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ABSTRACT

An ever increasing number of electronic devices integrated into the Internet of
Things (IoT) generates vast amounts of data, which gets transported via network and
stored for further analysis. However, besides the undisputed advantages of this
technology, it also brings risks of unauthorized access and data compromise,
situations where machine learning (ML) and artificial intelligence (AI) can help with
detection of potential threats, intrusions and automation of the diagnostic process.
The effectiveness of the applied algorithms largely depends on the previously
performed optimization, i.e., predetermined values of hyperparameters and training
conducted to achieve the desired result. Therefore, to address very important issue of
IoT security, this article proposes an Al framework based on the simple
convolutional neural network (CNN) and extreme machine learning machine (ELM)
tuned by modified sine cosine algorithm (SCA). Not withstanding that many
methods for addressing security issues have been developed, there is always a
possibility for further improvements and proposed research tried to fill in this gap.
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made possible by the overall adoption of the production line concept (Nguyen, 2019;
Miiller, 2019).

In the late ’50s, digital electronics become more common in the predominantly
mechanical production, which was the milestone commonly marked as the beginning of
the 3rd industrial revolution, i.e., digital revolution. In the following two decades,
production lines were automated with the introduction of industrial robots and the
digitization of data. This period was also distinguished by the beginning of the widespread
use of information technologies (IT), mobile devices and the establishment of a complex
communication infrastructure, necessary for further technological progress within the
framework of the 4th industrial revolution, also known as Industry 4.0 (Miiller, 2019; Veza,
Mladineo & Gjeldum, 2015; Sani et al., 2020).

Industry 4.0

The Domain of Industry 4.0 includes Cyber-Physical Systems (CPS), IoT, Industrial IoT
(ITIoT), Al big data, digital twins and other technologies without which contemporary
factories could not exist (Anbesh et al., 2021). The United Nations’ (UN) Sustainability
2030 agenda highlights the production efficiency with minimal use of resources as the core
of the future business strategy, including smart production and industrialization with a low
impact on the living environment (Stock ¢ Seliger, 2016).

In addition to the intensive application of information technologies, the progress of the
4th industrial revolution is backed by recent significant advances in the fields of ML,
Computer Vision (CV) and Al but also manufacturing technologies as well. 3D printing,
for example, enables rapid production of necessary components and parts. This progress
supported the transition from traditional factories to the smart factory concept (Jovanovic
et al., 2022b; Oztemel ¢ Gursev, 2020). The described technologies have enabled the
emergence of flexible production lines based on CPS in various branches of industry. The
basic characteristics of such production lines are modularity and interchangeability, which
provides mass production capabilities in accordance with the individual needs of the
customer (Zheng et al., 2021).

At the moment, most of the research in the field of smart factories is focused on the
planning and sustainability of production (Aiello et al., 2020; Oztemel & Gursev, 2020,
Zhang et al., 2022), as well as on the shortening of the supply chain, partially due to the
current geopolitical events in the world (Anbesh et al., 2021; Zheng et al., 2021; Asokan
et al., 2022; Herawati et al., 2021; Little ¢ Sylvester, 2022; Mandicdk et al., 2021).

Internet of Things and smart factories

One of the fundamental terms associated with the 4th industrial revolution is the IoT,
which essentially represents a set of devices that use a wireless connection for mutual
communication, physical quantities reading with various sensors, processing, sharing and
storing information via the Internet. Nodes within the IoT system can be electronic or
embedded devices, as well as physical objects, which communicate with each other and
operate without the need for human intervention (Abu Khurma, Almomani ¢ Aljarah,
2021).
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The concept of networked smart devices has been well-known for a long time, with
working prototypes built in the early ’80s, i.e., the Coca-Cola vending machine as the first
ARPANET-connected appliance was presented in 1982. The term IoT was coined by Peter
T. Lewis in 1985. However, it had to wait almost two decades until the appropriate software
and hardware technologies (e.g., sensors, actuators, single-board computers, web servers,
data storage and processing infrastructure, protocols, wireless networks, efc.) emerged on
the market (Madakam, Ramaswamy & Tripathi, 2015; Sharma, 2017; Du et al., 2022).
Nowadays, the IoT makes possible the collection and exchange of large amounts of data
between various sensors, electronic devices, and computer applications, regardless of their
mutual distance or geographic location of nodes, which in turn helps in production
automation and making timely decisions.

The number of devices within IoT rapidly increases. While in 2015 the total number of
devices was 3.6 billion, according to current estimates in 2022 this number is between 11.5
and 14 billion, while by 2025 it is expected to rise somewhere between 16.4 and 25 billion,
depending on the source (Vailshery, 2022; Hasan, 2022).

Vast amounts of generated or aggregated data increase with the number of devices, and
must be stored in order to be subsequently available for processing and analytics. Thus,
global data storage capacity increased from 2 ZB in 2010, to 100 ZB in 2022, and will rise to
estimated 181 ZB in 2025.

Benefits and challenges

In the context of smart factories, the improvement of product quality and productivity
rates are recognized as the main benefits of the 4th industrial revolution, while the
improvement of the quality of services is noticeable in health (Jovanovic et al., 2022b). The
general progress in the field of IT, such as affordable computing resources and emergence
of appropriate algorithms, has led to rapid development of technologies, especially AI and
ML, which in turn evolved into base tools for solving difficult problems in various fields,
including finance, industry, healthcare, human resources, software development and defect
prediction, agriculture and logistics, just to name few (Buchanan, 2019; Peres et al., 2020;
Yu, Beam & Kohane, 2018; Dobrojevic ¢ Bacanin, 2022; AVSystem, 2020; Biliavska,
Castanho & Vulevic, 2022; Zheng et al., 2022; Holliday, Sani & Willett, 2015; Muhammad,
Abdullah & Samsiah Sani, 2021; Mohamed Nafuri et al., 2022; Abdul Rahman et al., 2021).

Healthcare 4.0 represents a critical field of research that is directly related to the
development of IoT and ML technologies. During the ongoing COVID-19 pandemic, the
technologies of the 4th industrial revolution led to the development of digital solutions that
provided tools for efficient management during the crisis of supply chain, human and
materials resources, protection of medical personnel, and provided means for remote work
of people in wide variety of industries as well (Javaid et al., 2020).

Besides direct improvement of conditions and quality of life, diagnostics and prevention
play an increasingly important role in providing adequate and timely treatment, especially
in diseases such as cancer and diabetes (Howell, 2010; Hopek ¢ Siniak, 2020).

In scenarios when several medical conditions share similar symptoms, when symptoms
appear only in the late stages of the disease, or when it is difficult to recognize symptoms
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and provide a diagnosis for whatever other reason (Gershon-Cohen, Berger ¢ Curcio,
1966), timely implementation of adequate treatment is of crucial importance. Even
nowadays, health system in diagnosis overly rely on the expertise and experience of
doctors, in spite of their limited number and current geographical location. Technologies
based on IoT, Al, and ML allow medical staff to work with patients remotely, and provide
machines with a certain degree of autonomy in diagnosis, thereby reducing the diagnostic
time, the risk of misdiagnosis, and in overall, the pressure on medical staff (Szolovits, 1988).

In real-world application, currently available computing resources often may prove to
be inadequate for large amounts of data processed by Al and ML models, which in turn
may affect the overall system performance and reliability. However, increasingly frequent
cyber-attacks on IoT systems call into question the credibility of service providers, and
consequently threaten business operations and finance.

Cloud Computing (CC) is recognized as technology capable of handling the large
amounts of data and traffic generated by IoT systems, but also introduced numerous risks,
e.g., inconsistent performance, security risks, latency, and possibility of network
breakdowns (Sabireen ¢» Neelanarayanan, 2021 Li & Geng, 2023). More recently,
technology of Fog Computing (FC) was introduced in order to deal with these issues as an
intermediary between the IoT and CC. The key task of the FC is to provide the data
generated by the nearby IoT devices. Performing the task locally at the fog node rather
than relaying information to the cloud server, FC may deliver services with higher quality
and better response time.

In addition, ML algorithms contain a large number of hyperparameters used to control
the learning process, whose values often cannot be resolved in an optimal manner and thus
essentially affect the speed and quality of the learning process. Traditionally, these
parameters are determined through the trial and error, an approach that may be suitable in
simpler scenarios, but inapplicable with more complex problems. The latter requires
optimization of the methods for hyperparameters determination, which recently brought it
under the spotlight of researchers (Feurer ¢ Hutter, 2019).

Operating systems, e.g., Windows and Linux, as well as IoT networks, have security
vulnerabilities prone to exploitation in order to provide attackers with access to the system
and data, and thus IoT systems have been recognized as prime targets for large-scale cyber
attacks. Communication between IoT devices can be intercepted and manipulated, and
there is always the possibility of one or more devices in the system malfunctioning.
Hacking tools are readily available and easy to use, without any specialized skills required
to carry on a successful attack (Louvieris, Clewley ¢ Liu, 2013). That is why the detection of
failures and potential network intrusions in real time is one of the priorities for the secure
and stable operation of the system (Stone-Gross et al., 2009).

