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Bertalanffy proposed the differential equation m´(t) = p ×  m  (t) a 3q ×  m  (t) for the

description of the mass growth of animals as a function m(t) of time t. He suggested that

the solution using the metabolic scaling exponent a = 2/3 (von Bertalanffy growth function

VBGF) would be universal for vertebrates. Several authors questioned universality, as for

certain species other models would provide a better fit. This paper reconsiders this

question. Using the Akaike information criterion it proposes a testable definition of 8weak

universality9 for a taxonomic group of species. (It roughly means that a model has an

acceptable fit to most data sets of that group.) This definition was applied to 60 data sets

from literature (37 about fish and 23 about non-fish species) and for each dataset an

optimal metabolic scaling exponent 0 f a opt  < 1 was identified, where the model function

m(t) achieved the best fit to the data. Although in general this optimal exponent differed

widely from a = 2/3 of the VBGF, the VBGF was weakly universal for fish, but not for non-

fish. This observation supported the conjecture that the pattern of growth for fish may be

distinct. The paper discusses this conjecture.
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15 data sets from literature (37 about fish and 23 about non-fish species) and for each dataset an optimal metabolic scaling 
16 exponent 0 f aopt < 1 was identified, where the model function m(t) achieved the best fit to the data. Although in 
17 general this optimal exponent differed widely from a = 2/3 of the VBGF, the VBGF was weakly universal for fish, 
18 but not for non-fish. This observation supported the conjecture that the pattern of growth for fish may be distinct. The 
19 paper discusses this conjecture. 
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22 1. Introduction

23 Growth models: Size at age is a key metric of productivity for any animal population (MacNeil 
24 et al., 2017) and since Verhulst9 (1838) seminal work about the logistic function a wide range of 
25 growth models to describe the size of animals as a function of time has been developed. Amongst 
26 applications are improved otolith analysis for age estimation (Ashworth et al., 2017, based on 
27 Vigliola and Meekan, 2009) or stock assessments in fisheries management (Juan-Jorda et al., 
28 2015). The resulting information about life history and population structure has been applied e.g. 
29 in ecology, where the age structure of coral reef destructing starfish populations was reconstructed 
30 from size measurements and used to explain outbreaks (Pratchett, 2005). 

31 Of particular interest are models based on biological principles. One class of such models was 
32 developed by Bertalanffy (1957) and Pütter (1920), who formulated a differential equation of 
33 ontogenetic growth (assuming 0 f a < b; this paper assumes in addition b = 1): 

34 (1)
ýÿ(ý)ýý = ý ; ÿ(ý)ÿ 2 ÿ ; ÿ(ý)ÿ

35 Equation (1) aims at explaining the allocation of metabolic energy between growth and sustenance 
36 of an organism: If m = m(t) is body mass (weight) at age t, then the body utilizes resources at a 

37 metabolic rate (p÷ma) for growth, except for the resources allocated to the operation and 

38 maintenance of existing tissue (q÷mb). The parameters p and q are positive scaling constants 
39 obtained by fitting the model curve (1) to growth data. Growth functions described by equation (1) 
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40 with a > 0, q > 0 are bounded and of a sigmoid shape with an asymptotic weight limit mmax = 

41 (p/q)1/(býa); the inflection point is assumed, when body mass reaches the fraction (a/b)1/(býa) of that 
42 weight limit (the right hand side of the differential equation and its derivative, respectively, 
43 vanish).

44 In general, the equation (1) can only be solved with elliptic functions (Ohnishi et al., 2014). 
45 Bertalanffy (1957) provided an explicit solution of equation (1) for exponents 0 f a < b = 1 with 
46 elementary functions (exp = exponential function): 

47 (2) (ÿ(ý)ÿÿÿý)1 2 ÿ= 1 2 (1 2 (
ÿ0ÿÿÿý)1 2 ÿ) ; exp( 2 ÿ ; (1 2 ÿ) ; ý)

48 Formula (2) explains growth in terms of the asymptotic weight limit (mature body mass) mmax and 
49 the initial value (neonate weight) m0 = m(0). This choice of parameters follows a recommendation 
50 of Cailliet et al. (2006). Richards (1959) provided another solution of (1) for b > a = 1 to model 
51 plant growth (e.g. Verhulst9s model: a = 1, b = 2). 

52 Is there a true exponent? This paper asks, if the growth of different species needs to be modeled 
53 by different metabolic scaling exponents a < 1 in equation (2). The null hypothesis would state 
54 that on the contrary a certain universal metabolic exponent would suffice. 

55 To resolve this question, the growth model (2) was applied to 60 data sets and best fit exponents 
56 aopt together with suitable parameters m0, mmax and q were determined, using nonlinear regression 
57 by means of the method of least squares. As is illustrated by Figure 1, for certain data sets the 
58 choice of the optimal exponent resulted in a clear improvement of the fit. 

59 INSERT Figure 1: Comparing the fit of model (2) with different exponents to growth data

60 Several concrete values of the metabolic scaling exponent for the model (2) have been discussed 
61 in literature and the question, if the true exponent would be a = 2/3 or a = ¾ has been a topic of 
62 scientific controversy (Isaac and Carbone, 2010). 

63 Bertalanffy (1934, 1949, 1957) suggested that model (2) with a = 2/3 would describe the growth 
64 of vertebrates; this defines the classical von Bertalanffy growth function (VBGF). Bertalanffy 
65 derived it from equation (1) by the following reasoning: Anabolism (synthesis for growth) would 
66 be proportional to the 2/3th power of body weight (a = 2/3), as the oxygen consumption would be 
67 proportional to surface (2/3th power of volume), whereas catabolism (energy use for the 
68 maintenance of biomass) would be proportional to body weight (b = 1). This choice of exponents 
69 was supported e.g. by Banavar et al. (2002) and White and Seymour (2003).

