A peer-reviewed version of this preprint was published in PeerJ on 31 July 2017.

<u>View the peer-reviewed version</u> (peerj.com/articles/3607), which is the preferred citable publication unless you specifically need to cite this preprint.

Shi W, Liu P, Duan L, Pan B, Su Z. 2017. Evolutionary response to the Qinghai-Tibetan Plateau uplift: phylogeny and biogeography of *Ammopiptanthus* and tribe Thermopsideae (Fabaceae) PeerJ 5:e3607 https://doi.org/10.7717/peerj.3607

### **Evolutionary response to the Qinghai-Tibetan Plateau uplift: Phylogeny and biogeography of** *Ammopiptanthus* **and tribe Thermopsideae (Fabaceae)**

Wei Shi  $^{\rm 1,\,2}$  , Pei-Liang Liu  $^{\rm 3}$  , Lei Duan  $^{\rm 4}$  , Bo-Rong Pan  $^{\rm Corresp., 1,\,2}$  , Zhi-Hao Su  $^{\rm 1}$ 

<sup>1</sup> Key Laboratory of Biogeography and Bioresource in Arid Land, Institute of Ecology and Geography in Xinjiang, The Chinese Academy of Sciences, Urumqi, Xinjiang, China

<sup>2</sup> Turpan Eremophytes Botanic Garden, The Chinese Academy of Sciences, Turpan, Xinjiang, China

<sup>3</sup> College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China

<sup>4</sup> Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China

Corresponding Author: Bo-Rong Pan Email address: brpan@ms.xjb.ac.cn

Based on sequence data from the nuclear ITS and four cpDNA regions (*matK*, *trnH-psbA*, *trnL-trnF*, *rbcL*), phylogeny of the tribe Thermopsideae was inferred. Our analyses supported this tribe being merged into a monophyletic Sophoreae in a broad sense, with exclusion of *Pickeringia*. Genera of Sophoreae were separated into the Thermopsoid clade and Sophoroid clade. Monophyly of *Anagyris*, *Baptisia* and *Piptanthus* were basically supported in the Thermopsoid clade. *Ammopiptanthus*, consisting of *A. mongolicus* and *A. nanus*, nested within the Sophoroid clade, with *Salweenia* as its sister. *Ammopiptanthus* and *Salweenia* disjunctively distributed in desert of Northwestern China and Hengduan Mountains, respectively. Divergence age was estimated based on the ITS phylogenetic analysis. Emergence of the common ancestor of *Ammopiptanthus* and *Salweenia*, divergence between these two genera, and split of *Ammopiptanthus* species occurred at approximately 26.96 Ma, 4.74 Ma and 2.04 Ma, respectively, which may be response to the second, third, fourth rapid uplift of the Qinghai-Tibetan Plateau, respectively.

| 1 | Evolutionary response to a | he Qinghai-Tibetan | Plateau uplift: | Phylogeny and | l biogeography |
|---|----------------------------|--------------------|-----------------|---------------|----------------|
|---|----------------------------|--------------------|-----------------|---------------|----------------|

```
2 of Ammopiptanthus and tribe Thermopsideae (Fabaceae)
```

- 3
- 4 Wei Shi<sup>1, 2\*</sup>, Pei-Liang Liu<sup>3\*</sup>, Lei Duan<sup>4\*</sup>, Bo-Rong Pan<sup>corresp., 1, 2</sup>, Zhi-Hao Su<sup>1</sup>
- 5 Correspondence to B.-R. Pan (brpan@ms.xjb.ac.cn)
- <sup>6</sup> <sup>1</sup> Key Laboratory of Biogeography and Bioresource in Arid Land, Institute of Ecology and
- 7 Geography in Xinjiang, The Chinese Academy of Sciences, 830011 Urumqi, China
- 8 <sup>2</sup> Turpan Eremophytes Botanic Garden, The Chinese Academy of Sciences, 838008 Turpan,
- 9 China
- <sup>3</sup> College of Life Sciences, Northwest A&F University, Yangling, 712100, China
- <sup>4</sup> Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China
- 12 Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou, China
- <sup>13</sup> \*These authors contributed equally to this work.
- 14

#### 15 Abstract:

| 16 | Based on sequence data from the nuclear ITS and four cpDNA regions (matK, trnH-psbA,          |
|----|-----------------------------------------------------------------------------------------------|
| 17 | trnL-trnF, rbcL), phylogeny of the tribe Thermopsideae was inferred. Our analyses supported   |
| 18 | this tribe being merged into a monophyletic Sophoreae in a broad sense, with exclusion of     |
| 19 | Pickeringia. Genera of Sophoreae were separated into the Thermopsoid clade and Sophoroid      |
| 20 | clade. Monophyly of Anagyris, Baptisia and Piptanthus were basically supported in the         |
| 21 | Thermopsoid clade. Ammopiptanthus, consisting of A. mongolicus and A. nanus, nested within    |
| 22 | the Sophoroid clade, with Salweenia as its sister. Ammopiptanthus and Salweenia disjunctively |
| 23 | distributed in desert of Northwestern China and Hengduan Mountains, respectively. Divergence  |
| 24 | age was estimated based on the ITS phylogenetic analysis. Emergence of the common ancestor    |
| 25 | of Ammopiptanthus and Salweenia, divergence between these two genera, and split of            |
| 26 | Ammopiptanthus species occurred at approximately 26.96 Ma, 4.74 Ma and 2.04 Ma,               |
| 27 | respectively, which may be response to the second, third, fourth rapid uplift of the Qinghai- |
| 28 | Tibetan Plateau, respectively.                                                                |
| 29 |                                                                                               |

#### 30 Introduction:

| 31 | Thermopsideae (Yakovlev 1972) is a small tribe in Leguminosae, comprising six genera,              |
|----|----------------------------------------------------------------------------------------------------|
| 32 | Ammopiptanthus S.H.Cheng, Anagyris L., Baptisia Vent., Pickeringia Nutt. ex Torr. & A.Gray,        |
| 33 | Piptanthus Sweet, Thermopsis R.Br. ex W.T.Aiton, with a total of ca. 45 species. Thermopsideae     |
| 34 | ranges from Mediterranean Basin, C and NE Asia to temperate N America (Lock 2005; Turner           |
| 35 | 1981; Wang 2001). Early phylogenetic works supported that Thermopsideae, except for                |
| 36 | Pickeringia, was nested in the "core genistoids" group, which always contains quinolizidine        |
| 37 | alkaloids (Crisp et al. 2000; Wojciechowski et al. 2004). Subsequent results of Wang et al. (2006) |
| 38 | resolved two unsisterly clades in this tribe: the genus Ammopiptanthus and the "core genera"       |
| 39 | clade, consisting of Anagyris, Baptisia, Piptanthus and Thermopsis. Based on plastid marker        |
| 40 | matK, some recent analyses conducted by Cardoso et al. (2012a, 2013) treated the five              |
| 41 | abovementioned genera of Thermopsideae into Sophoreae in a broad sense. However, Zhang et          |
| 42 | al. (2015a) accepted the concept of Thermopsideae without sampling of <i>Pickeringia</i> . The     |
| 43 | monophyly and the tribal rank of Thermopsideae are thus controversial.                             |
| 44 | Within Thermopsideae, Anagyris (Ortega-Olivencia 2009), Baptisia (Larisey 1940a; Turner            |
| 45 | 2006), Pickeringia (Wojciechowski 2013), Piptanthus (Turner 1980; Wei 1998; Wei & Lock             |

| 46 | 2010) and Thermopsis (Chen et al. 1994; Czefranova 1970; Larisey 1940b; Peng 1992; Sa 1999;      |
|----|--------------------------------------------------------------------------------------------------|
| 47 | Sa 2000) were studied taxonomically, phylogentically and biogeographically. The genus            |
| 48 | Ammopiptanthus was established by Cheng (1959) on the basis of A. mongolicus (Maxim.)            |
| 49 | Cheng. and A. nanus (M.Pop.) Cheng f., agreed by Yakovlev (1988), Yakovlev et al. (1996) and     |
| 50 | Wei (1998), while Wei & Lock (2010) unified these two species. Although some phylogenetic        |
| 51 | works indicated a well supported Ammopiptanthus (Cardoso et al. 2013; Wang et al. 2006), the     |
| 52 | infra- and inter-generic phylogeny of this genus need further studies. Zhang et al. (2015a)      |
| 53 | inferred a diverging time of Ammopiptanthus from the "core genera" clade, but some closely       |
| 54 | related Sophoreae genera were not sampled (Cardoso et al. 2013; Wang et al. 2006), which may     |
| 55 | affect the accuracy of dating.                                                                   |
| 56 | As for phytogeography of Ammopiptanthus, various workers proposed different                      |
| 57 | speculations. Liu et al. (1996) suggested ancestor of this genus emerged in southern hemisphere, |
| 58 | dispersing northwards when the Tertiary forest expanded due to the uplift of the Qinghai-Tibet   |
| 59 | Plateau (QTP) and the retreat of Tethys. Some following studies granted Ammopiptanthus a         |
| 60 | southern laurasian origination, and regarded this genus as a relic of Tertiary flora (Sun 2002a; |
| 61 | Sun & Li 2003; Wang 2001). Based on molecular evidence, Wang et al. (2006) and Zhang et al.      |

| 62 | (2015a) approved the relic status of <i>Ammopiptanthus</i> , holding its ancestral area as in central Asia. |
|----|-------------------------------------------------------------------------------------------------------------|
| 63 | However, the existing phylogeny-based biogeographic analyses were under sampled towards the                 |
| 64 | tribe Sophoreae, which is closely related to Thermopsideae (Cardoso et al. 2012a; Cardoso et al.            |
| 65 | 2013; LPWG 2013), leading to possible inaccuracy in their bioinformatical inference.                        |
| 66 | We herein employ sequence data from nrDNA ITS and plastid matK, rbcL, trnL-trnF and                         |
| 67 | psbA-trnH, with an extensive sampling for Ammopiptanthus and its allies, to a) test the                     |
| 68 | monophyly and systematic status of Thermopsideae; b) infer the phylogeny and biogeography of                |
| 69 | Ammopiptanthus.                                                                                             |
| 70 |                                                                                                             |
| 71 | Materials and methods                                                                                       |
| 72 | Sampling scheme                                                                                             |
| 73 | All the 9 haplotypes (A–H, 270) of the two species of Ammopiptanthus found by Su et al.                     |
| 74 | (2016) and Shi et al. (accepted for publication) were included in the present study. Both species           |
| 75 | of Salweenia Baker f. were sampled (Yue et al. 2011). The nuclear internal transcribed spacer               |
| 76 | (ITS) sequences for Salweenia wardii Baker f. and Maackia amurensis Rupr., and the plastid                  |
| 77 | psbA-trnH and trnL-trnF intergenic spacer sequences for Maackia amurensis were generated in                 |