The AI and especially ML and deep learning (DL) algorithms can be used to overcome
such challenges, as tools for error prediction, intrusion detection, diagnostics, etc.
Effectiveness of the chosen tool in a given situation directly depends on the feature
selection (FS), value of hyperparameters and model training conducted in order to
achieve the desired result (Jovanovic et al., 2022b). Despite the use of advanced security
tools such as firewalls, antivirus software, data encryption or biometric verification
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(Al-Jarrah et al., 2016), cyber attacks continue to affect organizations and businesses, and
attackers exploit system vulnerabilities in order to gain access and perform attacks, e.g.,
theft of sensitive information.

In the last decade, a multitude of IT security solutions based on AI have been introduced,
Intrusion Detection Systems (IDS) being one of them (Kareem et al., 2022). IDSs proved to
be effective in protection of IoT systems (Ashraf et al., 2021; Zhou et al., 2020) due to the
possibility of network traffic analysis, distinguishing the legite from malicious traffic, and
determining the type of detected attack. There are two basic types of IDSs:

e Host-based IDSs (HIDSs) are programs on the host machine that autonomously monitor
system calls and logs, i.e., software agents, with the aim of detecting unauthorized
activities.

o Network-based IDSs are placed at key positions in the computer network in order to
monitor the traffic.

Another obstacle for ML is the variety of attack types and network traffic features, which
makes the problem solving more complex (Aljawarneh, Aldwairi & Yassein, 2018). Based
on their mechanism, IDSs could be further classified into (Moustafa et al., 2020; Kareem
et al., 2022):

o Signature-based IDSs detect potentially illegal activites based on previously known
patterns, i.e., signatures (Freeman et al., 2002; De La Hoz et al., 2015). Signature-based
HIDS monitor the host by scanning network traffic, logs and memory dumps. Although
fast and reliable, they cannot detect previously unknown attacks. They require regular
updating of attack pattern definitions aswell, otherwise they will fail to provide detection
even for minor changes in the pattern, which is a well known vulnerability often abused
by attackers.

o Anomaly-based IDSs compile a profile of the regular system behaviour, which is
afterwards used for detection of harmful actions (Jose ef al., 2018). This is usually
achieved by applying of ML and DL models that are trained on previously collected data.
Therefore, they can detect new, previously unknown attacks, as well as mutations of
known attacks (Moustafa et al., 2019); but with the tradeoff of increased processing
power required compared to signature-based IDSs (Jose et al., 2018; Moustafa et al.,
2019). Despite the high rates of false positives (FPs), this approach is useful in detection
of innovative types of attack.

Research summary and contributions

The research presented within this article tries to further improve IoT security by verifying
the performance of the hybrid CNN and ELM structure to solve the network attacks
classification problem on the relatively novel TON_IoT Windows 7 and Windows 10
datasets (Moustafa et al., 2020), that are considered as benchmarks for determination of
the efficiency of the intrusion detection systems. The elementary lightweight CNN network
is used to perform the feature extraction, while the ELM is employed for classification of
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the features extreacted by the CNN. The CNNs have proven to be very successful in a
variety of complex tasks. Beside image classification, they are capable of automatically
discovering hidden patterns in data, which other models are not able to do (Sharma et al.,
2021). Additionally, lightweight CNN is easy and quick to train. At the other hand, other
models have much better classification capabilities compared to the CNN’s dense layers,
and this fact directed proposed research towards replacing CNN’s dense layers with
traditional ML model.

There are also some other examples in literature where other models were combined
with CNNs, where CNNs perform feature extraction, and other models are assigned to
execute classification, for example eXtreme gradient boosting (XGBoost) model
(Thongsuwan et al., 2021; Khan et al., 2022; Niu et al., 2020), long short term memory
model (LSTM) (Sun et al., 2020) and support vector machine (SVM) (Sun et al., 2019). In
this work, the ELM was chosen as it does not require classical training, instead it only
requires initialization of weight and bias values. Therefore, the goal of proposed research is
to develop as lighter as possible hybrid ML/DL model to deal with this challenging security
task. The extensive literature survey has also revealed that this particular CNN and ELM
hybrid combination has never been utilized to address the intrusion detection problem.

However, since the ELM’s performance at large extent depends on the randomly
initialized weights and biases and the number of neurons in the single hidden layer, this
research makes use of a modified version of the SCA for tuning of the ELM for this
particular issue with the goal of further improving classification performance of the model.
Since the problem of determining ELM’s weights and biases and number of neurons for
specific problem falls into the category of mixed integer continuous non-deterministic
polynomial hard (NP-hard) optimization, the choice of employing metaheuristics in this
case is logical because they proved to be very efficient NP-hard problem solvers (Zivkovic
et al., 2022a, 2020).

Finally, it is also worth pointing out that metaheuristics-based methods can always be
enhanced, by modifications or hybridization with other approaches. According to the no
free lunch theorem (Wolpert & Macready, 1997), algorithm capable of obtaining the best
outcomes for every optimization problem does not exists and for each particular task
specific algorithm can be introduced.

In accordance to everything stated above, this article offers the following set of
contributions:

o An efficient and lightweight hybrid CNN-ELM model is develop to address IoT security
challenges;

e An enhanced version of SCA metaheuristics was developed to specifically target the
known limitations exhibited by the elementary SCA variant;

o The suggested devised algorithm was utilized to discover the adequate hyper-
parameters’ values and improve the ELM classification accuracy as a component of the
framework designated for the intrusion detection classification;
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o The results attained by the proposed structure were compared to other noteworthy
metaheuristics, used in the identical experimental framework to classify the network
attacks.

The remainder of this manuscript has been assembled as follows. The next section
introduces the basics of neural networks and ELM, together with the fundamentals of
metaheuristics optimization. Afterwards, elementary SCA has been explained, together
with its known flaws, and the modified SCA has been proposed, together with the
suggested classification framework. The next section brings forward the experimental
setup, experimental outcomes, statistical analysis and model interpretation. Lastly, the final
section summarizes the research, hints the future research possibilities and winds up the

manuscript.

PRELIMINARIES AND RELATED WORKS

This sections provides background related to the methods utilized in this research. First, a
brief introduction to the artificial neural networks is given, followed by the theoretical
background of the utilized ELM model. Finally, a brief overview of metaheuristics
optimization is given.

Artificial neural networks

Artificial neural networks (ANN) are used to solve problems from different domains,
which are difficult to solve or cannot be solved using traditional programming techniques.
The ANNs can provide quality results in (un)supervised machine learning tasks (Krogh,
2008). The ANNs and its types, e.g., CNNs, recurrent neural networks (RNNs), etc., are
extensively used in pattern recognition, classification of objects, and prediction. Various
forms of ANN are used in traffic for road management (Olayode et al., 2021; Ren et al.,
2022) and autonomous vehicle control (Zhang, Jing & Xu, 2021), in civil engineering to
predict the fatigue of structural materials (Bai ef al., 2021), in the military for quantum
communication (Quach, 2021) and aerial swarms (Abdelkader et al., 2021), in agriculture
for detection of plants diseases (Roy ¢ Bhaduri, 2021) and assessment of soil suitability
(Vincent et al., 2019), while in medicine they are used for diagnostics (Esteva et al., 2017),
pandemic related applications (Adedotun, 2022) and classification of heart diseases and
diabetes, just to name few.

The ANNs may refer to hardware system or software application with architecture
influenced by biological neural networks, such as those in the natural brain (Bhadeshia,
2008; Brahme, 2014). It is based on a set of interconnected points referred to as nodes,
emulating neurons, and each connection (edge, or synapse in nature) transmits a signal (a
real number) from one neuron to another. The output of each neuron is determined by a
non-linear function of the sum of its inputs. Neurons and edges usually have a weight
factor that changes during the learning process, and affects the strength of the signal on the
connection. Neurons can also have a threshold, passing the signal through only when the
aggregate signal exceeds that threshold. Typically, neurons are arranged in layers (Bre,
Gimenez ¢ Fachinotti, 2018), and different layers can perform different transformations
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on input signals. The input signal travels from the input layer (the first layer) to the output
layer (the last layer), and may pass through the intermediate layers (hidden layers)
multiple times. Each neuron has a local memory in which it remembers the data it
processes.

A feedforward neural network (FNN) is an ANN where connections between nodes, i.e.,
information, always propagate forward (Zell, 2003). Single-layer perceptron (SLP) is the
simplest form of ANN, having only two layers, input and output, but unfortunately it is not
capable of processing efficiently nonlinearly separable patterns (Hu, 2014; Ojha, Abraham
¢ Sndsel, 2017). Multilayer perceptrons (MLPs) overcome these shortcomings by having
one or more hidden layers, making them the most popular form of ANN at the moment.
Some of the important advantages they possess are robustness, learning capacity, parallel
processing and capacity to generalize (Faris et al., 2016).

In common speech the process of “capturing” the unknown information is called
“learning” or “training” of an ANN. In mathematical context however, to “learn” refers to
adjustment of the weight coefficients in order to satisfy the predefined conditions (Svozil,
Kvasnicka ¢ Pospichal, 1997). The training of the ANN directly affects the quality of the
model, and thus making necessary the optimization of the loss function during the
learning process (Duchi, Hazan ¢ Singer, 2011; Zeiler, 2012; Kingma & Ba, 2015; Cheng
et al., 2022). In general, training processes can be classified as:

o Supervised training. ANN ‘knows’ the desired output, so the weight coefficients are
adjusted in such a manner that the calculated and desired outputs are as close as
possible.

o Unsupervised training. The desired output is not known, the system is provided with a
group of facts and then left alone to autotune towards a stable state in a limited number
of iterations.

