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Introduce purpose and format

● Background for Workshop
● Status on progress
● Existing bottlenecks observed in kernel network-stack
● Not about finished / completed work

● Purpose: discuss
● How to address and tackle current bottlenecks
● Come up with new ideas
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Shout-out: Joint work, many contributors!

● Community effort for addressing performance issues
● Alexander Duyck: FIB lookup, page_frag mem alloc, many hotpath fixes

● Eric Dumazet: hotpath guardian, page_frag mem alloc, too much to mention

● David Miller: xmit path rewrite (xmit_more), being most efficient maintainer

● Tom Herbert, Alexei Starovoitov, Brenden Blanco: Starting XDP

● John Fastabend, Jamal Hadi Salim: qdisc layer work

● Mellanox: Being first XDP driver

● Tariq Toukan, Saeed Mahameed, Rana Shahout
● Florian Westphal: Netfilter optimizations

● Hannes Sowa, Paolo Abeni: Threaded NAPI, softirq, sockets

● reviewers on netdev@vger.kernel.org

mailto:netdev@vger.kernel.org
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Status: Linux perf improvements summary

● Linux performance, recent improvements
●  approx past 2 years:

● Lowest TX layer (single core, pktgen):
● Started at: 4 Mpps → 14.8 Mpps (← max 10G wirespeed)

● Lowest RX layer (single core, RX+drop):
● Started at: 6.4 Mpps → 16 Mpps
● XDP: drop 20Mpps (looks like HW limit)

● IPv4-forwarding
● Single core: 1 Mpps → 2 Mpps → (experiment) 2.5Mpps 
● Multi core : 6 Mpps → 12 Mpps (RHEL7.2 benchmark)

● XDP single core TX-bounce fwd: 10Mpps
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Areas of effort

● Focus have been affected by DPDK’s focus

● Been focused on the lowest layers
● TX bottleneck solved
● RX bottleneck work-in-progress
● Memory allocator bottleneck

● Why the focus on IPv4 forwarding?
● On purpose: Been ignoring bottlenecks in socket layer

● Socket layer do need lot of work!!!
● As Eric Dumazet constantly point out, (as-always) he it right!
● Paolo Abeni (Red Hat) looking into socket layer

http://netoptimizer.blogspot.dk/2014/10/unlocked-10gbps-tx-wirespeed-smallest.html
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Longer term target: NetChannels

● Work towards Van Jacobson's NetChannels

● Today: RSS spread flows across RX queues
● Issue: allows multiplexing into same application

● Cause need for heavy locking (socket queue)

● NetChannels: channel isolation from NIC to application
● Via lock-free SPSC queue (Single Producer Single Consumer)

● Need to cooperate with NIC HW filters
● Currently: No uniform way to express HW filters

● Manual ethtool filters, highly depend on HW support

● New (common) driver filter API is needed
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Basics of NetChannels

● Builds on isolation
● Single producer and single consumer (SPSC) scheme

● Implying lock free queue, only a (store) memory barrier

● Current kernel approach
● Try to align, keeping RXq and app “aligned”

● “Best-effort” RXq and App can “move”
● Thus, need to handle “worst-case”, thus locking

● Recent softirq livelock bug, bad keeping app in same CPU

● Automatic RSS is actually problematic
● Two RXq's deliver packet into same listener socket
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“Channelize” sockets

● Listen() or Bind() init setup of HW filter
● Deliver into single RXq, SPSC with “listener”

● More RXq’s with dedicated listener’s, w/HW guarantee

● On Accept() register “signature”
● Gets back “channel” (new SPSC queue)
● (maybe) register new HW filter

● To allow processing on other CPU/Rxq
● Depend on HW filter update speeds

● Tricky part: Usually fork() after accept (hint: O_CLOEXEC)

● Make sure parent PID close “accept” socket
● Transition between “listener” and “established” socket
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“Channelize” raw sockets

● Like tcpdump / AF_PACKET
● XDP likely need to own / consume packets

● XDP program: New return value e.g. XDP_DUMP
● Deliver “raw” pages into queue

● Need HW filter and XDP running RXq
● For achieving “Single Producer” advantage

● V1: Copy packets to userspace
● V2: For RX zero-copy to userspace

● Need separate RXq and page_pool memory safety
● Issue: vma mapping memory to userspace

