Mathematics, KTH Bengt Ek November 2015

SUPPLEMENTARY MATERIAL FOR SF2736, DISCRETE MATHEMATICS:

Induction and recursion

On well-founded binary relations

Let \mathcal{R} be a binary relation on a set \mathcal{D} . As usual, we write $\alpha \mathcal{R} \beta$ to express that $\alpha \in \mathcal{D}$ is related to $\beta \in \mathcal{D}$.

We already know the properties **reflexivity**, **symmetry**, and **transitivity** for binary relations. We shall now introduce another important property, that of **well-foundedness**.

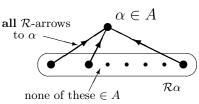
Notation:

 α $\mathcal R\text{-minimal}$ in A:

For $\alpha \in \mathcal{D}$, let $\mathcal{R}\alpha = \{\xi \in \mathcal{D} \mid \xi \mathcal{R}\alpha\}.$

Definition:

The element $\alpha \in A \subseteq \mathcal{D}$ is \mathcal{R} -minimal in A iff there is no $\xi \in A$ with $\xi \mathcal{R} \alpha$, i.e., iff $A \cap \mathcal{R} \alpha = \emptyset$.



Definition:

The relation \mathcal{R} on \mathcal{D} is well-founded (Sw. välgrundad) iff for all $A \subseteq \mathcal{D}$, $A \neq \emptyset$ there is $\alpha \in A$ which is \mathcal{R} -minimal in A.

A well-order is the same as a well-founded total order.

Examples of well-founded relations:

- $\mathcal{D} = \mathbb{N}, \ \alpha \mathcal{R} \beta \text{ means } \beta = \alpha + 1$
- $\mathcal{D} = \mathbb{N}, \ \alpha \mathcal{R} \beta \text{ means } \alpha < \beta$
- $\mathcal{D} = \mathbb{N}, \ \alpha \mathcal{R} \beta \text{ means } \alpha \mid \beta \text{ and } \alpha \neq \beta$
- $\mathcal{D} = \mathcal{P}_{fin}(\mathbb{N})$ (the set of all finite subsets of \mathbb{N}), $\alpha \mathcal{R}\beta$ means $\alpha \subset \beta$

 \mathcal{R} of the first two examples are well-founded because every non-empty subset of \mathbb{N} has a least element. In the third example, the least non-zero number of a set A (if there is one) is \mathcal{R} -minimal in A and if $A = \{0\}, 0$ is \mathcal{R} -minimal in A. In the final example, an $\alpha \in A$ with a minimal number of elements is \mathcal{R} -minimal in A.

In the second example, there is exactly one \mathcal{R} -minimal element in every $A \subseteq \mathcal{D}$, but in the others there are several such elements in some $A \subseteq \mathcal{D}$.

 $\mathbf{2}$

Examples of non-well-founded relations:

- $\mathcal{D} = \mathbb{Z}, \ \alpha \mathcal{R} \beta \text{ means } \beta = \alpha + 1$
- $\mathcal{D} = \mathbb{Z}, \ \alpha \mathcal{R} \beta \text{ means } \alpha < \beta$
- $\mathcal{D} = \mathbb{N}, \ \alpha \mathcal{R} \beta \text{ means } \alpha > \beta \text{ (so } \mathcal{R}\text{-minimal means maximal in the ordinary sense)}$
- $\mathcal{D} = \{x \in \mathbb{Q} \mid 0 \le x\}, \ \alpha \mathcal{R}\beta \text{ means } \alpha < \beta$
- $\mathcal{D} = \mathcal{P}(\mathbb{N}), \ \alpha \mathcal{R}\beta \text{ means } \alpha \subset \beta$
- $\mathcal{D} = \{\alpha, \beta, \gamma\}, \ \mathcal{R} = \{\langle \alpha, \beta \rangle, \langle \beta, \gamma \rangle, \langle \gamma, \alpha \rangle\}$

Examples of $A \subseteq \mathcal{D}$, $A \neq \emptyset$, without \mathcal{R} -minimal elements in these examples are \mathcal{D} , \mathcal{D} , \mathcal{D} , $\mathcal{D} \setminus \{0\}$, $\{\mathbb{N} \setminus \{0, 1, \dots, n\} \mid n \in \mathbb{N}\}$ and \mathcal{D} .

