
1

Intl School SE, Salerno, Sept’06, B G Ryder-2 1

Practical Program Analysis of
Object-oriented Software

Part 2
Dr. Barbara G. Ryder

Rutgers University

http://www.cs.rutgers.edu/~ryder
September 2006

Intl School SE, Salerno, Sept’06, B G Ryder-2 2

Outline
Part 2
• New results on accommodating reflection in

points-to analysis
• Applications of analysis in software tools to

increase programmer productivity
– Using infeasibility analysis to enable better test

coverage for recovery code
• Testing web server applications for robustness, Fu et. al

ISSTA’04, TSE’05, DCS-TR-599
– Combining static and dynamic analyses to report

change impact of edits
• Change impact analysis for Java codes, OOPSLA’04,

FSE’06

2

Intl School SE, Salerno, Sept’06, B G Ryder-2 3

Handling Dynamic Class Loading
• New algorithm incrementally accounts for classes

loaded and performs analysis updates online at
runtime

• Generates constraints at runtime using the JVM and
propagates them when a client needs valid points-to
results

• Uses deferred evaluation to handle unresolved
references

• Andersen’s analysis with field-sensitive object
representation, objects represented by their
creation sites, and static call graph (CHA)

M.Hirzel, A. Diwan, M. Hind, “Pointer Analysis in the
Presence of Dynamic Class Loading”, ECOOP 2004

Intl School SE, Salerno, Sept’06, B G Ryder-2 4

Hirzel et.al Algorithm
• Showed efficacy through use in new

connectivity-based GC algorithm
• Used Jikes RVM 2.2.1 on Specjvm98
benchmarks with good results; claimed need
long-running programs for the incremental
computation cost to be amortized.

• Validation:
– Need to make sure points-to solution is updated before do

a GC.
– Then GC verifies the points-to solution by making sure the

dynamically observed points-to’s are in the solution.

3

Intl School SE, Salerno, Sept’06, B G Ryder-2 5

Prolangs Research Project I
Testing robustness of Java web server

applications using static and dynamic
analyses.

Refs:
C. Fu, B. G. Ryder, “Exception-chain analysis: Revealing Exception Handling

Architecture in Java Server Applications”, DCS-TR-599, April 2006.
C. Fu, B.G. Ryder, “Navigating Error Recovery Code in Java Applications”, Eclipse

Technology Exchange Workshop, held at OOPSLA, October 2005.
C. Fu, A. Milanova, B.G. Ryder, D. Wonnacott, “Robustness Testing of Java

Server Applications”, IEEE Transactions on Software Engineering, Volume 31,
Number 4, pp 292-312, April 2005.

C. Fu, B.G. Ryder, A. Milanova, D. Wonnacott, “Testing of Java Web Services
for Robustness”, in Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA), July 2004, pp 23-33.

C. Fu, Chen, K. Naragan, T. Nguyen, R. Martin, B.G. Ryder, D.
Wonnacott,“Compiler-directed Program Fault Coverage for Highly Available
Java Internet Services”, in Proceedings of the International Conference on
Dependable Systems and Networks, June 2003.

Intl School SE, Salerno, Sept’06, B G Ryder-2 6

Testing for Robustness
• Test application reactions to operating

system interaction faults
– e.g., disk crashes, network congestion, OS resource

depletion, OS bugs

• Provide realistic simulation of fault
conditions
– Cannot depend on naturally occurring faults

• Provide measure of robustness of software
response

• Introduce software analysis and testing
methodology to automate this process

4

Intl School SE, Salerno, Sept’06, B G Ryder-2 7

Testing by Fault Injection
Current approach, a form of

black box testing:
• Learn fault distribution of

system by observation
• Inject faults according to

observed frequency
• Watch application

response: crash/continue
• Measure how often

system avoids crash in
response to introduced
fault

Application

Java Runtime

OS

Device

s.read()
Socket
Exception

Intl School SE, Salerno, Sept’06, B G Ryder-2 8

Our Approach
Our approach, a form of
white box testing,

• Use knowledge of application
from the compiler to inject
possibly-affecting faults at
appropriate times during
execution

• Observe application
response (i.e., exception
handling)

• Measure coverage of
exception handlers

Application

Java Runtime

OS

Device

s.read()
Socket
Exception

5

Intl School SE, Salerno, Sept’06, B G Ryder-2 9

void foo() throws Exception{
...
 try{
 bar();
 }
 catch (IOException ioe){…}
}

void bar() throws Exception{
. . .
 throw new SocketException();
. . .
 throw new OtherException();
. . .
}

SocketException thrown in bar
OtherException thrown in bar

OtherException thrown in bar

Java Exceptions

e-c link

Intl School SE, Salerno, Sept’06, B G Ryder-2 10

Our Approach - 1.Analysis
try{
 …

 s.read();
 …

} catch (IOException e){
 // recovery code
}

Socket
Exception

s.read()

vulnerable
operation

fault-sensitive
operation

Application

Java Runtime

OS

Device
1. Find vulnerable operations
2. Find exception handlers

handler

6

Intl School SE, Salerno, Sept’06, B G Ryder-2 11

Our Approach- 2.Instrumentation
try{
 …
inject_fault();
 s.read();
 …
cancel_fault();
} catch (IOException e){
 record_current_fault();
 // recovery code
}

Mendosus
A Fault Injection Engine

s.read()