70 Bertalanffy identified also species, where growth would be better described by model (2) with an 
71 exponent a = 0. This is the model of bounded exponential growth, where mmax3m(t) is described 
72 by the model of exponential decay. Further, Bertalanffy observed that if mass growth is described 
73 by the VBGF and if mass is assumed to be proportional to the third power of length, then the 
74 growth of length is modeled by bounded exponential growth. And conversely, if length grows 
75 according to the bounded exponential growth model, then mass growth is described by the VBFG. 
76 In this sense these two models are equivalent and in literature both models are referred to as VBGF. 

77 (For this paper, VBGF is defined by the exponent a = 2/3 û 0.67.)
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78 West et al. (2001) proposed an alternative to the VBGF. They argued, that growth would better be 
79 described by the model function (2) with exponent a = ¾, as the number of capillaries would be 
80 proportional to the ¾th power of the number of cells. This model was supported by Darveau et al. 
81 (2002). A metabolic exponent a = ¾ had been suggested already earlier by Kleiber (1947). 

82 However, more recent literature observed that no single metabolic exponent may be exactly correct 
83 and that perhaps the exponent may be unrelated to metabolism. (Noisy data may hide it; c.f. Batt 
84 and Carpenter, 2012.) As Killen et al. (2010) and White (2010) observed, for different species 
85 there were different optimal exponents aopt. Also for the same species different data sets supported 
86 different exponents. Amongst the stated reasons were environmental factors (e.g. food 
87 composition, temperature); c.f. Kimura (2008), Porch (2002), Quince et al. (2008), Stewart et al. 
88 (2013), or Yamamoto and Kao (2012). Further, asking for exponents that would be characteristic 
89 for a species may be ill-posed. For, due to random fluctuations one can expect that the best fit 
90 exponents for different samples for the same species might not be exactly the same. As Shi et al. 
91 (2015) observed, for some data sets a near-optimal fit could be achieved by a wide range of 
92 exponents, whence such fluctuations might lead to the identification of widely different optimal 
93 exponents.

94 INSERT Figure 2: Akaike weights for different exponents, when compared to the optimal exponent

95 Thus, the identification of an optimal exponent alone may be misleading, if there is no additional 
96 information about the achieved goodness of fit to the data. This paper applies Akaike9s information 
97 criterion (more specifically the Akaike weight) for this purpose. Given an optimal exponent aopt 
98 computed for a certain data set and a hypothesized universal exponent auniv, the Akaike weight 
99 prob(auniv) is the probability that the model (2) using the universal exponent auniv is true, when 

100 compared with the optimal exponent aopt. Figure 2 displays the Akaike weights for a certain 
101 dataset. 

102 Problem of the paper: Summarizing, the above informal question may be recast into the following 
103 testable form. Given a data set, a metabolic exponent 0 f a < 1 is refuted for this data set, if in 
104 comparison to the optimal exponent for model function (2) its Akaike weight is below 2.5%. Given 
105 a taxonomic group of species (e.g. 8all fish9), then an exponent is weakly universal for this group, 
106 if with 90% confidence at least 90% of randomly chosen data sets from this group do not refute 
107 that exponent. 

108 Variants of the definition of 8weak universality9 can be obtained with different thresholds; the 
109 present percentages were used for the proof of principle, only. The notion of refutation remains 
110 meaningful, if the Akaike weight is merely used as an index for the goodness of fit, as in that case 
111 8below 2.5%9 defines the 5% of the index values with the worst fit. Further, the use of confidence 
112 limits in the definition leaves room for alternative models for exceptional species and it 
113 acknowledges that certain data sets may not be appropriate for further analysis by growth models 
114 of type (2), whence such exceptional data sets should not refute a universal exponent. In view of 
115 the unknown distributions, this paper uses Clopper-Pearson confidence limits (Casella and Berger, 
116 2001), which are conservative (higher confidence, than nominally stated) and also suitable for 
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117 small sample sizes (as for the proof of principle small samples suffice, whereby a sample consists 
118 of different data sets). 

119 Of particular interest is the question, if the exponent a = 0.67 of the VBGF is weakly universal for 
120 fish. For, the VBGF is widely used to describe the growth of fish and many authors reported an 
121 excellent fit (e.g. Koch et al., 2015). For instance, the FishBase database (Frose and Pauly, 2017) 
122 presumes VBFG and lists growth parameters for 2320 species. A search in Google Scholar (August 
123 2018: combining with AND the key phrases Bertalanffy, 8growth model9, 8fish growth9) identified 
124 approximately 24,800 papers. Smart et al. (2016) surveyed the literature about growth of 
125 elasmobranch species (e.g. sharks) and the VBGF (with or without prescribing an initial value for 
126 size at t = 0) was studied twice as often as any other model. 

127 2. Materials and methods 

128 Choice of the growth model: Model (2) has been chosen for this study, as its metabolic scaling 
129 exponent is believed to have a biological meaning. This distinguishes it from simpler models 
130 recommended in literature for data interpolation, such as power-laws between size and age 
131 (Katsanevakis and Maravelias, 2008). 

132 Another feature is the sigmoid shape: For model (2) with exponent a > 0 the rate of mass growth 
133 increases, as size increases, until it reaches a maximal rate (inflection point) and then decreases 
134 towards zero as mass approaches the asymptotic weight limit mmax. Whether the growth data show 
135 a sigmoid shape can be verified graphically by a Walford plot (Figure 3) of growth rate over size 
136 (unimodal curve, peaking above the weight at the inception point). 

137 Further, despite its dependency on merely three parameters plus the metabolic exponent, model 
138 (2) is flexible enough to represent growth curves of different sigmoid shapes and it is amenable to 
139 data fitting by means of spreadsheets. Spreadsheets may be used also for more complex models, if 
140 numerical solutions of differential equations (e.g. Leader, 2004) are used, but then numerical errors 
141 would require further analysis. 

