Subprograms

In Text: Chapter 9
N. Meng, F. Poursardar



Outline

Definitions
Design issues for subroutines
Parameter passing modes and mechanisms

Advanced subroutine issues



Subroutine

A sequence of program instructions that perform a
specific task, packaged as a unit

The unit can be used in programs whenever the
particular task should be performed



Subroutine

Subroutines are the fundamental building blocks of
programs

They may be defined within programs, or separately
in libraries that can be used by multiple programs

In different programming languages, a subroutine may
be called a procedure, a routine, a method, or a
subprogram



Characteristics of
Subroutines/Subprograms

Each subroutine has a single entry point

The caller is suspended during the execution of
the callee subroutine

Control always returns to the caller when callee
subroutine’s execution terminates

VIRGINIA TECH



Parameters

A subroutine may be written to expect one or more
data values from the calling program

The expected values are called parameters or
formal parameters

The actual values provided by the calling program are
called arguments or actual parameters

VIRGINIA TECH 6



Actual/Formal Parameter Correspondence

Two options

Positional parameters
In nearly all programming languages, the binding is done by position
E.g., the first actual parameter is bound to the first formal
parameter

Keyword parameters

Each formal parameter and the corresponding actual parameter
are specified together

E.g.,Sort (List => A, Length => N)

VIRGINIA TECH 7



Keyword Parameters

Advantages
Order is irrelevant

When a parameter list is long, developers won’t make the
mistake of wrongly ordered parameters

Disadvantages

Users must know and specify the names of formal
parameters

VIRGINIA TECH



Default Parameter

A parameter that has a default value provided to it

If the user does not supply a value for this parameter,
the default value will be used

If the user does supply a value for the default
parameter, the user-specified value is used



An Example in Ada

procedure sort (list : List_Type;
length : Integer := 100);

sort (list => A);

VIRGINIA TECH. 10



Design issues for subroutines

What parameter passing methods are provided!?
Are parameter types checked?

What is the referencing environment of a passed
subroutine!?

Can subroutine definitions be nested?
Can subroutines be overloaded!?
Are subroutines allowed to be generic!?

Is separate/independent compilation supported?



Parameter-Passing Methods

Ways in which parameters are transmitted to and/or
from callee subroutines
Semantic models

Implementation models

VIRGINIA TECH. 12



Semantic Models

Formal parameters are characterized by one of three
distinct semantic models

In mode:They can receive data from the corresponding
actual parameters

Out mode: they can transmit data to the actual
parameters

Inout mode: they can do both

VIRGINIA TECH 13



Models of Parameter Passing

I_ Caller Callee
(sub (a, b, ¢)) Call (procedure sub (x, y, 2))
/ \
. ./ \ )
In mode
Return

/ \

b / \- y

Out mode

Call

/ \

Inout mode \ Return /

VIRGINIA TECH. 14



An Example

public int[] merge(int[] arrl, int[] arr2) {
int[] arr = new int[arrl.length + arr2.length];
for (inti = 0;i < arr2.length; i++) {
arr[i] = arrl[i];
arr2[i] = arr|[i] + arr2[i];
arr[i + arrl.length] = arr2[i];

}

return arr,

}

Which parameter is in mode, out mode, or
inout mode?



Implementation Models

A variety of models have been developed by language
designers to guide the implementation of the three
basic parameter transmission modes

Pass-by-value

Pass-by-result

Pass-by-value-result

Pass-by-reference

Pass-by-name

VIRGINIA TECH



Pass-by-Value

The value of the actual parameter is used to initialize

the corresponding formal parameter, which then acts
as a local variable in the subprogram

Implement in-mode semantics

Implemented by copy



Pros and Cons

Pros
Fast for scalars, in both linkage cost and access time
No side effects to the parameters

Cons

Require extra storage for copying data

The storage and copy operations can be costly if the
parameter is large, such as an array with many elements



Pass-by-Result

No value is transmitted to a subroutine

The corresponding formal parameter acts as a local
variable, whose value is transmitted back to the caller’s

actual parameter

E.g., void Fixer(out int x, out int y) {
x = 17;
y = 35;
}

Implement out-mode parameters



Pros and Cons

Pros

Same as pass-by-value

Cons
The same cons of pass-by-value

Parameter collision
E.g., Fixer(x, x), what will happen?