Application

Java Runtime

OS

Device

Socket
Exception

Intl School SE, Salerno, Sept’06, B G Ryder-2 12

Framework
Tester provided

Fault set

Mendosus,
Fault Injection

Engine

Java
Application

Instrumented
Java Program

Exception-Catch
Link Analysis

Measured
Exception
Def-Catch
Coverage

Compile-time

Runtime

Possible
E-C links

Observed
E-C links

7

Intl School SE, Salerno, Sept’06, B G Ryder-2 13

Contributions
• A new white-box testing methodology for recovery

code in Java applications
• A practical, fairly precise exception def-use

analysis
• A new technique for determining control path

infeasibility using data reachability
• A new test coverage metric for fault injection that

emphasizes coverage of the application recovery
code

• Initial experimental evidence for the practical
utility of this approach - achieved on average 84%
coverage

Intl School SE, Salerno, Sept’06, B G Ryder-2 14

Exception-catch Link Analysis
• Two phase algorithm

– Exception-flow analysis - initial estimate
of e-c links using call graph
• Can vary algm precision by varying precision of
call graph construction

– DataReach analysis - prune away
infeasible links using object points-to
information

– Call graph and points-to graphs generated
by FieldSens points-to analysis, Rountev et.al
OOPSLA’01

8

Intl School SE, Salerno, Sept’06, B G Ryder-2 15

DataReach Analysis-Example
void readFile(String s){
 byte[] buffer = new byte[256];
 try{
 InputStream f =new FileInputStream(s);
 InputStream source=new BufferedInputStream(f);
 for (...)
 c = source.read(buffer);
 }catch (IOException e){ ...}
}

void readNet(Socket s){
 byte[] buffer = new byte[256];
 try{
 InputStream n =s.getInputStream();
 InputStream source=new BufferedInputStream(n);
 for (...)
 c = source.read(buffer);
 }catch (IOException e){ ...}
}

Intl School SE, Salerno, Sept’06, B G Ryder-2 16

Example Call Graph

FilterInputStream.read(byte[])

BufferedInputStream.read(byte[],int,int)

BufferedInputStream.read1(byte[],int,int)

BufferedInputStream.fill()

FileInputStream.read(...) SocketInputStream.read(...)

readFile(String s) readNet(Socket s)

9

Intl School SE, Salerno, Sept’06, B G Ryder-2 17

Example Call Graph-2

FilterInputStream.read(byte[])

BufferedInputStream.read(byte[],int,int)

BufferedInputStream.read1(byte[],int,int)

BufferedInputStream.fill()

FileInputStream.read(...) SocketInputStream.read(...)

readFile(String s) readNet(Socket s)

Q: what objects are visible in BufferedInputStream.fill()
on paths from readFile()?

oa

ob o c

od

Visible thru:
parameters,
globals,
ref field loads,
obj creation.

spurious

infeasible

Intl School SE, Salerno, Sept’06, B G Ryder-2 18

Example Call Graph-3

FilterInputStream.read(byte[])

BufferedInputStream.read(byte[],int,int)

BufferedInputStream.read1(byte[],int,int)

BufferedInputStream.fill()

FileInputStream.read(...) SocketInputStream.read(...)

readFile(String s) readNet(Socket s)

Q: what objects are visible in BufferedInputStream.fill()
on paths from readNet()?

ob o c

od

ox oy
infeasible

spurious

10

Intl School SE, Salerno, Sept’06, B G Ryder-2 19

Experiments
• Implemented analysis in McGill’s SOOT

framework on a 2.8GHz Pentium4 PC under
Linux

• Used four moderate-sized benchmarks
• Experimented with different call graph

construction algorithms (CHA,RTA,Points-to)
– Added DataReach separately to see its effect
– Handled dynamic loading and reflection by dynamic

observation
• Focused on recovery code for IOExceptions

Fu et al, ISSTA’04

Intl School SE, Salerno, Sept’06, B G Ryder-2 20

Benchmarks
Fu et al, ISSTA’04

11

Intl School SE, Salerno, Sept’06, B G Ryder-2 21

Experiment Details
• Analysis combinations tried

– CHA,Dean et.al, ECOOP’95
– RTA,Bacon et.al, OOPSLA’96
– FieldSens points-to,Rountev et.al, OOPSLA’01
– In-Points-to
– Points-to/DataReach
– In-Points-to/DataReach

• Measured coverage as ratio of number of executed
e-c links to number of possible e-c links

• Added context sensitivity by inlining constructors
that assign to reference fields through the this
parameter

Fu et al, ISSTA’04

Intl School SE, Salerno, Sept’06, B G Ryder-2 22

Coverage Data

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

FTPD JNFS Haboob Muffin

 CHA RTA PTA

 InPTA PTA-DR InPTA-DR

Fu et al, ISSTA’04

12

Intl School SE, Salerno, Sept’06, B G Ryder-2 23

Number of e-c links obtained

480

96

104

34

CHA

3542Muffin

1012Haboob

1619JNFS

1113FTPD

Covered
In-Points-
to/
DataReach

Program

Fu et al, ISSTA’04

Intl School SE, Salerno, Sept’06, B G Ryder-2 24

Timings

220.6 221.6 160.4 171.9

3,103.7

3,961.0

2,954.3

4,907.7

0

1,000

2,000

3,000

4,000

5,000

6,000

InPTA-DR PTA-DR InPTA-DR PTA-DR InPTA-DR PTA-DR InPTA-DR PTA-DR

FTPD Haboob JNFS Muffin

S
e
c
o
n
d
s

1 hour

Fu et al, ISSTA’04

13

Intl School SE, Salerno, Sept’06, B G Ryder-2 25

More Recent Results
• Extended the DataReach algorithm

– M-DataReach: 1 reaching object set per method
(implemented)

