
Subprograms
In Text: Chapter 9

N. Meng, F. Poursardar

Outline

• Definitions

• Design issues for subroutines

• Parameter passing modes and mechanisms

• Advanced subroutine issues

2

Subroutine

• A sequence of program instructions that perform a

specific task, packaged as a unit

• The unit can be used in programs whenever the

particular task should be performed

3

Subroutine

• Subroutines are the fundamental building blocks of

programs

• They may be defined within programs, or separately

in libraries that can be used by multiple programs

• In different programming languages, a subroutine may

be called a procedure, a routine, a method, or a

subprogram

4

Characteristics of

Subroutines/Subprograms

• Each subroutine has a single entry point

• The caller is suspended during the execution of

the callee subroutine

• Control always returns to the caller when callee

subroutine’s execution terminates

5

Parameters

• A subroutine may be written to expect one or more

data values from the calling program

• The expected values are called parameters or

formal parameters

• The actual values provided by the calling program are

called arguments or actual parameters

6

Actual/Formal Parameter Correspondence

• Two options

– Positional parameters

o In nearly all programming languages, the binding is done by position

o E.g., the first actual parameter is bound to the first formal

parameter

– Keyword parameters

o Each formal parameter and the corresponding actual parameter

are specified together

o E.g., Sort (List => A, Length => N)

7

Keyword Parameters

• Advantages

– Order is irrelevant

– When a parameter list is long, developers won’t make the

mistake of wrongly ordered parameters

• Disadvantages

– Users must know and specify the names of formal

parameters

8

Default Parameter

• A parameter that has a default value provided to it

• If the user does not supply a value for this parameter,

the default value will be used

• If the user does supply a value for the default

parameter, the user-specified value is used

9

An Example in Ada

procedure sort (list : List_Type;

length : Integer := 100);

...

sort (list => A);

10

Design issues for subroutines

• What parameter passing methods are provided?

• Are parameter types checked?

• What is the referencing environment of a passed

subroutine?

• Can subroutine definitions be nested?

• Can subroutines be overloaded?

• Are subroutines allowed to be generic?

• Is separate/independent compilation supported?

11

Parameter-Passing Methods

• Ways in which parameters are transmitted to and/or

from callee subroutines

– Semantic models

– Implementation models

12

Semantic Models

• Formal parameters are characterized by one of three

distinct semantic models

– In mode: They can receive data from the corresponding

actual parameters

– Out mode: they can transmit data to the actual

parameters

– Inout mode: they can do both

13

Models of Parameter Passing

14

An Example

public int[] merge(int[] arr1, int[] arr2) {

int[] arr = new int[arr1.length + arr2.length];

for (int i = 0; i < arr2.length; i++) {

arr[i] = arr1[i];

arr2[i] = arr1[i] + arr2[i];

arr[i + arr1.length] = arr2[i];

}

return arr;

}

15

Which parameter is in mode, out mode, or
inout mode?

Implementation Models

• A variety of models have been developed by language

designers to guide the implementation of the three

basic parameter transmission modes

– Pass-by-value

– Pass-by-result

– Pass-by-value-result

– Pass-by-reference

– Pass-by-name

16

Pass-by-Value

• The value of the actual parameter is used to initialize

the corresponding formal parameter, which then acts

as a local variable in the subprogram

• Implement in-mode semantics

• Implemented by copy

17

Pros and Cons

• Pros

– Fast for scalars, in both linkage cost and access time

– No side effects to the parameters

• Cons

– Require extra storage for copying data

– The storage and copy operations can be costly if the

parameter is large, such as an array with many elements

18

Pass-by-Result

• No value is transmitted to a subroutine

• The corresponding formal parameter acts as a local

variable, whose value is transmitted back to the caller’s

actual parameter

– E.g., void Fixer(out int x, out int y) {

x = 17;

y = 35;

}

• Implement out-mode parameters

19

Pros and Cons

• Pros

– Same as pass-by-value

• Cons

– The same cons of pass-by-value

– Parameter collision

o E.g., Fixer(x, x), what will happen?

o If the assignment statements inside Fixer() can be reordered, what

will happen?

20

Pass-by-Value-Result

• A combination of pass-by-value and pass-by-result, also

called pass-by-copy

• Implement inout-mode parameters

• Two steps

– The value of the actual parameter is used to initialize the

corresponding formal parameter

– The formal parameter acts as a local variable, and at

subroutine termination, its value is transmitted back to the

actual parameter

21

Pros and Cons

• Pros

– Same as pass-by-reference, which is to be discussed next

• Cons

– Same as pass-by-result

22

Pass-by-Reference

• A second implementation model for inout-mode

parameters

• Rather than copying data values back and forth, it

shares an access path, usually an address, with the

caller

– E.g., void fun(int &first, int &second)

23

Pros and Cons

• Pros

– Passing process is efficient in terms of time and space

• Cons

– Access to the formal parameters is slower than pass-by-

value parameters due to indirect access via reference

– Side effects to parameters

– Aliases can be created

24

An Example: pass-by-value-result vs. pass-

by-reference

program foo;

var x: int;

procedure p(y: int);

begin

y := y + 1;

y := y * x;

end

begin

x := 2;

p(x);

print(x);

end

25

pass-by-value-result pass-by-reference

x y x y

(entry to p)

(after y:= y +
1)

(at p’s return)

2 2 2 2

2 3 3 3

6 6 9 9

Aliases can be created due to pass-by-

reference

• Given void fun(int &first, int &second),

– Actual parameter collisions

o E.g., fun(total, total) makes first and second to be aliases

– Array element collisions

o E.g., fun(list[i], list[j]) can cause first and second to be aliases if i == j

– Collisions between formals and globals

o E.g., int* global;

void main() { … sub(global); … }

void sub(int* param) { … }

o Inside sub, param and global are aliases

26

Pass-by-Name

• Implement an inout-mode parameter transition method

• The body of a function is interpreted at call time after

textually substituting the actual parameters into the

function body

• The evaluation method is similar to C preprocessor

macros

27

An Example in Algol

procedure double(x);

real x;

begin

x := x * 2;

end;

Therefore, double(C[j]) is interpreted as C[j] = C[j] * 2

28

Another Example

• Assume k is a global variable,

procedure sub2(x: int; y: int; z: int);

begin

k := 1;

y := x;

k := 5;

z := x;

end;

• How is the function call sub2(k+1, j, i) interpreted?

29

Disadvantages of Pass-by-Name

• Very inefficient references

• Too tricky; hard to read and understand

30

Implementing Parameter-Passing Methods

• Most languages use the runtime stack to pass parameters

– Pass-by-value

o Values are copied into stack locations

– Pass-by-result

o Values assigned to the actual parameters are placed in the stack

– Pass-by-value-result

o A combination of pass-by-value and pass-by-result

– Pass-by-reference

o Parameter addresses are put in the stack

31

An Example

• Function header: void sub (int a, int b, int c, int d)

– a: pass by value

– b: pass by result

– c: pass by value-result

– d: pass by reference

• Function call: main() calls sub(w, x, y, z)

32

N. Meng, S. Arthur 33

Design Considerations for Parameter

Passing

• Efficiency

• Whether one-way or two-way data transfer is

needed

34

One Software Engineering Principle

• Access by subroutine code to data outside the

subroutine should be minimized

– In-mode parameters are used whenever no data is returned to

the caller

– Out-mode parameters are used when no data is transferred to

the callee but the subroutine must transmit data back to the

caller

– Inout-mode parameters are used only when data must move in

both directions between the caller and callee

35

A practical consideration in conflict with

the principle

• Pass-by-reference is the fastest way to pass

structures of significant size

36

