
Network Performance Workshop, NetDev 1.21/41

Network Performance

Workshop

Organizer:

Jesper Dangaard Brouer
Principal Engineer, Red Hat

Date: October 2016
Venue: NetDev 1.2, Tokyo, Japan

Presentors:
Jesper Dangaard Brouer, Red Hat

Hannes Frederic Sowa, Red Hat

Saeed Mahameed, Mellanox

John Fastabend, Intel

Network Performance Workshop, NetDev 1.22/41

Introduce purpose and format

● Background for Workshop
● Status on progress
● Existing bottlenecks observed in kernel network-stack
● Not about finished / completed work

● Purpose: discuss
● How to address and tackle current bottlenecks
● Come up with new ideas

Network Performance Workshop, NetDev 1.23/41

Shout-out: Joint work, many contributors!

● Community effort for addressing performance issues
● Alexander Duyck: FIB lookup, page_frag mem alloc, many hotpath fixes

● Eric Dumazet: hotpath guardian, page_frag mem alloc, too much to mention

● David Miller: xmit path rewrite (xmit_more), being most efficient maintainer

● Tom Herbert, Alexei Starovoitov, Brenden Blanco: Starting XDP

● John Fastabend, Jamal Hadi Salim: qdisc layer work

● Mellanox: Being first XDP driver

● Tariq Toukan, Saeed Mahameed, Rana Shahout
● Florian Westphal: Netfilter optimizations

● Hannes Sowa, Paolo Abeni: Threaded NAPI, softirq, sockets

● reviewers on netdev@vger.kernel.org

mailto:netdev@vger.kernel.org

Network Performance Workshop, NetDev 1.24/41

Status: Linux perf improvements summary

● Linux performance, recent improvements
● approx past 2 years:

● Lowest TX layer (single core, pktgen):
● Started at: 4 Mpps → 14.8 Mpps (← max 10G wirespeed)

● Lowest RX layer (single core, RX+drop):
● Started at: 6.4 Mpps → 16 Mpps
● XDP: drop 20Mpps (looks like HW limit)

● IPv4-forwarding
● Single core: 1 Mpps → 2 Mpps → (experiment) 2.5Mpps
● Multi core : 6 Mpps → 12 Mpps (RHEL7.2 benchmark)

● XDP single core TX-bounce fwd: 10Mpps

Network Performance Workshop, NetDev 1.25/41

Areas of effort

● Focus have been affected by DPDK’s focus

● Been focused on the lowest layers
● TX bottleneck solved
● RX bottleneck work-in-progress
● Memory allocator bottleneck

● Why the focus on IPv4 forwarding?
● On purpose: Been ignoring bottlenecks in socket layer

● Socket layer do need lot of work!!!
● As Eric Dumazet constantly point out, (as-always) he it right!
● Paolo Abeni (Red Hat) looking into socket layer

http://netoptimizer.blogspot.dk/2014/10/unlocked-10gbps-tx-wirespeed-smallest.html

Network Performance Workshop, NetDev 1.26/41

Longer term target: NetChannels

● Work towards Van Jacobson's NetChannels

● Today: RSS spread flows across RX queues
● Issue: allows multiplexing into same application

● Cause need for heavy locking (socket queue)

● NetChannels: channel isolation from NIC to application
● Via lock-free SPSC queue (Single Producer Single Consumer)

● Need to cooperate with NIC HW filters
● Currently: No uniform way to express HW filters

● Manual ethtool filters, highly depend on HW support

● New (common) driver filter API is needed

Network Performance Workshop, NetDev 1.27/41

Basics of NetChannels

● Builds on isolation
● Single producer and single consumer (SPSC) scheme

● Implying lock free queue, only a (store) memory barrier

● Current kernel approach
● Try to align, keeping RXq and app “aligned”

● “Best-effort” RXq and App can “move”
● Thus, need to handle “worst-case”, thus locking

● Recent softirq livelock bug, bad keeping app in same CPU

● Automatic RSS is actually problematic
● Two RXq's deliver packet into same listener socket

Network Performance Workshop, NetDev 1.28/41

“Channelize” sockets

● Listen() or Bind() init setup of HW filter
● Deliver into single RXq, SPSC with “listener”

● More RXq’s with dedicated listener’s, w/HW guarantee

● On Accept() register “signature”
● Gets back “channel” (new SPSC queue)
● (maybe) register new HW filter

● To allow processing on other CPU/Rxq
● Depend on HW filter update speeds

● Tricky part: Usually fork() after accept (hint: O_CLOEXEC)

● Make sure parent PID close “accept” socket
● Transition between “listener” and “established” socket