• Added 3 larger programs to dataset and compared
DataReach to M-DataReach on 7 programs
– HttpClient 1334(4741) methods
– SpecJVM 2489(4592) methods
– Vmark 1565(5029) methods

• Added measure reached to show e-c links whose try
blocks were reached during execution, to calculate
effective coverage
– Filter out possible e-c links whose try blocks not reached

Fu et al, TSE’05

Intl School SE, Salerno, Sept’06, B G Ryder-2 26

Recent Results

72%28%23%Vmark

19%15%13%SpecJVM

62%61%55%HttpClient

InPTA-DR InPTA-MDR Effective Coverage

Fu et al, TSE’05

14

Intl School SE, Salerno, Sept’06, B G Ryder-2 27

Recent Results
Categorized uncovered e-c links

1. Feasible, but uncovered because of
insufficient tests or input

2. Infeasible and difficult to prune for any
static analysis

3. Infeasible, but could be eliminated by a
more precise static analysis

4015%60%25%HTTP Cl

3087%13%SpecJVM
743%43%14%Muffin

Total321

Fu et al, TSE’05

Intl School SE, Salerno, Sept’06, B G Ryder-2 28

Exception-chain Analysis
• Find exceptions related semantically

• Rethrows of an exception within a catch that
preserves state of entering exception object

• Enables test and understanding of full recovery
code associated with a specific fault

– Also categorized the handlers to show
complexity of recovery operations

– Exposes system recovery architecture to
user for greater understanding

C. Fu, B. G. Ryder, “Exception-chain analysis:
Revealing Exception Handling Architecture in Java
Server Applications”, DCS-TR-599

15

Intl School SE, Salerno, Sept’06, B G Ryder-2 29

Handlers Categorized
Fu et al, DCS-TR-599

Intl School SE, Salerno, Sept’06, B G Ryder-2 30

Exception-chains Found
Starting from a Rethrow

Fu et al, DCS-TR-599

16

Intl School SE, Salerno, Sept’06, B G Ryder-2 31

Exception-chain Graph of
Tomcat Fu et al, DCS-TR-599

Intl School SE, Salerno, Sept’06, B G Ryder-2 32

Related Work - Project I
• Dataflow testing and coverage metrics

• Rapps/Weyuker TSE 4/85; Frankl/Weyuker TSE
10/88,Sinha/Harrold ICSM’99

• Analysis of exception handling
• Robillard/Murphy TOSEM 2003; Jo et.al JL of Sys and SW

2004; Sinha/Harrold TSE 9/00; Choi et.al PASTE’99;
• Exceptions and Compilation

• IBM Tokyo JIT, Latte, MRL VM
• Points-to analysis

• Ryder CC’03; Milanova et. al ISSTA’02; Grove et.al
OOPSLA’97; Grove/Chambers TOPLAS 2001; O’Callahan 2000;

• Infeasible paths
• Bodik et.al FSE’97; Souter/Pollock Info & SW Tech 10/2002;

• Fault injection techniques
• Arlat et.al IEEE-TSE 8/93;Bouricus et.al NatlConfACM 3/69;

Dugan/Trevidi IEEE-TC 6/89
• Tsai et.al IEEE-TC 11/99;Bieman et.al ISSRE’96

17

Intl School SE, Salerno, Sept’06, B G Ryder-2 33

Summary - Project I
• Designed and demonstrated an automated white-box

testing methodology for recovery code
• Designed fairly precise def-use analysis for

exceptions, including a new technique to eliminate
spurious def-uses

• Extended to show exception-handling paths for
semantically related exceptions
– Categorized quality of exception handlers
– Showed inter-component exception structure

• Promising experimental results with methodology on
several Java web applications

Intl School SE, Salerno, Sept’06, B G Ryder-2 34

Future Work - Project I
• Empirically test exception-chains in Tomcat

and other large applications, gathering
coverage metrics
– Learn which chains are hard to cover and why

• Gather exception handler classification data
on large, framework-based applications

• Expand set of exceptions tracked by analysis
• Generalize the technique to handle

distributed Java applications using RMI

18

Intl School SE, Salerno, Sept’06, B G Ryder-2 35

What analyses were used?
• FieldSens points-to analysis augmented with

DataReach to show call path infeasibility
• Flow-sensitive def-use analysis for exception

objects within a catch block
• To find rethrows of semantically related exceptions

• Dynamic program instrumentation to record
test coverage and record instances of
reflection

Intl School SE, Salerno, Sept’06, B G Ryder-2 36

Prolangs Research Project II
Practical Change Impact Analysis
of Java Programs
Refs:
M. Stoerzer, B.G. Ryder, X. Ren, F. Tip, “Finding Failure-Inducing

Changes in Java Programs using Change Classification”, in the
Proceedings of the 14th SIGSOFT Conference on the Foundations of
Software Engineering, November 2006.

X. Ren, O. Chesley, Ophelia, B.G. Ryder, “CRISP, A Debugging Tool for
Java Programs”, IEEE Transactions on Software Engineering, in press,
April 2006.