● For speed need pre-VMA mapping (of THP to lower TLB)
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Topic: RX bottleneck

● Current focus
● Bottleneck at lowest RX layer of netstack

● Solving the RX bottleneck is multi-fold

1) Latency hide cache-miss (in eth_type_trans)

2) RX ring-buffer bulking/stages in drivers,

3) Use MM-bulk alloc+free API,

4) Processing stages (icache optimizations),

5) New memory alloc strategy on RX
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Topic: RX-stages

● A kind of RX bulking
● Focused on optimizing I-cache usage
● Working on a vector of packets

● A lowest RX stage in the driver
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RX-stages: Missed driver opportunities

● NAPI already allow a level of RX bulking
● Drivers (usually) get 64 packet budget (by napi_poll)
● Drivers don't take advantage of bulk opportunity

● Missed RX opportunities:
● Drivers process RX-ring 1-packet at the time

● Call full network stack every time

● Cause:
● I-cache likely flushed,  when returning to driver code
● Stall on cache-miss reading packet (ethertype)
● No knowledge about how many "ready" RX packets



Network Performance Workshop, NetDev 1.213/41

RX-stages: Split driver processing into stages

● If RX ring contains multiple "ready" packets
● Means kernel was too slow (processing incoming packets)

● Thus, switch into more efficient mode
● Bulking or packet “vector” mode

● Controversial idea?
● Stop seeing multiple RX-ring packets as individual
● See it as a vector of packets

● Each driver stage applies actions to packet-vector
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RX-stages: What are the driver stages?

● Driver RX-stages “for-loops” over array/vector

1)Build array of “ready” RX descriptors
• Start prefetch packet-data in to L2-cache

2)XDP stage1/2, pass packet-page to XDP hook
• Mark vector with XDP_ACTIONs

3)XDP stage2/2: Finish/execute XDP actions
• Packet-pages left after XDP-stage is XDP_PASS

4)Each packet-page: Alloc SKB + setup/populate SKB

5)Call network stack for each packet
• Optimize more later, when netstack API support bulk RX-call
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RX-stages: RX bulking to netstack

● More controversial to deliver a "bundle" to netstack
● (Driver pre-RX loop is contained inside driver)
● Split of Driver and netstack code, optimize/split I-cache usage

● RFC proposal by Edward Cree
● Drivers simply queue RX pkts on SKB list (no-prefetch RX loop)

● Results very good:

● First step, 10.2% improvement (simply loop in netstack)
● Full approach, 25.6% improvement (list'ify upto ip_rcv)

● Interesting, but upstream was not ready for this step

● More opportunities when netstack know bundle size
● E.g. caching lookups, flush/free when bundle ends

http://lists.openwall.net/netdev/2016/01/15/51
http://lists.openwall.net/netdev/2016/04/19/89
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Not the XDP workshop!

● This is not the XDP workshop
● Separate own workshop at NetDev 1.2

● This workshop is about
●  the Linux kernel network stack performance!

● But cannot talk about performance
● Without mentioning XDP
● Next slides, how XDP relates to netstack
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Speaking bluntly about XDP

● Basically a driver RX-code-path benchmark tool
● eBPF, only thing that makes it usable for real use-cases

● DDoS use-case is very real!
● Very powerful: programability at this early stage

● XDP focus: solving driver RX bottleneck
● E.g: Mlx5 driver, RX drop inside driver (single CPU)

● 6.3Mpps at NetDev 1.1 (Feb 2016)
● 12.0Mpps Jesper's PoC hacks
● 16.5Mpps with XDP and changed MM-model (net-next 86994156c73)

● (no-cache prefetch, more optimizations coming, expect 23Mpps)

https://git.kernel.org/davem/net-next/c/86994156c73
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XDP is motivation for NIC vendors

● XDP is motivating drivers developers to:
● Change memory model to writable-pages
● Fix RX bottleneck in drivers

● Notice: Current XDP features secret to performance:
● They avoid calling memory layer
● Local driver page recycle tricks

● Upcoming multi-port TX
● Cannot hide behind local driver recycling
● Need more generic solution (like page_pool proposal) 
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Memory vs. Networking

● Network provoke bottlenecks in memory allocators
● Lots of work needed in MM-area

● Both in
● kmem_cache (SLAB/SLUB) allocator

● (bulk API almost done, more users please!)

