Table 15.4-1 The Fourier Series of Selected Waveforms.

Square wave: $\omega_{0}=\frac{2 \pi}{T}$
$f(t)=\frac{A}{2}+\frac{4 A}{\pi} \sum_{n=1}^{\infty} \frac{\sin \left((2 n-1) \omega_{0} t\right)}{2 n-1}$
Pulse wave: $\omega_{0}=\frac{2 \pi}{T}$
$f(t)=\frac{A d}{2}+\frac{2 A d}{\pi} \sum_{n=1}^{\infty} \frac{\sin \left(\frac{n \pi d}{T}\right)}{\frac{n \pi d}{T}} \cos \left(n \omega_{0} t\right)$
Half wave rectified sine wave: $\omega_{0}=\frac{2 \pi}{T}$
$f(t)=\frac{A}{\pi}+\frac{A}{2} \sin \omega_{0} t-\frac{2 A}{\pi} \sum_{n=1}^{\infty} \frac{\cos \left(2 n \omega_{0} t\right)}{4 n^{2}-1}$
Full wave rectified sine wave: $\omega_{0}=\frac{2 \pi}{T}$
$f(t)=\frac{2 A}{\pi}-\frac{4 A}{\pi} \sum_{n=1}^{\infty} \frac{\cos \left(n \omega_{0} t\right)}{4 n^{2}-1}$
Sawtooth wave: $\omega_{0}=\frac{2 \pi}{T}$
$f(t)=\frac{A}{2}+\frac{A}{\pi} \sum_{n=1}^{\infty} \frac{\sin \left(n \omega_{0} t\right)}{n}$

Triangle wave: $\omega_{0}=\frac{2 \pi}{T}$

$$
f(t)=\frac{A}{2}-\frac{4 A}{\pi^{2}} \sum_{n=1}^{\infty} \frac{\cos \left((2 n-1) \omega_{0} t\right)}{(2 n-1)^{2}}
$$

15.4 Fourier Series of Selected Waveforms

Table 15.4-1 provides the trigonometric Fourier series for several frequently encountered waveforms. Each of the waveforms in Table is represented using two parameters: A is the amplitude of the wave form and T is the period of the waveform.

Figure 15.4-1 shows a voltage waveform that is similar to, but not exactly the same as, a waveform in Table 15.4-1. To obtain a Fourier series for the voltage waveform, we select the Fourier series of the similar waveform from Table 15.4-1 and then do four things:

1. Set the value of A equal to the amplitude of the voltage waveform.
2. Add a constant to the Fourier series of the voltage waveform to adjust its average value.
3. Set the value of T equal to the period of the voltage waveform.
4. Replace t by $t-t_{0}$ when the voltage waveform is delayed by time t_{o} with respect to the waveform form Table 15.4-1. After some algebra, the delay can be represented as a phase shift in the Fourier series of the voltage waveform.

Example 15.4-1:

Determine the Fourier series of the voltage waveform shown in Figure 15.4-1.

Figure 15.4-1 A voltage waveform.

Solution:

The voltage waveform is similar to the square wave in Table 15.4-1. The Fourier series of the square is

$$
f(t)=\frac{A}{2}+\frac{4 A}{\pi} \sum_{n=1}^{\infty} \frac{\sin \left((2 n-1) \omega_{0} t\right)}{2 n-1}
$$

Step 1: The amplitude of the voltage waveform is $3-(-2)=5 \mathrm{~V}$. After setting $A=5$, the Fourier series becomes

$$
2.5+\frac{20}{\pi} \sum_{n=1}^{\infty} \frac{\sin \left((2 n-1) \omega_{0} t\right)}{2 n-1}
$$

Step 2: The average value of the Fourier series is 2.5 , the value of the constant term. The average value of the voltage waveform is $(3+(-2)) / 2=0.5 \mathrm{~V}$. We change the constant term of the Fourier series from 2.5 to 0.5 to adjust its average value. This is equivalent to subtracting 2 from the Fourier series, corresponding to shifting the waveform downward by 2 V .

$$
0.5+\frac{20}{\pi} \sum_{n=1}^{\infty} \frac{\sin \left((2 n-1) \omega_{0} t\right)}{2 n-1}
$$

Step 3: The period of the voltage waveform is $T=6-(-2)=8 \mathrm{~ms}$. The corresponding fundamental frequency is

$$
\omega_{0}=\frac{2 \pi}{0.008}=250 \pi \mathrm{rad} / \mathrm{s}
$$

After setting $\omega_{0}=250 \pi \mathrm{rad} / \mathrm{s}$, the Fourier series becomes

$$
0.5+\frac{20}{\pi} \sum_{n=1}^{\infty} \frac{\sin ((2 n-1) 250 \pi t)}{2 n-1}
$$

Step 4: The square wave in Table 15.4-1 has a rising edge at time 0 . The corresponding rising edge of the voltage waveform occurs at -2 ms . The voltage waveform is advanced by 2 ms or, equivalently, delayed by -2 ms . Consequently, we replace t by $t-(-0.002)=t+0.002$ in the Fourier series. We notice that

$$
\sin ((2 n-1) 250 \pi(t+0.002))=\sin \left((2 n-1)\left(250 \pi t+\frac{\pi}{2}\right)\right)=\sin \left((2 n-1)\left(250 \pi t+90^{\circ}\right)\right)
$$

After replacing t by $t+0.002$, the Fourier series becomes

$$
v(t)=0.5+\frac{20}{\pi} \sum_{n=1}^{\infty} \frac{\sin \left((2 n-1)\left(250 \pi t+90^{\circ}\right)\right)}{2 n-1}
$$

