth Left form Anterior margin Posterior margin Teeth

Desmocaris

bislineata

Fig. 6A

Slightly shorter than

pars molaris, about

3.5 times as long as

wide, slightly curved

inwards.

Slightly convex Slightly concave 4, approximately

equal, widely-spaced,

triangular

Similar to that of the

right mandible, but

slightly broader in

median part.

Slightly convex Slightly concave 4, approximately equal,

widely-spaced, triangular

Euryrhynchus

wrzesniowskii

Elongate, slender,

about 3.5 times

as long as wide,

parallel sided,

slightly curved

inwards.

Straight roughly

parallel with

poserior

Straight roughly

parallel with

anterior

4, widely-spaced,

triangular,

anterior-most slightly

larger than remaining

three.

Not examined – – –

Anchistioides

antiguensis

Figs. 7D

and 7F

Broad, about 3 times

as long as wide,

slightly twisted.

Equal to, or slightly

longer than pars

molaris.

Slightly convex Slightly concave 3, widely-spaced,

triangular, acute,

outer two broader and

longer than median

tooth.

Broad, about 3 times

as long as wide,

slightly twisted.

Equal to, or slightly

longer than pars

molaris.

Strongly convex Straight to slightly

concave.

3, widely-spaced,

triangular, acute, teeth

distally, outer two broader

and longer than the

median tooth.
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Table 4 Details of the distal ends of the pars molaris of each species examined.

Right Left

Palaemon macrodactylus Quadricuspid (Fig. 1A) Quadricuspid (Fig. 1E)

Macrobrachium nipponense Quadricuspid (Fig. 2A) Quadricuspid (Figs. 2C and 2D)

Pontonia pinnophylax Quadricuspid, with deep concavity (Fig. 3B) Quadricuspid, teeth flattened (Fig. 3C)

Periclimenaeus caraibicus Bifid, 2 acute ridges (Figs. 4A and 4B) Tricuspid (Fig. 4C)

Gnathophyllum elegans Single blade-like tooth (Fig. 5A) Single blade like tooth (Fig. 5D)

Hymenocera picta 2 recurved, spine-like teeth (Fig. 4E) 2 recurved, spine-like teeth (Fig. 4F)

Desmocaris bislineata Ridged (Fig. 6B) Ridged (Figs. 6D–6F)

Euryrhynchus wrzesniowskii 2 lobate ridges (Figs. 7A and 7B) Not examined

Anchistioides antiguensis Quadricuspid (Fig. 7E) Tricuspid, u.o.t. and u.i.t. fused, wing-like;
l.i.t. bifid (Fig. 7F)

Notes.
u.o.t., upper outer tooth; u.i.t., upper inner tooth; l.i.t., lower inner tooth.

Whilst there is considerable variation in the mandible of palaemonoid shrimps noted in

the literature, the most common form of mandible across the superfamily is with both a

well-developed pars inscisivus and pars molaris, with a mandibular palp being absent more

often than present.

When present, the pars incisivus is of fairly constant form, differing only in its robustness

and the number of distal teeth, this latter character often being also variable between

the left and right mandibles. The pars incisivus of Pontonia is the most unusual of those

investigated here in bearing a row of small denticles on the posterior border. These

denticles are also present in most species of the closely related genera Ascidonia, Dactylonia,

Odontonia but not in Bruceonia (see Fransen, 2002) but are not described in any other

palaemonoid shrimp.

The gross morphology of the pars molaris is far more variable between genera than a

review of the literature would suggest. This may be partly due to oversights in descriptions

or because frequently only one mandible is described and illustrated or simply the

limitations of light microscopy. The right and left pars molaris in most cases showed

significant differences in structure and are often configured such that there is a rough

interlocking between the two sides when closed as also noted by Borradaile (1917). More

startling is the wide degree of variation and intricacies in design of the cuticular structures.

As mentioned, the presence of ‘setae’ or ‘bristles’ on the pars molaris has been noted in

previous studies. However, these cursory mentions do not hint at the diversity in form,

placement and arrangement witnessed in comparatively few species examined here.