● Page allocator
● Baseline performance too slow (see later graphs)
● Drivers: page recycle caches have limits

● Does not address all areas of problem space
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MM: Status on kmem_cache bulk

● Discovered IP-forwarding: hitting slowpath
● in kmem_cache/SLUB allocator

● Solution: Bulk APIs for kmem_cache (SLAB+SLUB) 
● Status: upstream since kernel 4.6
● Netstack use bulk free of SKBs in NAPI-context

● Use bulking opportunity at DMA-TX completion
● 4-5% performance improvement for IP forwarding

● Generic kfree_bulk API
● Rejected: Netstack bulk alloc of SKBs

● As number of RX packets were unknown
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MM: kmem_cache bulk, more use-cases

● Network stack – more use-cases
● Need explicit bulk free use from TCP stack

● NAPI bulk free, not active for TCP (keep ref too long)

● Use kfree_bulk() for skb→head
● (when allocated with kmalloc)

● Use bulk free API for qdisc delayed free

● RCU use-case
● Use kfree_bulk() API for delayed RCU free

● Other kernel subsystems?
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SKB overhead sources

● Sources of overhead for SKBs (struct sk_buff)

● Memory alloc+free
● Addressed by kmem_cache bulk API

● Clearing SKB
● Need to clear 4 cache-lines!

● Read-only RX pages
● Cause more expensive construction the SKB
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SKB clearing cost is high

● Options for addressing clearing cost:
● Smaller/diet SKB (currently 4 cache-lines)

● Diet too hard!

● Faster clearing
● Hand optimized clearing: only save 10 cycles
● Clear larger contiguous mem (during bulk alloc API)

● Delay clearing
● Don't clear on alloc (inside driver)

● Issue: knowing what fields driver updated
● Clear sections later, inside netstack RX

● Mini-SKB overlap struct
● Allow prefetchw to have effect
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SKB allocations: with read-only pages

● Most drivers have read-only RX pages
● Cause more expensive SKB setup

1) Alloc separate writable mem area

2) memcpy over RX packet headers

3) Store skb_shared_info in writable-area

4) Setup pointers and offsets, into RX page-"frag"

● Reason: Performance trade off

A)Page allocator is too slow

B)DMA-API expensive on some platforms (with IOMMU)
● Hack: alloc and DMA map larger pages, and “chop-up” page
● Side-effect: read-only RX page-frames

● Due to unpredictable DMA unmap time
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Benchmark: Page allocator (optimal case, 1 CPU, no congestion)
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Mel Gorman patchset

● Single page (order-0) too slow for 10Gbit/s budget

● Cycles cost increase with page order size

● But partitioning page into 4K fragments amortize cost

https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/mm/bench/page_bench01.c
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Issues with: Higher order pages

● Performance workaround:
● Alloc larger order page, handout fragments

● Amortize alloc cost over several packets

● Troublesome
● 1. fast sometimes and other times require 

reclaim/compaction which can stall for prolonged 
periods of time.

● 2. clever attacker can pin-down memory
● Especially relevant for end-host TCP/IP use-case

● 3. does not scale as well, concurrent workloads
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Concurrent CPUs scaling micro-benchmark
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● Danger of higher order pages, with parallel workloads

● Order=0 pages scale well

● Order=3 pages scale badly, even counting per 4K

● Already lose advantage with 2 concurrent CPUs

https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/mm/bench/page_bench03.c
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RX-path: Make RX pages writable

● Need to make RX pages writable

● Why is page (considered) read-only?
● Due to DMA_unmap time

● Several page fragments (packets) in-flight
● Last fragment in RX ring queue, call dma_unmap()
● DMA engine unmap semantics allow overwriting memory

● (Not a problem on Intel)

● Simple solution: Use one-packet per page
● And call dma_unmap before using page

● My solution is the page_pool
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Page pool: Generic solution, many advantages

● 5 features of a recycling page pool (per device):

1)Faster than page-allocator speed
● As a specialized allocator require less checks