142 In literature there are different parametrizations of model (2). In relation to the parameters of 

143 equation (1), assuming b = 1 and using the formula for mmax, p = q÷mmax
13a. The constant in the 

144 exponent of (2), q÷(13a), corresponds to the 8growth coefficient9 k. Further, several papers used a 
145 time shift t0 to eliminate the multiplicative constant in (2). However, t0 might not have a biological 
146 meaning (Schnute and Fournier, 1980). The main difference between the model curves (2) for 
147 different exponents was the weight at the inflection point, varying between 0% and 37% of mmax 

148 (limits of a1/(13a) for exponents a þ 0 and a þ 1). 

149 INSERT Figure 3: Weight increase and its approximation by a VBGF

150 Data sources: The authors considered only age-mass or age-length (for most fish) data. The main 
151 sources were Parks (1982), Ogle (2017) and the supporting information of West et al. (2001). The 
152 authors supplemented them by data from other literature sources or from data obtained by personal 
153 communications. Data in diagrams were retrieved by means of digitalization (Digitize-It of 
154 Bormisoft®). 
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155 For easier identification, data sets were numbered as follows. 

156 The original published sources of the data for fish were Cubillos et al. (2001) for #1 Anchoveta 
157 (Engraulis ringens), #2 Araucanian Herring (Strangomera bentincki) and #26 Sardine 
158 (Strangomera bentincki); Jørgensen (1992) for #3 Atlantic (Arctic) Cod (Gadus morhua); Maceina 
159 (2007) for #5 Blue Catfish (Ictalurus furcatus); Stewart et al. (2013) for #6-7 female and male 
160 Australian Bonito (Sarda australis); Abad (1982) for #9 Sea (Brown) Trout (Salmo trutta fario); 
161 Parker et al. (2007) for #10 Bull Trout (Salvelinus confluentis), whereby the authors removed an 
162 outlier; Mooij et al. (1999) for #13 European Perch (Perca fluviatilis); Brown and Rothery (1993) 
163 for #14 time-weight data of Guppy (Poecilia reticulate = Lebistes reticulatus in the source); 
164 Yildirim (2003) for #16 Jonubi (Chalcalburnus mossulensis); Jobes (1946) for the meanwhile 
165 extinct #20 Longjaw Cisco (Coregonus alpenae = Leucichthys alpenae in the source) at two 
166 locations; Vaughan & Helser (1990) for #21 Red Drum (Sciaenops ocellatus); Moreau (1979) for 
167 #22 Redbreast Tilapia (Coptodon rendalli = Tilapia rendalli in the source); Wolfert (1980) for #23 
168 Rock Bass (Ambloplites rupestris); Bailey (1963) for #24 Round Whitefish (Prosopium 

169 cylindraceum); West et al. (2001) for #25 time-weight data of Sockeye Salmon (Oncorhynchus 

170 nerka); Grabowski et al. (2012) for #29 Spotted Sucker (Minytrema melanops); Krüger (1973) for 
171 #30 Atlantic Bluefin Tuna (Thunnus thynnus); House and Wells (1973) for #31 Troutperch 
172 (Percopsis omsicomaycus); Ianelli et al. (2011) for #33 Walleye Pollock (Theragra 

173 chalcogramma); Araujo and Martins (2007) for #34-35 female and male White Grunt (Haemulon 

174 plumierii); Gomez-Requeni et al. (2010) for #36 time-weight data of male Zebrafish (Danio rerio) 
175 and Kaushik et al. (2011) for #37 Zebrafish larvae. 

176 Further fish data originated from other resources of Ogle (2017) for #4 female Black Drum 
177 (Pogonias cromis), #8 Sea (Brown) Trout (Salmo trutta) and Rainbow Trout (Oncorhynchus 

178 mykiss), #11 Cabezon (Scorpaenichthys marmoratus), #12 Atlantic Croaker (Micropogonias 

179 undulatus), #15 Jackass Morwong (Nemadactylus macropterus), #17 Lake Erie Walleye (Sander 

180 vitreus), #18-19 female and male Arctic Lake Trout (Salvelinus namaycush), #27-28 female and 
181 male Siscowet Lake Trout (Salvelinus namaycush), and #32 Virgina Spot (Leiostomus xanthurus).

182 The original published sources of the data for non-fish species were Brody (1945) for #38 Cattle 
183 (Bos primigenius taurus), #40 Chicken (Gallus gallus domesticus) and #57 Rat (Rattus rattus); 
184 Grossmann (1969) for #42 Rhode Island chicken, Ricard (1975) for #44-46 about chicken strains 
185 X33, X38 and X44; Elke Schläger (personal communication) for #47 Rhodesian Ridgeback dog 
186 (Canis lupus familiaris), Renner-Martin et al. (2016) for #50 Domestic Pig (Sus scrofa domestica); 
187 Sturm (2003) for Cricket larvae #51 (Acheta domesticus), #52 (Gryllus assimilis) and #53 
188 (Teleogryllus commodus); Owen (1960) for #54 Heron (Ardea cinerea) and #58 Robin (Erithacus 

189 rubecula); Fabian Bader (personal communication) for #55 Ball Python (Python regius); Forsyth 
190 (1976) for #59 Shrew (Sorex cinereus); and Rudstam (1989) for #60 Shrimp (Mysis mixta).

191 Further non-fish data originated from unpublished resources of Parks (1982) for #39 Friesian 
192 cattle, #41 and #43 about Apollo and Ross Fryer chicken, #48-49 female and male Great Dane 
193 dogs, and #56 albino rats.
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194 Data selection and preprocessing: Only data sets with N = 6 or more points of time were 
195 considered, regardless of how many animal observations were available for each point of time. 
196 Amongst data sets removed for this reason were Channel Darter (Percina copelandi) and Creek 
197 Chub (Semotilus atromaculatus) from Ogle (2017) based on Reid (2004) and Quist et al. (2012).