Types of mandible and their presumptive function
Based on the form of the mandible herein examined, six types (Types A–F) can be

recognised, which appear to relate to feeding mode or diet, although five of these types

apply to single species only and the link with specialised food resources would require

greater taxon coverage to include other species that share similar diets.

Ashelby et al. (2015), PeerJ, DOI 10.7717/peerj.846 14/28

https://peerj.com
http://dx.doi.org/10.7717/peerj.846


Table 5 Details of the mandibular cuticle structures of each species examined.

Right Left

Palaemon macrodactylus Type I. Type I.

Figs. 1B and 1C (Right) Well-developed, row In three discrete regions: row

Fig. 1F (left) along inner margin of l.o.t,
feebly developed row on u.o.t.

along inner margin of l.i.t., small tuft on outer
margin of l.o.t., well-developed row on outer
margin between l.o.t. and u.o.t.

Macrobrachium nipponense Type I. Type I.

Figs. 2A and 2B (Right)
Fig. 2D (Left)

Well-developed row along inner margin
of l.o.t. and u.o.t.

Well-developed row along inner margin
of u.i.t. and as a small tuft on the outer margin
between the l.i.t. and l.o.t.

Pontonia pinnophylax Type I. Type I.

Figs. 3B and 3F (Right)
Figs. 3D and 3E (Left)

Confined to the concavity in pars molaris tip.
Arranged in a semicircle, in a rosette-like fashion.

Well-developed row, curled around outer and
inner margin of u.i.t., between l.i.t. and l.o.t. and
along posterior margin.

Periclimenaeus caraibicus Type II. Type II.

Fig. 4B (Right)
Fig. 4C (Left)

Present as a spine-like tuft in position of u.o.t. Three distinct tufts one between u.i.t. and l.i.t.,
and two on outer margin of l.i.t.

Gnathophyllum elegans Type III. As right mandible

Figs. 5A–5C (Right)
Fig. 5D (Left)

Very well-developed consisting of a single
row that curls around to cover the entirety
of the distal surface.

Hymenocera picta Type IV. As right mandible

Fig. 4E (Right)
Fig. 4F (Left)

Scattered

Desmocaris bislineata Type V. Type V.

Figs 6B and 6C (Right)
Figs. 6D–6F (Left)

Arranged into 12 equally spaced ridges giving a
scalloped appearance. Median ridges
longest and inner ridges notably
shorter than outer ridges.

Ridges broader than those on right mandible,
with rounded tips.

Euryrhynchus wrzesniowskii Type I. Not examined

Figs 7A–7C (Right) Arranged in a transverse row.

Anchistioides antiguensis Absent Absent

Notes.
u.o.t., upper outer tooth; u.i.t., upper inner tooth; l.o.t., lower outer tooth; l.i.t., lower inner tooth.

Type A mandible: Well developed pars incisivus and pars molaris; pars molaris distally

cuspidate; with Type I CS; encountered in Palaemon macrodactylus, Macrobrachium

nipponense, Euryrhynchus wrzesniowskii and Pontonia pinnophylax (Figs. 1–3 and 7A–7C).

Palaemon macrodactylus is largely carnivorous with a preference for mysid and

amphipod crustaceans (Sitts & Knight, 1979; Siegfried, 1982; González-Ortegón et al., 2010;

C Ashelby, 2012, unpublished data). The specific, natural diet of Macrobrachium nip-

ponense has not been studied but it is likely that, as with most Macrobrachium, it is

omnivorous with a tendency towards carnivory (Jayachandran & Joseph, 1989; Mantel

& Dudgeon, 2004; Short, 2004). The diet of the congeneric M. hainanense (Parisi, 1919)

is dominated by insect larvae and gastropod molluscs (Mantel & Dudgeon, 2004) and

a similar diet may be assumed for M. nipponense. Although the diet of Euryrhynchus
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wrzesniowskii has not been studied, Kensley & Walker (1982) provide some information

on the diet of the related E. amazoniensis Tiefenbacher, 1978, whilst Walker (2009) also

gave information on the diet of this species and E. burchelli Calman, 1907. Both species

feed on a diverse prey range and can be regarded as omnivorous with a preference

for live insect larvae. The diet of Pontonia pinnophylax is unclear. Pontonia inhabit

lamellibranch bivalve, gastropod or ascidian hosts (Fransen, 2002; Marin & Anker, 2008).