2)DMA IOMMU mapping cost removed
● Keeping page mapped (credit to Alexei)

3)Make page writable
● By predictable DMA unmap point

4)OOM protection at device level
● Feedback-loop know #outstanding pages

5)Zero-copy RX, solving memory early demux
• Depend on HW filters into RX queues
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Page pool: Design

● Idea presented at MM-summit April 2016

● Basic concept for the page_pool
● Pages are recycled back into originating pool

● Creates a feedback loop, helps limit pages in pool

● Drivers still need to handle dma_sync part
● Page-pool handle dma_map/unmap

● essentially: constructor and destructor calls

● Page free/return to page-pool, Either:

1) SKB free knows and call page pool free, or

2) put_page() handle via page flag

http://people.netfilter.org/hawk/presentations/MM-summit2016/generic_page_pool_mm_summit2016.pdf
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Page-pool: opportunity – feedback loop

● Today: Unbounded RX page allocations by drivers
● Can cause OOM (Out-of-Memory) situations
● Handled via skb->truesize and queue limits

● Page pool provides a feedback loop
● (Given pages are recycles back to originating pool)

● Allow bounding pages/memory allowed per RXq
● Simple solution: configure fixed memory limit
● Advanced solution, track steady-state

● Can function as a “Circuit Breaker” (See RFC draft link)

https://tools.ietf.org/html/draft-ietf-tsvwg-circuit-breaker-15
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New Topic: TX powers

● I challenge people
● Solve issue of TX bulking not getting activated
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Topic: TX powers – background

● Solved TX bottleneck with xmit_more API
● See: http://netoptimizer.blogspot.dk/2014/10/unlocked-10gbps-tx-wirespeed-smallest.html

● 10G wirespeed: Pktgen 14.8Mpps single core
● Spinning same SKB (no mem allocs)

● Primary trick: Bulk packet (descriptors) to HW
● Delays HW NIC tailptr write

● Interacts with Qdisc bulk dequeue
● Issue: hard to “activate”

http://netoptimizer.blogspot.dk/2014/10/unlocked-10gbps-tx-wirespeed-smallest.html
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Topic: TX powers – performance gain

● Only artificial benchmarks realize gain 
● like pktgen

● How big is the difference?
● with pktgen, ixgbe, single core E5-2630 @2.30GHz

● TX  2.9 Mpps (clone_skb 0, burst 0) (343 nanosec)

↑ Alloc+free SKB+page on for every packet

● TX  6.6 Mpps (clone_skb 10000) (151 nanosec)

↑ x2 performance: Reuse same SKB 10000 times

● TX 13.4 Mpps (pktgen burst 32) (74 nanosec)

↑ x2 performance: Use xmit_more with 32 packet bursts
● Faster CPU can reach wirespeed 14.8 Mpps (single core)
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Topic: TX powers – Issue

● Only realized for artificial benchmarks, like pktgen

● Issue: For practical use-cases
● Very hard to "activate" qdisc bulk dequeue

● Need a queue in qdisc layer

● Need to hit HW bandwidth limit to “kick-in”
● Seen TCP hit BW limit, result lower CPU utilization
● Want to realized gain earlier...
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Topic: TX powers – Solutions?

● Solutions for
● Activating qdisc bulk dequeue / xmit_more

● Idea(1): Change feedback from driver to qdisc/stack

● If HW have enough pkts in TX ring queue
● (To keep busy), then qdsic queue instead

● 1.1 Use BQL numbers, or
● 1.2 New driver return code

● Idea(2): Allow user-space APIs to bulk send/enqueue

● Idea(3): Connect with RX level SKB bundle abstraction
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Topic: TX powers – Experiment BQL push back

● IP-forward performance, single core i7-6700K, mlx5 driver

● 1.55Mpps (1,554,754 pps) ← much lower than expected

● Perf report showed: 39.87 % _raw_spin_lock
● (called by __dev_queue_xmit) => 256.4 ns

● Something really wrong
● lock+unlock only cost 6.6ns (26 cycles) on this CPU
● Clear sign of stalling on TX tailptr write

● Experiment adjust BQL: /sys/class/net/mlx5p1/queues/tx-0/byte_queue_limits/limit_max

● manually lower until qdisc queue kick in
● Result: 2.55 Mpps (2,556,346 pps) ← more than expected!

