Introduction to Representation Theory HW3 - Spring 2016 Due: March 8

1. Finite Symplectic Spaces. A symplectic vector space over a field k is a pair $(V,\langle\rangle$,$) ,$ where V is a finite dimensional vector space over k, and \langle,$\rangle is a non-degenerate bilinear$ form \langle,$\rangle on V$, which is alternating, i.e., $\langle u, v\rangle=-\langle v, u\rangle$ for every $u, v \in V$. Such a form is also called symplectic form.
For the rest of this HW we fix a symplectic vector space V.
(a) Define the category of symplectic vector spaces over k and show that every morphism there is injection.
(b) Show that $\operatorname{dim}(V)=2 n$.
(c) Show that any two symplectic vector spaces of the same dimension are symplectomorphic, i.e., isomorphic by a symplectic morphism.
(d) Show that if $I \subset V$ is a subspace on which the symplectic form vanishes then $\operatorname{dim}(I) \leq n$. Such subspace are called isotropic. A maximal isotropic subspace $L \subset V$ is called Lagrangian. Denote by $\overline{\operatorname{Lag}(V)}$ the space of Lagrangians in V.
(e) Try to compute $\# \operatorname{Lag}(V)$ in case $k=\mathbb{F}_{q}$.
2. Heisenberg Group. Consider the set $H=V \times k$ equipped with the product

$$
(v, z) \cdot\left(v^{\prime}, z^{\prime}\right)=\left(v+v^{\prime}, z+z^{\prime}+\frac{1}{2}\left\langle v, v^{\prime}\right\rangle\right)
$$

(a) Show that H is a group.
(b) Compute the center $Z=Z(H)$ of H, and the commutator subgroup $[H, H]$.
(c) Show that there exists a natural bijection between maximal commutative subgroups of H and Lagrangians in V.
(d) Show that the symplectic group $S p(V)$ acts naturally on H by group automorphisms.
(e) Compute the number of conjugacy classes of H.

3. Representations of the Heisenberg Group.

(a) Construct $q^{2 n}$ one dimensional irreducible representations of H.
(b) Proof the following Theorem (Stone-von Neumann). Irreducible representations of H which are non-trivial on Z and agree there are isomorphic. Moreover, for every nontrivial additive character $\psi: Z \rightarrow \mathbb{C}^{*}$ there exists a unique (up to isomorphism) irreducible representation $\left(\pi_{\psi}, \mathcal{H}_{\psi}\right)$ of H with $\left.\pi_{\psi}(z)\right)=\psi(z) I d_{\mathcal{H}_{\psi}}$.
(c) Deduce that a representation \mathcal{H} of H with $\operatorname{dim}(\mathcal{H})>1$ is irreducible iff it is of dimension q^{n}.
(d) Compute the character $\chi_{\pi_{\psi}}$ for π_{ψ} as in the theorem.
(e) Let L be a Lagrangian in V. For a fixed $1 \neq \psi: Z \rightarrow \mathbb{C}^{*}$ consider the space

$$
\mathcal{H}_{L, \psi}=\{f: H \rightarrow \mathbb{C} ; f(l \cdot z \cdot h)=\psi(z) f(h) \text { for every } l \in L, z \in Z, h \in H\}
$$

Note that the group H acts naturally on $\mathcal{H}_{L, \psi}$ by $\left[\pi_{L, \psi}\left(h^{\prime}\right) f\right](h)=f\left(h h^{\prime}\right)$. Show that $\left(\pi_{L, \psi}, \mathcal{H}_{L, \psi}\right)$ is irreducible.
(f) Construct a model for each member of $\operatorname{Irr}(H)$.

Good Luck!