During this process, over-fitting can occur, i.e., significant deviations in training and test
accuracy, indicating that the network has learned specific data and cannot properly process
data outside that range. This problem can be treated by regularization, and some of the
suggested approaches are batch, data augmentation, dropout, drop connect, early stopping,
L1/L2, etc.

In DL, CNN is a class of ANN. The CNNs mimic the pattern of connectivity between
neurons of a biological visual cortex (Fukushima, 1980; Matsugu et al., 2003), making them
an excellent tool for feature extraction, especially suitable in the field of CV. CNNs use
relatively light pre-processing because the network “learns” to optimize filters or kernels
through ML, compared to traditional algorithms where these filters must be set manually.
That very independence from prior knowledge and human intervention in feature
extraction is a major advantage.

Extreme learning machines

The ELM presents an ML approach applied to single-layer FNNs. This approach randomly
activates hidden neurons in the network, followed by processing stages that determine the
output weights via Moore-Penrose generalized inverse. Application of hidden layers and
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non-linear transformations converts input values into ELM features space in higher
dimensions, which simplifies the original problem (Jovanovic et al., 2022b).

If a training set X = (x;, t;)|x; € R?,t; € R™,i = 1,...., N] has L hidden neurons, and an
activation function g(x), outputs may be determined as shown in Eq. (1).

L
Zﬁ’g(wi'xj—'—bi):yjaj:L"'?N (1)
i=1

where:

B; = [Birs s Bim] " are output weights
e w; - x; is inner product of w; and x;

o W= [wim, ... wiq] are input weights of hidden neurons

b; is the input bias

Approximation of the standard parameters f3;,i = 1, ...L for a simple FNN may be
carried out with the Eq. (2)

L
Zﬁig(wi'xijbi)th,j:l,...,N @)
=1

Furthermore, the parameter T may be calculated with the use of Eq. (3):
T'=Hp (3)
where H is the hidden layer output matrix shown in Eq. (4)
gwy-x1+b1) ... glwr-x +0bp)
h= : : (4)
gwi-xny+b1) ... glwp-xn+br) |y
and, f and T shown in Eq. (5)

pr T

1 1
p=1: and T=|: )
ﬂ[j: Lxm tlj\; Nxm
Output weights f§ are being determined using the minimum norm least-square as shown
Eq. (6)
B=H'T (6)

where H' represents the generalized Moore-Penrose inverse of H.

Initialization of weight and bias variables with random values is essential for the
classifier performance, represents a NP-hard challenge, and needs to be optimized for each
particular classification problem.
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Metaheuristics optimization

Metaheuristics optimization is a field of AI modelled after examples often found in social
groups in nature (Hu et al., 2021), and capable of solving complex real-world problems.
Swarm intelligence is one of the most prominent groups of metaheuristics, where
algorithms mimic the behavior of an individual in a group, e.g., in a colony, flock or herd,
in order to solve the targeted problem.

An important feature of metaheuristics algorithms is their ability to deal with complex
tasks using both limited computing resources and limited time frames, which cannot be
achieved with a traditional mathematical approach. Single execution of the algorithm
cannot guarantee desired results due to the inherent randomness, but each subsequent
execution increases the chances of finding the true optimum, and thus such algorithms
must run through several iterations. Although each algorithm may possess unique
properties, the basic components enabling such algorithms to solve NP-hard problems are:

o Research. The algorithm covers large areas within the search space, looking for sub-areas
potentially containing better solutions.

e Exploitation. The algorithm focuses on certain sub-areas, locating the best solution.

Desired results can be achieved only if the adequate balance between research and
exploitation was reached, that suits the specific problem. Most algorithms in this area use
search agents tuned to work under simple sets of rules, allowing complex behavior to
manifest globally.

Agents can be modeled in different ways, and many algorithms with proven good
performance found inspiration in natural phenomena such as bee swarms (Karaboga,
2010), ant colonies (Salami, 2009), whale flocks (Mirjalili e Lewis, 2016), wolf packs
(Mirjalili, Mirjalili & Lewis, 2014) etc.

Inspiration can be drawn from abstract ideas as well. The SCA have origins in
trigonometry (Mirjalili, 2016), the arithmetic optimization algorithm uses simple
mathematical formulations (Abualigah et al., 2021), as well as the search algorithm
modelling user behavior on social networks (Liang et al., 2006).

This makes metaheuristics algorithms a popular choice for ANN tuning, e.g.,
improvement of the fault prediction capability (Kayarvizhy, Kanmani ¢ Uthariaraj, 2014),
hyper-parameters optimization (Zhang ¢ Qiu, 2020); ELM tuning (Alshamiri, Singh ¢
Surampudi, 2017), and in general, solving complex real-world problems, such as intrusion
detection (Zivkovic et al., 2022c¢), credit card fraud detection (Jovanovic et al., 2022a),
problems in wireless sensor networks (WSNs) (Zivkovic et al., 2020), task scheduling in
cloud-based environments (Bezdan et al., 2021), optimization of energy and load balance
in 5G networks (Bacanin et al., 2022), optimization and tuning of ANNs (Zivkovic et al.,
2022a), as well as the diagnosis of COVID-19 and prognosis of cases (Zivkovic et al.,
2022b).
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Algorithm 1 The pseudo-code of the SCA (Gabis et al., 2021).
Initialize randomly a set of solutions X;(i = 1,2, ..., n)
while (t < T) do
Calculate the objective value for each solution
Update the destination (P = X)
Update the random parameters ry, 15, 13 and ry4
Update Update the solutions using Eq. (9)
end while

Return the destination P

DEVELOPED METHOD AND PROPOSED FRAMEWORK

This section first introduces basics of the original SCA metaheuristics, followed by its
observed deficiencies and detailes of proposed improved approach. Finally, this section
concluded with introduced hybrid ML framework used for classification and solutions’
encoding scheme employed by developed metaheuristics.

Basic sine cosine algorithm
Mathematical model of the SCA is inspired by the trigonometric functions (Mirjalili,
2016). The position updating is conducted according to the specified functions, making
them prone to oscillations in the region of the optimum, and the return values fall into the
[—1, 1] range. During the initialization phase, the algorithm generates multiple solutions as
candidates for the best solution given the constraints of the search area and randomized
adaptive parameters control the exploration and exploitation phases, Fig. 1 and the
pseudo-code in Algorithm 1.

The position updating is performed as follows (Mirjalili, 2016):

X =X+ 1y - sin(ry) - |3 - P — X @
X = X! 4y - cos(ry) - |rs - P — X]| (8)
where

i-th and t-th are dimensions

e i 1-th is iteration

Xj; and X,-tj+1 denote the positioning for a given solution in the terms of dimension and
iteration

e r,_3 is generated pseudo-random number

P} is the position of the target

e |...| represents the absolute value

The equations are combined with the use of control parameter r4:
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Figure 1 SCA flowchart, based on Gabis et al. (2021). Full-size K] DOI: 10.7717/peerj-cs.1405/fig-1

Xt = { Xt =X+ 1y -sin(ry) - s - P = X!, 1, <0.5 )

Xt =X+ 1y - cos(ry) - |rs - PP —X!|, 14 > 0.5,
where r4 denotes a randomly selected number from the [0, 1] interval.
Cyclic sequences due to the sine and cosine functions allow for repositioning near the
solution. In order to enhance exploration and the randomness quality, the range for the
parameter r;, is set to [0, 2I1]. The following equation is used to control the diversification
and provide the exploitation balance:

a
rlza—tT’ (10)

where:
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e t is the current repetition
e T denotes the maximum allowed amount of possible repetitions per run

e g hardcoded, empirically determined value set to 2.0 (as suggested in Mirjalili (2016)),
not adjustable by the user

The SCA meta-heuristic provides impressive performance with bound-constrained and
unconstrained benchmarks, with a relative simplicity and small number of control
parameters (Mirjalili, 2016). However, when testing with standard Congress on
Evolutionary Computation (CEC) benchmarks, the algorithm tends to converge too fast
towards current best solutions, with reduced diversity of the population. Due to directed
search towards the P*, if the initial results are too far from the optimum, the population
will quickly converge towards disadvantageous domain of the search space, with
unsatisfactory final results.

Enhanced sine cosine algorithm

To address the known cons of the basic algorithm, an enhanced version of SCA has been
proposed for the sake of the research presented in this article, based on two procedures that
have been included in the original metaheuristics:

1) Chaotic initialization of solutions forming the initial population, and

2) Self-adaptive search mechanism switching the search process betwixt classic SCA search
and firefly algorithm (FA) search procedure.

The first proposed alternation of the basic version of SCA is chaotic initialization of the
starting population. This approach aims to produce the starting set of solutions near the
optimum region of the search realm. It was proposed by Caponetto et al. (2003), who
embedded the chaotic maps inside metaheuristics algorithms to improve the search phase.
Other relevant studies, including Wang ¢ Chen (2020), Liu et al. (2021), Kose (2018), have
shown that search procedure efficiency is greater if it relies on chaotic sequences, rather
than pseudo-random generators.