Proposition:

If the relation \mathcal{R} on \mathcal{D} is well-founded and the relation \mathcal{R}_1 on $\mathcal{D}_1 \subseteq \mathcal{D}$ is such that $\alpha \mathcal{R}_1 \beta \Rightarrow \alpha \mathcal{R} \beta$ for all $\alpha, \beta \in \mathcal{D}_1$ (i.e., $\mathcal{R}_1 \subseteq \mathcal{R}$), then \mathcal{R}_1 on \mathcal{D}_1 is also well-founded.

Pf: If $\emptyset \neq A \subseteq \mathcal{D}_1$ and α is \mathcal{R} -minimal in A, α is \mathcal{R}_1 -minimal in A.

So, if a relation is not well-founded, it is because "there are too many arrows". If you take away arrows and/or elements from a well-founded relation, the resulting relation is always well-founded.

Proposition:

A relation \mathcal{R} on \mathcal{D} is well-founded iff there is no sequence $\alpha_0, \alpha_1, \alpha_2, \ldots$ with $\alpha_{i+1}\mathcal{R}\alpha_i$ for all $i = 0, 1, 2, \ldots$

This characterization of well-founded relations is often easier to verify than the definition. The well-founded relations are exactly those without a *cycle* (you can't come back to an element by following arrows backwards from it) or an *infinite backward chain* (if you follow arrows backwards it must come to a stop in a finite number of steps). There may, however, exist infinite forward chains, for instance any infinite ascending sequence in \mathbb{N} with < as \mathcal{R} .

Exercises

Wf1) Prove the second proposition above. (To prove "if" a so-called **axiom of choice** is needed, i.e., one has to assume that infinitely many choices can be made to find the α_i .)

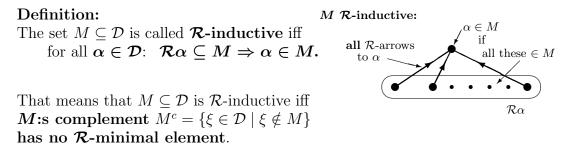
Wf2) Let \mathcal{R}_1 , \mathcal{R}_2 be well-founded relations on \mathcal{D}_1 , \mathcal{D}_2 (with $\mathcal{D}_1 \cap \mathcal{D}_2 = \emptyset$). The relation \mathcal{R} on $\mathcal{D} = \mathcal{D}_1 \cup \mathcal{D}_2$ is defined so that if $\alpha \mathcal{R}\beta$ then either $\alpha \in \mathcal{D}_1$ and $\beta \in \mathcal{D}_2$ or $\alpha, \beta \in \mathcal{D}_i$ and $\alpha \mathcal{R}_i\beta$ for i = 1 or 2.

Show that \mathcal{R} is well-founded.

Wf3) Let \mathcal{R}_1 , \mathcal{R}_2 be well-founded relations on \mathcal{D}_1 , \mathcal{D}_2 . The relation \mathcal{R} on $\mathcal{D} = \mathcal{D}_1 \times \mathcal{D}_2 = \{ \langle \alpha_1, \alpha_2 \rangle \mid \alpha_i \in \mathcal{D}_i \}$ is given by $\langle \alpha_1, \alpha_2 \rangle \mathcal{R} \langle \beta_1, \beta_2 \rangle$ iff either $\alpha_2 \mathcal{R}_2 \beta_2$ or both $\alpha_2 = \beta_2$ and $\alpha_1 \mathcal{R}_1 \beta_1$. Show that \mathcal{R} is well-founded.

\mathcal{R} -induction and \mathcal{R} -recursion

Now for the reason why well-foundedness is such an important property of binary relations. We shall prove that the relation \mathcal{R} can be used for proofs by induction and definitions of functions by recursion iff \mathcal{R} is well-founded.



So, the definition of well-foundedness can be formulated thus:

Theorem:

 \mathcal{R} is well-founded iff \mathcal{D} is the only \mathcal{R} -inductive subset of \mathcal{D} .