| 78                   | the present study. The DNA extraction, amplification and sequencing methods followed Su et al.                                                                                                                                                                                                                                                                                                                  |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 79                   | (2016). All other ITS, matK, rbcL, trnL-trnF and psbA-trnH sequences were obtained from                                                                                                                                                                                                                                                                                                                         |
| 80                   | GenBank. According to the phylogenetic analyses of Ammopiptanthus by Wang et al. (2006) and                                                                                                                                                                                                                                                                                                                     |
| 81                   | Zhang et al. (2015a), and phylogeny of the Genistoids s.l. (Cardoso et al. 2012b; Crisp et al.                                                                                                                                                                                                                                                                                                                  |
| 82                   | 2000; Pennington et al. 2001; Peters et al. 2010; Wojciechowski 2003), we selected 21 species in                                                                                                                                                                                                                                                                                                                |
| 83                   | Thermopsis, 7 species in Piptanthus, 2 species in Anagryris, 6 species in Bapstisia, 13 species in                                                                                                                                                                                                                                                                                                              |
| 84                   | Sophora, one or two species in Ammodendron, Genista and so on. The specific taxa including                                                                                                                                                                                                                                                                                                                      |
| 85                   | their GenBank accession numbers were showed in Table 1.                                                                                                                                                                                                                                                                                                                                                         |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 86                   | Phylogenetic analyses                                                                                                                                                                                                                                                                                                                                                                                           |
| 86<br>87             | <b>Phylogenetic analyses</b><br>Multiple sequence alignments were performed using MUSCLE (Edgar 2004) in the                                                                                                                                                                                                                                                                                                    |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 87                   | Multiple sequence alignments were performed using MUSCLE (Edgar 2004) in the                                                                                                                                                                                                                                                                                                                                    |
| 87<br>88             | Multiple sequence alignments were performed using MUSCLE (Edgar 2004) in the Geneious v.8.1.2 platform (Kearse et al. 2012) with default settings and manual adjustments. The                                                                                                                                                                                                                                   |
| 87<br>88<br>89       | Multiple sequence alignments were performed using MUSCLE (Edgar 2004) in the Geneious v.8.1.2 platform (Kearse et al. 2012) with default settings and manual adjustments. The best-fit substitution models for the ITS1, 5.8S, ITS2, <i>matK</i> , <i>psbA-trnH</i> , <i>rbcL</i> and <i>trnL-trnF</i>                                                                                                          |
| 87<br>88<br>89<br>90 | Multiple sequence alignments were performed using MUSCLE (Edgar 2004) in the<br>Geneious v.8.1.2 platform (Kearse et al. 2012) with default settings and manual adjustments. The<br>best-fit substitution models for the ITS1, 5.8S, ITS2, <i>matK</i> , <i>psbA-trnH</i> , <i>rbcL</i> and <i>trnL-trnF</i><br>regions were determined separately using jModelTest v.2.1.7 (Darriba et al. 2012). Phylogenetic |

| 94  | For the concatenated plastid dataset, partitions were done for the matK, psbA-trnH, rbcL and      |
|-----|---------------------------------------------------------------------------------------------------|
| 95  | trnL-trnF regions separately. In BI, two independent analyses with one cold and three             |
| 96  | incrementally heated Markov chain Monte Carlo (MCMC) chains were run for 10,000,000               |
| 97  | generations. Trees were sampled every 1,000 generations. All Bayesian analyses produced split     |
| 98  | frequencies of less than 0.01, showing convergence between the paired runs. The first 2,500 trees |
| 99  | were discarded as burn-in, and the remaining trees were used to construct a 50% majority-rule     |
| 100 | consensus tree and posterior probabilities (PP). In ML, the rapid bootstrap analysis was          |
| 101 | performed with a random seed, 1,000 alternative runs, and the same partition scheme as in the     |
| 102 | Bayesian analysis. The model parameters for each partition of the dataset were optimized by       |
| 103 | RAxML with the GTRCAT command. Trees were visualized in FigTree v1.4.3                            |
| 104 | (http://tree.bio.ed.ac.uk/software/figtree/). The ML bootstrap support values (BS) were labeled   |
| 105 | on the corresponding branches of the BI trees.                                                    |
| 106 | Estimation of divergence times                                                                    |
| 107 | Divergence times were estimated by using the ITS dataset and the BEAST v.2.4.3 package            |
| 108 | (Bouckaert et al. 2014). The ITS dataset was partitioned into the ITS1, 5.8S and ITS2 partitions, |
| 109 | and nucleotide substitution models were unlinked across the three partitions. Models were those   |

| 110 | determined by jModelTest. The log normal relaxed clock model was used, and clock model was              |
|-----|---------------------------------------------------------------------------------------------------------|
| 111 | linked across partitions. The birth-death model was employed, and was linked across partitions.         |
| 112 | Two independent MCMCs were each run for 50,000,000 generations, and samples were stored                 |
| 113 | every 1,000 generations. The effective sample size (ESS) of each sampled parameter and the              |
| 114 | convergence between runs were checked by using Tracer v.1.6 (http://beast.bio.ed.ac.uk/Tracer).         |
| 115 | The ESSs of all the parameters exceeded 200, and the two independent runs were convergent.              |
| 116 | After removing a 25% burn-in of each run, the trees from the two runs were combined by using            |
| 117 | LogCombiner (Bouckaert et al. 2014). The maximum clade credibility tree was found and                   |
| 118 | annotated by using TreeAnnotator (Bouckaert et al., 2014), and only the branches with posterior         |
| 119 | probability greater than 0.5 were annotated. The dating tree was visualized in FigTree v.1.4.3.         |
| 120 | Calibration points were chosen from the molecular dating analysis of the Fabaceae Family of             |
| 121 | Lavin et al. (2005). In the <i>matK</i> phylogeny of Lavin et al. (2005), the essential Genistoid crown |
| 122 | clade (excluding Ormosia Jacks.) had been set to a minimum of 56 million years ago (Ma)                 |
| 123 | according to fossil records. This clade was equal to our clade of ingroups, therefore the crown         |
| 124 | age of our ingroups was set as an exponential distribution with a mean of 1 and an offset of 56         |
| 125 | Ma. The Genistoid crown age had been estimated as $56.4 \pm 0.2$ Ma (Lavin et al. 2005); this age       |

| 126                      | was used to set the age of the root of our tree as a normal distribution with a mean of 56.4 Ma                                                                                                                                                                                                                                                                                                                          |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 127                      | and a standard deviation of 0.2 Ma. The age of the most recent common ancestor (MRCA) of                                                                                                                                                                                                                                                                                                                                 |
| 128                      | Bolusanthus speciosus Harms and Spartium junceum Linn. was set as a normal distribution with                                                                                                                                                                                                                                                                                                                             |
| 129                      | a mean of 45.2 Ma and a standard deviation of 2.2 Ma, and the age of the MRCA of <i>Piptanthus</i>                                                                                                                                                                                                                                                                                                                       |
| 130                      | nepalensis Sweet and Baptisia australis R.Br. was set as a normal distribution with a mean of                                                                                                                                                                                                                                                                                                                            |
| 131                      | 26.5 Ma and a standard deviation of 3.4 Ma, according to the ages of the equivalent nodes that                                                                                                                                                                                                                                                                                                                           |
| 132                      | had been estimated by Lavin et al. (2005).                                                                                                                                                                                                                                                                                                                                                                               |
| 133                      | Results                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 134                      | Phylogenetic analyses                                                                                                                                                                                                                                                                                                                                                                                                    |
| 134<br>135               | Phylogenetic analyses<br>Because the plastid sequences putatively evolve as a single molecule, sequences of the four                                                                                                                                                                                                                                                                                                     |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 135                      | Because the plastid sequences putatively evolve as a single molecule, sequences of the four                                                                                                                                                                                                                                                                                                                              |
| 135<br>136               | Because the plastid sequences putatively evolve as a single molecule, sequences of the four plastid markers ( <i>matK</i> , <i>rbcL</i> , <i>psbA-trnH</i> and <i>trnL-trnF</i> ) were concatenated. Phylogenetic                                                                                                                                                                                                        |
| 135<br>136<br>137        | Because the plastid sequences putatively evolve as a single molecule, sequences of the four plastid markers ( <i>matK</i> , <i>rbcL</i> , <i>psbA-trnH</i> and <i>trnL-trnF</i> ) were concatenated. Phylogenetic analyses were conducted on both of the nuclear and combined four plastid data (Figs. 1-3: Fig.1                                                                                                        |
| 135<br>136<br>137<br>138 | Because the plastid sequences putatively evolve as a single molecule, sequences of the four plastid markers ( <i>matK</i> , <i>rbcL</i> , <i>psbA-trnH</i> and <i>trnL-trnF</i> ) were concatenated. Phylogenetic analyses were conducted on both of the nuclear and combined four plastid data (Figs. 1-3: Fig.1 emphasized the position of <i>Pickeringia</i> ; Figs. 2-3 intensified the sampling for Sophoreae). The |

142 separately.

| 143 | Our analysis (Fig. 1) displayed that <i>Pickeringia</i> was phylogenetically far from the rest                         |
|-----|------------------------------------------------------------------------------------------------------------------------|
| 144 | genera of Thermopsideae. According to the detailed trees (Figs. 2 & 3), all genera of this tribe,                      |
| 145 | except for <i>Pickeringia</i> , belonged to the well supported "Core Genistoids" ( $PP = 1/BS = 100\%$                 |
| 146 | and PP = 1/BS = 94% in Figs 2 and 3, respectively). Four genera, <i>Anagyris</i> , <i>Baptisia</i> , <i>Piptanthus</i> |
| 147 | and <i>Thermopsis</i> , clustered into the "Thermopsoid clade" (1/100% for ITS tree; 1/94% for plastid                 |
| 148 | tree), within which Anagyris (1/100% & 1/99%) and Baptisia (1/100% & 0.95/95%) were shown                              |
| 149 | to be monophyletic. <i>Piptanthus</i> was strongly supported by the ITS tree (1/99%).                                  |
| 150 | Ammopiptanthus, showing a sistership with Salweenia (1/100% in both trees), was monophyletic                           |
| 151 | (1/100% & 0.99/89%). This genus was not related to the Thermopsoid clade. It nested in the                             |
| 152 | "Sophoroid clade" (0.99/83% & 0.71/74%), which in turn form a robustly supported group (1/96%                          |
| 153 | & 1/100%, the tribe Sophoreae, see Discussion) with the Thermopsoid clade.                                             |
| 154 | Presently sampled taxa from the tribes Crotalarieae, Genisteae and Podalyrieae formed a                                |
| 155 | clade (the PCG clade; 0.89/80% & 0.92/79%), while Bolusanthus and Dicraeopetalum clustered                             |
| 156 | together (the BOD clade; 1/100% in both trees). These two clades occupied different position                           |
| 157 | with relation to Sophoreae (0.92/88% & 0.99/56%).                                                                      |

| 1 | 5 | 8 |
|---|---|---|
| - |   | U |

| 159 | Estimating | divergence | time |
|-----|------------|------------|------|
|-----|------------|------------|------|

- 160 A phylogenetic dating was conducted based on the ITS dataset (Fig. 4). The estimated mean
- ages and their 95% highest posterior density intervals (in parentheses) of the interested clades
- 162 were put as below: 41.24 (35.2, 46.93) Ma for the Sophoreae plus PCG clade, 35.59 (28.88,
- 163 42.44) Ma for the Sophoroid plus Thermopsoid clade, 30.61 (22.91, 38.28) Ma for the Maakia
- 164 plus its sister clade, 26.96 (19.36, 34.62) Ma for Node I, 4.74 (1.72, 8.77) Ma for Node II and
- 165 2.04 (0.67, 3.73) Ma for Node III.
- 166

#### 167 Discussion

168 Phylogenetic position of Thermopsideae

169 The widely distributed legume tribe Thermopsideae containing six genera, was proposed by

- 170 Yakovlev (1972), and was accepted by most of subsequent studies (Lock 2005; Polhill 1994;
- 171 Turner 1981; Wang 2001; Wei et al. 2010; Wei 1998; Yakovlev 1972). Phylogenetic works
- indicated most genera of this tribe are members of the "core genistoids", which in turn belongs to
- the Genistoid clade in a broad sense (Cardoso et al. 2012b; Cardoso et al. 2016; Cardoso et al.