There are numerous chaotic maps that can be used, however, empirical experiments
executed with SCA metaheuristics have shown that the logistic map yields the most
promising results. Consequently, the modified SCA at the begining of the execution utilizes
the chaotic sequence f3, starting by the pseudo-random value f3,, produced by the logistic
maping, as given by the Eq. (11).

ﬁiJrl::uﬁix(1_ﬂi)7i:1727"'aN_17 (11)

where N and u represent the size of the populace and chaotic control value. The parameter
u has been set to value 4, while applying the following limitations to f;: 0 < f, <1 and
B, # 0.25,0.5,0.75, 1.

Solution i is subjected to mapping according to the produced chaotic sequences for each
component j with respect to the following equations:
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Algorithm 2 Pseudo-code of the chaotic-based initialization scheme.

Step 1: Produce population Pop of N/2 individuals by applying conventional initialization mechanism:
X; = LB+ (UB — LB) - rand(0,1),i = 1,...N, where rand(0, 1) is the pseudo-random value within [0, 1] and LB and UB are arrays with lower and
upper boundaries of every individual’s component j, respectively.

Step 2: Generate the chaotic population Pop* of N /2 solutions by mapping the individuals belonging to Pop to chaotic sequences by utilizing Eqs. (11)
and (12).

Step 3: Integrate Pop and Pop® (Pop U Pop®) and sort merged set of size N with respect to fitness value in ascending order.

Step 4: Ascertain the current best individual P.

ch = ﬁiXia (12)

where the novel location of individual i after chaotic disturbances is denoted by X.

The entire chaotic-based generation of the initial population is given in Algorithm 2. It
is important to note that the introduced initialization procedure is not affecting the
algorithm’s complexity with respect to the fitness function evaluations FFEs, as it produces
only N/2 arbitrary individuals, and afterwards it maps those solutions to the
corresponding chaotic solutions.

The second alteration of the basic algorithm, the self-adaptive search strategy, is
responsible of alternating the search procedure between conventional SCA search and the
FA’s (Yang ¢ Slowik, 2020) search procedure given by Eq. (13).

XH =X 4 B, e‘“/’iz-j(th — X)) + o (k= 0.5), (13)

where o denotes the randomization parameter, while x marks the random value drawn
from the Gaussian distribution. Distance among two individuals i and j is represented by
rij. To further improve the FA’s exploration and exploitation capabilities, this research
utilizes dynamic o, as shown in Yang ¢ Slowik (2020).

The proposed SCA algorithm switches between SCA and FA search procedures on the
level of every component j of every individual i as follows: in case that the produced
pseudo-random value in range [0, 1] is smaller than the search mode (sm), the j-th part of
individual i is updated by applying FA search (Eq. (13), otherwise, conventional SCA
search will take place (Eq. (9)). The search mode sm control parameter is controlling the
balance betwixt SCA and FA search mechanisms, focusing more on the FA search to
update the individuals at the beginning. As the iterations go by, assuming that the search
realm was explored sufficiently, the SCA search will be activated more often. This is
achieved by dynamically reducing the value of sm parameter from the starting value in
every iteration t with respect to:

t
smy = smy_q — T (14)
The starting value of sm parameter has been established empirically, and set to 0.8 in all

simulations executed in this research.
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Algorithm 3 The HASCA pseudo-code.
Produce initial population of N individuals by utilizing Algorithm 2.
Adjust control parameters and initialize dynamic parameters
while exit criteria is not reached do
for each individual i do
for each component j of individual i do
Produce pseudo-random value rnd
if rnd < sm then
Update component j by applying FA search (Eq. (13))
else
Update component j by applying SCA search (Eq. (9))
end if
end for
end for
Verify the population with respect to the fitness function
Ascertain the current best individual P
Update dynamic parameters’ values
end while

Return the best-determined individual

Finally, the introduced enhanced SCA method is actually a low-level hybrid since the
FA search mechanism has been incorporated into the SCA method. It was named hybrid
adaptive SCA (HASCA), and the pseudo-code that shows the inner workings of this
method is given by Algorithm 3.

At the end, it can be noted that the HASCA is not adding additional overhead to the
basic SCA and the complexity with respect to the FFEs of both methods, basic and
enhanced, are O(N) =N -N - T.

Proposed classification framework

The suggested classification framework represents a hybrid CNN and ELM structure. The
CNN performs the task of feature extraction, where the outputs were collected from the
second to the last dense layer (before the final layer). This collection of features were then
placed to the inputs of the ELM model that was executing the classification. ELM hyper-
parameters were optimized by the proposed HASCA algorithm. The flowchart of this
classification framework is shown in Fig. 2.

This suggested framework utilizes an empirically established lightweight CNN
structure, with a main purpose to be as elementary as possible to permit effortless training
and fast executing. The proposed CNN model is comprised of a singe convolutional layer
(64 filters, kernel size 6, with relu activation function), batch normalization, max pooling
layer with pool size of three, and a pair of dense coats. Since the experiment was the
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Figure 2 Flowchart of the suggested classification framework. Full-size K&] DOT: 10.7717/peerj-cs.1405/fig-2

multiclass classifying problem, the common choice for loss is categorical.rossentropy,
where the adam optimizer was selected with the default learning rate of Ir = 0.001. To
measure the performance level of the model, the accuracy was used. Lastly, this structure
has been trained by using the batch size of 16, within 10 epochs. This CNN model is
presented in Fig. 3.

Solutions encoding scheme

The tuning procedure of the ELM structure in this research consisted of optimizing the
number of neurons (n#n) in the hidden layer, together with the weights and biases
connecting the input and hidden layers. The bounds for weights and biases were calibrated
to the span of [—1, 1], while the limits for the nn were calibrated to [300, 600]. Here, the nn
is represented as the integer value, opposite to weights and biases that are continuous
inside provided ranges. The optimization of the nn corresponds to the ELM hyper-
parameters tuning, while the optimization of the weights and biases is related to the
training procedure of the ELM model. The range [300, 600] for nn has been established
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Layer (type) Output Shape

[(None, 9, 64)]

batch_normalization (BatchNormalization)

Max_poolingld (MaxPooling1D) [(None, 5, 64)]

flatten (Flatten)

[(None, 320)]

[(None, 8)]

dense (Dense)
dense_1 (Dense)

Figure 3 CNN model that was utilized in suggested framework.
Full-size E&] DOTI: 10.7717/peerj-cs.1405/fig-3

[(None, 8)]

empirically, aiming to create a network neither too simple or too complex, to avoid
overfitting issue. The proposed HASCA algorithm was used to address both described
tasks.

Every individual that belongs to the population was encoded by utilizing the regular flat-
swarm encoding scheme. In other words, every solution is structured as a vector of length /,
denoting the count of hyper-parameters that were tuned. As [ relies on the count of neural
cells nn, and length of the input features vector fs, it can be obtained as follows:

1 + nn - fs + nn. More precisely, the first portion of every individual marks the count of
neurons (integer), followed by nn elements denoting the biases (continuous), and lastly,
the final nn - fs elements denote the weights (continuous).

EXPERIMENTAL FINDINGS AND DISCUSSION

This section first introduces the datasets utilized throughout the experiments. Afterwards,
the experimental setup is briefly explained, followed by the experimental findings and
discussion of outcomes. Finally, this section brings forward the statistical tests and
validation of the model, together with the SHAP analysis of the most significant features.

TON_loT database

In order to properly evaluate the usability of IDS and Al-based security solutions, testing
with use of proper datasets gathered in real-world conditions is a must. Various datasets
have been proposed in the literature for this purpose (Koroniotis et al., 2019; Moustafa ¢
Slay, 2015), such as DARPA 98 and KDD-99 (Lippmann et al., 2000), which are now
considered outdated due to implemented attack scenarios originating back to 1998, then
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Figure 4 TON-Iot database, reduced file structure. Full-size K&] DOT: 10.7717/peerj-cs.1405/fig-4

ADFA-LD (Creech ¢ Hu, 2013) and NGIDS-DS (Haider et al., 2017). The mentioned
datasets are generated on Linux Operating System (OS), while SSENet-2014, AWSCTD
and ADFA-WD datasets are suggested for Windows OS machines (Moustafa et al., 2020).

TON IoT belongs to the new generation of Industry 4.0 databases. It was created with
the aim to compensate for the perceived shortcomings of existing datasets, such as the lack
of data on the behavior of memory, hard drives and processors, as well as data related to
IoT. It includes federated data sources collected from IoT service telemetry datasets,
Windows and Linux OSs datasets, and network traffic datasets. OS datasets are collected
from memory, processor, network, process and hard disk audit trails, Fig. 4. Such datasets
can be used to test Al-based cyber security solutions, including IDSs, threat intelligence
and hunting, privacy protection and digital forensics.

Datasets

In the experiment, the TON_IoT datasets for Windows 7 and Windows 10 OS were used,
containing 133 vs. 125 features respectively, and significant amounts of data (28,367 vs
35,975 records) generated using Virtual Machines with appropriate OSs and Windows
performance tracking tools, as described in Tableau (2020).
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Figure 5 TON_IoT binary distribution of classes, Windows 7 vs. Windows 10.
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Figure 6 TON_IoT multiclass distribution of classes, Windows 7 (A) and Windows 10 (B).
Full-size K&] DOT: 10.7717/peerj-cs.1405/fig-6

Each training set contains 10,000 records from regular traffic, as well as data classified as
attacks, 5,980 for Windows 7 and 11,104 for Windows 10, Figs. 5 (binary distribution) and
6 (multiclass distribution). These sets furthermore can be divided into subsets in the 70%/
30% ratio, for training and for testing of the AI model (Moustafa et al., 2020).