O. Chesley, X. Ren, B.G. Ryder, “Crisp: A Debugging Tool for Java
Programs”, in the Proceedings of the 21st International Conference on
Software Maintenance (ICSM), Budapest, Hungary, September 2005.

X. Ren, F. Shah, F. Tip, B.G. Ryder, O. Chesley, “Chianti: A Tool for
Practical Change Impact Analysis of Java Programs”, in Proceedings of
the ACM SIGPLAN Conference on Object Oriented Programming,
Systems and Applications (OOPSLA), pp 432-448, October 2004.

19

Intl School SE, Salerno, Sept’06, B G Ryder-2 37

Non-locality of change impact
in OO programs

• Small source code changes can have
major and non-local effects in object-
oriented systems
– Due to subtyping and dynamic dispatch

X x= new Z()
…
x.f()

X

Y Z

f()

f()

X x= new Z()
…
x.f()

Intl School SE, Salerno, Sept’06, B G Ryder-2 38

Motivation
• Program analysis provides feedback on

semantic impact of changes
– E.g., added/deleted method calls, fields and classes

• Object-oriented system presumed to consist
of set of classes and set of associated unit
or regression tests

• Change impact measured by tests affected
– Describes application functionality modified
– Discovers need for new tests

20

Intl School SE, Salerno, Sept’06, B G Ryder-2 39

Example
class A {
 public void foo() {
}
class B extends A {
 public void foo(){ }
}
class C extends A{
}

public void test1{
 A a = new A();
 a.foo();//A’s foo
}
 public void test2(){
 A a = new B();
 a.foo(); //B’s foo
}
public void test3(){
 A a = new C();
 a.foo();//A’s foo
}

A

B C

foo()

foo()

Intl School SE, Salerno, Sept’06, B G Ryder-2 40

Example
class A {
 public void foo() { }
 public int x;
}
class B extends A {
 public void foo(){B.bar();}
 public static void bar() {

y = 17;}
 public static int y;
}
class C extends A{
 public void foo() {
 x = 18; }
 public void baz() {
 z = 19;}
 public int z;
}

A

B C

foo(), x

foo(), y
bar()

foo(), z
baz()

Question: what affect did this
edit have on these tests?

21

Intl School SE, Salerno, Sept’06, B G Ryder-2 41

Example - Changes to foo()
class A {
 public void foo() { }
 public int x;
}
class B extends A {
 public void foo(){B.bar();}
 public static void bar()

{y=17;}
 public static int y;
}
class C extends A{
 public void foo() {
 x = 18; }
 public void baz() {
 z = 19;}
 public int z;
}

public void test1{
 A a = new A();
 a.foo();//A’s foo
}
 public void test2(){
 A a = new B();
 a.foo(); //B’s foo
}
public void test3(){
 A a = new C();
 a.foo();//A’s foo
}

1.Decompose edit into
atomic changes

2.Find affected tests

3.Find affecting changes

Intl School SE, Salerno, Sept’06, B G Ryder-2 42

Assumptions
• Our change analysis tools run within an interactive programming

environment - Eclipse
– User makes a program edit
– User requests change impact analysis of an edit

• Before and after edit, the program compiles
• Tests execute different functionalities of the system
• Call graphs obtainable for each test through static or dynamic

analysis
– Call graphs show the (possible) calling structure of a program; nodes ~

methods, edges ~ calls
• Change impact measured in terms of changes to these call

graphs, corresponding to a (growing) set of tests

22

Intl School SE, Salerno, Sept’06, B G Ryder-2 43

Usage Scenario

∀ Ti, run Ti

Output okay?

yes

Build call graphs

Edit code

Derive atomic changes
S = {c1,c2,…,cn}

Find potentially
affected tests
T1, T2, …,Tk

Chianti

no
Find S’⊆S that
may impact Ti

Explore subsets of S’

Crisp

Junit/CIA

Chianti

Intl School SE, Salerno, Sept’06, B G Ryder-2 44

Contributions - Tools
• Chianti, a prototype change impact analyzer

for full Java language (1.4)
– Written as an Eclipse plug-in
– Experimental results from analysis of year 2002 Daikon

system CVS check-in

• Crisp, a builder of intermediate program
versions (between original and edited)
– To find failure-inducing changes semi-automatically

• JUnit/CIA, augmented version of JUnit in
Eclipse to perform unit/regression testing and
change classification
– Find likelihood of a change being failure-inducing

23

Intl School SE, Salerno, Sept’06, B G Ryder-2 45

Contributions - Ideas
• Definition of a notion of an atomic change

and their interdependences
• Find the set of tests potentially affected by

set of atomic changes
• For an affected test, find subset of atomic

changes that may affect it
• Determine set of atomic changes which do

not affect any test
– Demonstrates need for more tests

• Determine call graph coverage as feedback
to aid user in generating new tests

Affected Tests

Affecting Changes

Intl School SE, Salerno, Sept’06, B G Ryder-2 46

Atomic Changes

AC Add an empty class
DC Delete an empty class
AM Add an empty method
DM Delete an empty method
CM Change body of a method
LC Change virtual method lookup
AF Add a field
DF Delete a field

CFI Change defn instance field initializer
CSFI Change defn static field initializer
AI Add an empty instance initializer
DI Delete an empty instance initializer
CI Change defn instance initializer
ASI Add empty static initializer
DSI Delete empty static initializer
CSI Change definition of static initializer