| 174 | 2013; Crisp et al. 2000; Pennington et al. 2001; Peters et al. 2010; Wojciechowski 2003).       |
|-----|-------------------------------------------------------------------------------------------------|
| 175 | However, the western North American endemic genus Pickeringia was an outlier from the core      |
| 176 | genistoids (Fig. 1; also see Lavin et al. 2005; Wojciechowski 2013; Wojciechowski et al. 2004;  |
| 177 | LPWG 2013). Therefore, Lock (2005) suggested that this genus may be ruled out from              |
| 178 | Thermopsideae. Our results confirm such view (Fig. 1). Pickeringia also differs from other      |
| 179 | genera of Thermopsideae in basic chromsome number ( $x = 7$ vs. $x = 8$ ; Chen 1992; Goldblatt  |
| 180 | 1981; Pan & Huang 1993) and quinolizidine alkaloids (absence vs. presence; see Turner 1981;     |
| 181 | Käss & Wink 1994; Crisp et al. 2000; Doyle et al. 2000).                                        |
| 182 | With the exclusion of <i>Pickeringia</i> , Cardoso et al. (2012b, 2013) proposed to merge       |
| 183 | Thermopsideae into Sophoreae sensu Cardoso, which is characterized by free stamens, to render   |
| 184 | it monophyletic. Such treatment is basically verified by our results (Figs. 2 & 3). A more      |
| 185 | inclusive Sophoreae sensu Cardoso can avoid taxonomic over-fragmentation of the core            |
| 186 | Genistoids taxa and the establishments of new tribes based on many small clades. On the other   |
| 187 | side, one clade, constituted of Bolusanthus speciosus Harms and Dicraeopetalum mahafaliense     |
| 188 | (M.Peltier) Yakovlev (the BOD clade), was involved in Sophoreae by Cardoso et al. (2013) with   |
| 189 | weak support. Such relationship is not validated by our ITS tree (Fig. 2; also not supported by |

| 190 | the likelihood bootstrap value of plastid tree, see Fig. 3). The newly circumscribed Sophoreae,    |
|-----|----------------------------------------------------------------------------------------------------|
| 191 | equal to Sophoreae sensu Cardoso with exclusion of the BOD clade, is further divided into the      |
| 192 | Thermopsoid clade and Sophoroid clade (Figs. 2 & 3). Besides, Cardoso et al. (2013) elevated       |
| 193 | Ormosia from Sphoroeae as tribe Ormosieae, yet our results do not confirm the affiliation of       |
| 194 | Clathrotropis with this tribe (Figs. 2 & 3).                                                       |
| 195 | The Core Genistoids is composed of three robust groups: Sophoreae, the BOD clade and               |
| 196 | PCG clade. Our ITS and plastid tree topologies are incongruent with regard to these clades.        |
| 197 | Sophoreae forms a clade with the PCG clade in the ITS tree (Fig. 2), whereas it is sister to the   |
| 198 | BOD clade in the plastid tree (Fig. 3). Although not all of the support values are significant (BI |
| 199 | posterior probability> 0.95, ML bootstrap value > 70%), the current case of topological            |
| 200 | discordance is similar to Xu et al. (2012), García et al. (2014) and Duan et al. (2016), which     |
| 201 | likely implied a chloroplast capture event in the origin of Sophoreae. Nevertheless, highly        |
| 202 | supported analyses are required to further verified this hypothesis.                               |
| 203 |                                                                                                    |

- 204 Phylogeny of the Thermopsoid clade
- 205 The Thermopsoid clade possesses four genera: *Anagyris, Baptisia, Piptanthus* and

| 206 | Thermopsis, and is divided into two well supported groups: the Eurasian group and the American         |
|-----|--------------------------------------------------------------------------------------------------------|
| 207 | group.                                                                                                 |
| 208 | The monophyletic Anagyris (also see Ortega-Olivencia & Catalan 2009) is endemic to                     |
| 209 | circum-Mediterranean region, and belongs to the Eurasian group (Figs 2 & 3). The Eurasian              |
| 210 | group also includes the Hengduan-Himalaya-distributed genus Piptanthus, whose monophyly                |
| 211 | was accepted by Wang et al. (2006) and supported by our ITS result (Fig. 2). Baptisia is               |
| 212 | restricted to North America (central, northern and southern states of U.S.A.), embedding within        |
| 213 | the Thermopsoid American group. Our analyses yielded robust support for this genus, following          |
| 214 | Wang et al. (2006), Uysal et al. (2014) and Zhang et al. (2015a).                                      |
| 215 | Previous (Uysal et al. 2014; Wang et al. 2006; Zhang et al. 2015a) and the present results             |
| 216 | (Figs. 2 & 3) resolve a polyphyletic <i>Thermopsis</i> , with its species being assigned into both the |
| 217 | Eurasian and the American groups. It is obvious that this genus needs further taxonomic revision.      |
| 218 | Noticeably, three Asian species, Thermopsis fabacea (Pall.) DC., T. chinensis Benth. ex S.Moore        |
| 219 | and T. turcica Kit Tan, Vural & Küçük., nest in the American group, making biogeography of             |
| 220 | this genus an attractive question in the future. Besides, our trees failed to support the generic      |
| 221 | status of the monotypic Vuralia Uysal & Ertuğrul (= Thermopsis turcica), which was proposed            |

| 222 | by Uysal et al. (2014) mainly based on some unique morphological characters such as 3-         |
|-----|------------------------------------------------------------------------------------------------|
| 223 | carpellate ovary and indehiscent fruit.                                                        |
| 224 |                                                                                                |
| 225 | Placing Ammopiptanthus within the Sophoroid clade                                              |
| 226 | Within the Sophoroid clade, the monophyletic Maackia Rupr. diverges first, and the             |
| 227 | remaining taxa are divided into two highly supported groups. The first group embraces a non-   |
| 228 | monophyletic Sophora (also see (Cardoso et al. 2013; Kajita et al. 2001; Kass & Wink 1997; Lee |
| 229 | et al. 2004; Wink & Mohamed 2003), and some allied Sophoreae genera, i.e. Ammodendron          |
| 230 | Fisch. ex DC., Ammothamnus Bunge, Echinosophora Nakai, Euchresta Benn. Sophora is a            |
| 231 | widespread genus, and has been revised by various taxonomists (Bao 2010; Heenan et al. 2004;   |
| 232 | Ma 1990; Ma 1994; Tsoong 1981a; Tsoong 1981b; Vasil'chenko 1945; Yakovlev 1996), whereas       |
| 233 | its phylogeny and taxonomy are long-standing puzzles, which require unremitting efforts to     |
| 234 | solve.                                                                                         |
| 235 | The former Thermopsideae member Ammopiptanthus, with a sister of Salweenia, constitute         |
| 236 | another group in the Sophoroid clade (Figs. 2 & 3). Traditionally, Ammopiptanthus contains two |
| 237 | species: A. mongolicus and A. nanus (Cheng 1959; Fu 1987; Li & Yan 2011; Wei 1998;             |

| 238 | Yakovlev 1996;), while Wei & Lock (2010) merged the latter into the former. Our results (Figs.          |
|-----|---------------------------------------------------------------------------------------------------------|
| 239 | 2 & 3) confirmed the specific status of <i>A. nanus</i> , which is confined in SW Xinjiang of China and |
| 240 | E Kirgizstan, compared to a non-overlapping range of A. mongolicus in N InnerMongolia, N                |
| 241 | Gansu, E Xinjiang of China and S Mongolia (Fig. 5). Besides, taxonomic separation of the two            |
| 242 | species is also supported by morphological (Cheng 1959; Wei 1998), anatomical (Yuan & Chen              |
| 243 | 1993; Shi et al. unpublished), cytological (Chen 1992; Liu et al. 1996; Pan & Huang 1993) and           |
| 244 | biochemical (Feng et al. 2011; Shi 2009; Wei et al. 2007; Wei & Shi 1995; Yin & Zhang 2004)             |
| 245 | evidence. Recently, Lazkov (2006) described a new species in Kirgizstan: Ammopiptanthus                 |
| 246 | kamelinii Lazkov. Yet its type specimen is not significantly distinct from A. nanus, plus its type      |
| 247 | locality is overlapped with A. nanus, we thus suspend the recognition of A. kamelinii.                  |
| 248 |                                                                                                         |
| 249 | Biogeography of Ammopiptanthus and Salweenia                                                            |
| 250 | The abovementioned Ammopiptanthus-Salweenia group displays a disjunctive distribution.                  |
| 251 | Ammopiptanthus is recorded from arid lands of NW China, S Mongolia and E Kirgizstan (Fig.               |
| 252 | 5A - C), contrastively, Salweenia is endemic to the Hengduan Mountains in E Qinghai-Tibetan             |
| 253 | Plateau (QTP) (Fig. 5A & D). Several hypotheses have been proposed for the evolutionary                 |

| 254 | history of Ammopiptanthus, most of which believe that this genus is a relic survivor of the         |
|-----|-----------------------------------------------------------------------------------------------------|
| 255 | Tertiary flora (Sun 2002a; Sun & Li 2003; Wang 2001; Wang et al. 2006; Zhang et al. 2015a).         |
| 256 | Yet these studies were conducted in a context of Thermopsideae, which is already treated into       |
| 257 | Sophoreae (see Discussion above). Furthermore, none of them paid attention to the sister            |
| 258 | relationship between Ammopiptanthus and Salweenia.                                                  |
| 259 | Central Asian origination for Ammopiptanthus, as suggested by Wang et al. (2006) and                |
| 260 | Zhang et al. (2015a) may be valid due to its unique habit in the NW desert of China: it is the only |
| 261 | evergreen broadleaf shrub therein, which can be regarded as a symplesiomorphy characterized         |
| 262 | by the Tertiary flora. However, due to the monophyly of the Ammopiptanthus-Salweenia group,         |
| 263 | the ancestral range of Salweenia is probably not in Gondwana as depicted in Li & Ni (1982) and      |
| 264 | Yue et al. (2011). Thus, we may hypothesize the evolution process for this group as below (see      |
| 265 | Fig. 4). The second main uplift of QTP occurred at ca. 25 Ma, triggering the E Asian monsoon        |
| 266 | (Chen et al. 1999; Li 2001; Shi et al. 1999; Teng et al. 1997). Common ancestor of                  |
| 267 | Ammopiptanthus and Salweenia arose in the Tertiary evergreen forest of ancient central Asia at      |
| 268 | ca. 26.96 Ma (Fig. 4: Node I). Their common ancestor dispersed southwards with the forest           |
| 269 | expansion after Tethys retreat (as in Sun 2002b).                                                   |