Correlation analysis shows the importance of features and their use value. A custom
correlation function can be used to determine the correlation coefficient between features
without a label and to rank the features by strength in the range [-1, 1]. The sign of the
correlation coefficient indicates the direction of the connection, while the coefficient itself
indicates the strength of connection between two features (Koroniotis et al., 2019). A
correlation matrix, Figs. 7 and 8, proved useful representing the most closely related
features, listed in Tables 1 and 2 which will then be used to train and validate the
effectiveness of the ML model in the classification of attacks from the data set. From the
presented correlation matrices, it can be noticed that in both datasets exists high positive
correlation between a pair of features. In the case of Win 7 benchmark there is 99%
correlation between “IO data bytes sec” and “Process (_Total) IO Read Bytes sec”
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Figure 7 TON_IoT Windows 7—the most important features correlation matrix.
Full-size K&l DOT: 10.7717/peerj-cs.1405/fig-7

attributes, while in the case of Win 10 dataset, there is a correlation of 93% between “Disk
ready bytes sec” and “Memory page reads sec” features exists. This seems to be very logical
because each pair of features in both datsets refer to the input output (IO) read
performance of the system. At the first glance, it may seem as these are redundant
(derived) features. However, since the CNN is used for feature extraction in this research,
those features were used as input to the model along with other attributes.

Metrics
The model introduced in this research has been validated according to the conventional
machine learning metrics, that rely on true negatives (TN), true positives (TP), false
negatives (FN) and FPs projections. These metrics allow obtaining crucial key performance
indicators, including accuracy, precision, recall, and F-score.

Moreover, this research utilizes the Cohen’s kappa coefficient k (Cohen, 1960), that was
used as the objective function that is necessary to be maximized. Cohen’s kappa coefficient
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Figure 8 TON_IoT Windows 10—the most important features correlation matrix.
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Table 1 TON_IoT Windows 7—the most correlated features.

Feature Unit Description

Proc. total 1/O, other B/s The rate the bytes are being issued to I/O operations, excluding data related to control operations.
Network LIntel R Pro 1000MT B/s Bytes receiving rate over each network adapter, counting framing characters as well.

Proc. total I/O, other OPS The number of I/O operations issued by process that cannot be classified into read or write operations.
Proc. total I/O, data B/s The reading or writting rate in I/O operations.

Proc. total I/O, read B/s The reading rate in I/O operations.

Proc. Pool Paged B The size of the paged pool in the virtual memory used for objects written to disk when not being used.
Network LIntel.R Pro 1000MT B/s Sent Bytes sending rate over each network adapter, counting framing characters as well.

Network LIntelR Pro 1000MT PSC Packets receiving rate on the network interface.

Proc. total I/O, data OPS The number of I/O operations issued by process, classified as read of write operations.
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Table 2 TON_IoT Windows 10—the most correlated features.

Feature Unit Description

Network LIntel.R 82574L GNC B/s Current network interface bandwidth.

Network LIntel.R 82574L GNC PSC Sent Packets transmission rate to subnet-unicast addresses by high level protocols.
Memory pool B Segment of the paged pool, currently resident and active in physical memory.
Logical disk B/s Transfer rate from the disk, reading.

Memory B/s Disk read rate to sort out hard page faults.

Memory modified B Amount of physical memory assigned to the modified page list.

Proc. I/0, data OPS The rate of I/O operations, read and write.

Logical disk total B/s The avg. number of bytes transferred, disk read or write.

CPU time ms Time required for a non-idle thread.

denotes a statistical metric that can be utilized to discover inter-rater reliability (McHugh,
2012). It is also possible to use it for estimation of the performance level of the given
classifier. Cohen’s kappa value is calculated from the confusion matrices utilized by
machine learning models to evaluate both binary and multiclass classifications. In contrast
to the overall accuracy of the classifier, that could be misleading for the imbalanced
datasets, Cohen’s kappa takes into consideration the imbalance within classes distribution,
therefore providing more durable findings. Cohen’s kappa is calculated according to the

Eq. (15):
K:Po_Pe: _1=po (15)
1—p. 1—p.

where p, represents the collection of observed values, and p, denotes the expected values.

Experimental setup

As previously noted, the ELM model requires tuning for every individual classification
task. The developed HASCA algorithm was used to lead the tuning procedure. The
outcomes of the ELM optimized by HASCA were put into comparisons to the scores
acquired by seven additional powerful metaheuristics, separately implemented for the sake
of this research, and deployed in the identical framework as the HASCA, to optimize the
ELM model. The chosen contending algorithms were the basic SCA, Artificial bee colony
(ABC) (Karaboga ¢ Basturk, 2008), bat algorithm (BA) (Yang & Gandomi, 2012), whale
optimization algorithm (WOA) (Mirjalili & Lewis, 2016), elephant herding optimization
(EHO) (Wang, Deb & Coelho, 2015), chimp optimization algorithm (ChOA) (Khishe ¢
Mosavi, 2020) and reptile search algorithm (RSA) (Abualigah et al., 2022).

Every competitor metaheuristic has been implemented by making use of the the native
control parameter’s values as described by its author. Each one of the algorithms was
executed with 15 individuals within the population, 15 rounds in each run, and 15
independent executions. In order to simplify the interpretation of the experimental
outcomes, prefix CNN-ELM was appended before each metaheuristics (CNN-ELM-
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Table 3 Fitness function results (Cohen’s kappa value) over the Win 7 dataset.

Method Best Worst Mean Median Std Var nn
CNN-ELM-HASCA  0.976780 0.975701 0.976188 0.976040 3.68E-04 1.35E-07 552
CNN-ELM-SCA 0.975291  0.974537 0974840  0.974892  2.72E-04 7.39E-08 584
CNN-ELM-ABC 0.974906 0973802 0974260  0.974208 4.13E-04 1.71E-07 591
CNN-ELM-BA 0.974951  0.973480 0974506  0.974583  5.38E-04 2.90E-07 532
CNN-ELM-WOA 0.976009  0.974202 0975146  0.975273  5.87E-04 3.44E-07 596
CNN-ELM-EHO 0.974957 0974180  0.974565  0.974537  3.33E-04 1.11E-07 561
CNN-ELM-ChOA 0976051 0974211 0975160  0.975315 6.02E-04 3.63E-07 567
CNN-ELM-RSA 0.974931 0974161 0974478  0.974208  3.68E-04 1.35E-07 559
Note:
The best scores in every considered category are accentuated in bold.
Table 4 Error metrics scores over the Win 7 dataset.
Method Best Worst Mean Median Std Var
CNN-ELM-HASCA 0.013269 0.013901 0.013606 0.013690 2.15E-04 4.61E-08
CNN-ELM-SCA 0.014111 0.014532 0.014364 0.014322 1.58E-04 2.48E-08
CNN-ELM-ABC 0.014322 0.014954 0.014701 0.014743 2.46E-04 6.03E-08
CNN-ELM-BA 0.014322 0.015164 0.014575 0.014532 3.10E-04 9.58E-08
CNN-ELM-WOA 0.013690 0.014743 0.014195 0.014111 3.42E-04 1.17E-07
CNN-ELM-EHO 0.014322 0.014743 0.014532 0.014532 1.88E—-04 3.55E-08
CNN-ELM-ChOA 0.013690 0.014743 0.014195 0.014111 3.42E-04 1.17E-07
CNN-ELM-RSA 0.014322 0.014743 0.014575 0.014743 2.06E-04 4.26E-08
Note:

The best scores in every considered category are accentuated in bold.

HASCA represents CNN ELM hybrid model being optimized by the HASCA algorithm,

etc.).

Experimental results and discussion
This section presents the simulation outcomes over both considered datasets, and

discussed the attained experimental results. For all tables that contain the experimental

results, the best scores in every considered category are accentuated in bold.

Windows 7 dataset experimental results
Table 3 brings forward the experimental results attained by the regarded models over

Windows 7 dataset, in terms of the fitness function (Cohen’s kappa value) over 15
independent executions. The suggested CNN-ELM-HASCA model attained supreme
results, outclassing every other contender model with respect to the best, worst, mean and
median values, while CNN-ELM-SCA model acquired the best standard deviation and
variance scores. CNN-ELM-ChOA secured the second place, while CNN-ELM-WOA
ended up on third position. The last column in Table 3 contains the determined count of

neurons nn in ELM. Since the range of search for nn was set to [300, 600], it is clear that

almost all models converged to the upper limit. However, since the performance of the
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Table 5 Comprehensive classification scores for Win 7 dataset.