● +1Mpps and -252 ns
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Topic: TC/Qdisc – Background

● Issue: Base overhead too large
● Qdisc code path takes 6 LOCK operations

● Even for "direct" xmit case with empty queue

● Measured overhead: between 58ns to 68ns
● Experiment: 70-82% of cost comes from these locks
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Topic: TC/Qdisc – Solutions

● Implement lockless qdisc
● Still need to support bulk dequeue
● John Fastabend posted RFC implementation

● Still locking, but with a skb_array queue
● Important difference:

● Separating producer and consumer (locks)
● Perf improvement numbers?
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New Topic: Threaded NAPI

● (by Hannes Sows… own slides?)

● Identified live-lock bug in SoftIRQ processing
● Fixed by Eric Dumazet
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Extra slides

● If unlikely(too_much_time)
● goto extra_slides;
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Topic: RX-MM-allocator – Alternative

● Prerequisite: When page is writable

● Idea: No SKB alloc calls during RX!
● Don't alloc SKB,

● Create it inside head or tail-room in data-page

● skb_shared_info, placed end-of data-page
● Issues / pitfalls:

1) Clear SKB section likely expensive

2) SKB truesize increase(?)

3) Need full page per packet (ixgbe does page recycle trick)
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RX-stages: XDP packet-vector or bulking

● XDP could also benefit from packet-vectors
● Currently: XDP_TX implicit bulking via tairptr/doorbell

● Some XDP speedup only occur when 100% is XDP
● Why, implicit get icache benefit, due to small code size
● Intermixed traffic loose this implicit icache advantage

● General idea: Conceptually build two packet-vector's
● One related to XDP, one contain XDP_PASS packets
● XDP_PASS packet-vector proceeds to next RX-stage
● Either XDP_TX flush before stack or at end of pool loop

● Moves XDP TX code "outside" critical icache path

https://mid.mail-archive.com/netdev@vger.kernel.org/msg130706.html
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Topic: Netfilter Hooks – Background

● Background: Netfilter hook infrastructure
● iptables uses netfilter hooks (many places in stack)
● static_key constructs avoid jump/branch, if not used

● thus, zero cost if not activated

● Issue: Hooks registered on module load time
● Empty rulesets still “cost” hook overhead
● Every new namespaces inherits the hooks

● Regardless whether the functionality is needed

● Loading conntrack is particular expensive
● Regardless whether any system use it 
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Topic: Netfilter Hooks – Benchmarks

● Setup, simple IPv4-UDP forward, no iptables rules!
● Single Core, 10G ixgbe, router CPU i7-4790K@4.00GHz

● Tuned for routing, e.g. ip_early_demux=0, GRO=no

● Step 1: Tune + unload all iptables/netfilter modules

● 1992996 pps → 502 ns
● Step 2: Load "iptable_raw", only 2 hooks "PREROUTING" and "OUTPUT"

● 1867876 pps → 535 ns → increased cost: +33 ns
● Step 3: Load "iptable_filter"

● 1762888 pps → 566 ns → increased: +64 ns (last +31ns)
● Step 4: Load "nf_conntrack_ipv4"

● 1516940 pps → 659 ns → increased: +157 ns (last +93 ns)
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Topic: Netfilter Hooks – Solutions

● Idea: don't activate hooks for empty chains/tables
● Pitfalls: base counters in empty hook-chains

● Patches posted to address for xtables + conntrack
● iptables: delay hook register until first ipt set/getsockopt is done

● conntrack: add explicit dependency on conntrack in modules

● nf_conntrack_get(struct net*) /_put() needed

● Issue: acceptable way to break backward compat?
● E.g. drop base counter, if ruleset empty?
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Topic: Netfilter Hooks – data structs

● Idea: split structs
● Into (1) config struct

● what you hand to netfilter to register your hook

● and into (2) run time struct
● what we actually need in packet hot path

● Memory waste in: “struct net”

● 13 families, 8 hooks, 2 pointers per hook -> 1.6k 
memory per namespace. 

● Conversion to single linked list, save 800 bytes per netns
● Aaron Conole posted patches!
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