By taking M as the set of $\alpha \in \mathcal{D}$ with a property \mathcal{F} we get

Theorem (R-induction): If \mathcal{R} is well-founded and for all $\alpha \in \mathcal{D}$: $\mathcal{F}\beta$ for all $\beta \in \mathcal{R}\alpha \Rightarrow \mathcal{F}\alpha$ **then** $\mathcal{F}\alpha$ is true for all $\alpha \in \mathcal{D}$. To prove $\mathcal{F}\alpha$ for all $\alpha \in \mathcal{D}$, one can always assume $\mathcal{F}\beta$ for all $\beta \in \mathcal{R}\alpha$! **R-induction:** If for all $\alpha \in \mathcal{D}$: $\mathcal{F}\alpha$ true if \mathcal{F} true for all \mathcal{R} -arrows all these **then** $\mathcal{F}\alpha$ is true for all $\alpha \in \mathcal{D}$. **then** $\mathcal{F}\alpha$ is true for all $\alpha \in \mathcal{D}$.

Conversely, if \mathcal{R} is not well-founded, there is a set $M \subseteq \mathcal{D}, M \neq \emptyset$ without an \mathcal{R} -minimal element. If \mathcal{F} is true iff $\alpha \in M^c$, it is true for all $\alpha \in \mathcal{D}$ that $\mathcal{F}\beta$ for all $\beta \in \mathcal{R}\alpha \Rightarrow \mathcal{F}\alpha$, but if $\alpha \in M \neq \emptyset$, then $\mathcal{F}\alpha$ is false.

So, \mathcal{R} is well-founded iff \mathcal{R} -induction works for all properties \mathcal{F} on \mathcal{D} .

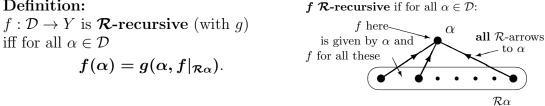
Examples of \mathcal{R} -induction:

- $\mathcal{D} = \mathbb{N}$, $\alpha \mathcal{R}\beta$ means $\beta = \alpha + 1$, gives "ordinary" induction over \mathbb{N} . To prove a statement one shows it to be true for 0 (since it certainly is true for all α with $\alpha \mathcal{R}0$) and that it is true for k + 1 if it is true for k.
- $\mathcal{D} = \mathbb{N}$, $\alpha \mathcal{R} \beta$ means $\alpha < \beta$, gives so-called "strong induction" over \mathbb{N} . To prove the statement for *n* one may assume it for all k < n.
- $\mathcal{D} = \mathbb{Q}$, the rational numbers, $\alpha \mathcal{R}\beta$ means $\alpha < \beta$. \mathcal{R} is not a well-ordered relation and the property $\mathcal{F}\alpha : \alpha \leq 0$ satisfies that $\mathcal{F}\beta$ for all $\beta < \alpha \Rightarrow \mathcal{F}\alpha$ for all $\alpha \in \mathcal{D}$, but $\mathcal{F}\alpha$ is not true for all $\alpha \in \mathcal{D}$.

As usual **induction** (to prove statements) is closely related to **recursion** (to define functions). To decide if statements are true or false is to define a function which takes truth values, so induction can be considered a special case of recursion. On the other hand, induction is used to prove the theorem below about recursion.

Let $g(\alpha, h)$ be defined for $\alpha \in \mathcal{D}$ and $h : \mathcal{R}\alpha \to Y$.

Definition:



 $f|_{\mathcal{R}\alpha}: \mathcal{R}\alpha \to Y$ is the **restriction** of f to $\mathcal{R}\alpha$, defined by $f|_{\mathcal{R}\alpha}(\xi) = f(\xi), \text{ all } \xi \in \mathcal{R}\alpha.$

Then for each q we have the important

Theorem (\mathcal{R} -recursion):

If \mathcal{R} is well-founded there is **exactly one** \mathcal{R} -recursive (with q) function on \mathcal{D} .

The idea of the proof is to use \mathcal{R} -induction over α to prove that $f(\alpha)$ is determined uniquely by the reursion condition. To make that meaningfull, we need

Definition:

 $A \subseteq \mathcal{D}$ is said to be **\mathcal{R}-hereditary** (Sw. ärftlig) iff for all $\alpha \in A, \mathcal{R}\alpha \subseteq A$.