CNN-ELM- CNN-ELM- CNN-ELM- CNN-ELM- CNN-ELM- CNN-ELM- CNN-ELM- CNN-ELM-
HASCA SCA ABC BA WOA EHO ChOA RSA
Accuracy (%) 98.6724 98.5892 98.5680 98.5683 98.6309 98.5681 98.6309 98.5681
Precision 0 0.989929 0.989940 0.989729 0.990261 0.988951 0.990590 0.990589 0.989929
Precision 1 0.993773 0.992219 0.995241 0.995319 0.995308 0.993772 0.993771 0.995311
Precision 2 0.900000 0.882353 0.842105 0.833333 0.842105 0.789474 0.789474 0.842105
Precision 3 0.986486 0.970100 0.979866 0.976589 0.986486 0.979866 0.979866 0.979866
Precision 4 0.990329 0.988395 0.982692 0.986538 0.986564 0.986513 0.986513 0.982692
Precision 5 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
Precision 6 0.982609 0.982609 0.982609 0.982609 0.982609 0.982609 0.982609 0.982609
Precision 7 0.762712 0.796296 0.771930 0.745763 0.788462 0.750000 0.793103 0.771930
M.Avg. 0.950729 0.950239 0.943055 0.938801 0.946310 0.934102 0.939491 0.943055
Precision
W.Avg. 0.986309 0.985270 0.985130 0.985139 0.985591 0.985200 0.985809 0.985131
Precision
Recall 0 0.994271 0.994939 0.994611 0.993587 0.995279 0.993589 0.994271 0.994612
Recall 1 1.000000 1.000000 0.996865 1.000000 0.998433 1.000000 1.000000 0.996865
Recall 2 0.818182 0.681818 0.727273 0.681818 0.727273 0.681818 0.681818 0.727273
Recall 3 0.986486 0.986486 0.986486 0.986486 0.986486 0.986486 0.986486 0.986486
Recall 4 0.973384 0.971483 0.971483 0.975285 0.977186 0.973384 0.973384 0.971483
Recall 5 0.833333 0.833333 0.833333 0.833333 0.833333 0.833333 0.833333 0.833333
Recall 6 0.995595 0.995595 0.995595 0.995595 0.995595 0.995595 0.995595 0.995595
Recall 7 0.671642 0.641791 0.656716 0.656716 0.611940 0.671642 0.686567 0.656716
M.Avg. Recall 0.909111 0.888181 0.895295 0.890354 0.890691 0.891982 0.893932 0.895295
W.Avg. Recall 0.986729 0.985890 0.985681 0.985681 0.986309 0.985681 0.986309 0.985681
F1-score 0 0.992088 0.992420 0.992259 0.991919 0.992099 0.992094 0.992431 0.992259
F1-score 1 0.996881 0.996089 0.996090 0.997648 0.996869 0.996869 0.996869 0.996080
F1-score 2 0.857138 0.769228 0.780491 0.750012 0.780490 0.731711 0.731714 0.780491
F1-score 3 0.986492 0.978217 0.983173 0.981509 0.986491 0.983170 0.983159 0.983173
F1-score 4 0.981772 0.979872 0.977049 0.980879 0.981848 0.979899 0.979912 0.977049
F1-score 5 0.909087 0.909089 0.909089 0.909086 0.909089 0.909087 0.909086 0.909089
F1-score 6 0.989062 0.989060 0.989061 0.989062 0.989060 0.989063 0.989062 0.989064
F1-score 7 0.714290 0.710738 0.709683 0.698409 0.689081 0.708657 0.736012 0.709669
M.Avg. F1- 0.928349 0.915587 0.91709 0.912320 0.915632 0.911321 0.914781 0.917109
score
W.Avg. F1- 0.986449 0.985372 0.985298 0.985316 0.985750 0.985370 0.985968 0.985298
score
Note:

The best scores in every considered category are accentuated in bold.

model significantly depends of the weight and biases, the proposed CNN-ELM-HASCA
attains the best results with just 552 neurons, than CNN-ELM-BA (532 neurons), or other
models that generated structures with more neurons.

Regarding the classifying error ratio on Windows 7 dataset, Table 4 yields the scores for
every contending model. Similarly to the fitness function scores, the proposed CNN-ELM-
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Figure 9 Visual representations of the simulation outcomes in terms of convergence (A), box plots (B), and violin plots (C) with respect to the

objective function (Cohen’s kappa) and classification error rate on Win 7 dataset.

Full-size K&] DOT: 10.7717/peerj-cs.1405/fig-9
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Figure 10 Visual representations of the simulation outcomes in terms of swarm plot diagrams (A) and KDE plot diagrams (B) related to the

objective function (Cohen’s kappa) and classification error rate on Win 7 dataset.

Full-size K&] DOT: 10.7717/peerj-cs.1405/fig-10

HASCA model once more outclassed every other contender, with respect to the best,
worst, mean and median values, leaving behind CNN-ELM-ChOA and CNN-ELM-WOA
approaches. Concerning standard deviation and variance values, CNN-ELM-SCA again
attained the best results, providing most stable results over the runs.

Table 5 brings forward the comprehensive metrics achieved by the best run of every
regarded model. It is worth noting that the suggested CNN-ELM-HASCA model attained
the superior accuracy level of 98.67%, while CNN-ELM-ChOA and CNN-ELM-WOA
acquired the second best accuracy of 98.63%. The suggested CNN-ELM-HASCA method
has also displayed supremacy when taking into account other statistical categories, as it
attained the best results for the majority of other indicators.

Visualisations of the experimental outcomes attained on the Windows 7 dataset have
been provided in Figs. 9 and 10. Figure 9 exposes the convergence graphs, box and violin
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Figure 11 The confusion matrix of the proposed CNN-ELM-HASCA method on Win 7 dataset.
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Figure 12 Visual representations of the simulation outcomes in terms of PR AUC (A) and ROC AUC
(B) curves of the proposed CNN-ELM-HASCA method on Win 7 dataset.
Full-size k&l DOL: 10.7717/peerj-cs.1405/fig-12

plots of all noted algorithms with respect to the fitness function (Cohen’s kappa in
experiments) and classifying error rate. The convergence graphs exhibit the supremacy of
the HASCA method, as it is possible to note that employed switching mechanism betwixt
SCA and FA search processes significantly aids to the fast converging capabilities of the
suggested approach. Additionally, Fig. 10 exhibits the swarm plots making possible to
estimate the diversity of solutions during the last iteration of the best run for every noted
method, with respect to the fitness function and classification error rate. Once more, one
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Table 6 Fitness function results (Cohen’s kappa value) over the Win 10 dataset.

Method Best Worst Mean Median Std Var nn

CNN-ELM-HASCA  0.951796 0.951079 0.951411 0.951343 2.37E-04 5.61E-08 539
CNN-ELM-SCA 0.951311 0.950179 0.950827 0.950880 3.93E-04 1.54E-07 599
CNN-ELM-ABC 0.949262 0.948551 0.949021 0.949037 2.59E-04  6.71E-08 561
CNN-ELM-BA 0.950428  0.948315  0.949410  0.949298  7.35E-04 540E-07 544

CNN-ELM-WOA 0.950873  0.948776  0.949947  0.950408  7.93E-04 6.28E-07 536
CNN-ELM-EHO 0.949951  0.947016  0.948506  0.948829  1.18E-03  1.40E-06 584
CNN-ELM-ChOA 0.951567  0.949507  0.950644  0.950864 6.77E-04  4.59E-07 532

CNN-ELM-RSA 0.950410  0.949265  0.949866  0.949965  3.74E-04  1.40E-07 587

Note:
The best scores in every considered category are accentuated in bold.

Table 7 Error metrics scores over the Win 10 dataset.

Method Best Worst Mean Median Std Var

CNN-ELM-HASCA 0.033487 0.033963 0.033741 0.033804 1.62E-04 2.62E-08
CNN-ELM-SCA 0.033804 0.034598 0.034153 0.034122 2.73E-04 7.46E-08
CNN-ELM-ABC 0.035233 0.035709 0.035391 0.035391 1.74E-04 3.02E-08
CNN-ELM-BA 0.034439 0.035867 0.035137 0.035233 4.98E-04 2.48E-07
CNN-ELM-WOA 0.034122 0.035550 0.034756 0.034439 5.41E-04 2.92E-07
CNN-ELM-EHO 0.034756 0.036820 0.035772 0.035550 8.31E-04 6.91E-07
CNN-ELM-ChOA 0.033645 0.035074 0.034280 0.034122 4.71E-04 2.22E-07
CNN-ELM-RSA 0.034439 0.035233 0.034820 0.034756 2.58E—-04 6.65E—08

Note:

The best scores in every considered category are accentuated in bold.

can take notice that each one of the solutions during the last iteration of HASCA run have
been closely placed in the proximity of the best individual. Lastly, Fig. 10 also provides
kernel density estimation diagrams (KDE), used to visually show that the simulation
results belong to the normal distribution.

Classification algorithm’s performance level is commonly defined by utilizing a
confusion matrix, that visually presents the classification accuracy and errors. Moreover,
the precision-recall (PR) and receiver operating characteristics (ROC) curves are two very
important visual tools for classification tasks. Area under PR curve (PR AUC) is
combining the precision and recall within single plot, while area under ROC curve (ROC
AUC) shows the trade-off betwixt the true positive and false positive rates. Therefore, to
further visualize the performance of the proposed CNN-ELM-HASCA approach on Win 7
dataset, Fig. 11 displays the confusion matrix, while Fig. 12 depicts PR AUC and ROC
AUC curves achieved by the suggested method.