198 For non-fish species, the authors did not consider (hunting or capturing) data of wildlife (e.g. Read 
199 et al., 1993, for Bottlenose Dolphin; Pei, 1996, for Muntjak Deer; or Smuts, 1975, for Burchell9s 
200 Zebra), where animal age was estimated. However, for fish, data sets using age estimates were not 
201 removed. Consequently, for fish spawning time caused age uncertainties (Datta and Blanchard, 
202 2016).

203 In order to use data of the same format, data were transformed into mean-weight-at-time data. 
204 Most data for non-fish species were of this form. For fish, most data were about length. Empirical 
205 evidence suggested that for fish mass may be related to length by an allometric power relation m(t) 

206 = c÷l(t)p with 2.5 < p < 3.5 and some constant c (Pauly, 1979; Anderson and Neumann, 1996). The 
207 paper approximated mass for all time-length data by the third power of length. This convention 
208 was in line with Bertalanffy (1934, 1957) and it avoid mixing up information from different 
209 sources about time-length and length-mass relations. The direct comparison of length data between 
210 e.g. fish and birds was avoided, as 8length9 was ambiguous (e.g. Holden and Raid, 1974: standard 
211 length, fork length, total length). 

212 Further, the search for data was confined to data of the growth from an early point in life (birth) 
213 till the end of the growth phase (e.g. sexual maturation). For otherwise, as is illustrated by Figure 4, 
214 a data set might not capture the full phase of growth, and the modeling of a growth curve would 
215 depend on extrapolation. This has been an issue for one data set (Figure 5).

216 INSERT Figure 4: Dependency of the optimal exponent on which phase of growth was observed

217 INSERT Figure 5: Weight increase and approximation by a logistic model, i.e. (1) with a = 1, b = 2

218 Statistical methods: Generally, computations were done in Microsoft® EXCEL. Casella and 
219 Berger (2001) was used as a standard reference for statistics and XL-Stat of Addinsoft® for 
220 statistical computations. 

221 For Clopper-Pearson confidence limits, given a sample of size M (here the number of data sets) 
222 and amongst them m ones with a specific property (here the number of data sets not rejecting a 
223 certain exponent), then using the beta distribution and EXCEL notation, the one-sided lower 90%-
224 confidence limit and the upper 90%-confidence limit for the frequency of this property in the 

225 population were 1ýBETA.INV(0.9; Mým+1; m) and BETA.INV(0.9; m+1; Mým).

226 Data fitting: The paper used nonlinear regression by means of the method of least squares. Given 
227 an exponent in 0 f a < 1, optimal parameter values m0, mmax, and q > 0 for model (2) were sought 
228 to minimize the sum of squared residuals, SSR, between the data points and the model function. 
229 (Recall that the squared residual for the nth data point (tn, mn) is (mn3m(tn))2.) Optimization used 
230 the SOLVER Add-In of Microsoft EXCEL, which implemented an iterative optimization method 
231 (Newton9s method). 
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232 Next, the paper sought to obtain an optimal exponent, where SSR = SSR(a) was minimal; the 
233 desired accuracy for the exponent was 1/100. Therefore, using a macro the optimization was 
234 repeated for each exponent a = 0, 1/100, 2/100, & 99/100 and the resulting minimal values of 
235 SSR(a) were tabulated. Summarizing, this defined an optimal exponent aopt < 1 and optimal 
236 parameter values m0, mmax, and q for this exponent.

237 INSERT Figure 6: Transformation of time-mass-data and a regression line for the transformed data set 

238 A disadvantage of the present method, when applied to the considered data, was numerical 
239 instability. Therefore, optimization was done in two steps, whereby in the first step good initial 
240 estimates of the optimum parameters were computed by adapting a graphical method (Figure 6), 
241 the Bertalanffy-Beverton plot (Bertalanffy, 1934). It aims at an optimal fit of the weight-time data 
242 to the inverse function of (2), described by equation (3) for t = t(m); ln is the natural logarithm 
243 function: 

244 (3)  where  for x > mmaxý= ÿ(ÿ0) 2 ÿ(ÿ)ÿ ÿ(ý) = ln (1 2 (ý/ÿÿÿý)1 2 ÿ)
1 2 ÿ

245 Collecting terms not depending on m, this is simplified to equation (4): 

246 (4)  with A = f(m0)/q, B = 31/qý= ý+ ý ; ÿ(ÿ)
247 Assuming a given exponent and a given asymptotic weight limit mmax, a linear regression line t = 

248 A+B÷u was fitted to transformed data (un, tn) = (f(mn), tn), using the function f of equation (3) and 
249 computing A and B with the LINEST function of EXCEL (Figure 6). Its goodness of fit was 
250 evaluated by the sum of squared residuals SSRinv(mmax); it was dependent on mmax. 

251 Next, the exponent was kept fixed and mmax was allowed to vary: The function SSRinv(mmax) 
252 decreased rapidly for mmax near the observed maximum and was flat for larger values of mmax 
253 (Figure 7). The SOLVER Add-In minimized this function iteratively (a starting value 1% above 
254 the observed maximum weight was chosen). As the optimization used exact formulae for A, B and 
255 was done in one dimension (seeking mmax with minimal SSRinv), it could be performed fast and 
256 with high precision.

257 For a given exponent, this optimization defined mmax, A and B, from which q = 31/B and m0 

258 =mmax÷(exp(A÷(a31)/B) 3 1)1/(13a) were computed. 

259 These values were used as starting values for the second step, the iterative optimization of SSR. 
260 Given an exponent a and starting with the above parameter values m0, mmax, and q, these values 
261 were successively improved to compute the minimal SSR(a). 