| 270                      | The third rapid uplift of QTP as a whole happened at 7-8 Ma (Harrison & Copeland 1992;                                                                                                                                                                                                                                                                                                   |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 271                      | Liu et al. 2001; Wang et al. 2008; Zheng & Yao 2006), and followed by a main raising of NW                                                                                                                                                                                                                                                                                               |
| 272                      | QTP at ca. 4.5 Ma (Zheng et al. 2000), leading to the "inlandization" of central Asia, as well as                                                                                                                                                                                                                                                                                        |
| 273                      | cooler climate and aridification. The vicariance and environment change probably led to the                                                                                                                                                                                                                                                                                              |
| 274                      | divergence between Ammopiptanthus and Salweenia (ca. 4.74 Ma, see Fig. 4: Node II). The                                                                                                                                                                                                                                                                                                  |
| 275                      | former kept the evergreen shrubby habit and obtained xerophytic characters, e.g. the pubescent,                                                                                                                                                                                                                                                                                          |
| 276                      | coriaceous leaves, in the central Asian arid land; while the latter retained more Tertiary flora                                                                                                                                                                                                                                                                                         |
| 277                      | traits in the less disturbed region of the Hengduan Mountains (Sun 2002a; Sun 2002b; Sun & Li                                                                                                                                                                                                                                                                                            |
|                          |                                                                                                                                                                                                                                                                                                                                                                                          |
| 278                      | 2003).                                                                                                                                                                                                                                                                                                                                                                                   |
| 278<br>279               | 2003).<br>Split of the two <i>Ammopiptanthus</i> species (2.04 Ma; see Fig. 4: Node III) is possibly the                                                                                                                                                                                                                                                                                 |
|                          |                                                                                                                                                                                                                                                                                                                                                                                          |
| 279                      | Split of the two <i>Ammopiptanthus</i> species (2.04 Ma; see Fig. 4: Node III) is possibly the response to the last (fourth) rapid elevation of QTP, when aridification of Asian inner land                                                                                                                                                                                              |
| 279<br>280               | Split of the two <i>Ammopiptanthus</i> species (2.04 Ma; see Fig. 4: Node III) is possibly the response to the last (fourth) rapid elevation of QTP, when aridification of Asian inner land                                                                                                                                                                                              |
| 279<br>280<br>281        | Split of the two <i>Ammopiptanthus</i> species (2.04 Ma; see Fig. 4: Node III) is possibly the response to the last (fourth) rapid elevation of QTP, when aridification of Asian inner land intensified (3.6-2.5 Ma; Chen et al. 1999; Li & Fang 1999; Li 2001; Tang & Liu 2001; Zheng &                                                                                                 |
| 279<br>280<br>281<br>282 | Split of the two <i>Ammopiptanthus</i> species (2.04 Ma; see Fig. 4: Node III) is possibly the response to the last (fourth) rapid elevation of QTP, when aridification of Asian inner land intensified (3.6-2.5 Ma; Chen et al. 1999; Li & Fang 1999; Li 2001; Tang & Liu 2001; Zheng & Yao 2006). This estimated age is slightly older than that of Su et al. (2016), which shared the |

| 286 | nerves, thicker root cortex, more complex karyotype, more vulnerable phytocommunities, etc.   |
|-----|-----------------------------------------------------------------------------------------------|
| 287 | (Cheng 1959; Pan & Huang 1993; Wei 1998; Zhang et al. 2007; Shi et al. unpublished).          |
| 288 | Such disjunction resulting from QTP uplift also takes place in other Legume taxa, e.g.        |
| 289 | infra-generic biogeography of some genera in the tribe Caraganeae (QTP-NW China/C Asia        |
| 290 | disjuction; see Zhang et al. 2010; Zhang et al. 2015b; Zhang et al. 2015c); inter-generic     |
| 291 | evolutionary history of Gueldenstaedtia and Tibetia (mesic E Asia-QTP disjunction; see Xie et |
| 292 | al., 2016). Unlike neither of the cases above, our results may provide a new insight into the |
| 293 | evolutionary pattern of an inter-generic QTP-NW China/C Asia disjunctive distribution.        |
| 294 |                                                                                               |
| 295 | Acknowledgments                                                                               |
| 296 | This work was supported by the National Natural Science Foundation of China (No.              |
| 297 | 41271070) and the grants from the Special Service Project of Chinese Academy of Sciences (no. |
| 298 | TSS-2015-014-FW-4-1). We thank Dr. Sun Ming-Zhou for kindly providing samples.                |

#### 299 **References**

300 Akdeniz D, and Ozmen A. 2011. Antimitotic effects of the biopesticide oxymatrine. *Caryologia* 64:117-120.

Bao BJ, Vincent, M.A. 2010. Sophora. In: Wu ZY, Hong, D.Y. & Raven P.H., ed. *Flora of China*. Beijing & St. Louis:
Science Press & Missouri Botanical Garden Press, 85-93.

Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, Suchard MA, Rambaut A, and Drummond AJ. 2014.
BEAST 2: a software platform for Bayesian evolutionary analysis. *PLoS Comput Biol* 10:e1003537.

Cardoso D, de Lima HC, Rodrigues RS, de Queiroz LP, Pennington RT, and Lavin M. 2012a. The realignment of
Acosmium sensu stricto with the Dalbergioid clade (Leguminosae: Papilionoideae) reveals a proneness for
independent evolution of radial floral symmetry among early-branching papilionoid legumes. *Taxon* 61:1057-1073.

309

310

311

312 Cardoso D, Harris DJ, Wieringa JJ, São-Mateus WM, Batalha-Filho H, Torke BM, Prenner G, and de Queiroz LP. 2016. 313 A molecular-dated phylogeny and biogeography of the monotypic legume genus Haplormosia, a missing 314 African branch of the otherwise American-Australian Brongniartieae clade. Molecular Phylogenetics and 315 Evolution. 316 Cardoso D, Pennington R, De Queiroz L, Boatwright J, Van Wyk B-E, Wojciechowski M, and Lavin M. 2013. 317 Reconstructing the deep-branching relationships of the papilionoid legumes. South African Journal of 318 Botany 89:58-75. 319 Chen CJ, Mendenhall MG, and Turner BL. 1994. Taxonomy of Thermopsis (Fabaceae) in North America. Annals of 320 the Missouri Botanical Garden:714-742. 321 Chen CJ, Zhu, X.Y., Yuan, Y.M. 1992. Cytological studies on the tribe Thermopsideae (Fabaceae) I: Report on 322 karyotypes of eleven species of four genera. *Cathaya* 4:103-116. 323 Chen LX, Liu JP, Zhou XJ, and Wang PX. 1999. Impact of uplift of Qinghai-Xizang Plateau and change of land-ocean 324 distribution on climate over Asia. *Quaternary Sciences* 4:314-329. 325 Cheng SH. 1959. Ammopiptanthus Cheng f., a new genus of Leguminosae from central Asia. Botanicheskii Zhurnal 326 44:1381-1386. 327 Crisp M, Gilmore S, and Van Wyk B. 2000. Molecular phylogeny of the Genistoid tribes of Papilionoid Leguminosae. 328 In: Herendeen P, and Bruneau A, eds. Advances in Leguminosae systematics. Kew, Richmond: Royal 329 Botanic Gardens, 249-276. 330 Czefranova Z. 1970. Series novae generis Thermopsis R.Br. Novitates Systematicae Plantarum Vascularium 7:213-331 216. 332 Darriba D, Taboada GL, Doallo R, and Posada D. 2012. jModelTest 2: more models, new heuristics and parallel 333 computing. *Nature methods* 9:772-772. 334 Doyle J, Chappill J, Bailey C, and Kajita T. 2000. Towards a comprehensive phylogeny of legumes: evidence from 335 rbcL sequences and non-molecular data. In: Herendeen P, and Bruneau A, eds. Advances in Leguminosae 336 systematics. Kew, Richmond: Royal Botanic Gardens, 1-20. 337 Duan L, Yang X, Liu P, Johnson G, Wen J, and Chang Z. 2016. A molecular phylogeny of Caraganeae (Leguminosae, 338 Papilionoideae) reveals insights into new generic and infrageneric delimitations. PhytoKeys:111. 339 Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic acids 340 research 32:1792-1797. 341 Feng WJ, Ou YF, Su YL, Li J, and Ji TF. 2011. Chemical constituents of Ammopiptanthus mongolicus. China journal of 342 Chinese materia medica 36:1040-1042. 343 Fu KT. 1987. Ammopiptanthus and Thermopsis. In: Liou YX, ed. Flora in Desertis Reipublicae Populorum Sinarum. 344 Beijing: Science Press, 230-232. 345 García N, Meerow AW, Soltis DE, and Soltis PS. 2014. Testing deep reticulate evolution in Amaryllidaceae tribe 346 Hippeastreae (Asparagales) with ITS and chloroplast sequence data. Systematic Botany 39:75-89. 347 Goldblatt P. 1981. Cytology and the phylogeny of Leguminosae. In: Polhill RM, Raven, P.H., ed. Advances in legume 348 systematics. Richmond: Royal Botanic Gardens, Kew, 427-463. 349 Harrison TM, and Copeland P. 1992. Raising tibet. Science 255:1663.

Cardoso D, De Queiroz LP, Pennington RT, De Lima HC, Fonty É, Wojciechowski MF, and Lavin M. 2012b. Revisiting

lineages. American Journal of Botany 99:1991-2013.

the phylogeny of papilionoid legumes: New insights from comprehensively sampled early-branching

350 Heenan PB, Dawson MI, and Wagstaff SJ. 2004. The relationship of Sophora sect. Edwardsia (Fabaceae) to Sophora 351 tomentosa, the type species of the genus Sophora, observed from DNA sequence data and morphological 352 characters. Botanical Journal of the Linnean Society 146:439-446. 10.1111/j.1095-8339.2004.00348.x 353 Kajita T, Ohashi H, Tateishi Y, Bailey CD, and Doyle JJ. 2001. rbcL and legume phylogeny, with particular reference 354 to Phaseoleae, Millettieae, and allies. Systematic Botany 26:515-536. 355 Kass E, and Wink M. 1994. Molecular phylogeny of the papilionoideae (family leguminosae) - rbcl gene-sequences 356 versus chemical taxonomy. Botanica Acta 108:149-162. 357 Kass E, and Wink M. 1997. Phylogenetic relationships in the papilionoideae (family leguminosae) based on 358 nucleotide sequences of cpDNA (rbcL) and ncDNA (ITS 1 and 2). Molecular Phylogenetics and Evolution 359 8:65-88. 10.1006/mpev.1997.0410 360 Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, and Duran C. 361 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and 362 analysis of sequence data. Bioinformatics 28:1647-1649. 363 Larisey MM. 1940a. A monograph of the genus Baptisia. Annals of the Missouri Botanical Garden 27:119-244. 364 Larisey MM. 1940b. A revision of the North American species of the genus Thermopsis. Annals of the Missouri 365 Botanical Garden 27:245-258. 366 Lavin M, Herendeen PS, and Wojciechowski MF. 2005. Evolutionary rates analysis of Leguminosae implicates a 367 rapid diversification of lineages during the Tertiary. Systematic biology 54:575-594. 368 Lazkov G. 2006. Generis Ammopiptanthus S.H.Cheng (Fabaceae) species nova e Kyrgyzstania. Novitates 369 *Systematicae Plantarum Vascularium* 38:134-138. 370 Lee WK, Tokuoka T, and Heo K. 2004. Molecular evidence for the inclusion of the Korean endemic genus 371 "Echinosophora" in Sophora (Fabaceae), and embryological features of the genus. Journal of plant 372 research 117:209-219. 373 Li J, and Fang X. 1999. Uplift of the Tibetan Plateau and environmental changes. Chinese Science Bulletin 44:2117-374 2124. 375 Li JJ, Fang, X.M., Pan, B.T., Zhao, Z.J., Song, Y.G. 2001. Late Cenozoic intensive uplift of Qinghai-Xizang Plateau and 376 its impacts on environments in surrounding area. Quaternary Sciences 21:381-391. 377 Li PQ, and Ni CC. 1982. The formation and differentiation of the Leguminosae flora in Xizang (Tibet). Acta 378 Phytotaxonomica Sinica 20:142-156. 379 Li XY, and Yan P. 2011. Leguminosae. In: Sheng GM, ed. Flora Xinjiangensis. Xinjiang: Xinjiang Science & Technology 380 Publishing House, 11-12. 381 Liu S, Chi X, Li C, and Yang R. 2001. The summarizing for the forming and uplifted mechanism of Qinghai-Tibet Plateau. World Geology 20:105-112. 382 383 Liu YH, Wang SM, and Wang HS. 1996. A study on the chromosomal geography of Ammopiptanthus genus. 384 Geographical Research 15. 385 Lock J. 2005. Thermopsideae. In: Lewis G, Schrire B, Mackinder B, and Lock M, eds. Legumes of the world. Kew, 386 Richmond: Royal Botanic Gardens, 263-265. 387 LPWG (Legume Phylogeny Working Group). 2013. Legume phylogeny and classification in the 21st century: 388 progress, prospects and lessons for other species-rich clades. Taxon 62:217-248. 389 Ma CY. 1990. Review of the classifical system on the genus Sophora. Bulletin of Botanical Research 10:77-86. 390 Ma CY. 1994. Sophora. In: Wei Z, ed. Flora Reipublicae Popularis Sinicae. Beijing: Science Press, 64-95.