Richardson et al. (1997) concluded that the most likely food sources of P. pinnophylax

were pseudofaeces (mucous-bound suspended particles rejected as food by the bivalve) or

material collecting in the mantle cavity. Similarly, Aucoin & Himmelman (2010) observed

Pontonia mexicana (Guérin-Méneville, 1855 (in Guérin-Méneville, 1855–1856)) feeding on

matter in mucus strings. Gut content analysis has revealed the presence of detrital material,

plant material and crustacean exuviae (Richardson et al., 1997). Finally, Kennedy et al.

(2001) concluded that Pontonia assimilated similar food to their bivalve hosts based on

similar stable isotope carbon measurements.

The hard-bodied, relatively large prey consumed by Palaemon, Macrobrachium

and Euryrhynchus would require breaking down prior to ingestion. This suggests the

requirement for a grinding mandible and the application of force. The cuspidate nature

of the pars molaris of the Type A mandible is supportive of such a grinding function. The

abraded nature of many of the cuticular structures (particularly evident in Figs. 1B and

1C) also supports this view. It would also be necessary for the shrimp to sense the prey

between the mandibles to know what force is being applied to the prey, when the prey had

been ground enough to ingest or when exoskeletons or shells of the prey had been broken.

This is the presumed function of the Type I CS in the Type A mandible. Type I CS are

most similar to microtrichia, which are common in crustaceans, particularly in amphipods

(e.g. Steele & Oshel, 1987; Oshel, Steele & Steele, 1988; Olyslager & Williams, 1993; Wong &

Williams, 2009; Zimmer, Araujo & Bond-Buckup, 2009; Mekhanikova et al., 2012) and have

also been noted in larval decapods (e.g., Pohle & Telford, 1981; Tziouveli, Bastos-Gomez &

Bellwood, 2011). Typically microtrichia are thought to have a sensory function (Olyslager &

Williams, 1993; Wong & Williams, 2009) and usually arise from a socket and terminate in a

pore. A socket and pore are not evident in the images used here but this may be due to the

abraded nature of many of the structures (see Figs. 1B and 1C).

It is not clear how the presumed diet of Pontonia links to this mandible type. Assuming

a pseudofaeces or mucus diet is correct, there would not be the same requirement for

grinding or mechanosensory structures. Similarly De Jong-Moreau, Casanova & Casanova

(2001) noted that mandibular structure does not always reflect diet.

Based on examination of stomach content, Tsurnamal (2008) suggested that Typhlocaris

ayyaloni Tsurnamal, 2008 feeds on bacterial mats and some small crustaceans. Feeding on

bacterial mats may require specialised feeding structures; however, Fig. 2F in Tsurnamal

(2008) shows a mandible of very similar appearance to that of Macrobrachium and

Palaemon which instead suggests a similar diet. This is further supported by the sensitivity

of Typhlocaris to vibration (Tsurnamal, 2008) which would aid in prey detection. This

suggests that small crustaceans may form the greater proportion of the diet of Typhlocaris.
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Whether cuticular structures are present is not evident from the figures or descriptions in

any Typhlocaris species.

Type B mandible: Well developed pars incisivus and pars molaris; pars molaris distally

cuspidate; lacking cuticular structures; only encountered in Anchistioides antiguensis

(Figs. 7D–7F). It differs from the Type A mandible chiefly through the lack of cuticular

structures. The pars molaris is also distally flared which is one of the defining characteristics

of the family Anchistioididae.

The known species of Anchistioides are commonly associated with a variety of shallow

water sponges inhabiting the oscula. It may be speculated that they feed either on detritus

collected within the osculum of the sponge, other organisms associated with the sponge,

the sponge itself, or a combination of these. The only evidence as to the diet of Anchistioides

was provided by Wheeler & Brown (1936) who report the presence of ‘worm setae’ in

the stomachs of two specimens of A. antiguensis. The lack of any sensory apparatus may

support the idea of this species preying on softer bodies animals which would require less

force to break down.