262 INSERT Figure 7: Optimizing the asymptotic weight limit (fit to weight-time data) 

263 The two optimization steps compare as follows: The second step assumed that age was controlled 
264 and that the weight observations came from a random sample of animals with a given age; this 
265 was the traditional approach towards nonlinear regression. The first step assumed that age was 
266 random for a given weight. Piner et al. (2012) compared these methods and recommended the first 
267 step as a viable alternative to the traditional approach. Also Sparre and Venema (1988) suggested 
268 this method. However, this paper used the traditional approach, as all non-fish data were controlled 
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269 for age. As for a computationally simpler method, there is a large body of literature using the 
270 Walford plot for data fitting (e.g. Espino-Barr et al., 2015), which was explained in Figures 3 and 
271 5. However, that method did not always provide good initial estimates.

272 In order to retain mmax as an asymptotic limit (and as otherwise the transformed data would not be 
273 defined), the constraint that mmax should exceed the maximal observed mass was added. As for 
274 some data sets the optimal mmax was extremely high without substantially improving on SSRinv, 
275 another constraint was added, that mmax should not exceed hundred times the maximal observed 
276 mass.  

277 Model comparison: In order to compare the goodness of fit, for each data set the 100 models 
278 corresponding to different exponents a < 1 were assessed by means of the Akaike information 
279 criterion (Akaike, 1974; Burnham and Anderson, 2002; Motulsky and Christopoulos, 2003), using 
280 an index AICc for small sample sizes. It was computed from SSR(a) = the sum of squared residuals, 
281 N = number of data points, and K = 4 = number of optimized parameters (namely m0, mmax, q and 
282 implicitly SSR). The number of data points essentially counted, for how many points of time there 
283 were data. (If there were several observations for the same point of time, as e.g. for reported 
284 average values, then this was counted as one data point.) 

285 (5) ýýÿ(ÿ)= ý÷ln(ÿÿý(ÿ)ý )+ 2 ; ÿ+
ÿ ; (ÿ+ 1)ý 2 ÿ 2 1

286

287 (6) , where ô = AIC(a) 3 AIC(aopt) > 0ýÿýÿ(ÿ)= ÿ 2 &/2
1 + ÿ 2 &/2

288 Formula (6) gives the probability prob (Akaike weight: see Figure 2) that the model with exponent 
289 a was true, when compared with the better fitting model with exponent aopt, assuming that either 
290 a or aopt would be the true exponent. However, neither exponent may be true and the paper makes 
291 no assumption thereabout, as this is not needed for the criterion of refutation: If a model (defined 
292 from an exponent a) is refuted, as it fares poorly amongst its 8peers9, it is sensible to refute it also 
293 for any larger group of models. 

294 Data quality: Data quality is an elusive concept. This paper quantified it by the indicator FNR, 
295 the fraction of non-refuted exponents for model (2). Recall that that 100 exponents a = 0, 0.1, &, 
296 0.99 were compared and that an exponent was refuted, if prob(a) < 2.5%. If High and Low were 
297 the highest and lowest non-refuted exponents (c.f. Tables 1 and 2 below), then FNR was the 
298 difference between High and Low plus 0.01. 

299 This definition will be justified below by a discussion of certain issues about data quality, which 
300 translated into longer intervals of non-refuted exponents. 

301 3. Results

302 Tables 1 and 2 summarize the fit of model (2) to the 60 fish and non-fish data and Figure 8 plots, 
303 for each exponent, confidence intervals for the percentages of non-rejection. 

304 INSERT Table 1. Optimal exponents and interval of non-refuted exponents for fish data

305 INSERT Table 2. Optimal exponents and interval of non-refuted exponents for non-fish data
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306 INSERT Figure 8: Confidence intervals for the percentage of fish data sets not rejecting an exponent

307 Contrary to the assumption that the metabolic exponent may be characteristic for a species, the 
308 best fitting metabolic exponents could differ widely for female and male fish of the same species. 
309 (For F and M of Lake Trout in #18-19 of Table 1 the best exponents were 0.69 and 0.28, 
310 respectively.) The concept of non-rejection relativized these differences. For, amongst the 
311 considered data sets the non-rejection intervals of female and male animals of the same species 
312 were overlapping, allowing for the selection of a common exponent suitable for both sexes. 

313 Figure 8 generalized this reasoning by counting, for each exponent 0 f a < 1, for how many fish 
314 data sets (as percentage) this exponent was not rejected. (Thus, it was counted, for how many lines 
315 of Table 1 the exponent was between Low and High.) There was a first peak for exponents 0.66 

316 and 0.67, which were not rejected for 36 data sets (97% of 37 data sets). Further, exponents a ó 
317 0.9 were not rejected for 97% of the data sets. Under the assumption, that the data sets and species 
318 were selected at random from the universe of all fish data sets, statistical reasoning could be 
319 applied: For these peak exponents the lower one-sided Clopper-Pearson confidence limit (90% 
320 confidence) was 90%. Specifically, with 90% confidence the VBGF (exponent a = 0.67) should 
321 not be rejected by at least 90% of fish data sets. 

322 Hence, based on the present data set, it could be concluded that the VBGF was weakly universal 
323 for fish. 

324 Notably, for the exponent a = 0.75 proposed by West et al. (2001) weak universality for fish could 
325 not be established. For the non-fish data, no weakly universal exponent could be identified. Both 
326 observation may be explained by the too low number of data sets (resulting in broader confidence 
327 intervals).

328 Considering the upper one-sided confidence limits (90% confidence) for the fish data, for 
329 exponents a f 0.5 these were below 89%, whence such exponents might not be weakly universal 
330 for fish. For non-fish data the upper confidence limit was below 89% for exponents a f 0.88 
331 whence the VBGF (a = 0.67), and more generally any exponent a f 0.88, might not be weakly 
332 universal for non-fish species.