| 391 | Ortega-Olivencia A. 2009. Systematics and evolutionary history of the circum-Mediterranean genus Anagyris             |
|-----|-----------------------------------------------------------------------------------------------------------------------|
| 392 | L.(Fabaceae) based on morphological and molecular data. <i>Taxon</i> 58:1290-1306.                                    |
| 393 | Ortega-Olivencia A, and Catalan P. 2009. Systematics and evolutionary history of the circum-Mediterranean genus       |
| 394 | Anagyris L. (Fabaceae) based on morphological and molecular data. <i>Taxon</i> 58:1290-1306.                          |
| 395 | Pan BR, and Huang SP. 1993. A cytological studies of genus Ammopiptanthus. Acta Botanica Sinica 35.                   |
| 396 | Peng ZX, Yuan, Y.M. 1992. Systematic revision on Thermopsideae (Leguminosae) of China. Acta Botanica Boreali-         |
| 397 | Occidentalia Sinica 12:158-166.                                                                                       |
| 398 | Pennington RT, Lavin M, Ireland H, Klitgaard B, Preston J, and Hu J-M. 2001. Phylogenetic relationships of basal      |
| 399 | papilionoid legumes based upon sequences of the chloroplast trnL intron. Systematic Botany 26:537-556.                |
| 400 | Peters WS, Haffer D, Hanakam CB, van Bel AJ, and Knoblauch M. 2010. Legume phylogeny and the evolution of a           |
| 401 | unique contractile apparatus that regulates phloem transport. American Journal of Botany 97:797-808.                  |
| 402 | Polhill RM. 1994. Classification of the Leguminosae. In: Southon IW, Bisby, F.A., Buckingham, J., Harborne, J.B., ed. |
| 403 | Phytochemical dictionary of the Leguminosae. London: Chapman & Hall, XXXV-LVII.                                       |
| 404 | Ronquist F, and Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models.                  |
| 405 | Bioinformatics 19:1572-1574. 10.1093/bioinformatics/btg180                                                            |
| 406 | Sa R. 1999. Systematics of Thermopsis (Leguminosae) Ph.D. Chinese Academy of Sciences.                                |
| 407 | Sa R, Sudebilige, Chen, J.R. 2000. Epidermal characters of leaves in Thermopsis and their biolocal Significances.     |
| 408 | Acta Agrestia Sinica 8:66-76.                                                                                         |
| 409 | Shi W, Pan, B.R., Zhang, Q. 2009. Comparison of element contents in habitat soil and plant leaves of                  |
| 410 | Ammopiptanthus nanus and A. mongolicus. Chinese journal of Applied and Environmental Biology 15:660-                  |
| 411 | 665.                                                                                                                  |
| 412 | Shi W, Su ZH, Liu PL, Pan BR, Zhao Y, and Wang J. 2017. Molecular, karyotypic and morphological evidence for          |
| 413 | Ammopiptanthus (Fabaceae) taxonomy. Annals of the Missouri Botanical Garden 102. (Accepted,                           |
| 414 | unpulished)                                                                                                           |
| 415 | Shi Y, Li J, and Li B. 1999. Uplift of the Qinghai-Xizang (Tibetan) plateau and east Asia environmental change during |
| 416 | late Cenozoic. ACTA GEOGRAPHICA SINICA-CHINESE EDITION- 54:20-28.                                                     |
| 417 | Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.         |
| 418 | Bioinformatics 30:1312-1313.                                                                                          |
| 419 | Su Z, Pan B, Zhang M, and Shi W. 2016. Conservation genetics and geographic patterns of genetic variation of          |
| 420 | endangered shrub Ammopiptanthus (Fabaceae) in northwestern China. Conservation Genetics 17:485-496.                   |
| 421 | 10.1007/s10592-015-0798-x                                                                                             |
| 422 | Sun H. 2002a. Tethys retreat and Himalayas-Hengduanshan Mountains uplift and their significance on the origin         |
| 423 | and development of the Sino-Himalayan elements and alpine flora. Acta Botanica Yunnanica 24:273-288.                  |
| 424 | Sun H. 2002b. Evolution of arctic-tertiary flora in Himalayan-Hengduan Mountains. Acta Botanica Yunnanica             |
| 425 | 24:671-688.                                                                                                           |
| 426 | Sun H, and Li Z. 2003. Qinghai-Tibet Plateau uplift and its impact on Tethys flora. Advances in Earth Science 18:852- |
| 427 | 862.                                                                                                                  |
| 428 | Tang M, and Liu Y. 2001. On causes and environmental consequences of the uplift of Qinghai-Xizang Plateau.            |
| 429 | Quaternary Sciences 21:500-507.                                                                                       |
| 430 | Teng JW, ZHang ZJ, Zhang BM, and Zhang H. 1997. Environmental change and the uplift of Tibetan Plateau. EARTH         |
| 431 | SCIENCE FRONTIERS 4:247-254.                                                                                          |
|     |                                                                                                                       |

| 432 | Tsoong PC, Ma, C.Y. 1981a. A study on the genus Sophora Linn. Acta Phytotaxonomica Sinica 19:1-22.                 |
|-----|--------------------------------------------------------------------------------------------------------------------|
| 433 | Tsoong PC, Ma, C.Y. 1981b. A study on the genus Sophora Linn. (Cont.). Acta Phytotaxonomica Sinica 19:143-167.     |
| 434 | Turner B. 1981. Thermopsodeae. In: Polhill RM RP, ed. Advances in Legume Systematics. Richmond: Royal Botanic      |
| 435 | Garden, Kew, 403-407.                                                                                              |
| 436 | Turner B. 2006. Overview of the genus Baptisia (Leguminosae). Phytologia 88:253-268.                               |
| 437 | Turner BL. 1980. REVISION OF THE GENUS PIPTANTHUS (FABACEAE, THERMOPSIDEAE). Brittonia 32:281-285.                 |
| 438 | 10.2307/2806715                                                                                                    |
| 439 | Uysal T, Ertuğrul K, and Bozkurt M. 2014. A new genus segregated from Thermopsis (Fabaceae: Papilionoideae):       |
| 440 | Vuralia. Plant systematics and evolution 300:1627-1637.                                                            |
| 441 | Vasil'chenko IT. 1945. Sophora. In: Komarov VL, ed. Flora of the USSR. Leningrad: Izdatel'stvo Akademii Nauk SSSR, |
| 442 | 20-24.                                                                                                             |
| 443 | Wang C, Zhao X, Liu Z, Lippert PC, Graham SA, Coe RS, Yi H, Zhu L, Liu S, and Li Y. 2008. Constraints on the early |
| 444 | uplift history of the Tibetan Plateau. Proceedings of the National Academy of Sciences 105:4987-4992.              |
| 445 | Wang H. 2001. A preliminary study on phytogeography of the tribe Thermopsideae (Papilionaceae). Acta Botanica      |
| 446 | Yunnanica 23:17-28.                                                                                                |
| 447 | Wang HC, Sun H, Compton JA, and Yang JB. 2006. A phylogeny of Thermopsideae (Leguminosae : Papilionoideae)         |
| 448 | inferred from nuclear ribosomal internal transcribed spacer (ITS) sequences. Botanical Journal of the              |
| 449 | Linnean Society 151:365-373. 10.1111/j.1095-8339.2006.00512.x                                                      |
| 450 | Wang Y, Jiao P, Li B, and Liu C. 2010. Tissue Culture and Regeneration of Ammopiptanthus nanus(M.Pop.)Cheng f.     |
| 451 | Plant Physiology Communications 46:375-376.                                                                        |
| 452 | Wei H, Wu P, Ge X, Liu M, and Wei X. 2007. Chemical constituents of the seeds of Ammopiptanthus (Leguminosae)      |
| 453 | and their systematic and ecological significance. Biochemical Systematics and Ecology 35:274-280.                  |
| 454 | Wei KH, Gao SL, and Huang HP. 2010. Tissue culture and generation of autotetraploid plants of Sophora flavescens   |
| 455 | Aiton. Pharmacognosy Magazine 6:286-292. 10.4103/0973-1296.71793                                                   |
| 456 | Wei SQ. 1998. Thermopsideae. In: Cui HB, ed. Flora Reipublicae Popularis Sinicae. Beijing: Science Press, 88-411.  |
| 457 | Wei Y, and Shi QH. 1995. Spectrum analysis on the esterase isozymes of Ammopiptanthus. Arid Zone Research          |
| 458 | 12:36, 53-54.                                                                                                      |
| 459 | Wei Z, and Lock JM. 2010. Fabaceae Tribe Thermopsideae. In: Wu ZY, Hong, D.Y. & Raven P.H., ed. Flora of China.    |
| 460 | Beijing & St. Louis: Science Press & Missouri Botanical Garden Press, 100-104.                                     |
| 461 | Wink M, and Mohamed G. 2003. Evolution of chemical defense traits in the Leguminosae: mapping of distribution      |
| 462 | patterns of secondary metabolites on a molecular phylogeny inferred from nucleotide sequences of the               |
| 463 | rbcL gene. Biochemical Systematics and Ecology 31:897-917.                                                         |
| 464 | Wojciechowski MF. 2003. Reconstructing the phylogeny of legumes (Leguminosae): an early 21st century               |
| 465 | perspective. Advances in legume systematics, part 10:5-35.                                                         |
| 466 | Wojciechowski MF. 2013. The Origin and Phylogenetic Relationships of the Californian Chaparral 'Paleoendemic'      |
| 467 | Pickeringia (Leguminosae). Systematic Botany 38:132-142. 10.1600/036364413x662024                                  |
| 468 | Wojciechowski MF, Lavin M, and Sanderson MJ. 2004. A phylogeny of legumes (Leguminosae) based on analyses of       |
| 469 | the plastid matK gene resolves many well-supported subclades within the family. American Journal of                |
| 470 | <i>Botany</i> 91:1846-1862. 10.3732/ajb.91.11.1846                                                                 |
| 471 | Xie YP, Meng Y, Sun H, and Nie ZL. 2016. Molecular Phylogeny of Gueldenstaedtia and Tibetia (Fabaceae) and Their   |
| 472 | Biogeographic Differentiation within Eastern Asia. <i>PloS one</i> 11:e0162982.                                    |