 Each edit corresponds to unique
set of (method-level) atomic changes

24

Intl School SE, Salerno, Sept’06, B G Ryder-2 47

Examples of Atomic Changes
class A {
 public void foo() { }
 public int x;//1
}
class B extends A {
 public void foo(){B.bar();}//6
 public static void bar()

{y=17;}//5,8
 public static int y;//7
}
class C extends A{
 public void foo() {
 x = 18; }//2,3
 public void baz() {
 z = 19;}//10,11
 public int z;//9
}

Intl School SE, Salerno, Sept’06, B G Ryder-2 48

Dynamic Dispatch Changes
A set of triples defined for a class hierarchy:

Runtime receiver type, declared method type
signature, actual target method
<C, A.m, B.m> means:
1. class A contains` method m
2. class C does not contain method m
3. class B contains method m, and C inherits m from B

A

B

C

m()

m()

A

B

C

m()

m()

m()

Delete <C, A.m, B.m>
Add <C, A.m, C.m>

LC change: <C, A.m>

25

Intl School SE, Salerno, Sept’06, B G Ryder-2 49

Affected Tests
T, set of all tests ; A, set of all atomic

changes; P, program before edit; P’,
program after edit

AffectedTests (T,A) ≡
 {Ti | Ti ∈ T, (Nodes(P,Ti) ∩ (CM ∪ DM)) ≠ ∅} ∪
 {Ti | Ti ∈ T, n ∈ Nodes(P,Ti), n→B,X.m A.m ∈

Edges(P,Ti), for (B,X.m) ∈ LC, B<A≤* X}

Intl School SE, Salerno, Sept’06, B G Ryder-2 50

Affecting Changes
T, set of all tests; A, set of all atomic

changes; P, program before edit; P’, program
after edit

Affecting Changes(Ti, A) ≡

{a’ | a ∈ Nodes(P’,Ti) ∩ (CM ∪ AM), a’<*a} ∪
{a’ | a ≡ (B,X.m) ∈ LC, B <* X, n→B,X.m A.m ∈

Edges(P’,Ti),for some n, A.m ∈ Nodes(P’,Ti), a’<*a}

26

Intl School SE, Salerno, Sept’06, B G Ryder-2 51

Edited Program P’

Call Graph
Builder

Unit/Regression Tests

Atomic Change
Decoder

Change Impact
Analyzer

Atomic Changes

Chianti

Original Program P

Call Graphs
of Tests in P

Affected Tests

Call Graphs
of Affected Tests in P’

Affecting Changes

Intl School SE, Salerno, Sept’06, B G Ryder-2 52

How to run Chianti?
• To simulate use in an IDE while editing

evolving code, select 2 successive CVS
versions of a project and their associated
tests

• Call for change impact analysis of the edit
• Chianti displays change analysis results

– Affected tests with their affecting atomic
changes and prerequisite changes

27

Intl School SE, Salerno, Sept’06, B G Ryder-2 53

Chianti GUI

test2 calls B.foo()
affected by CM(B.foo())
with prereq AM(B.bar()),
because B.foo() calls
B.bar()

Eclipse project files Java code
Affected tests
& affecting changes

Intl School SE, Salerno, Sept’06, B G Ryder-2 54

Chianti GUI

test2 calls B.bar() affected
by CM(B.bar()) with prereqs
AM(B.bar()) & AF(B.y)
because B.bar() uses B.y

28

Intl School SE, Salerno, Sept’06, B G Ryder-2 55

Chianti Experiments
• Data: Daikon project (cf M.Ernst, MIT)

– Obtained CVS repository from 2002 with version
history - an active debugging period

– Grouped code updates within same week for 12
months

– Obtained 39 intervals with changes
– Growth from

• 48K to 121K lines of code
• 357 to 765 classes
• 2409 to 6284 methods
• 937 to 2885 fields
• 40-62 unit tests per version