We note that:

- Arbitrary unions of \mathcal{R} -hereditary sets are \mathcal{R} -hereditary. If $\alpha \in \bigcup_{i} A_{i}$, where A_{i} are all \mathcal{R} -hereditary, $\alpha \in A_{\kappa}$ for some κ , so $\mathcal{R}\alpha \subseteq A_{\kappa}$ and thus $\mathcal{R}\alpha \subseteq \bigcup_{\iota} A_{\iota}$. \square
- Arbitrary intersections of \mathcal{R} -hereditary sets are \mathcal{R} -hereditary. If $\alpha \in \bigcap_{\iota} A_{\iota}$, where A_{ι} are all \mathcal{R} -hereditary, $\alpha \in A_{\iota}$ for all ι , so $\mathcal{R}\alpha \subseteq$ A_{ι} , all ι , and thus $\mathcal{R}\alpha \subseteq \bigcap_{\iota} A_{\iota}$.
- If for every $\beta \in \mathcal{R}\alpha$ there is an \mathcal{R} -hereditary set A_{β} with $\beta \in A_{\beta}$, $A_{\alpha} = \{\alpha\} \cup \bigcup_{\beta \in \mathcal{R}^{\alpha}} A_{\beta}$ is an \mathcal{R} -hereditary set with $\alpha \in A_{\alpha}$. For all $\gamma \in A_{\beta}$ for some $\beta \in \mathcal{R}\alpha$, $\mathcal{R}\gamma \subseteq A_{\alpha}$ (since A_{β} is \mathcal{R} -hereditary) and $\mathcal{R}\alpha \subseteq A_{\alpha}$ (by the construction of A_{α} and since $\beta \in A_{\beta}$). \square

Proof of the theorem on \mathcal{R} -recursion:

Given are a well-founded relation \mathcal{R} on \mathcal{D} and a function $g(\alpha, h)$.

1. Uniqueness: If $A \subseteq \mathcal{D}$ is \mathcal{R} -hereditary and f_1 and f_2 are functions $A \to Y$ which for all $\alpha \in A$ satisfy

$$f(\alpha) = g(\alpha, f|_{\mathcal{R}\alpha}), \qquad (*)$$

then $f_1(\alpha) = f_2(\alpha)$ for all $\alpha \in A$. ((*) is meningfull, since A is \mathcal{R} -hereditary.) That is proved by \mathcal{R} -induction (since \mathcal{R} is well-founded on A): If $\alpha \in A$ och $f_1(\beta) =$ $f_2(\beta)$ for all $\beta \in \mathcal{R}\alpha$, we have $f_1(\alpha) = g(\alpha, f_1|_{\mathcal{R}\alpha}) = g(\alpha, f_2|_{\mathcal{R}\alpha}) = f_2(\alpha)$. 2. Amalgamation: If $f_{\iota} : A_{\iota} \to Y$ satisfy (*) on the \mathcal{R} -hereditary $A_{\iota} \subseteq \mathcal{D}$, then there is a function $f_{\cup}: \bigcup_{\iota} A_{\iota} \to Y$ which satisfies (*) for all $\alpha \in \bigcup_{\iota} A_{\iota}$. Every pair of the functions take the same values in points where they are both defined, because f_{ι_1} and f_{ι_2} both satisfy (*) on the \mathcal{R} -hereditary $A_{\iota_1} \cap A_{\iota_2}$, so by 1. $f_{\iota_1}(\alpha) = f_{\iota_2}(\alpha)$ for all $\alpha \in A_{\iota_1} \cap A_{\iota_2}$. Then for $\alpha \in \bigcup_{\iota} A_{\iota}$ we can define

4

 $f_{\cup}(\alpha) = f_{\kappa}(\alpha)$ if $\alpha \in A_{\kappa}$ (it will be independent of the choice of such a κ). f_{\cup} then satisfies (*), since all the f_{ι} do so.

3. Local existence: We use \mathcal{R} -induction to prove that for all $\alpha \in \mathcal{D}$ there is an \mathcal{R} -hereditary set $A_{\alpha} \subseteq \mathcal{D}$, with $\alpha \in A_{\alpha}$, and a function $f_{\alpha} : A_{\alpha} \to Y$ satisfying (*).