| 473 | Xu B, Wu N, Gao X-F, and Zhang L-B. 2012. Analysis of DNA sequences of six chloroplast and nuclear genes suggests  |
|-----|--------------------------------------------------------------------------------------------------------------------|
| 474 | incongruence, introgression, and incomplete lineage sorting in the evolution of Lespedeza (Fabaceae).              |
| 475 | Molecular Phylogenetics and Evolution 62:346-358.                                                                  |
| 476 | Yakovlev GP. 1972. A contribution to the system of the order Fabales Nakai (Leguminales Jones). Botanicheskii      |
| 477 | Zhurnal 57.                                                                                                        |
| 478 | Yakovlev GP. 1988. Thermopsis. In: Yakovlev GP, ed. Plants of Central Asia. Enfield & Plymouth Science Publishers, |
| 479 | Inc.                                                                                                               |
| 480 | Yakovlev GP. 1996. Thermopsideae. In: Yakovlev GP, Sytin, A.K., Roskov, Y.R., ed. Legumes of Northern Eurasia: a   |
| 481 | checklist. Richmond: Royal Botanic Gardens, Kew, 461-465.                                                          |
| 482 | Yin LK, and Zhang J. 2004. Change of the protein amino acid content in Ammopiptanthus Cheng f. under the           |
| 483 | different habitats. Arid Zone Research 21:269-274.                                                                 |
| 484 | Yuan YM, and Chen JR. 1993. Anatomical evidence for phylogeny of the tribe Thermopsideae (Fabaceae). Journal of    |
| 485 | Lanzhou University Natural Sciences:97-104.                                                                        |
| 486 | Yue XK, Yue JP, Yang LE, Li ZM, and Sun H. 2011. Systematics of the genus Salweenia (Leguminosae) from             |
| 487 | Southwest China with discovery of a second species. <i>Taxon</i> 60:1366-1374.                                     |
| 488 | Zhang J, Liao K, Li D, Yan Z, and Zhang J. 2010. Distribution pattern and characteristics of Ammopiptanthus        |
| 489 | mongolicus in several different habitat conditions. Journal of Arid Land Resources and Environment                 |
| 490 | 24:151-154.                                                                                                        |
| 491 | Zhang ML, Wen ZB, Fritsch PW, and Sanderson SC. 2015b. Spatiotemporal Evolution of Calophaca (Fabaceae)            |
| 492 | Reveals Multiple Dispersals in Central Asian Mountains. PloS one 10:e0123228.                                      |
| 493 | Zhang ML, Wen ZB, Hao XL, Byalt VV, Sukhorukov AP, and Sanderson SC. 2015c. Taxonomy, phylogenetics and            |
| 494 | biogeography of Chesneya (Fabaceae), evidenced from data of three sequences, ITS, trnS-trnG, and rbcL.             |
| 495 | Biochemical Systematics and Ecology 63:80-89.                                                                      |
| 496 | Zhang ML, Huang JF, Sanderson SC, Yan P, Wu YH, and Pan BR. 2015a. Molecular Biogeography of Tribe                 |
| 497 | Thermopsideae (Leguminosae): A Madrean-Tethyan Disjunction Pattern with an African Origin of Core                  |

498 Genistoides. BioMed research international 2015:864804. 10.1155/2015/864804

- Zhang Q, Pan BR, Zhang YZ, and Duan SM. 2007. Analysis on the Characteristics of Communities of 499 500 Ammopiptanthus nanus and A. mongolicus. Arid Zone Research 24:487-494.
- Zheng D, and Yao TD. 2006. Uplifting of tibetan plateau with its Environmental effects. Advances in Earth Science 501 502 21:451-458.
- Zheng H, Powell CM, An Z, Zhou J, and Dong G. 2000. Pliocene uplift of the northern Tibetan Plateau. Geology 503 504 28:715-718.

505

| 507 | Figure 1. Bayesian tree of the concatenated nuclear ITS (Left) and the concatenated plastid data                              |
|-----|-------------------------------------------------------------------------------------------------------------------------------|
| 508 | of matK, rbcL, trnL-trnF and psbA-trnH sequences (Right) data. Bayesian posterior probabilities                               |
| 509 | and maximum likelihood bootstrap are given above branches.                                                                    |
| 510 |                                                                                                                               |
| 511 | Figure 2. Bayesian tree of the concatenated nuclear ITS data, showing Sophoreae and its allies.                               |
| 512 | Bayesian posterior probabilities and maximum likelihood bootstrap are given above branches.                                   |
| 513 |                                                                                                                               |
| 514 | Figure 3. Bayesian tree of the concatenated plastid data of <i>matK</i> , <i>rbcL</i> , <i>trnL-trnF</i> and <i>psbA-trnH</i> |
| 515 | sequences, showing Sophoreae and its allies. Bayesian posterior probabilities and maximum                                     |
| 516 | likelihood bootstrap are given above branches.                                                                                |
| 517 |                                                                                                                               |
| 518 | Figure 4. Divergence times estimated by using BEAST based on the ITS dataset. Calibration                                     |
| 519 | points are marked by A-D. Nodes labels and bars represent the estimated mean ages (in Ma) and                                 |
| 520 | their 95% highest posterior density intervals. Node I, II, and III represented the divergence ages                            |
| 521 | of 26.96 Ma, 4.74 Ma and 2.04 Ma, respectively.                                                                               |
| 522 |                                                                                                                               |

| 523 | Figure 5. Distribution (A) and representative plants of <i>Ammopiptanthus</i> (B & C) and <i>Salweenia</i> |
|-----|------------------------------------------------------------------------------------------------------------|
| 524 | (D). A: red - Ammopiptanthus (I: distribution of A. mongolicus; II: distribution of A. nanus),             |
| 525 | green - Salweenia; B: Ammopiptanthus mongolicus; C: Ammopiptanthus nanus; D: Salweenia                     |
| 526 | wardii.                                                                                                    |
| 527 |                                                                                                            |
| 528 |                                                                                                            |
| 529 |                                                                                                            |
| 530 |                                                                                                            |

### Table 1(on next page)

Table 1. Taxa names, sources and GenBank accession numbers of DNA sequences

New sequences generated in this study are indicated by an asterisk (\*), Missing sequences are indicated by a dash (-).

1 Table 1. Taxa names, sources and GenBank accession numbers of DNA sequences. New sequences generated in this study are indicated by an asterisk (\*).

2 Missing sequences are indicated by a dash (-).

|                               |                    | Ger      | Bank Acces |          |           |                                          |  |  |
|-------------------------------|--------------------|----------|------------|----------|-----------|------------------------------------------|--|--|
| Species Pop.                  |                    |          |            | psbA-    |           | Sources                                  |  |  |
|                               | ITS                | rbcL     | matK       | trnH     | trnL-trnF |                                          |  |  |
| Ammopiptanthus nanus          | KP636563           | -        | JQ820170   | KP636577 | KP636626  |                                          |  |  |
| Ammopiptanthus nanus A        | KU178932           | -        | -          | KU178934 | KU178937  | 39.66° N, 74.75° E, 2290 m               |  |  |
| Ammopiptanthus nanus B        | KU178932           | -        | -          | KU178935 | KU178937  | 39.49° N, 74.88° E, 2512 m               |  |  |
| Ammopiptanthus nanus C        | KU178932           | -        | -          | KU178934 | KU178937  | 39.76° N, 76.39° E, 2350 m               |  |  |
| Ammopiptanthus mongolicus     | KP636562           | -        | JQ820168   | KP636576 | KP636624  |                                          |  |  |
| Ammopiptanthus mongolicus D   | KU178933           | -        | -          | KU178936 | KU178938  | 41.63° N, 103.22° E, 1010 m              |  |  |
| Ammopiptanthus mongolicus E   | KU178933           | -        | -          | KU178936 | KU178939  | 40.49° N, 106.86° E, 1039 m              |  |  |
| Ammopiptanthus mongolicus F   | KU178933           | -        | -          | KU178936 | KU178940  | 38.98° N, 105.87° E, 1762 m              |  |  |
| Ammopiptanthus mongolicus G   | KU178933           | -        | -          | KU178936 | KU178941  | 37.99° N, 105.25° E, 1323 m              |  |  |
| Ammopiptanthus mongolicus H   | KU178933           | -        | -          | KU178936 | KU178940  | 37.93° N, 105.26° E, 1355 m              |  |  |
|                               | KU178933           |          |            | *        | *         | China: Turpan, Turpan Eremophytes Botani |  |  |
| Ammopiptanthus mongolicus 270 | KU1/8933           | -        | -          |          | Ŧ         | Garden, Pan b. r. (TURP)                 |  |  |
| Ammodendron conollyi          | EF457705           | -        | -          | -        | -         |                                          |  |  |
| Ammodendron argenteum         | -                  | -        | AY386957   | -        | -         |                                          |  |  |
| Ammothamnus lehmannii         | EF457706           | -        | -          | -        | -         |                                          |  |  |
| Anagyris foetida              | AY091571           | Z70122   | KP230735   | -        | FJ499429  |                                          |  |  |
| Anagyris latifolia            | FJ482248           | -        | -          | -        | FJ499419  |                                          |  |  |
| Anarthrophyllum desideratum   | -                  | -        | AY386923   | -        | -         |                                          |  |  |
| Anarthrophyllum rigidum       | FJ839488           | -        | -          | -        | FJ839594  |                                          |  |  |
| Baptisia alba                 | AY773348           | KP126860 | KP126860   | -        | -         |                                          |  |  |
| Baptisia cinerea              | AY773350           | -        | -          | -        | -         |                                          |  |  |
| Baptisia tinctoria            | Z72314 &<br>Z72315 | Z70120   | -          | -        | AJ890964  |                                          |  |  |

| Baptisia sphaerocarpa       | AY773351 | -        | -        | -        | -                     |                                           |
|-----------------------------|----------|----------|----------|----------|-----------------------|-------------------------------------------|
| Baptisia australis          | AY091572 | KF613006 | AY386900 | -        | FJ499421              |                                           |
| Baptisia bracteata          | AY773349 | KP126854 | KP126854 | -        | -                     |                                           |
| Bolusanthus speciosus       | EF457708 | U74243   | AF142685 | -        | AF310994              |                                           |
| Bowdichia nitida            | JX124478 | -        | JX124419 | -        | JX124432              |                                           |
| Cadia purpurea              | KF850559 | U74192   | JX295932 | -        | AF309863              |                                           |
| Castanospermum australe     | *        | -        | *        | *        | *                     | USA: Sri Lanka, kandy, Rudd v.e.3339 (US) |
| Calpurnia aurea             | CAU59887 | U74239   | AY386951 | -        | AF310993              |                                           |
| Clathrotropis brachypetala  | EF457714 | -        | -        | -        | AF309827              |                                           |
| Clathrotropis macrocarpa    | -        | -        | JX295930 | -        | JX275957              |                                           |
| Crotalaria incana           | JQ067262 | JQ591662 | GQ246141 | JQ067481 | KP691137              |                                           |
| Cyclolobium nutans          | AF467041 | -        | AF142686 | -        | AF309857              |                                           |
| Cytisus scoparius           | AF351120 | KM360746 | AY386902 | -        | KJ746350 &            |                                           |
|                             |          |          |          |          | AF352216              |                                           |
| Dicraeopetalum mahafaliense | EF457716 | -        | -        | -        | -                     |                                           |
| Dicraeopetalum stipulare    | -        | -        | GQ246142 | -        | AF310995              |                                           |
| Diplotropis purpurea        | JX124507 | JQ625878 | JX124418 | GQ428691 | JX124441              |                                           |
| Echinosophora koreensis     | -        | AB127036 | -        | -        | AB127028              |                                           |
| Euchresta formosana         | -        | AB127039 | -        | -        | AB127031              |                                           |
| Euchresta japonica          | -        | AB127040 | -        | -        | AB127032              |                                           |
| Genista monspessulana       | JF338307 | KM360800 | AY386862 | -        | JF338219 &            |                                           |
|                             |          |          |          |          | JF338559              |                                           |
| Guianodendron praeclarum    | JX124489 | -        | JX124403 | -        | JX124443              |                                           |
| Lupinus argenteus           | AY338929 | -        | AY386956 | -        | AY618502<br>&AF538706 |                                           |
|                             |          |          |          |          | a. n 050700           |                                           |