If the assignment statements inside Fixer() can be reordered, what
will happen?

VIRGINIA TECH. 20



Pass-by-Value-Result

A combination of pass-by-value and pass-by-result, also
called pass-by-copy

Implement inout-mode parameters

Two steps

The value of the actual parameter is used to initialize the
corresponding formal parameter

The formal parameter acts as a local variable, and at

subroutine termination, its value is transmitted back to the
actual parameter



Pros and Cons

Pros

Same as pass-by-reference, which is to be discussed next

Cons

Same as pass-by-result

VIRGINIA TECH

22



Pass-by-Reference

A second implementation model for inout-mode
parameters

Rather than copying data values back and forth, it

shares an access path, usually an address, with the
caller

E.g., void fun(int &first, int &second)



Pros and Cons

Pros

Passing process is efficient in terms of time and space

Cons

Access to the formal parameters is slower than pass-by-
value parameters due to indirect access via reference

Side effects to parameters

Aliases can be created



An Example: pass-by-value-result vs. pass-

by-reference
program foo;
var X:int;
procedure p(y: int);
begin
y=y+1
Y=Yy * X, pass-by-value-result | pass-by-reference
end y y y y
begin (entry to p) 2 2 2 2
X =2 (aftery:=y + 2 3 3 3
P(X); 1) 6 6 9 9
print(x); (at p’s return)
end

VIRGINIA TECH 25



Aliases can be created due to pass-by-
reference

Given void fun(int &first, int &second),

Actual parameter collisions

E.g., fun(total, total) makes first and second to be aliases

Array element collisions

E.g., fun(list[i], list[j]) can cause first and second to be aliases if i == |

Collisions between formals and globals

E.g., int* global;
void main() { ... sub(global);... }
void sub(int* param) { ... }

Inside sub, param and global are aliases

VIRGINIA TECH. 26



Pass-by-Name

Implement an inout-mode parameter transition method

The body of a function is interpreted at call time after
textually substituting the actual parameters into the
function body

The evaluation method is similar to C preprocessor
macros



An Example in Algol

procedure double(x);
real x;
begin
X =X *2;
end;
Therefore, double(C[j]) is interpreted as C[j] = C[j] * 2

VIRGINIA TECH. 28



Another Example

Assume k is a global variable,

procedure sub2(x: int; y: int; z: int);

begin
k= I;
y (= X;
k :=5;
Z:=X;
end;

How is the function call sub2(k+1,j, i) interpreted?

VIRGINIA TECH

29



Disadvantages of Pass-by-Name

* Very inefficient references

* Too tricky; hard to read and understand

VIRGINIA TECH

30



Implementing Parameter-Passing Methods

Most languages use the runtime stack to pass parameters

Pass-by-value

Values are copied into stack locations

Pass-by-result

Values assigned to the actual parameters are placed in the stack

Pass-by-value-result

A combination of pass-by-value and pass-by-result

Pass-by-reference

Parameter addresses are put in the stack

VIRGINIA TECH. 31



An Example

Function header: void sub (int a, int b, int ¢, int d)
a: pass by value
b: pass by result
c: pass by value-result
d: pass by reference

Function call: main() calls sub(w, x, y, z)



Program main Stack Procedure sub
"""" ) At start
. > Valueofa fe------ - Ref.toa
At end Value of b f&——————1@Assign to b
----..---" Mm ’ w
- === -] .loc
At end .V"mdc ‘_'Wtoc
| Address (at start)
o i Address (d) @ =t - - - - - - - Ref.tod
Code

VIRGINIA TECH.

N. Meng, S. Arthur

> Code

33



Design Considerations for Parameter
Passing

* Efficiency

* Whether one-way or two-way data transfer is
needed

VIRGINIA TECH

34



One Software Engineering Principle

Access by subroutine code to data outside the
subroutine should be minimized
In-mode parameters are used whenever no data is returned to
the caller

Out-mode parameters are used when no data is transferred to
the callee but the subroutine must transmit data back to the
caller

Inout-mode parameters are used only when data must move in
both directions between the caller and callee

VIRGINIA TECH



A practical consideration in conflict with
the principle

* Pass-by-reference is the fastest way to pass
structures of significant size

VIRGINIA TECH

36