Ren et al, OOPLSA’04

Intl School SE, Salerno, Sept’06, B G Ryder-2 56

Number of atomic changes

268

1471

2810

308

11698

1197

171

397

1006

212

116

300

29

214

350

5238

378

2344

1319

4

286

3

15

65

7

13

6095

153

1

163

635

40

2913

659

723

665

332

465

1747

1

10

100

1000

10000

100000

0
1
0
7
-0
1
1
4

0
1
1
4
-0
1
2
1

0
1
2
1
-0
1
2
8

0
1
2
8
-0
2
0
4

0
2
0
4
-0
2
1
1

0
2
1
1
-0
2
1
8

0
2
1
8
-0
2
2
5

0
2
2
5
-0
3
0
4

0
3
0
4
-0
3
1
1

0
3
1
1
-0
3
1
8

0
3
1
8
-0
4
0
1

0
4
0
1
-0
4
0
8

0
4
0
8
-0
4
1
5

0
4
1
5
-0
5
0
6

0
5
0
6
-0
5
2
7

0
5
2
7
-0
6
0
3

0
6
0
3
-0
6
1
0

0
6
1
0
-0
6
1
7

0
6
1
7
-0
6
2
5

0
6
2
5
-0
7
0
1

0
7
0
1
-0
7
0
8

0
7
0
8
-0
7
1
5

0
7
1
5
-0
7
2
2

0
7
2
2
-0
8
0
5

0
8
0
5
-0
8
1
9

0
8
1
9
-0
8
2
6

0
8
2
6
-0
9
0
2

0
9
0
2
-0
9
0
9

0
9
0
9
-0
9
1
6

0
9
1
6
-0
9
2
3

0
9
2
3
-0
9
3
0

0
9
3
0
-1
1
1
1

1
1
1
1
-1
1
1
9

1
1
1
9
-1
1
2
6

1
1
2
6
-1
2
0
2

1
2
0
2
-1
2
0
9

1
2
0
9
-1
2
1
6

1
2
1
6
-1
2
2
3

1
2
2
3
-1
2
3
0

Ren et al, OOPLSA’04

29

Intl School SE, Salerno, Sept’06, B G Ryder-2 57

Affected Tests

53%

80%

0%
2%

63%

89%

0%

68%

0%

61%

70%

0%

61%

52%

22%

27%

68%
65%

60%

44%

48%

76%

57%

0%

69%

77%

0%

63%

76%

63%

79%

68%

72%
72%

63%

67%
69%

57%

55%

58%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

0
1

0
7

_
0

1
1

4

0
1

1
4

_
0

1
2

1

0
1

2
1

_
0

1
2

8

0
1

2
8

_
0

2
0

4

0
2

0
4

_
0

2
1

1

0
2

1
1

_
0

2
1

8

0
2

1
8

_
0

2
2

5

0
2

2
5

_
0

3
0

4

0
3

0
4

_
0

3
1

1

0
3

1
1

_
0

3
1

8

0
3

1
8

--0
4

0
1

0
4

0
1

--0
4

0
8

0
4

0
8

--0
4

1
5

0
4

1
5

--0
5

0
6

0
5

0
6

--0
5

2
7

0
5

2
7

--0
6

0
3

0
6

0
3

--0
6

1
0

0
6

1
0

--0
6

1
7

0
6

1
7

--0
6

2
5

0
6

2
5

--0
7

0
1

0
7

0
1

-0
7

0
8

0
7

0
8

-0
7

1
5

0
7

1
5

-0
7

2
2

0
7

2
2

-0
8

0
5

0
8

0
5

-0
8

1
9

0
8

1
9

-0
8

2
6

0
8

2
6

-0
9

0
2

0
9

0
2

-0
9

0
9

0
9

0
9

-0
9

1
6

0
9

1
6

-0
9

2
3

0
9

2
3

-0
9

3
0

0
9

3
0

-1
1

1
1

1
1

1
1

-1
1

1
9

1
1

1
9

-1
1

2
6

1
1

2
6

-1
2

0
2

1
2

0
2

-1
2

0
9

1
2

0
9

-1
2

1
6

1
2

1
6

-1
2

2
3

1
2

2
3

-1
2

3
0

A
v

e
ra

g
e

Percentage Affected Tests

Ren et al, OOPLSA’04

Intl School SE, Salerno, Sept’06, B G Ryder-2 58

Affecting Changes

9.54%

0.34%

2.58%

15.07%

10.34%

28.24%

2.94%

5.08%

73.53%

43.41%

3.82% 3.95%

0.38%

0.26%

8.33%

5.64%

3.60%

2.88%

1.95%

7.68%

8.81%

1.54%

3.84%

1.44%

12.67%

3.36%

5.90%

0.48%

1.96% 1.92%

33.16%

1.21%
1.29%

5.94%

0.10%

1.00%

10.00%

100.00%

0
1

0
7

_
0

1
1

4

0
1

1
4

_
0

1
2

1

0
1

2
1

_
0

1
2

8

0
1

2
8

_
0

2
0

4

0
2

0
4

_
0

2
1

1

0
2

1
1

_
0

2
1

8

0
2

1
8

_
0

2
2

5

0
2

2
5

_
0

3
0

4

0
3

0
4

_
0

3
1

1

0
3

1
1

_
0

3
1

8

0
3

1
8

--0
4

0
1

0
4

0
8

--0
4

1
5

0
4

1
5

--0
5

0
6

0
5

0
6

--0
5

2
7

0
5

2
7

--0
6

0
3

0
6

0
3

--0
6

1
0

0
6

1
0

--0
6

1
7

0
6

1
7

--0
6

2
5

0
6

2
5

--0
7

0
1

0
7

0
1

-0
7

0
8

0
7

0
8

-0
7

1
5

0
7

1
5

-0
7

2
2

0
7

2
2

-0
8

0
5

0
8

0
5

-0
8

1
9

0
8

1
9

-0
8

2
6

0
9

0
9

-0
9

1
6

0
9

1
6

-0
9

2
3

0
9

3
0

-1
1

1
1

1
1

1
1

-1
1

1
9

1
1

1
9

-1
1

2
6

1
2

0
2

-1
2

0
9

1
2

0
9

-1
2

1
6

1
2

2
3

-1
2

3
0

G
e

o
m

-m
e

a
n

Percentage Affecting Changes

Ren et al, OOPLSA’04

30

Intl School SE, Salerno, Sept’06, B G Ryder-2 59

Performance of Chianti
• Deriving atomic changes from 2 successive

Daikon versions takes on average 87 seconds
• Calculating the set of affected tests takes

on average 5 seconds
• Calculating affecting changes for an

affected test takes on average 1.2 seconds
• Results show promise of our change impact

framework

Intl School SE, Salerno, Sept’06, B G Ryder-2 60

JUnit/CIA
• Integrated Chianti with JUnit in Eclipse

– Executes change impact analysis as part of
regular unit testing of code during software
evolution

