Downey, Kach, Lempp, Lewis-Pye, Montalbán, and Turetsky (2015) proved that the index set of computably categorical structures is Π_1^1 -complete.

On the other hand, *on-a-cone* there is a clean structural characterization.

For $X \in 2^{\omega}$, an X-computable structure S is X-computably categorical if for any X-computable isomorphic copies A and B of S, there is an X-computable isomorphism $f: A \cong B$.

A countable structure S is computably categorical on a cone if there is $Y \in 2^{\omega}$ such that S is X-computably categorical for all $X \geq_T Y$.

Theorem (Montalbán 2015)

A countable structure S is computably categorical on a cone if and only if S has a Σ_3^{in} Scott sentence.

An X-computable structure S is X-computably bi-embeddably categorical if for any X-computable structure A bi-embeddable with S, there exist X-computable isomorphic embeddings

 $f: \mathcal{A} \hookrightarrow \mathcal{S} \text{ and } g: \mathcal{S} \hookrightarrow \mathcal{A}.$

For the case $X = \emptyset$, Bazhenov showed that the index set of computably bi-embeddably categorical graphs is Π_1^1 -complete.

A countable structure S is computably bi-embeddably categorical on a cone if there is $Y \in 2^{\omega}$ such that S is X-computably bi-embeddably categorical for all $X \geq_T Y$.

Problem

Can one obtain a nice syntactic characterization for computable bi-embeddable categoricity on a cone?

Side Problem

Can we simplify the syntactic characterization for *punctual categoricity on a cone*:

- S has a Σ_3^{in} Scott sentence;
- \triangleright S is ω -categorical;
- up to some finitely many constants in S for every every finite tuple \vec{x} in S there is an n such that \vec{x} together with any disctinct new elements $y_1, \ldots, y_n \notin \vec{x}$ generates a substructure intersecting all automorphism orbits over \vec{x} .

Example.

The empty graph; the abelian group $\bigoplus_{\infty} \mathbb{Z}_p$ for a prime p.