| Maackia amurensis                 | *        | Z70137   | AY386944 | *        | *        | China: Jilin, Fusong, Sun s.n. (NENU)                    |
|-----------------------------------|----------|----------|----------|----------|----------|----------------------------------------------------------|
| Maackia amurensis subsp. buergeri | -        | AB127041 | -        | -        | -        |                                                          |
| Maackia chinensis                 | EF457721 | -        | -        | -        | -        |                                                          |
| Maackia floribunda                | -        | AB127042 | -        | -        | AB127034 |                                                          |
| Maackia tashiroi                  | -        | AB127043 | -        | -        | AB127035 |                                                          |
| Ormosia amazonica                 | EF457724 | GQ981820 | -        | GQ982307 | AF309484 |                                                          |
| Ormosia fordiana                  | KP092737 | KP094453 | KP093527 | KP095377 | -        |                                                          |
| Ormosia coccinea                  | -        | JQ625915 | GQ982055 | GQ982308 | -        |                                                          |
| Ormosia costulata                 | -        | -        | JX295887 | -        | JX275917 |                                                          |
| Pickeringia montana               | *        | -        | *        | *        | *        | Mexico: Tecate, Moran r. 13982 (US)                      |
| Ormosia arborea                   | -        | KF981227 | JX295939 | -        | -        |                                                          |
| Piptanthus laburnifolius          | KP636565 | -        | -        | KP636579 | KP636630 |                                                          |
| Piptanthus nepalensis             | AF215922 | Z70123   | AY386924 | -        | -        |                                                          |
| Piptanthus nepalensis1            | FJ482250 | -        | -        | KP636581 | KP636631 |                                                          |
| Piptanthus tomentosus             | AY091570 | -        | -        | -        | -        |                                                          |
| Piptanthus concolor               | KP636564 | -        | -        | KP636578 | KP636629 |                                                          |
| Piptanthus leiocarpus             | AY091569 | -        | -        | KP636580 | -        |                                                          |
| Piptanthus leiocarpus             | KP636566 | -        | -        | -        | -        |                                                          |
| Poecilanthe itapuana              | KJ028462 | AB045818 | KJ028458 | -        | -        |                                                          |
| Poecilanthe parviflora            | KJ028463 | -        | KJ028459 | -        | AF208897 |                                                          |
| Salweenia wardii                  | *        | U74251   | -        | JF725689 | JF725659 | China: Tibet, Qamdo, <i>Chang et al. QZ-491</i><br>(WUK) |
| Salweenia bouffordiana            | -        | -        | -        | JF725692 | JF725662 |                                                          |
| Sophora davidii                   | AY773352 | Z70138   | AY386958 | JF725695 | JF725665 |                                                          |
|                                   |          |          |          |          |          |                                                          |

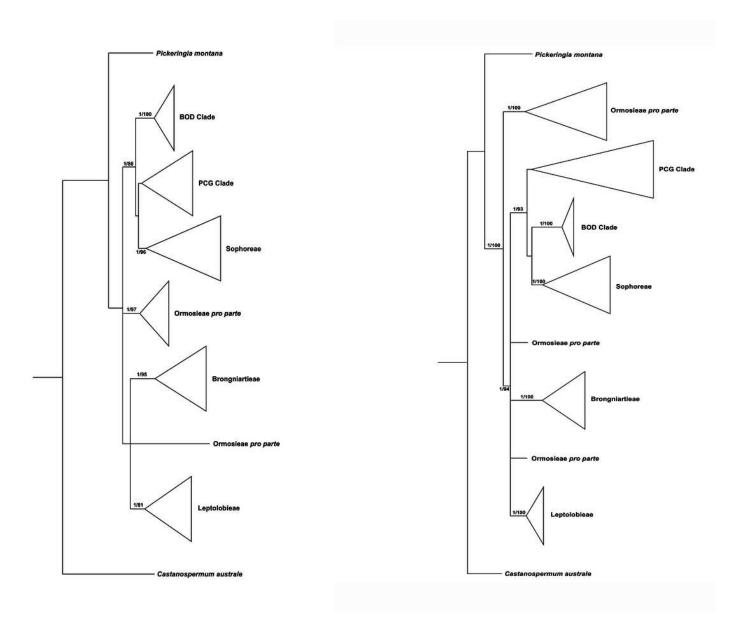
| Sophora flavescens      | FJ528290 | Z70139    | HM049520 | JF725696    | JF725666   |
|-------------------------|----------|-----------|----------|-------------|------------|
| Sophora velutina        | FN813569 | -         | -        | -           | AF309828   |
| Sophora jaubertii       | Z72342 & | Z70140    | -        | -           | -          |
|                         | Z72343   | 270110    |          |             |            |
| Sophora macrocarpa      | Z95563 & | AY725479  | JQ619975 | -           | -          |
|                         | Z95577   |           |          |             |            |
| Sophora inhambanensis   | FN813570 | KM894237  | KM896910 | -           | -          |
| Sophora tomentosa       | HQ207666 | AB127038  | -        | JX495463    | AB127030   |
| Sophora tetraphylla     | AJ310734 | -         | -        | -           | -          |
| Sophora howinsula       | AY046514 | -         | -        | -           | -          |
| Sophora microphylla     | AY056075 | AY725480  | JQ619976 | GQ248391    | -          |
| Sophora prostrata       | AY056077 | -         | -        | -           | -          |
| Sophora raivavaeensis   | AY056080 | -         | -        | -           | -          |
| Sophora toromiro        | AY056079 | GQ248696  | GQ248201 | GQ248392    | -          |
| Sophora viciifolia      | -        | KP088855  | KP089313 | -           | -          |
| Spartium junceum        | DQ524327 | KM360993  | AY386901 | HE966833    | JF338264 & |
|                         | DQ324327 | KW1500775 | A1560701 | 1112/000000 | JF338600   |
| Thermopsis inflata      | AF123451 | -         | -        | -           | -          |
| Thermopsis inflata 1    | -        | -         | -        | KP636586    | KP636638   |
| Thermopsis inflata 2    | -        | -         | -        | -           | KP636639   |
| Thermopsis inflata 3    | -        | -         | -        | KP636587    | KP636640   |
| Thermopsis smithiana    | KP636573 | -         | -        | KP636597    | KP636650   |
| Thermopsis turkestanica | KP636574 | -         | -        | KP636598    | KP636651   |
| Thermopsis mongolica    | KP636570 | -         | -        | KP636594    | KP636647   |
| Thermopsis alpina       | KP636567 | -         | JQ669594 | KP636582    | KP636632   |
|                         |          |           |          |             |            |

NOT PEER-REVIEWED

| Thermopsis alpina 1               | AF123447 | -        | -        |          | KP636633   |
|-----------------------------------|----------|----------|----------|----------|------------|
| Thermopsis alpina 2               | -        | -        | -        | KP636583 | KP636634   |
| Thermopsis alpina 3               | -        | -        | -        | KP636584 | KP636635   |
| Thermopsis alpina 4               | -        | -        | -        | KP636585 | KP636636   |
| Thermopsis lanceolata             | AF123448 | -        | JQ669595 | KP636589 | KP636642   |
| Thermopsis lanceolata 1           | -        | -        | -        | KP636590 | KP636643   |
| Thermopsis przewalskii            | KP636571 | -        | -        | -        | KP636648   |
| Thermopsis schischkinii           | KP636572 | -        | -        | KP636596 | KP636649   |
| Thermopsis yushuensis             | KP636575 | -        | -        | KP636599 | KP636652   |
| Thermopsis barbata                | KP636568 | -        | -        | -        | KP636637   |
| Thermopsis licentiana             | KP636569 | -        | -        | -        | -          |
| Thermopsis licentiana 1           | -        | -        | -        | KP636591 | KP636644   |
| Thermopsis licentiana 3           | -        | -        | -        | KP636592 | KP636645   |
| Thermopsis licentiana 4           | -        | -        | -        | KP636593 | KP636646   |
| Thermopsis turcica                | JQ425645 | KT175217 | KT175216 | KT175218 | -          |
| Thermopsis chinensis              | AF123443 | -        | -        | GU396777 | -          |
| Thermopsis macrophylla            | AF123450 | -        | -        | -        | -          |
| Thermopsis divaricarpa            | AY091575 | -        | -        | -        | -          |
| Thermopsis villosa                | AY773355 | -        | -        | -        | AF311384   |
| Thermopsis rhombifolia            | KP861904 | JX848468 | AY386866 | KP861905 | AY618487   |
| Thermopsis rhombifolia var. ovata | AF007468 | -        | -        | -        | -          |
| Thermopsis fabacea                | AY091573 | Z70121   | -        | -        | -          |
| Thermopsis kaxgarica              | -        | -        | -        | KP636588 | KP636641   |
| Thermopsis montana                | AY091574 | -        | -        | -        | AF385411 & |
|                                   |          |          |          |          |            |



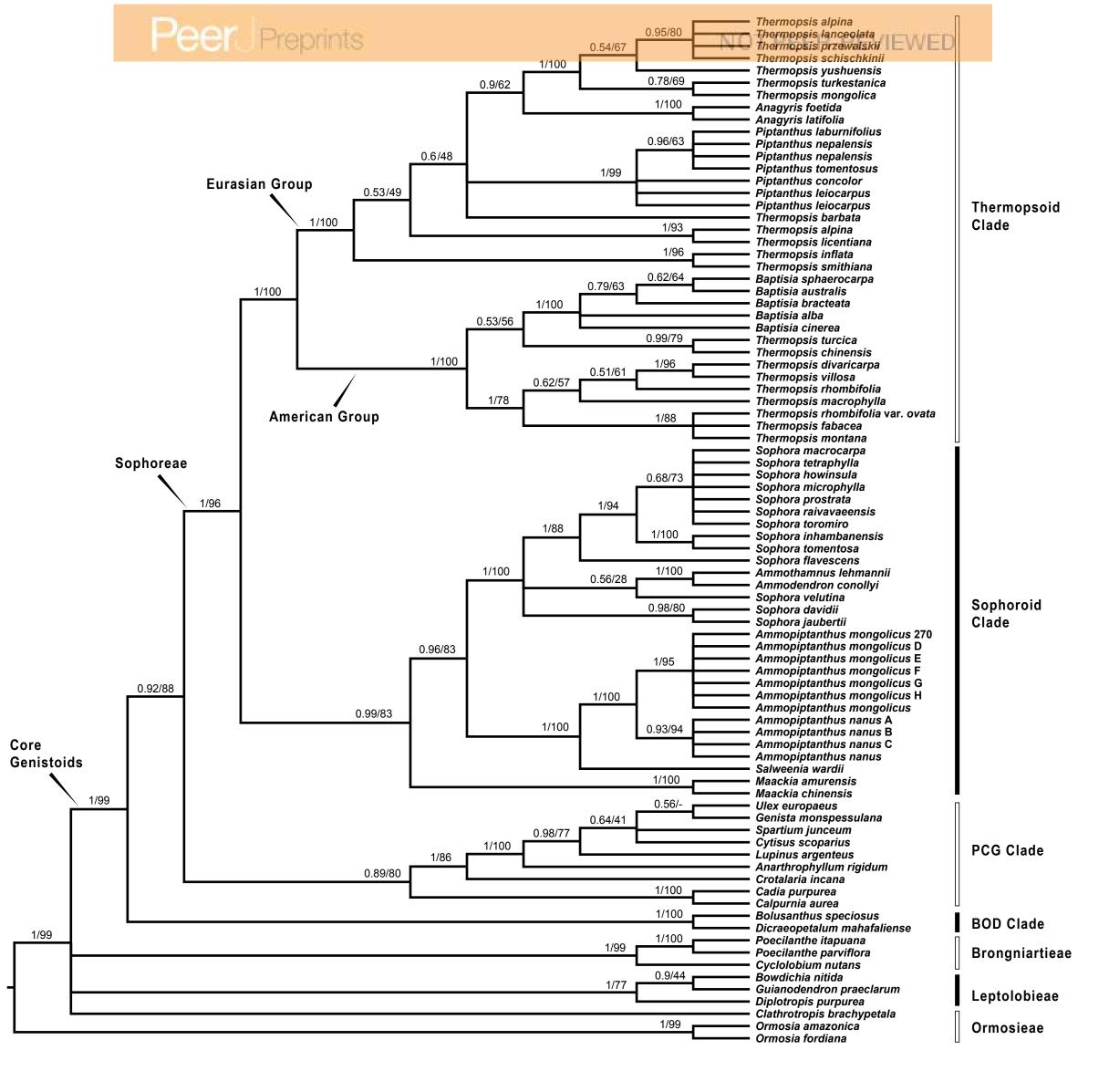
|                |            |          |          |   | AF385937  |
|----------------|------------|----------|----------|---|-----------|
| Ulex europaeus | AV262686   | KM361025 | JQ669586 |   | AF385427  |
|                | A 1 203080 |          |          | - | &AY264062 |