Windows 10 dataset experimental results

Table 6 displays the simulation outcomes attained by the regarded models over Windows
10 dataset, with respect to the fitness function (Cohen’s kappa score) over 15 independent
executions. The suggested CNN-ELM-HASCA model once again attained supreme results,
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Table 8 Comprehensive classification scores for Win 10 dataset.

CNN-ELM- CNN-ELM- CNN-ELM- CNN-ELM- CNN-ELM- CNN-ELM- CNN-ELM- CNN-ELM-
HASCA SCA ABC BA WOA EHO ChOA RSA
Accuracy (%) 96.6509 96.6189 96.4771 96.5559 96.5881 96.5239 96.6360 96.5559
Precision 0 0.979871 0.978571 0.978223 0.978519 0.979221 0.979211 0.979211 0.978879
Precision 1 0.924662 0.918371 0.912159 0.912158 0.918372 0.912159 0.917812 0.918371
Precision 2 0.980491 0.981884 0.976879 0.980463 0.979725 0.976208 0.983309 0.981884
Precision 3 0.846154 0.867816 0.853107 0.862857 0.850829 0.858757 0.853933 0.853933
Precision 4 0.935310 0.937838 0.935484 0.935484 0.932796 0.927614 0.935484 0.934783
Precision 5 0.971455 0.968836 0.974217 0.971481 0.972376 0.973297 0.971507 0.968864
Precision 6 0.758065 0.744000 0.721311 0.736434 0.747967 0.750000 0.736434 0.736000
Precision 7 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
M.Avg. 0.924500 0.924663 0.918922 0.922176 0.922659 0.922156 0.922210 0.921589
Precision
W.Avg. 0.966079 0.96571 0.964119 0.965181 0.965379 0.964579 0.966011 0.965050
Precision
Recall 0 0.985818 0.986489 0.985478 0.984469 0.986161 0.985819 0.985819 0.985819
Recall 1 0.870971 0.870971 0.870971 0.870970 0.870971 0.870970 0.864521 0.870971
Recall 2 0.986909 0.985455 0.983273 0.985455 0.984000 0.984727 0.985455 0.985455
Recall 3 0.841530 0.825137 0.825137 0.825137 0.841530 0.830601 0.830601 0.830601
Recall 4 0.925333 0.925333 0.92800 0.92800 0.925333 0.922667 0.928000 0.917333
Recall 5 0.971455 0.973297 0.974217 0.972376 0.972376 0.973297 0.973297 0.974217
Recall 6 0.706767 0.699248 0.661654 0.714286 0.691729 0.676692 0.714286 0.691729
Recall 7 0.875000 0.875000 0.875000 0.875000 0.875000 0.875000 0.875000 0.875000
M.Avg. Recall 0.895473 0.892617 0.887966 0.894461 0.893387 0.889971 0.894622 0.891390
W.Avg. Recall 0.966509 0.966201 0.964771 0.965559 0.965881 0.965244 0.966349 0.965559
F1-score 0 0.982829 0.982509 0.981841 0.981491 0.982680 0.982510 0.982510 0.982341
F1-score 1 0.897009 0.894039 0.891091 0.891091 0.894039 0.891091 0.890371 0.894039
F1-score 2 0.983689 0.983671 0.980059 0.982949 0.981860 0.980451 0.984379 0.983671
F1-score 3 0.843841 0.845941 0.838891 0.843580 0.846149 0.844439 0.842110 0.842112
F1-score 4 0.930288 0.931539 0.931731 0.931730 0.929049 0.925128 0.931731 0.925983
F1-score 5 0.971447 0.971059 0.974221 0.971931 0.972380 0.973289 0.972399 0.971527
F1-score 6 0.731521 0.720929 0.690201 0.725189 0.718749 0.711459 0.725189 0.713180
F1-score 7 0.933329 0.933328 0.933329 0.933329 0.933329 0.933328 0.933327 0.933329
M.Avg. F1- 0.909251 0.907881 0.902671 0.907659 0.907281 0.905209 0.907749 0.905767
score
W.Avg. F1- 0.966228 0.965844 0.964368 0.965315 0.965559 0.964825 0.966125 0.965236
score
Note:

The best scores in every considered category are accentuated in bold.

outclassing every other contender model with respect to all observed metrics—the best,
worst, mean and median values, and also standard deviation and variance scores. Simply
said, the suggested model in this case not only acquired the best results, it also put
consistent performance level over the independent executions, constantly providing
results near to the mean value. CNN-ELM-ChOA secured the second place, while
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Figure 13 Visual representations of the simulation outcomes in terms of convergence (A), box plots (B), and violin plots (C) with respect to the
objective function (Cohen’s kappa) and classification error rate on Win 10 dataset. Full-size K&] DOT: 10.7717/peerj-cs.1405/fig-13
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Figure 14 Visual representations of the simulation outcomes in terms of swarm plot diagrams (A) and KDE plot diagrams (B) related to the

objective function (Cohen’s kappa) and classification error rate on Win 10 dataset.

Full-size K&l DOT: 10.7717/peerj-cs.1405/fig-14

CNN-ELM-SCA ended up on third position in this scenario. Similarly to Windows 7

experiments, the last column in Table 6 contains the determined count of neurons ## in
ELM. Since the range of search for nn was set to [300, 600], it is once again obvious that
almost all models converged to the upper limit. However, since the performance of the
model significantly depends of the weight and biases, the proposed CNN-ELM-HASCA
attains the best results with just 539 neurons, than CNN-ELM-WOA and CNN-ELM-
ChOA (536 and 532 neurons, respectively), or other algorithms that produced models with
more neurons.

With regard to the classifying error ratio achieved on Windows 10 dataset, Table 7
summarizes the scores for each one of the contending models. Similarly to the fitness
function scores, the proposed CNN-ELM-HASCA model once more outclassed every
other contender, with respect to all observed metrics—the best, worst, mean and median
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Figure 15 The confusion matrix of the proposed CNN-ELM-HASCA method on Win 10 dataset.
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Figure 16 Visual representations of the simulation outcomes in terms of PR AUC (A) and ROC AUC
(B) curves of the proposed CNN-ELM-HASCA method on Win 10 dataset.
Full-size K&] DOT: 10.7717/peerj-cs.1405/fig-16

values, and also standard deviation and variance values, leaving behind CNN-ELM-ChOA
and CNN-ELM-SCA models.

Table 8 encapsulates the comprehensive metrics attained by the best run of every

regarded model. It is worth noting that the suggested CNN-ELM-HASCA model once

more attained the superior accuracy level of 96.65%, leaving behind CNN-ELM-ChOA the
second best accuracy of 96.64% and CNN-ELM-SCA that acquired the third best accuracy
0f 96.62%. The suggested CNN-ELM-HASCA method has also displayed supremacy when
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Table 9 Shapiro-Wilk values with respect Win 7 and Win 10 problem instances for testing
normality requirement.

Methods HASCA SCA ABC BA WOA EHO ChOA RSA
Win 7 0.371 0.198 0.205 0.264 0.337 0.341 0.406 0.297
Win 10 0.391 0.241 0.193 0.245 0.305 0.329 0.287 0.297

Table 10 Shapiro-Wilk executed over the mean differences among two samples to verify the
precondition for paired-t test, followed by the paired-t test scores with respect to Win 7 and
Win 10 problems

Methods vs. HASCA SCA ABC BA WOA EHO ChOA RSA
Shapiro-Wilk

Win 7 0.191 0.225 0.232 0.239 0.221 0.203 0.198
Win 10 0.191 0.239 0.224 0.199 0.205 0.193 0.205
Paired-t test

Win 7 0.033 0.026 0.034 0.028 0.032 0.037 0.035
Win 10 0.071 0.036 0.043 0.042 0.039 0.076 0.042

taking into account other statistical categories, as it attained the best results for the
majority of other indicators.

Visualisations of the simulation outcomes attained on the Windows 10 dataset have
been provided in Figs. 13 and 14. Figure 13 exposes the convergence graphs, box and violin
plots of all noted algorithms with respect to the fitness function (Cohen’s kappa in
experiments) and classifying error rate. The convergence graphs again exhibit the
supremacy of the HASCA method, where it is obvious that employed switching
mechanism betwixt SCA and FA search processes significantly aids to the fast converging
capabilities of the suggested approach. Additionally, Fig. 14 exhibits the swarm plots
making possible to estimate the diversity of solutions during the last iteration of the best
run for every noted method, with respect to the fitness function and classification error
rate. Once more, one can take notice that each one of the solutions during the last iteration
of HASCA run have been closely placed in the proximity of the best individual. Finally,
Fig. 14 also provides KDE diagrams, showing that the simulation results belong to the
normal distribution.

To further visualize the performance of the proposed CNN-ELM-HASCA approach on
Win 10 dataset, Fig. 15 displays the confusion matrix, while Fig. 16 depicts PR AUC and
ROC AUC curves achieved by the suggested method.