Network Performance Workshop, NetDev 1.29/41

“Channelize” raw sockets

● Like tcpdump / AF_PACKET
● XDP likely need to own / consume packets

● XDP program: New return value e.g. XDP_DUMP
● Deliver “raw” pages into queue

● Need HW filter and XDP running RXq
● For achieving “Single Producer” advantage

● V1: Copy packets to userspace
● V2: For RX zero-copy to userspace

● Need separate RXq and page_pool memory safety
● Issue: vma mapping memory to userspace

● For speed need pre-VMA mapping (of THP to lower TLB)

Network Performance Workshop, NetDev 1.210/41

Topic: RX bottleneck

● Current focus
● Bottleneck at lowest RX layer of netstack

● Solving the RX bottleneck is multi-fold

1) Latency hide cache-miss (in eth_type_trans)

2) RX ring-buffer bulking/stages in drivers,

3) Use MM-bulk alloc+free API,

4) Processing stages (icache optimizations),

5) New memory alloc strategy on RX

Network Performance Workshop, NetDev 1.211/41

Topic: RX-stages

● A kind of RX bulking
● Focused on optimizing I-cache usage
● Working on a vector of packets

● A lowest RX stage in the driver

Network Performance Workshop, NetDev 1.212/41

RX-stages: Missed driver opportunities

● NAPI already allow a level of RX bulking
● Drivers (usually) get 64 packet budget (by napi_poll)
● Drivers don't take advantage of bulk opportunity

● Missed RX opportunities:
● Drivers process RX-ring 1-packet at the time

● Call full network stack every time

● Cause:
● I-cache likely flushed, when returning to driver code
● Stall on cache-miss reading packet (ethertype)
● No knowledge about how many "ready" RX packets

Network Performance Workshop, NetDev 1.213/41

RX-stages: Split driver processing into stages

● If RX ring contains multiple "ready" packets
● Means kernel was too slow (processing incoming packets)

● Thus, switch into more efficient mode
● Bulking or packet “vector” mode

● Controversial idea?
● Stop seeing multiple RX-ring packets as individual
● See it as a vector of packets

● Each driver stage applies actions to packet-vector

Network Performance Workshop, NetDev 1.214/41

RX-stages: What are the driver stages?

● Driver RX-stages “for-loops” over array/vector

1)Build array of “ready” RX descriptors
• Start prefetch packet-data in to L2-cache

2)XDP stage1/2, pass packet-page to XDP hook
• Mark vector with XDP_ACTIONs

3)XDP stage2/2: Finish/execute XDP actions
• Packet-pages left after XDP-stage is XDP_PASS

4)Each packet-page: Alloc SKB + setup/populate SKB

5)Call network stack for each packet
• Optimize more later, when netstack API support bulk RX-call

Network Performance Workshop, NetDev 1.215/41

RX-stages: RX bulking to netstack

● More controversial to deliver a "bundle" to netstack
● (Driver pre-RX loop is contained inside driver)
● Split of Driver and netstack code, optimize/split I-cache usage

● RFC proposal by Edward Cree
● Drivers simply queue RX pkts on SKB list (no-prefetch RX loop)

● Results very good:

● First step, 10.2% improvement (simply loop in netstack)
● Full approach, 25.6% improvement (list'ify upto ip_rcv)

● Interesting, but upstream was not ready for this step

● More opportunities when netstack know bundle size
● E.g. caching lookups, flush/free when bundle ends

http://lists.openwall.net/netdev/2016/01/15/51
http://lists.openwall.net/netdev/2016/04/19/89

Network Performance Workshop, NetDev 1.216/41

Not the XDP workshop!

● This is not the XDP workshop
● Separate own workshop at NetDev 1.2

● This workshop is about
● the Linux kernel network stack performance!

● But cannot talk about performance
● Without mentioning XDP
● Next slides, how XDP relates to netstack

Network Performance Workshop, NetDev 1.217/41

Speaking bluntly about XDP

● Basically a driver RX-code-path benchmark tool
● eBPF, only thing that makes it usable for real use-cases

● DDoS use-case is very real!
● Very powerful: programability at this early stage

● XDP focus: solving driver RX bottleneck
● E.g: Mlx5 driver, RX drop inside driver (single CPU)

● 6.3Mpps at NetDev 1.1 (Feb 2016)
● 12.0Mpps Jesper's PoC hacks
● 16.5Mpps with XDP and changed MM-model (net-next 86994156c73)

● (no-cache prefetch, more optimizations coming, expect 23Mpps)

https://git.kernel.org/davem/net-next/c/86994156c73

Network Performance Workshop, NetDev 1.218/41

XDP is motivation for NIC vendors

● XDP is motivating drivers developers to:
● Change memory model to writable-pages
● Fix RX bottleneck in drivers

● Notice: Current XDP features secret to performance:
● They avoid calling memory layer
● Local driver page recycle tricks

● Upcoming multi-port TX
● Cannot hide behind local driver recycling
● Need more generic solution (like page_pool proposal)

Network Performance Workshop, NetDev 1.219/41

Memory vs. Networking

● Network provoke bottlenecks in memory allocators
● Lots of work needed in MM-area

● Both in
● kmem_cache (SLAB/SLUB) allocator

● (bulk API almost done, more users please!)

