Sheet D

Fourier Transforms

In this worksheet we consider various properties of Fourier transforms, including convolutions.

1. The Fourier transform of $f(x)$ is assumed to exist and is given to be $F(k)$. Verify the Fourier transforms $G(k)$ of the following functions $g(x)$ in terms of F.
(a) $g(x)=f(a x) \Rightarrow G(k)=\frac{1}{|a|} F(k / a)$
(b) $g(x)=f(x-a) \Rightarrow G(k)=\mathrm{e}^{+\mathrm{i} a k} F(k)$
(c) $g(x)=\mathrm{e}^{-a x} f(x) \Rightarrow G(k)=F(k+\mathrm{i} a)$
(d) $g(x)=\mathrm{e}^{\mathrm{i} a x} f(x) \Rightarrow G(k)=F(k+a)$
2. (a) Show that the Fourier Transform of $x y(x)$ is $(-i) \frac{d Y(k)}{d k}$ where $Y(k)$ is given to be the Fourier Transform of $y(x)$.
(b) Find the Fourier transform, $Y(k)$, of the 'Airy equation', $y^{\prime \prime}(x)-x y(x)=0$, where you are given that $Y(0)=1$. Hence show that

$$
y(x)=\frac{1}{\pi} \int_{0}^{\infty} \cos \left(\frac{1}{3} k^{3}+k x\right) \mathrm{d} k
$$

This solution is called an Airy function, $\mathrm{Ai}(x)$.
3. Using Parseval's relation:

$$
\int_{-\infty}^{\infty}|h(x)|^{2} d x=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|H(k)|^{2} d k
$$

for $h(x)=f(x) \pm g(x)$ and $h(x)=f(x) \pm \mathrm{i} g(x)$, derive the general form:

$$
\int_{-\infty}^{\infty} f(x) \overline{g(x)} d x=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(k) \overline{G(k)} d k
$$

where the overbar denotes the complex conjugate.
4. (a) From the lectures, we know that for a function $f(x)=\mathrm{e}^{-b x}$ where $b>0$, the Fourier sine and cosine transforms are given by $F_{s}(k)=k /\left(k^{2}+b^{2}\right)$ and $F_{c}(k)=b /\left(k^{2}+b^{2}\right)$. Use these results to show that

$$
\mathcal{F}_{c}\left\{\mathrm{e}^{-x} \cos x\right\}=\frac{k^{2}+2}{k^{4}+4}, \quad \mathcal{F}_{s}\left\{\mathrm{e}^{-x} \cos x\right\}=\frac{k^{3}}{k^{4}+4},
$$

(b) Hence evaluate the integral $\int_{0}^{\infty} \frac{x^{2}+2}{x^{4}+4} d x$
(c) Also use the information in part (a) to find $\mathcal{F}_{c}\left\{x \mathrm{e}^{-x}\right\}$ and $\mathcal{F}_{s}\left\{x \mathrm{e}^{-x}\right\}$.
5. From the definitions of the Fourier Sine and Cosine transforms verify that

$$
\int_{0}^{\infty} f(x) g(x) d x=\frac{2}{\pi} \int_{0}^{\infty} F_{c}(k) G_{c}(k) d k=\frac{2}{\pi} \int_{0}^{\infty} F_{s}(k) G_{s}(k) d k
$$

6. Prove the convolution result for Fourier Cosine Transforms. That is, if $H_{c}(k)=G_{c}(k) F_{c}(k)$ where $F_{c}(k)=\mathcal{F}_{c}\{f(x)\}, G_{c}(k)=\mathcal{F}_{c}\{g(x)\}$ and $H_{c}(k)=\mathcal{F}_{c}\{h(x)\}$ then

$$
h(x)=\frac{1}{2} \int_{0}^{\infty} g(\xi)[f(x+\xi)+f(x-\xi)] d \xi
$$

where $f(x)$ is extended as an even function into $x<0$. [HINT: Follow lecture notes for the convolution proof for F.T's].
7. Show, using double integrals and polar co-ordinates that

$$
I=\int_{0}^{\infty} \mathrm{e}^{-a x^{2}} d x=\frac{1}{2} \sqrt{\frac{\pi}{a}}, \quad a>0
$$