333 4. Discussion and conclusion

334 Do fish grow differently from non-fish species? As noted above, the universality of the VBGF 
335 seems to distinguish fish from non-fish species. The authors therefore hypothesized that the pattern 
336 of mass growth may differ between fish and non-fish species. 

337 INSERT Table 3. Contingency of the rejection of the VBGF on the taxonomic group

338 An analysis of the optimal exponents (aopt) provided support for this hypothesis. As the distribution 
339 of optimal exponents was unknown, a non-parametric location test was applied (Mann-Whitney 
340 test: computations in XL-Stat); it indicated with 95% significance (p-value 4.7%) that the mean 
341 value of the optimal exponents for fish (0.61) was stochastically lower than the mean value for 
342 non-fish (0.79). Further, Table 3 displayed a 99.99% significant contingency for the fit of the 
343 VBGF on the taxonomic group (fish or non-fish species). 
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344 Review of the data: The unusual high significance for an ambitious hypothesis not yet found in 
345 literature led to the question, if there was some non-biological peculiarity of the fish data that made 
346 the refutation of the VBGF more difficult for fish. 

347 An obvious difference between fish and non-fish data was the transformation of length to weight, 
348 which was needed for most fish. This paper used a power-law transformation m(t) = l(t)p with p = 
349 3 for fish. As Figure 9 illustrates, this convention could have affected refutations, but it could not 
350 explain a systematic bias towards easier or more difficult refutations. (In the figure, higher/lower 
351 values of p make refutations easier/more difficult. However, for some data, the 8true9 p was below 
352 3 and for others it was above 3.) Further, the VBGF was not rejected for the three time-weight fish 
353 data sets (#14 Guppy, #25 Salmon, and #36 Zebrafish). 

354 INSERT Figure 9: Effect on the Akaike weights of using different length-mass relations

355 INSERT Figure 10: Effect of outliers on the Akaike weights 

356 Data with outliers are obviously of poor data quality. For such data, the refutation of exponents 
357 turned out to be more difficult, i.e. FNR became larger; Figure 10 illustrates this. Therefore, in 
358 order to remove non-refutations caused by poor data quality, obvious outliers had to be removed. 
359 (The authors removed an outlier from a data set.) 

360 Further, while for non-fish species the data for females and males of the same species were 
361 collected separately, this was not the case for all fish. In case that these groups had a different 
362 growth pattern (different optimal exponents), the combination of data could result in higher 
363 residuals, making refutations more difficult and increasing FNR (Figure 11). This effect was 
364 particularly extremal for the Black Drum (Pogonias cromis) data from Ogle (2017), where the 
365 combined data did not allow to refute any exponent and also the sigmoid growth pattern was lost 
366 (optimal exponent a = 0 for the combined data), whereas the Akaike weights for females showed 
367 a clear peak. (The Akaike weights for males were not meaningful by lack of data.) The 
368 phenomenon of sex change was not considered, but literature did not report problems for the fit of 
369 a VBGF (c.f. Taylor and Pardee, 2017).

370 INSERT Figure 11: Effect of combining males and females on the Akaike weights

371 Where fish came from different locations (e.g. different water temperatures for the Lake Trout data 
372 #18-19 and #27-28), a different pattern of growth was expected for biological reasons. However, 
373 for other data, e.g. of Longjaw Cisco (Coregonus alpenae) from Ogle (2017) and Jobes (1946), 
374 the combination of data from two locations of the same lake did not seem to have notable effects 
375 (the paper used the combined data). 

376 Another difference was related to how data were gathered: Data were either growth data for 
377 individual animals or average values. In the latter case, either the same group of animals was 
378 observed over a certain time span (e.g. feeding experiments), or completely different animals were 
379 observed (e.g. hunting data; these displayed the largest variations). Most non-fish data were about 
380 pets, farmed animals or laboratory animals, whose age was known, whose food intake was 
381 controlled and where the animals could easily be grouped by objective factors (e.g. sex, strain). 
382 For fish, comparable data were conceivable only for aquarium fish, such as Guppy or Zebrafish.
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383 Implications about data quality: Summarizing, there were differences in the data quality between 
384 fish and non-fish data. Consequently, for the fish data refutations may have become more difficult 
385 (larger FNR) and this could have been the reason, why the VBGF was not refuted for most fish 
386 data. This is tested below. 

387 With 99.99% significance (Mann-Whitney test: p-value below 0.01%, computed in XL-Stat) the 
388 average FNR for fish (0.8) was stochastically larger than the average FNR for non-fish (0.38). 
389 Thereby FNR = 1 for 18 data sets, 17 of them for fish. Thus, apparently the larger FNR for fish 
390 was the reason for the high level of non-refutation of the VBGF for fish and the contingency in 
391 Table 3. However, there were also fish with good data quality in this sense; thus for Artic Cod (#3 
392 in Table 1) a minimal FNR = 0.1 was observed. 

393 The indicator FNR may also explain the different location of the optimal exponents for fish and 
394 non-fish, as with 99.99% significance the optimal exponents (aopt) were negatively correlated with 
395 FNR (t-test: p-value below 0.01%, computed in XL-Stat). Thus, the lower optimal exponents for 
396 fish were related to a higher FNR. 

397 Thereby, for 48% of the considered data sets it was conceivable that model (2) was not true, as the 
398 optimal exponent was found on the boundary of the considered domain. Thereby, for five data sets 
399 aopt = 0 (indicating that growth was rather not sigmoid); these data sets were for fish and for them 
400 FNR =1. For 24 of the 60 data sets (12 fish) the optimal exponent was maximal (aopt = 0.99) and 
401 of them FNR = 1 for only four data sets (all fish). 