So suppose that such A_{β} and f_{β} exist for all $\beta \in \mathcal{R}\alpha$. Then on the \mathcal{R} -hereditary $A_{\alpha} = \{\alpha\} \cup \bigcup_{\beta \in \mathcal{R}\alpha} A_{\beta}$, define the function f_{α} by 2. on $\bigcup_{\beta \in \mathcal{R}\alpha} A_{\beta}$ and then $f_{\alpha}(\alpha) = g(\alpha, f_{\alpha}|_{\mathcal{R}\alpha})$. f_{α} then satisfies (*) and the \mathcal{R} -induction is done.

4. **Existence:** By 2. all f_{α} can be amalgamated to f satisfying (*) on all $\bigcup_{\alpha \in \mathcal{D}} A_{\alpha} = \mathcal{D}$.

Answers and hints for the exercises

Wf1) If there is such a sequence $\alpha_0, \alpha_1, \alpha_2, \ldots$, the set $\{\alpha_0, \alpha_1, \alpha_2, \ldots\}$ has no \mathcal{R} -minimal element (since $\alpha_{i+1}\mathcal{R}\alpha_i$, all $i = 0, 1, 2, \ldots$), so \mathcal{R} is not well-founded. This proves "only if".

If \mathcal{R} is not well-founded, there is an $A \subseteq \mathcal{D}$, $A \neq \emptyset$ with no \mathcal{R} -minimal element. Take $\alpha_0 \in A$. Since α_0 is not \mathcal{R} -minimal in A, there is $\alpha_1 \in A$ with $\alpha_1 \mathcal{R} \alpha_0$. But α_1 is also not \mathcal{R} -minimal in A, so there is $\alpha_2 \in A$ with $\alpha_2 \mathcal{R} \alpha_1$ and so on. At every step we choose one α_i in the sequence $\alpha_0, \alpha_1, \alpha_2, \ldots$ (where the elements do not all have to be distinct) with $\alpha_{i+1} \mathcal{R} \alpha_i$, all $i = 0, 1, 2, \ldots$ This proves "if".

Wf2) Let $A \subseteq \mathcal{D}, A \neq \emptyset$.

If $A_1 = A \cap \mathcal{D}_1 \neq \emptyset$, A_1 has an \mathcal{R}_1 -minimal element $\alpha \in A_1$ (since \mathcal{R}_1 is wellfounded). α is then also \mathcal{R} -minimal in A, since if $\beta \mathcal{R} \alpha$, $\beta \in A$, (by the definition of \mathcal{R}) $\beta \mathcal{R}_1 \alpha$, $\beta \in A_1$.

If $A \cap \mathcal{D}_1 = \emptyset$, $A \subseteq \mathcal{D}_2$, $A \neq \emptyset$, so (\mathcal{R}_2 is well-founded) there is an $\alpha \in A$ which is \mathcal{R}_2 -minimal in A. α is then also \mathcal{R} -minimal in A, because $\beta \mathcal{R} \alpha$, $\beta \in A \subseteq \mathcal{D}_2$ would imply $\beta \mathcal{R}_2 \alpha$, $\beta \in A$.

In both cases A has an \mathcal{R} -minimal element, so \mathcal{R} is well-founded.

Wf3) Let $A \subseteq \mathcal{D}, A \neq \emptyset$.

Also let $A_2 = \{ \alpha_2 \in \mathcal{D}_2 \mid \langle \alpha_1, \alpha_2 \rangle \in A \text{ for some } \alpha_1 \in \mathcal{D}_1 \}$. Then $A_2 \neq \emptyset$ (because $A \neq \emptyset$), so there is an \mathcal{R}_2 -minimal element α_2^* in A_2 .

Let $A_1 = \{ \alpha_1 \in \mathcal{D}_1 \mid \langle \alpha_1, \alpha_2^* \rangle \in A \}$. Then $A_1 \subseteq \mathcal{D}_1, A_1 \neq \emptyset$, so there is an \mathcal{R}_1 -minimal element $\alpha_1^* \in A_1$. Then (by the assumptions on $\mathcal{R}, \mathcal{R}_1, \mathcal{R}_2$) $\langle \alpha_1^*, \alpha_2^* \rangle$ is an \mathcal{R} -minimal element in A, so \mathcal{R} is well-founded.