Type C mandible: Well developed pars incisivus and pars molaris; pars molaris asymmetrical

with 2 acute ridges on right and tricuspid on left; with Type II CS; only encountered

in Periclimenaeus caraibicus (Figs. 4A–4C). There is a considerable degree of variation

in the mouthparts of Periclimenaeus spp. reported in the literature and thus this type

of mandible may not be standard for the genus as a whole. In literature (see Holthuis,

1951; Holthuis, 1952 for examples), variation in the development of the pars incisivus is

noted as well as variation in the development or presence of cuticular structures but this

latter difference may again be attributable to oversight in the descriptions and figures due

to difficulties observing this feature under light microscopy. The ecological and perhaps

phylogenetic significance of variation in features of the mandible amongst Periclimenaeus

species warrants further investigation.

Ďurǐs et al. (2011) report that Periclimenaeus caraibicus feeds on the host sponges,

noting the presence of spicules in the stomach and that the shrimp takes on the colour of

the host sponge through assimilation of the sponge’s pigments. The form of the mandible

witnessed here is also suggestive of a specialised diet. The multidentate, serrated form of

the pars incisivus would aid in the shredding of sponge fragments, whilst the acute nature

of the ridges of the right pars molaris may also aid in tearing. The sponge fragments may

then be transferred into the groove of the right pars molaris into which the teeth of the

left pars molaris can interlock to grind the sponge down. The groove may also help align

unbroken spicules such that they enter the mouth in the correct orientation. The function

and placement of the Type II CS in this mandible is difficult to explain. They appear

similar in form to Type I CS and may therefore also be assumed to have a similar sensory

function but their placement in discrete tufts may suggest a slightly different function. It is

speculated that these tufts of cuticular structures are the vestiges of those found in Pontonia

(see Figs. 3E and 3F) and that they only have limited functionality.

Sponge feeding cannot be presumed to be a generalised diet for Periclimenaeus, as some

other members of this genus are associates of compound ascidians (Fransen, 2006) and
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so presumably have different feeding ecology which may be reflected in the form of their

mandible, as discussed above.

Type D mandible: Pars incisivus strongly reduced to vestigial spine-like process; pars

molaris with single blade-like tooth distally; with Type III CS; only encountered in

Gnathophyllum elegans (Fig. 5). Type D mandibles are highly modified and display a

number of unusual features, most notably the reduction of the pars incisivus and the dense

covering of Type III CS.

Little information is available on the diet of Gnathophyllum. Both Wickler (1973) and

Bruce (1982) speculate that Gnathophyllum are predatory on echinoderms, however

this hypothesis has not been confirmed. However, the highly modified form of all their

mouthparts is suggestive a specialised food resource. During feeding, shrimps use the

anterior mouthparts (maxillae and maxillipeds) to hold and manipulate food (Bauer,

2004). The operculate, calcified nature of the anterior mouthparts may not be able to

manipulate food in the same way as the more flexible mouthparts found in most of the

other genera examined here. The strongly reduced pars incisivus is suggestive that there

is not a requirement for tearing or shredding of food items and the lack of a grinding

surface on the pars molaris indicates that there is no requirement for breaking down food.

Furthermore, the mandibles of Gnathophyllum are exceedingly small in relation to the

body size of the shrimp and would be unlikely to be able to deal with large food items.

Finally, the Type III CS appear highly flexible and cilia-like. These various adaptations

would suggest that rather than large food items, Gnathophyllum feed on small particulate

matter, mucus or fluids or perhaps echinoderm tube-feet and that the Type III CS are

involved in movement of these food resources.

Although some species of Gnathophyllidae are commensal with echinoderms (Bruce,

1982), Gnathophyllum elegans is considered free living. However, Gnathophyllum spp. do

seem to form loose associations with echinoderms (S De Grave, pers. obs., 2014) and

Bruce (1982) reports that G. americanum (Guérin-Méneville, 1855 (in Guérin-Méneville,

1855–1856)) has been observed using its outer maxillipeds to browse on the extended

papulae on the dorsal surface of asteroids. This, combined with the modifications to

the mandible further supports the idea that Gnathophyllum feed on mucus or mucus

entrapped particles, as has also been suggested by Bruce (1982) for some other echinoderm

associates such as Zenopontonia rex (Kemp, 1922) (as Periclimenes imperator Bruce,

1967), Lipkemenes lanipes (Kemp, 1922), Z. soror (Nobili, 1904) and Periclimenes pec-

tiniferus Holthuis, 1952.