Statistical tests and model validation

In order to verify the experimental outcomes and establish if they are significant from the
statistical point of view, the best results from every of the fifteen executions of each
considered algorithm with respect to both considered problem cases (Win 7 and Win 10
datasets) were collected and investigated as data series. Nevertheless, at the beginning, it is
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Figure 17 SHAP summary plots for Win 7 (A) and Win 10 datasets (B).
Full-size K&] DOT: 10.7717/peerj-cs.1405/fig-17

required to establish which type of the statistical tests is appropriate—parametric or non-
parametric. Prior to deciding to utilize the non-parametric tests, it is required to check if it
is possible to use the parametric tests, by examining independence, normality, and
homoscedasticity of the data variances (LaTorre et al., 2021). The first requirement,
namely independence, is fulfilled as each execution of all algorithms starts by generating a
set of pseudo-random variables. The second requirement, homoscedasticity, has been
validated by performing Levene’s test (Glass, 1966), and as the p-value of 0.67 was
determined in every case, one can conclude that the homoscedasticity requirement has also
been satisfied.

For verification of the last, normality requirement, Shapiro-Wilk single problem
analysis has been applied (Shapiro ¢ Francia, 1972). Shapiro-Wilk p-values have been
established independently with respect to each of the regarded algorithms. The determined
p-values for each approach were larger than 0.05, allowing the conclusion that the HO
hypothesis can not be rejected for both alpha = 0.05 and alpha = 0.1. Consequently, it
means that the observed results are originating from the normal distribution. It was
possible to come to the similar conclusion by simply looking at the KDE diagrams in Figs.
10 and 14. The Shapiro-Wilk testing values are given in Table 9.
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Figure 18 SHAP waterfall plots for Win 7 (A) and Win 10 datasets (B).
Full-size K&] DOT: 10.7717/peerj-cs.1405/fig-18

As the normality condition is fulfilled as well, it is allowed to safely utilize the parametric
test. Within this manuscript, the paired-t test has been employed (Hsu ¢ Lachenbruch,
2014), since it is a common choice when metaheuristics-based algorithms are evaluated
(Chen et al., 2014). Paired-t test may be employed in case if the collection of data values can
be observed as paired measurements, where the distribution of differences betwixt the
pairs is required to follow the normal distribution as well. Simply put, differences among
samples of each pair of metaheuristics should be normally distributed. Aiming to examine
this, the absolute differences among distributions of the suggested method and other
contenders were determined, followed by another application of the Shapiro-Wilk on each
absolute difference. The outcomes of the Shapiro-Wilk test have shown that the p-values
in all instances were larger than threshold value 0.05, allowing the conclusion that it is not
possible to reject HO hypothesis for alpha = 0.05, which means that the observed values
are belonging to the normal distribution. As this is the precondition for execution of the
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Figure 19 SHAP summary plots for classes 0 (A), 1 (B) and 4 (C) for Win 7 experiments.

Full-size K&] DOT: 10.7717/peerj-cs.1405/fig-19

paired-t test, it means that paired-t test can be safely used, comparing the suggested
method to each and every one of contenders.

The outcomes of Shapiro-Wilk p-values established on the differences between the
suggested approach and other contenders, followed by the paired-t test outcomes are
shown in Table 10. In case of the paired-t test, the p-values are smaller then 0.05 for all
algorithms excluding SCA and ChOA with respect to the Win 10 dataset (0.071 with SCA
and 0.076 with ChOA). Accordingly, it can be established that the introduced HASCA
method is significantly superior over all contenders for threshold alpha = 0.1, and
significantly superior than all contenders excluding SCA and ChOA algorithms, when the
threshold value alpha = 0.05 is observed.

One of the most important tasks when analysing the results of the machine learning
models is to interpret them properly, aiming to discover what are the most influential
features with respect to the target variable. Proper interpretation will allow the decision
makers to decide more confidently, and that can be vital in the network security area. To
explain the behavior of model observed in this research, the advanced explainable AI
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Figure 20 SHAP summary plots for classes 0 (A), 1 (B), 2 (C) and 5 (D) for Win 10 experiments.Full-size (al DOI: 10.7717/peerj-cs.1405/fig-20

method SHAP was utilized, allowing the better understanding of the simulation results.
SHAP procedure allows easy and fitting interpretations of the predictions made by the
observed model, by measuring the importance of each feature, inspired by the game theory
(Lundberg & Lee, 2017).

Simply said, Shapley collection of values represents the distributed payouts betwixt the
features, with respect to the every feature’s contibution towards the joint payout (denoting
the prediction in this case). Finally, SHAP method supplements each feature with
importance indicator, that measures the contribution of every one of the features on the
specific forecast.

Figure 17 presents the SHAP summary plots allowing to analyse the influence of
features on output classes, for both Windows 7 and Windows 10 dataset. Moreover, Fig. 18
provides simple SHAP waterfall plots, showing the extent of features affecting observation
8 with respect to class 0 (normal).

Figure 19 depicts how features influence class 0 (normal traffic), class 1 (dos) and class 4
(backdoor), with respect to the experiments with Windows 7 dataset. Similarly, 20 displays
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the effect of features on class 0 (normal traffic), class 1 (dos), class 2 (ddos) and class 5
(password) for the experiments with Windows 10 dataset.

Intriguingly, given SHAP visualizations indicate that the last feature (in both Win 7 and
Win 10 experiments) almost has no influence whatsoever, concluding that it may be
removed based on the SHAP analysis. This feature was not removed according to
Moustafa et al. (2020), however, this is an important observation.

Moreover, as examples presented in Figs. 19 and 20 indicate, the analysis of the effect
each feature has on a specific target can be performed. For instance, increasing the value of
Memory.Pool.Paged Bytes attribute will also add to the influence that the target in that
particular case will be class 1 (dos attack). Similarly, if the attribute Network_IIntel.
R82574L_GNC.Packets Sent.sec is decreased, showing the speed of sending packets
through the network interface, will increase the effect on the outcome to be classified as
DDOS attack.

Aiming to determine the most important attributes, it is possible to conclude that the
largest influence in case of the Win 7 dataset have Process Pool Paged Bytes, Network I.
Intel.R Pro 1000MT.Bytes Sent sec, and Process.Total IO Data Operations sec features.
With respect to Win 10 dataset, the most important attributes are Memory.Pool.Paged
Bytes, Network_I.Intel. R82574L_GNC.Packets Sent.sec, and Process.Total IO Data
Operations sec. Generally speaking, the SHAP analysis clearly indicates that the possibility
of the real network attack is high if the problems such as the increased virtual memory
utilization and physical memory paging, or reduced speed of read and write procedures
during I/O operations have been noticed. This is also in accordance to the real world
experience, as it was confirmed in practice countless times.

CONCLUSION

The intrusion detection problem in IoT networks is crucial, as unauthorized access or
compromised data could lead to leaking of private information, reputation loss or even
human casualties. To address this problem and keep IoT network secure, it is necessary to
quickly and consistently differentiate between the malicious actions and regular activities.
The research presented in this manuscript introduces a novel hybrid intrusion detection
structure that can be utilized for this crucial task. The suggested approach is relying on the
novel HASCA method, that was developed by modifying the elementary SCA
metaheuristics and incorporating the FA search mechanism. The basic SCA algorithm has
a powerful exploration, however, it does not have sufficient exploitation capabilities.
Creating a low-level hybrid with FA that is known for the strong exploitation seems like a
logical choice, where the advantages of both algorithms could mutually overcome their
respective drawbacks. The HASCA algorithm begins execution by using the basic SCA
search mechanism, however, in later stages, it is alternating betwixt SCA and FA search
procedures, to enhance the exploitation.

This novel HASCA metaheuristics was used within the hybrid ML framework, that
consists of the lightweight CNN and ELM model, where HASCA was used to tune the
ELM’s structure (number of neurons in its single hidden layer), as well as in determining
weights and biases between neurons. Introduced framework was entitled CNN-ELM-
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HASCA, and its performance was validated on two intrusion detection benchmark
instances (Win 7 and Win 10 datasets). The attained experimental outcomes were
compared to the results achieved by seven other contending metaheuristics algorithms,
tested as part of the identical framework, and utilized to tune the ELM for the observed
task. The proposed CNN-ELM-HASCA attained superior level of accuracy of 98.67% and
96.65% over Win 7 and Win 10 datasets, respectively.

However, as in any other research work, the proposed study outlines some limitations.
First of all, the CNN structure used for feature extraction was determined manually, by
‘trial and error’ approach. Automatic evolving of CNN’s structure (set of hyperparameters’
values), e.g., by utilizing metaheuristics, is very resource-intensive and it would require
additional time and computing resources. However, this could be a promising topic for
future research in the area. Secondly, introduced framework was evaluated on only two
multi-class datasets and thus, it may require further evaluation on a wider set of
benchmarking data. Finally, the SCA metaheuristics could also be further improved by
investigating hybridization with other metaheuristics that show good exploitation abilities.

Regardless of above mentioned limitations, experimental outcomes presented in this
study are very encouraging, and the future experiments will be focused on gaining further
confidence into the suggested CNN-ELM-HASCA model. This will include validation on
supplementary real-world datasets, prior to possible implementation as a part of the real
IDS. Also, a further research may turn towards tuning of the CNN structure along with the
ELM for this important challenge as a part of the two-level framework—CNN tuning in
the first layer and the ELM optimization in the second one. Additionally, due to the fact
that there is still a significant research gap in this domain, with numerous ML/DL models,
and with metaheuristics available in the modern literature, future research may also be
focused on experimentation with various ML/DL models and metaheurisitcs combinations
for significant IoT security challenge.
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