● Page allocator
● Baseline performance too slow (see later graphs)
● Drivers: page recycle caches have limits

● Does not address all areas of problem space

Network Performance Workshop, NetDev 1.220/41

MM: Status on kmem_cache bulk

● Discovered IP-forwarding: hitting slowpath
● in kmem_cache/SLUB allocator

● Solution: Bulk APIs for kmem_cache (SLAB+SLUB)
● Status: upstream since kernel 4.6
● Netstack use bulk free of SKBs in NAPI-context

● Use bulking opportunity at DMA-TX completion
● 4-5% performance improvement for IP forwarding

● Generic kfree_bulk API
● Rejected: Netstack bulk alloc of SKBs

● As number of RX packets were unknown

Network Performance Workshop, NetDev 1.221/41

MM: kmem_cache bulk, more use-cases

● Network stack – more use-cases
● Need explicit bulk free use from TCP stack

● NAPI bulk free, not active for TCP (keep ref too long)

● Use kfree_bulk() for skb→head
● (when allocated with kmalloc)

● Use bulk free API for qdisc delayed free

● RCU use-case
● Use kfree_bulk() API for delayed RCU free

● Other kernel subsystems?

Network Performance Workshop, NetDev 1.222/41

SKB overhead sources

● Sources of overhead for SKBs (struct sk_buff)

● Memory alloc+free
● Addressed by kmem_cache bulk API

● Clearing SKB
● Need to clear 4 cache-lines!

● Read-only RX pages
● Cause more expensive construction the SKB

Network Performance Workshop, NetDev 1.223/41

SKB clearing cost is high

● Options for addressing clearing cost:
● Smaller/diet SKB (currently 4 cache-lines)

● Diet too hard!

● Faster clearing
● Hand optimized clearing: only save 10 cycles
● Clear larger contiguous mem (during bulk alloc API)

● Delay clearing
● Don't clear on alloc (inside driver)

● Issue: knowing what fields driver updated
● Clear sections later, inside netstack RX

● Mini-SKB overlap struct
● Allow prefetchw to have effect

Network Performance Workshop, NetDev 1.224/41

SKB allocations: with read-only pages

● Most drivers have read-only RX pages
● Cause more expensive SKB setup

1) Alloc separate writable mem area

2) memcpy over RX packet headers

3) Store skb_shared_info in writable-area

4) Setup pointers and offsets, into RX page-"frag"

● Reason: Performance trade off

A)Page allocator is too slow

B)DMA-API expensive on some platforms (with IOMMU)
● Hack: alloc and DMA map larger pages, and “chop-up” page
● Side-effect: read-only RX page-frames

● Due to unpredictable DMA unmap time

Network Performance Workshop, NetDev 1.225/41

Benchmark: Page allocator (optimal case, 1 CPU, no congestion)

Order=0 (4K) Order=1 (8K) Order=2 (16K) Order=3 (32K) Order=4 (64K) Order=5 (128K)
0

100

200

300

400

500

600

700

800

900

1000

CPU cycles per page

cycles per 4K

10Gbit/s budget

Mel Gorman patchset

● Single page (order-0) too slow for 10Gbit/s budget

● Cycles cost increase with page order size

● But partitioning page into 4K fragments amortize cost

https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/mm/bench/page_bench01.c

Network Performance Workshop, NetDev 1.226/41

Issues with: Higher order pages

● Performance workaround:
● Alloc larger order page, handout fragments

● Amortize alloc cost over several packets

● Troublesome
● 1. fast sometimes and other times require

reclaim/compaction which can stall for prolonged
periods of time.

● 2. clever attacker can pin-down memory
● Especially relevant for end-host TCP/IP use-case

● 3. does not scale as well, concurrent workloads

Network Performance Workshop, NetDev 1.227/41

Concurrent CPUs scaling micro-benchmark

CPUs=1 2 3 4 5 6 7 8
0

200

400

600

800

1000

1200

1400

Order=3, Cycles per 4K

Order=0, Cycles (4K)

max forward budget

Order=0, Mel Gorman

● Danger of higher order pages, with parallel workloads

● Order=0 pages scale well

● Order=3 pages scale badly, even counting per 4K

● Already lose advantage with 2 concurrent CPUs

https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/mm/bench/page_bench03.c

Network Performance Workshop, NetDev 1.228/41

RX-path: Make RX pages writable

● Need to make RX pages writable

● Why is page (considered) read-only?
● Due to DMA_unmap time

● Several page fragments (packets) in-flight
● Last fragment in RX ring queue, call dma_unmap()
● DMA engine unmap semantics allow overwriting memory