Type E mandible: Pars incisivus absent; pars molaris bearing two recurved spine-like teeth

distally; with Type IV CS; encountered only in Hymenocera picta (Figs. 4D–4F).

This type of mandible is differentiated from the Type D mandible through the complete

absence of the pars incisivus, the presence of two recurved teeth on each mandible rather

than a single blade-like tooth, and by the form and arrangement of the cuticular structures.

As in the Type D mandible the pars molaris lacks a grinding surface.

Hymenocera and Gnathophyllum are so similar in the form of the mandible as well as

their other mouthparts (a factor that has lead to their previous inclusion in a single family)
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that it would be reasonable to assume a similar diet. However, Wickler (1973) noted that

Hymenocera feed exclusively on starfish, particularly Nardoa and Linkia spp. piercing the

epidermis with their first pereiopods before extracting internal tissues.

The sparse arrangement of cuticular structures would also not be as effective at moving

mucus or particles as those in the Type D mandible of Gnathophyllum. It seems likely,

therefore, that the Type E mandible is a further development of the Type D mandible in

response to a dietary switch in Hymenocera (or its ancestors) from merely removing mucus

from the echinoderms to actually predating on them. The paired teeth of the right pars

molaris apparently interlink with those of the left and may take on the slicing role normally

attributed to the pars incisivus.

Type F mandible: Well developed pars incisivus and pars molaris; pars molaris distally

flattened and ridged; with Type V CS; only encountered in Desmocaris bislineata.

Type V CS are the most highly developed of all the cuticular structures noted in this

study. They in turn dictate the form of this mandible type as the finger-like projections

together form the ridged surface of the pars molaris. They appear to be flexible and may

be regarded as shorter versions of the cilia-like Type III CS. A particulate or detritivorous

diet may therefore be expected. This is consistent with the information provided by Powell

(1977) who states that ‘normal feeding activity involves exploration of the surface of dead

leaves etc., . . . most of the food probably consists of fine particles, . . . , captive shrimps recoil

from contact with live animals such as naidid oligochaetes and chironomid larvae; however

they eagerly consume dead ones and therefore do not seem to be restricted to microphagy.’

Although a strong pars incisivus is present for initial tearing, the Type F mandible does not

have obvious grinding function and it is unclear how these carrion prey items would be

broken down prior to ingestion. Another possible function for the elaborate arrangement

of cuticular structures in this mandible type is that they may help to filter particular matter.

Systematic considerations
The form of the mandible was considered by Thompson (1967) to be of significant

importance in the phylogeny of the Caridea, with the ancestral state considered to be

a fused pars molaris and pars incisivus, combined with a 3-segmented palp. Indeed, the

recognition of several families, including some incorporated in this study, has partially

been justified by the form of the mandible. The ridged nature of the pars molaris, which is

presumed to be a primitive feature (Sollaud, 1911; Borradaile, 1917) is one of the characters

used to define the family Desmocarididae (Borradaile, 1915; Powell, 1977) and the presence

of a distally flared molar process of the mandible is one of the defining characteristics of

the family Anchistioididae (Chace, 1992). However, Fransen & De Grave (2009) concluded

that whilst the form of mandible is of considerable value in the identification of carideans,

its phylogenetic significance at the family level is uncertain. The inclusion of relatively few

species in this study, encompassing less than 1% of palaemonoid diversity, albeit from the

majority of palaemonoid families, will not uncover the complete range of forms of the

mandible likely to be found in this group, meaning that the results of this study should be

regarded as indicative rather than absolute. Furthermore, the analysis of a single character
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in isolation cannot hope to resolve systematic relationships, rather an integrative approach,

including novel characters and possibly also molecular data is advised (Li et al., 2011).