402 Conclusion: The paper argued that the question, whether there exists a universal metabolic scaling 
403 exponent, may be ill-posed and it developed a mathematical definition of weak universality to 
404 reformulate this question in an empirically testable way. Applying this notion to 60 data sets about 
405 the growth of fish and non-fish species the data seemed to support the hypothesis that there would 
406 be a difference between fish and non-fish; for the former VBGF would be weakly universal. 
407 However, this ambitious hypothesis could not be maintained, as there were systematic differences 
408 between fish and non-fish in data quality, and these differences could have hindered the refutation 
409 of the VBGF for fish-data. 

410 It may thus be concluded: The VBGF did adequately describe the growth of 97% of data sets for 
411 fish. Therefore, where the purpose of data fitting is the condensation of information to summarize 
412 growth data about wildlife by means of a few parameters, then the VBGF appears to be adequate. 
413 However, the reason for its adequacy may not be the 8inherent truth9 of the VBGF, but rather a not 
414 so good quality of wildlife data in general. 
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Figure 1

Comparing the fit of model (2) with different exponents to growth data

Figure generated in Microsoft EXCEL, based on (time-length) data of Arctic Cod (Gadus

morhua) from Jørgensen (1992), approximating weight by length^3 and determining the

least squares fit to these data of model (2) with exponents a = 0.67 (VBGF = dashed line)

and a = 0.99, the optimal exponent.
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Figure 2

Akaike weights for different exponents, when compared to the optimal exponent

Graphical multi-model comparison, generated in Microsoft EXCEL, based on time-length data

of Sea Trout (Salmo trutta fario) from Abad (1982), approximating weight by length^3. The

Akaike weight prob(a) for the generalized von Bertalanffy model with exponent a was

computed in comparison with the optimal exponent aopt = 0.66. The figure highlights also the

Akaike weight (50%) of the VBGF (a = 0.67). The comparison presumes, that one of the two

exponents a or aopt is true (prob(a) + prob(aopt) = 100%) and that prob(a) f prob(aopt), whence

prob(a) f 50%. As is suggested from this figure, exponents a < 0.5 may be refuted. For,

either model (2) is false and then all exponents refuted. Or the model is true. Then even

under the assumption that one of the exponents a < 0.5 or aopt = 0.66 would be true, the

probability for the truth of any exponent a < 0.5 would be negligible.
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Figure 3

Weight increase and its approximation by a VBGF

Modification of the Walford plot (Walford, 1946; other modifications: Ford, 1933; Gulland,

1964) generated in Microsoft EXCEL, based on (time-length) data of Bull Trout (Salvelinus

confluentis) from Ogle (2017) and Parker et al. (2007) with dm/dt computed from the data by

numeric differentiation (quadratic interpolation to take care of unequal dt-interval length:

Burden and Faires, 1993). The model curve is right hand side of (1), with p, q obtained from a

linear fit (LINEST function applied to dm/dt, ma, mb with a = 2/3, b = 1).
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Figure 4

Dependency of the optimal exponent on which phase of growth was observed

The figure illustrates a) the general form of VBGF showing a characteristic S-shape over its

whole range; b) missing end-data, which suggest unbounded growth; and c) missing data at

the beginning, which suggests exponential bounded growth (exponent a = 0).
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Figure 5

Weight increase and approximation by a logistic model, i.e. (1) with a = 1, b = 2

Modified Walford plot generated in Microsoft EXCEL, based on (time-length) data of

Freshwater Drum (Aplodinotus grunniens) from Ogle (2017) and Bur (1984), and model curve

computed as in Figure3. This data set was removed, as no data point supported the

estimation of mmax (selection criterion from Knight, 1968).
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Figure 6

Transformation of time-mass-data and a regression line for the transformed data set

Generalized Bertalanffy-Beverton plot generated in Microsoft EXCEL, based on (time-mass)

data of male Zebrafish (Danio rerio) from Gomez-Requeni (2010), transforming the time-

mass data (t,m) into (u,t) = (f(m),t) and fitting a regression line t = A+Bçu with A = 22.486

and B = 3.438 to the transformed data. The function f was defined in equation (3) using the

exponent a = 0.67 and assuming an asymptotic weight limit m
max

 = 345mg. The

transformation required m
max

 to exceed the maximal observed weight (344.4mg), as

otherwise the transformation would not be defined for all data points.
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Figure 7

Optimizing the asymptotic weight limit (fit to weight-time data)

Figure generated in Microsoft EXCEL, based on (time-mass) data of Guppy (Poecilia

reticulata) from West et al. (2001), referring to Brown and Rothery (1993): 14 data points

(average weights) from days 0 to 88 with a maximal observed weight of 0.145g. Assuming an

exponent a = 0.67, the sum of squared residuals SSRinv was plotted in dependency on mmax.

The minimum was attained for mmax = 0.165g, resulting in q = 0.1/day and m0 = 0.03g. This

was used as a starting value for the minimization of SSR for the fit of function (2) to the time-

weight data. The resulting optimal parameters (for a = 0.67) were q = 0.139/day, m0 =

0.002g and mmax = 0.149g.
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Figure 8

Confidence intervals for the percentage of fish data sets not rejecting an exponent

Figure generated in Microsoft EXCEL, counting the percentage of how many of the 37 fish

data sets of Table1 did not reject the exponent on the x-axis together with the upper and

lower one-sided Clopper-Pearson confidence limits (90% significance). The lower limit

mattered for the weak universality criterion.
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Figure 9

Effect on the Akaike weights of using different length-mass relations

Figure generated in Microsoft EXCEL, based on time-length data of Araucanian Herring

(Strangomera bentincki) from Ogle (2017) and Cubillos et al. (2001), using different powers

of length to estimate mass.
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Figure 10

Effect of outliers on the Akaike weights

Figure generated in Microsoft EXCEL, based on (time-length) data of Bull Trout (Salvelinus

confluentis) from Ogle (2017) and Parker et al. (2007), whereby for the correction one outlier

was removed from the data. Data from the Arctic Long Term Ecological Research, separated

by sex and combined.
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Figure 11