• Allows user to avoid rerunning unaffected unit tests
• Allows user to see atomic changes not tested by current

test suite, in order to develop new tests
• Using test outcome history to estimate

likelihood that an affecting change is
failure-inducing for a test
– Classifying changes by whether they are affecting

to tests with worsening, improving, or same
outcomes on both versions

Stoerzer et al, FSE’06

31

Intl School SE, Salerno, Sept’06, B G Ryder-2 61

Junit/CIA - Intuition
• JUnit/CIA change classifications

– untested : change affects no test,
 more tests should be added

– green : all affected tests improve in outcome
– yellow: some affected tests worsen,

 some improve in outcome,indeterminate
– red: all affected tests worsen in outcome;

 good candidate for a bug!
• Performed in situ experiments with SE class at

University of Passau
– Overall results showed best (coloring) classifier helped focus

programmer attention on failure-inducing changes in ~50% of
cases

Stoerzer et al, FSE’06

Intl School SE, Salerno, Sept’06, B G Ryder-2 62

JUnitCIA Screen Shot

32

Intl School SE, Salerno, Sept’06, B G Ryder-2 63

CRISP
• Tool to find changes introducing bugs
• IDEA: Atomic changes which do not affect a

test cannot be responsible for its failure
– Starts with original program and allows user to

select atomic changes to add
– Tool adds selected changes and their prerequisites

to the original version, allowing running of tests
on this intermediate program version

• Goal: to perform this task automatically making ‘smart’
choices of changes to add

Chesley et al ICSM’05,
Ren et al, TSE’06 inpress

Intl School SE, Salerno, Sept’06, B G Ryder-2 64

Crisp - Daikon Case Study
Nov 11th (original) and Nov 19th (new) versions

35 affecting changes
 in a failing test

2 failure-inducing
changes

Crisp

Select changes

Apply group of
changes

Un-apply
changes

Run tests

Need to create failing
tests scenario for Crisp;
executed test suite
for Daikon version pair in
version n against source
code in version n+1

6093 atomic changes

Chianti

33

Intl School SE, Salerno, Sept’06, B G Ryder-2 65

Related Work - Project II
Impact Analysis
• Static impact analysis techniques

– Reachability: Bohner-Arnold ‘96; Kung et al.
JSS’96; Tonella TSE 2003;

– Year 2000 analyses: Eidorff et.al POPL’99;
Ramalingam et al. POPL’99;

• Dynamic impact analysis techniques
– Zeller FSE’99; Law-Rothermel ICSE’03;

• Combined analysis techniques
– Orso et al. FSE’03; Orso et al. ICSE’04;

Intl School SE, Salerno, Sept’06, B G Ryder-2 66

Related Work - Project II

Selective regression testing
– TestTube-Rosenblum ICSE’94; DejaVu-Harrold-

Rothermel TOSEM 1997;
– Slicing-based: Bates-Horwitz POPL’93; Binkley

TSE’97;
– Test selection: Harrold et al. OOPSLA’01;

Elbaum et al. JSTVR 2003;
Techniques for Avoiding Recompilation

– Tichy ACM TOPLAS’86; et al., ACM TOSEM ’94;
Hood et al., PSDE’87; Burke et al. TOPLAS‘93;
Chambers et al., ICSE’95; Dmitriev, OOPSLA’02

34

Intl School SE, Salerno, Sept’06, B G Ryder-2 67

Related Work - Project II
Fault localization
• Comparing dynamic data across executions

• Reps et al. FSE’97; Harrold et al. PASTE’98; Jones et
al. ICSE’02; Reneris and Reiss ASE’03; Dallmeier et al.
ECOOP’05;

• Statistically-based techniques: Liblet et al. PLDI’03,
PLDI’05; Liu et al. FSE’05;

• Slicing-based techniques
• Lyle et al. ISICCA’87; DeMillo et al. ISSTA’96; Bonus

et al. ASE’03;

Intl School SE, Salerno, Sept’06, B G Ryder-2 68

Summary - Project II
Developed change impact analysis for object-

oriented codes with emphasis on practicality,
viability in an IDE, and scalability to
industrial-strength systems
– Defined atomic changes to subdivide edits
– Defined impact using tests affected and their

affecting changes
– Tested ideas in Chianti on 12 months of data

from Daikon project with promising results
– Developed new tools --JUnitCIA, CRISP-- that

incorporate change impact analysis in practical
ways for testing and debugging applications

35

Intl School SE, Salerno, Sept’06, B G Ryder-2 69

Future Work - Project II
• Experiment in Crisp with heuristics to suggest

an exploration order of the affecting changes
to the user

• Comparison of several possible heuristics for
adding in affecting changes to build new
intermediate program versions

• Automation of the running of the test on the new
intermediate program version

• Try technique on larger programs -- e.g.,
Eclipse compiler

• Use change impact analysis to examine
collaborative changes to determine unexpected
semantic dependences in resulting code

Intl School SE, Salerno, Sept’06, B G Ryder-2 70

What analyses were used?
• Combines dynamic analysis (e.g., test call
graphs) with static analysis to find
Affected tests and their affecting
changes

• Also can be used with call graphs constructed
using FieldSens points-to

• Use dynamic analysis to run tests, obtain
outcomes and measure test coverage

36

Intl School SE, Salerno, Sept’06, B G Ryder-2 71

References
• O. Agesen. The cartesian product algorithm: Simple and precise

type inference of parametric polymorphism. In European
Conference on Object Oriented Programming, pages 2–26, 1995

• L. O. Andersen. Program analysis and specialization for the C
programming language. PhD thesis, DIKU, University of
Copenhagen, 1994. Also available as DIKU report 94/19.