3 \* I will added the Genebank number after accepted

4

### Figure 1

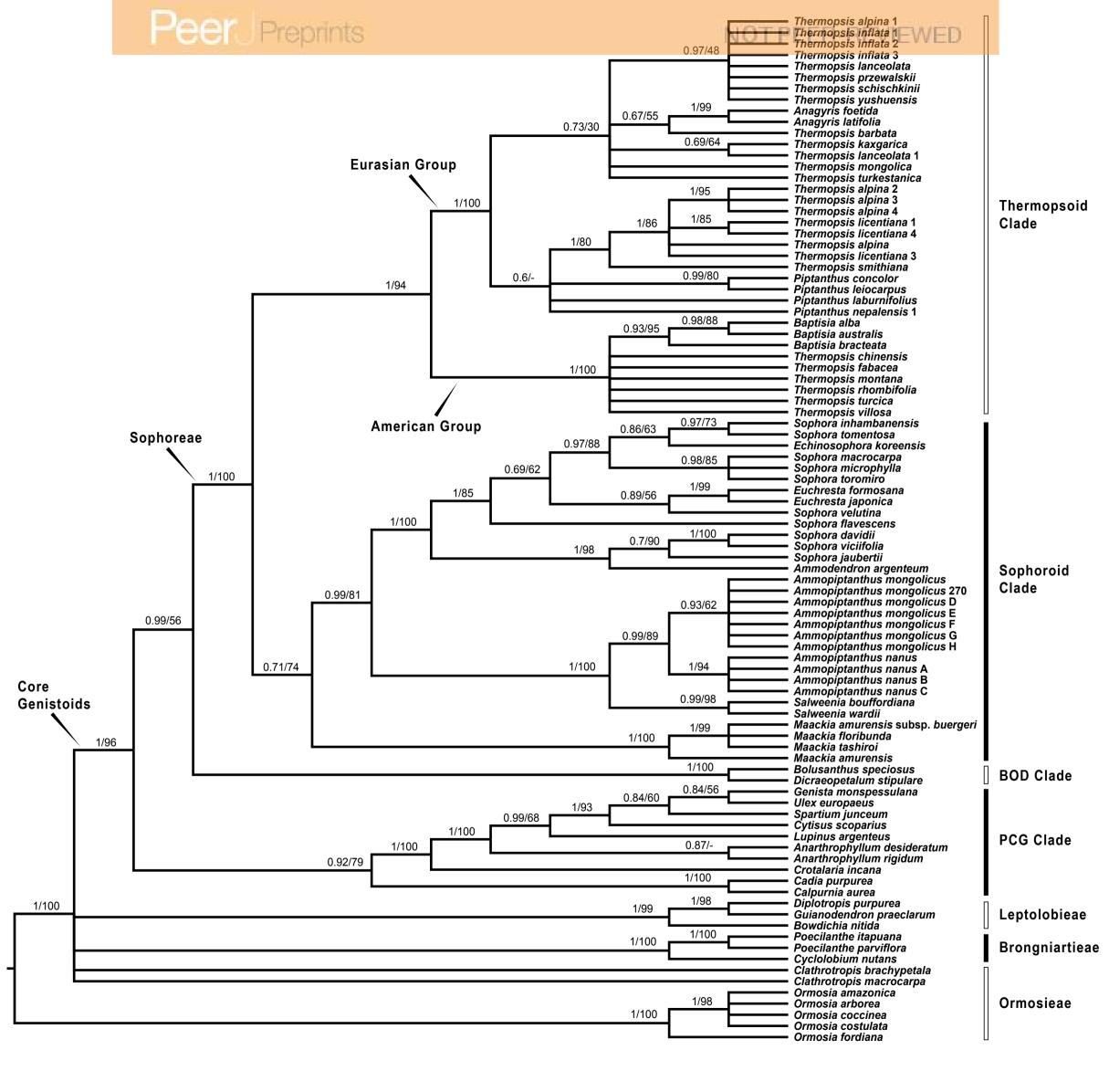
Figure 1. Bayesian tree of the concatenated nuclear ITS (Left) and the concatenated plastid data of matK, rbcL, trnL-trnF and psbA-trnH sequences (Right) data.


Bayesian posterior probabilities and maximum likelihood bootstrap are given above branches.



### Figure 2(on next page)

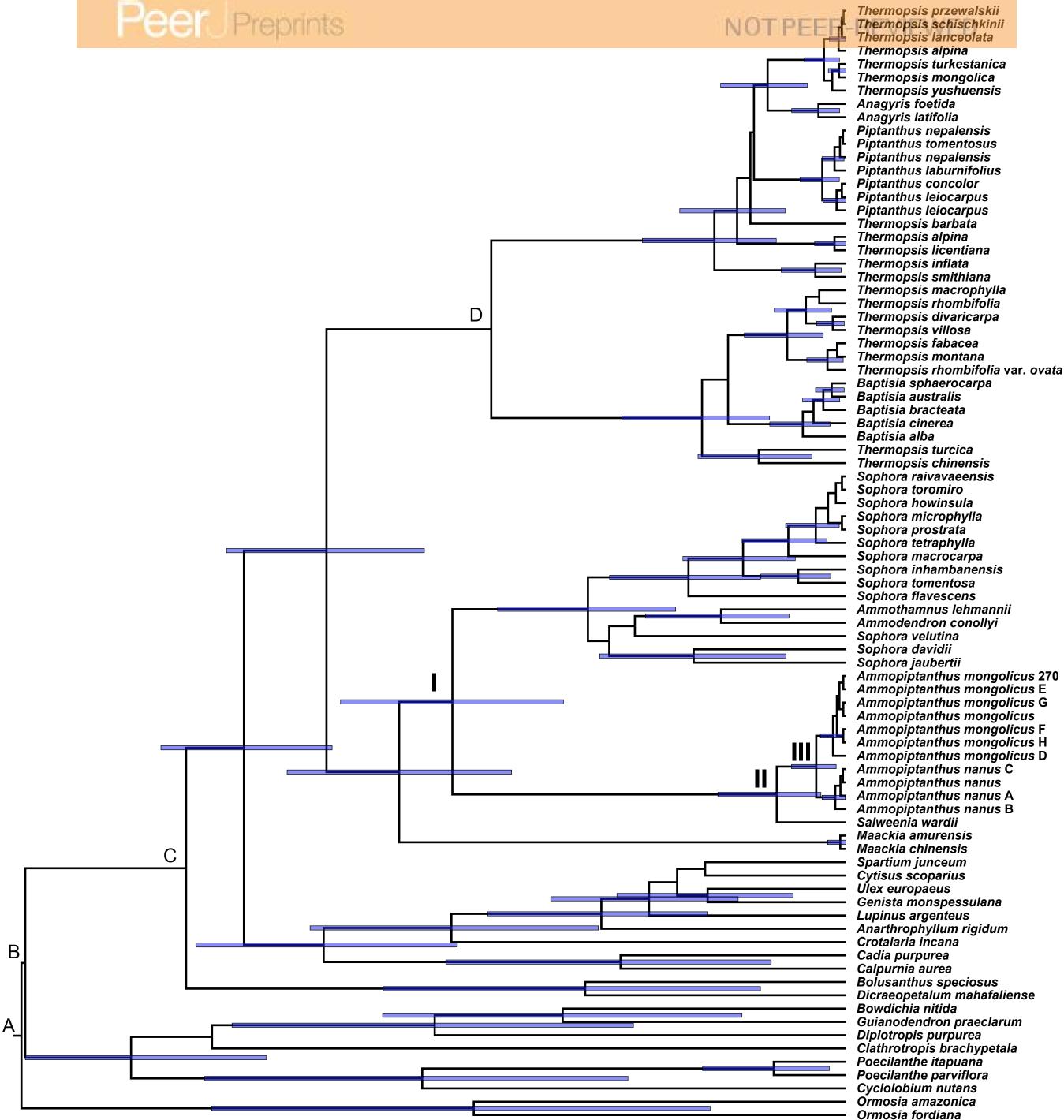
Figure 2. Bayesian tree of the concatenated nuclear ITS data, showing Sophoreae and its allies.


Bayesian posterior probabilities and maximum likelihood bootstrap are given above branches.



### Figure 3(on next page)

Figure 3. Bayesian tree of the concatenated plastid data of *matK*, *rbcL*, *trnL-trnF* and *psbA-trnH* sequences, showing Sophoreae and its allies.

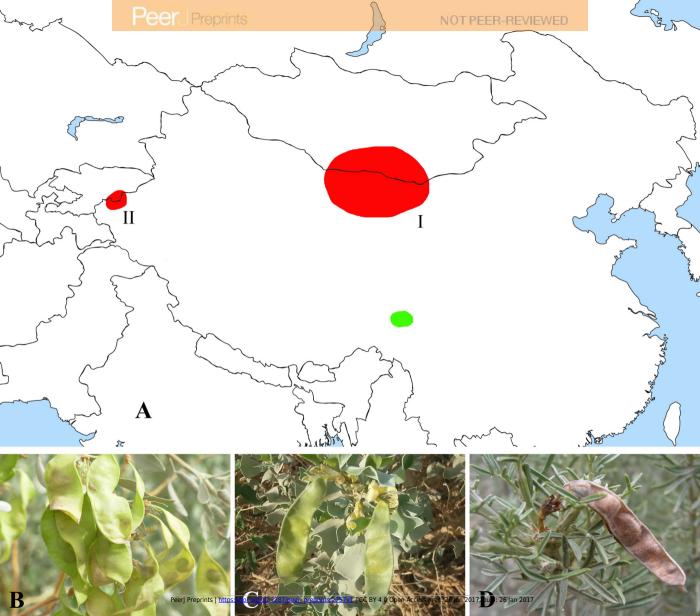

Bayesian posterior probabilities and maximum likelihood bootstrap are given above branches.



### Figure 4(on next page)

Figure 4. Divergence times estimated by using BEAST based on the ITS dataset. Calibration points are marked by A-D.

Nodes labels and bars represent the estimated mean ages (in Ma) and their 95% highest posterior density intervals. Node I, II, and III represented the divergence ages of 26.96 Ma, 4.74 Ma and 2.04 Ma, respectively.




|   | Paleocene | Eocene                         | Oligoo                  | ene                              | Miocene                         | Pliocene Quaternary                       |
|---|-----------|--------------------------------|-------------------------|----------------------------------|---------------------------------|-------------------------------------------|
|   | - I       | Peerj Preprints   https://doi. | org/10.7287/peerj.prepr | <u>ints.2757v1</u> + CC B¥ 4.0 € | <del>)pen Accessi  rec. 2</del> | <del>6 Jan 2017, publ. 2</del> 6 Jan 2017 |
| 0 | 50        | 40                             | 30                      | 20                               | 10                              | 0 Ma                                      |

### Figure 5(on next page)

Figure 5. Distribution (A) and representative plants of *Ammopiptanthus* (B & C) and *Salweenia* (D).

A: red - *Ammopiptanthus* (I: distribution of *A. mongolicus*; II: distribution of *A. nanus*), green - *Salweenia*; B: *Ammopiptanthus mongolicus*; C: *Ammopiptanthus nanus*; D: *Salweenia wardii*.