Effect of combining males and females on the Akaike weights

Figure generated in Microsoft EXCEL, based on time-length data of Lake Trout (Salvelinus

namaycush) from Ogle (2017), based on data from the Arctic Long Term Ecological Research,

separated by sex and combined.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3303v1 | CC BY 4.0 Open Access | rec: 29 Sep 2017, publ: 29 Sep 2017



Table 1(on next page)

Optimal exponents and interval of non-refuted exponents for fish data

Data sets abbreviated (details in the text); F and M denotes data for females and males; aopt

= metabolic scaling exponent with the best fit of model (2) to the data; non-refutation

defines the lower and upper bounds of the interval consisting of those of metabolic

exponents that in comparison to aopt could not be refuted (Akaike weight 2.5% or higher).
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1 Table 1. Optimal exponents and interval of non-refuted exponents for fish data

Non-refutation Non-refutationNo Data set aopt

Low High

No Data set aopt

Low High

1 Anchoveta 0.83 0.43 0.99 20 Cisco 0.99 0.38 0.99

2 Herring 0.76 0.11 0.99 21 Red Drum 0 0 0.99

3 Cod 0.99 0.9 0.99 22 Tilapia 0.62 0.51 0.99

4 Black Drum (F) 0.39 0.21 0.99 23 Rock Bass 0.57 0 0.99

5 Blue Catfish 0.75 0 0.99 24 Whitefish 0.51 0.35 0.99

6 Bonito (F) 0 0 0.99 25 Salmon 0.91 0.64 0.99

7 Bonito (M) 0 0 0.99 26 Sardine 0.99 0.34 0.99

8 Trout (various) 0.99 0 0.99 27 S. Trout (F) 0.91 0.01 0.99

9 Sea Trout 0.66 0.54 0.99 28 S. Trout (M) 0.99 0.02 0.99

10 Bull Trout 0.64 0.44 0.99 29 Sucker 0.99 0 0.99

11 Cabezon 0.6 0 0.99 30 Bluefin Tuna 0.11 0 0.99

12 Croaker 0 0 0.99 31 Troutperch 0.19 0 0.99

13 European Perch 0.8 0 0.99 32 Spot 0.99 0 0.99

14 Guppy 0.99 0.51 0.99 33 Pollock 0.37 0.22 0.67

15 Morwang 0.99 0 0.99 34 Grunt (F) 0.01 0.01 0.99

16 Jonubi 0.99 0.08 0.99 35 Grunt (M) 0 0 0.99

17 Walleye 0.21 0 0.99 36 Zebrafish 0.99 0.66 0.99

18 Lake Trout (F) 0.69 0.11 0.99 37 Zebrafish 0.99 0.57 0.99

19 Lake Trout (M) 0.28 0 0.99

2 Notes: Data sets abbreviated (details in the text); F and M denotes data for females and males; aopt = metabolic scaling 

3 exponent with the best fit of model (2) to the data; non-refutation defines the lower and upper bounds of the interval 

4 consisting of those of metabolic exponents that in comparison to aopt could not be refuted (Akaike weight 2.5% or 

5 higher). 
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Table 2(on next page)

Optimal exponents and interval of non-refuted exponents for non-fish data

Explanations as for Table1.
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1 Table 2. Optimal exponents and interval of non-refuted exponents for non-fish data

Non-refutation Non-refutationNo Data set aopt

Low High

No Data set aopt

Low High

38 0.24 0 0.54 50 Pigs 0.45 0.37 0.93

39

Cattle 

0.2 0.02 0.38 51 0.99 0.8 0.99

40 0.17 0 0.99 52 0.94 0.75 0.99

41 0.85 0.65 0.99 53

Crickets

0.99 0.89 0.99

42 0.99 0.75 0.99 54 Heron 0.99 0.78 0.99

43 0.99 0.79 0.99 55 Python 0.99 0.57 0.99

44 0.88 0.78 0.99 56 0.14 0 0.52

45 0.99 0.9 0.99 57

Rats

0.78 0.55 0.99

46

Chicken

0.99 0.85 0.99 58 Robin 0.99 0.16 0.99

47 0.83 0.68 0.99 59 Shrew 0.99 0.3 0.99

48 0.84 0.58 0.99 60 Shrimp 0.99 0.76 0.99

49

Dogs

0.99 0.68 0.99

2 Notes: Explanations as for Table 1. 
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Table 3(on next page)

Contingency of the rejection of the VBGF on the taxonomic group

The contingency table was based on the count of the number of rejections of the exponent a

= 0.67 (VBGF). For all common tests (chi-squared, chi-squared with Yates continuity

correction, Fisher exact test, simulation) the fish data of this paper differed from the non-fish

data with 99.99% confidence (p-value below 0.01%). The odds ratio comparing the odds of

non-rejection for fish with the odds for non-rejection of non-fish was (36/1)/(8/15) = 67.5 and

its 95% confidence limits were 10.8 and 422.8. (The computations used XL-Stat.)
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1 Table 3. Contingency of the rejection of the VBGF on the taxonomic group

Number of data sets Fish Non-Fish Sum

VBGF not rejected 36 8 44

VBGF rejected 1 15 16

Sum 37 23 60

2 Notes: The contingency table was based on the count of the number of rejections of the exponent a = 0.67 (VBGF). 

3 For all common tests (chi-squared, chi-squared with Yates continuity correction, Fisher exact test, simulation) the fish 

4 data of this paper differed from the non-fish data with 99.99% confidence (p-value below 0.01%). The odds ratio 

5 comparing the odds of non-rejection for fish with the odds for non-rejection of non-fish was (36/1)/(8/15) = 67.5 and 

6 its 95% confidence limits were 10.8 and 422.8. (The computations used XL-Stat.) 
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