• D. Bacon and P. Sweeney, Fast Static Analysis of C++ Virtual
Function Calls, OOPSLA’96

• M.Berndl, O. Lhotak, F. Qian, L. Hendren, N.Umanee, Points-to
analysis using BDDs, PLDI’03, pp 103-114.

• R. Chatterjee. Modular Data-flow Analysis of Statically Typed
Object-oriented Programming Languages. PhD thesis, Department
of Computer Science, Rutgers University, October 1999.

• R. Chatterjee, B. G. Ryder, and W. Landi. Relevant context
inference. In Symposium on Principles of Programming Languages,
pages 133–146, 1999.

• J. Dean, D. Grove, C. Chambers, Optimization of OO Programs
Using Static Class Hierarchy, ECOOP’95

Intl School SE, Salerno, Sept’06, B G Ryder-2 72

References
• D. Grove and C. Chambers. A framework for call graph

construction algorithms. ACM Transactions on Programming
Languages and Systems (TOPLAS), 23(6), 2001.

• M. Hirzel, A. Diwan, M. Hind, Pointer Analysis in the Presence
of Dynamic Class Loading, ECOOP 2004, pp 96-122.

• O. Lhotak and L. Hendren, Scaling Java Points-to Analysis using
Spark, In Proceedings of the Twelvth International Conference
on Compiler Construction, Warsaw, Poland, April 2003.

• O. Lhotak and L. Hendren, Jedd: a BDD-based relational
extension of Java, PLDI’04, pp 158-169.

• D. Liang, M. Pennings, and M.J. Harrold. Evaluating the
precision of static reference analysis using profiling. In
Proceedings of the international symposium on software testing
and analysis (ISSTA), pages 22–32. 2002

• D. Liang, M. Pennings, M.J. Harrold, Evaluating the impact of
context-sensitivity on Andersen’s algorithm for Java programs,
Workshop on Program Analysis for Software Tools and
Engineering, (PASTE), pp 6-12, 2006.

37

Intl School SE, Salerno, Sept’06, B G Ryder-2 73

References
• A. Milanova, A. Rountev, and B.G. Ryder. Parameterized object-

sensitivity for points-to and side-effect analyses for Java. In
International Symposium on Software Testing and Analysis
(ISSTA), pages 1–11, 2002.

• A. Milanova, A. Rountev, B.G. Ryder, Parameterized Object
Sensitivity for Points-to Analysis for Java, in ACM Transactions on
Software Engineering Methodology, Volume 14, Number 1, pp 1-
41, January 2005.

• M. Naik, A. Aiken, J. Whaley, Effective static race detection for
Java, PLDI’06, pp 308-319.

• N. Oxhoj, J. Palsberg, and M. Schwartzbach. Making type
inference practical. In European Conference on Object-Oriented
Programming, pages 329–349, 1992.

• J. Palsberg and M. Schwartzbach. Object-oriented type inference.
In Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 146–161, 1991

Intl School SE, Salerno, Sept’06, B G Ryder-2 74

References
• J. Plevyak and A. Chien. Precise concrete type inference for object

oriented languages. In Proceeding of Conference on Object-Oriented
Programming Systems, Languages and Applications.(OOPSLA ’94),
pages 324–340, October 1994.

• A. Rountev, A. Milanova, B.G. Ryder, Points-to Analysis for Java
Using Annotated Constraints, OOPSLA’01

• E. Ruf. Effective synchronization removal for Java. In Conference on
Programming Language Design and Implementation, pages 208–218,
2000.

• B.G. Ryder, Dimensions of Precision in Reference Analysis of Object-
oriented Programming Languages, invited paper in the Proceedings of
the Twelveth International Conference on Compiler Construction,
Warsaw, Poland, April 2003, pp 126-137.

• B. Steensgaard. Points-to analysis in almost linear time. In
Conference Record of the Twenty-third Annual ACM
SIGACT/SIGPLAN Symposium on Principles of Programming Languages,
pages 32–41, 1996.

38

Intl School SE, Salerno, Sept’06, B G Ryder-2 75

References
• M. Sridharan and R. Bodik, Refinement-based context-sensitive

points-to analysis for Java, PLDI’06, pp3 87-400.
• V.Sundaresan, et. al, Practical Virtual Method Call Resolution for

Java, OOPSLA’00
• F. Tip and J. Palsberg, Scalable Propagation-based Call Graph

Construction Algorithms, OOPSLA’00
• J. Whaley and M. Lam. An efficient inclusion-based points-to

analysis for strictly-typed languages. In Static Analysis Symposium,
2002.

• J. Whaley and M. Lam, Cloning-based context-sensitive pointer alias
analysis using binary decision diagrams, PLDI’04, pp 131-144.

• J. Zhu and S. Calman, Symbolic pointer analysis revisited, PLDI’04,
pp 145-157.