Nevertheless some preliminary observations on the structure of the mandible in relation to

currently accepted phylogenies can be made.

The six mandibular types proposed here do not reflect currently accepted relationships

within the Palaemonoidea. As many of the groupings are based on single taxa they may

actually imply species specific differences or, perhaps reflect over-splitting of mandibular

types in this study.

The genera Palaemon and Macrobrachium, both currently assigned to the Palaemoninae,

have the same general structure of the mandible (Type A); however, the other genera with

this form of mandible are more difficult to explain from a phylogenetic point of view.

Pontonia shares a greater affinity to Gnathophyllum, Hymenocera and Periclimenaeus

(Mitsuhashi et al., 2007; Bracken, De Grave & Felder, 2009; Gan et al., 2015) than to

Palaemon or Macrobrachium whilst Euryrhynchus, considered to be an ancient lineage

(De Grave, 2007), represents a sister group to Desmocaris (see Bracken, De Grave & Felder,

2009). Palaemon and Macrobrachium both also possess a mandibular palp. The traditional

view of the mandibular palp is that the presence of a three segmented mandibular palp

represents the primitive condition in Caridea (Thompson, 1967) with a reduction in

the number of segments and subsequent loss in more derived lineages. However, the

presence or absence of a mandibular palp has been demonstrated to convey very limited

phylogenetic information and is not a consistent character in Palaemonidae, varying even

within a species (Ashelby et al., 2012; De Grave & Ashelby, 2013).

Although classified into two different mandible types here (Type D and Type E), the

mandibles of Gnathophyllum and Hymenocera are linked through the reduction of the

pars incisivus, a feature that is variable in the gnathophyllid genus Gnathophylloides (see

Chace & Bruce,). Mitsuhashi et al. (2007), Bracken, De Grave & Felder (2009) and Gan

et al., 2015, based on a molecular phylogeny, demonstrated that Hymenoceridae and

Gnathophyllidae represent a derived lineage within the Pontoniinae. The mouthparts

present many of the definitive morphological characters of this lineage. The gradual

reduction of the pars incisivus witnessed in the Gnathophyllidae and Hymenoceridae is

also a feature demonstrated in several Pontoniinae taxa indicating the potential plasticity

of this character within the subfamily. Reduction of the pars incisivus, although to a lesser

degree, is also evident in Fig. 8A in Bruce & Short (1993) of Calathaemon holthuisi (Strenth,

1976) (ex-Kakaducarididae, now Palaemonidae). A gradual reduction of the pars incisivus

at family level is indicated by Burukovsky (1986) with Gnathophyllidae being intermediate

in form between Palaemonidae and Crangonidae. However, these latter families, and

the Eugonatonotidae in which the pars incisivus is also absent, are not closely related

(Mitsuhashi et al., 2007; Bracken, De Grave & Felder, 2009; Li et al., 2011) suggesting that the

loss of the pars incisivus has occurred independently several times in the evolution of the

Caridea.

This study has demonstrated that the form of the mandible is much more complex

than previously thought. The traditional view that the pars molaris is used solely for the
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grinding of food seems a gross oversimplification and in some species (e.g. G. elegans,

H. picta) the arrangement and form of the teeth would suggest that it does not grind

at all. The form and arrangement of cuticular structures at the distal end of the pars

molaris shows a particularly high degree of variation. The five types of cuticular structures

recognised in this study are presumed to have different functions related to food sources,

which is contrary to the findings of Storch, Bluhm & Arntz (2001) who found no link

between the morphology of the mouthparts and food items.

Some evidence of evolutionary relationships is conveyed through the broad structure

of the mandible but the detailed structures witnessed in this study do not reflect the

evolutionary relationships in the Palaemonoidea suggested by previous phylogenetic

reconstructions (Mitsuhashi et al., 2007; Bracken, De Grave & Felder, 2009; Li et al., 2011).

This preliminary study thus suggests that the structure of the mandible is more related

to function in relation to diet, than evolutionary relationships. With such a diversity of

lifestyles represented by the Palaemonoidea, particularly within the subfamily Pontoniinae,

further studies including many other genera are however required to fully unravel the

diversity of mandible morphology within the superfamily.
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