● (Not a problem on Intel)

● Simple solution: Use one-packet per page
● And call dma_unmap before using page

● My solution is the page_pool

Network Performance Workshop, NetDev 1.229/41

Page pool: Generic solution, many advantages

● 5 features of a recycling page pool (per device):

1)Faster than page-allocator speed
● As a specialized allocator require less checks

2)DMA IOMMU mapping cost removed
● Keeping page mapped (credit to Alexei)

3)Make page writable
● By predictable DMA unmap point

4)OOM protection at device level
● Feedback-loop know #outstanding pages

5)Zero-copy RX, solving memory early demux
• Depend on HW filters into RX queues

Network Performance Workshop, NetDev 1.230/41

Page pool: Design

● Idea presented at MM-summit April 2016

● Basic concept for the page_pool
● Pages are recycled back into originating pool

● Creates a feedback loop, helps limit pages in pool

● Drivers still need to handle dma_sync part
● Page-pool handle dma_map/unmap

● essentially: constructor and destructor calls

● Page free/return to page-pool, Either:

1) SKB free knows and call page pool free, or

2) put_page() handle via page flag

http://people.netfilter.org/hawk/presentations/MM-summit2016/generic_page_pool_mm_summit2016.pdf

Network Performance Workshop, NetDev 1.231/41

Page-pool: opportunity – feedback loop

● Today: Unbounded RX page allocations by drivers
● Can cause OOM (Out-of-Memory) situations
● Handled via skb->truesize and queue limits

● Page pool provides a feedback loop
● (Given pages are recycles back to originating pool)

● Allow bounding pages/memory allowed per RXq
● Simple solution: configure fixed memory limit
● Advanced solution, track steady-state

● Can function as a “Circuit Breaker” (See RFC draft link)

https://tools.ietf.org/html/draft-ietf-tsvwg-circuit-breaker-15

Network Performance Workshop, NetDev 1.232/41

New Topic: TX powers

● I challenge people
● Solve issue of TX bulking not getting activated

Network Performance Workshop, NetDev 1.233/41

Topic: TX powers – background

● Solved TX bottleneck with xmit_more API
● See: http://netoptimizer.blogspot.dk/2014/10/unlocked-10gbps-tx-wirespeed-smallest.html

● 10G wirespeed: Pktgen 14.8Mpps single core
● Spinning same SKB (no mem allocs)

● Primary trick: Bulk packet (descriptors) to HW
● Delays HW NIC tailptr write

● Interacts with Qdisc bulk dequeue
● Issue: hard to “activate”

http://netoptimizer.blogspot.dk/2014/10/unlocked-10gbps-tx-wirespeed-smallest.html

Network Performance Workshop, NetDev 1.234/41

Topic: TX powers – performance gain

● Only artificial benchmarks realize gain
● like pktgen

● How big is the difference?
● with pktgen, ixgbe, single core E5-2630 @2.30GHz

● TX 2.9 Mpps (clone_skb 0, burst 0) (343 nanosec)

↑ Alloc+free SKB+page on for every packet

● TX 6.6 Mpps (clone_skb 10000) (151 nanosec)

↑ x2 performance: Reuse same SKB 10000 times

● TX 13.4 Mpps (pktgen burst 32) (74 nanosec)

↑ x2 performance: Use xmit_more with 32 packet bursts
● Faster CPU can reach wirespeed 14.8 Mpps (single core)

Network Performance Workshop, NetDev 1.235/41

Topic: TX powers – Issue

● Only realized for artificial benchmarks, like pktgen

● Issue: For practical use-cases
● Very hard to "activate" qdisc bulk dequeue

● Need a queue in qdisc layer

● Need to hit HW bandwidth limit to “kick-in”
● Seen TCP hit BW limit, result lower CPU utilization
● Want to realized gain earlier...

Network Performance Workshop, NetDev 1.236/41

Topic: TX powers – Solutions?

● Solutions for
● Activating qdisc bulk dequeue / xmit_more

● Idea(1): Change feedback from driver to qdisc/stack

● If HW have enough pkts in TX ring queue
● (To keep busy), then qdsic queue instead

● 1.1 Use BQL numbers, or
● 1.2 New driver return code

● Idea(2): Allow user-space APIs to bulk send/enqueue

● Idea(3): Connect with RX level SKB bundle abstraction

Network Performance Workshop, NetDev 1.237/41

Topic: TX powers – Experiment BQL push back

● IP-forward performance, single core i7-6700K, mlx5 driver

● 1.55Mpps (1,554,754 pps) ← much lower than expected

● Perf report showed: 39.87 % _raw_spin_lock
● (called by __dev_queue_xmit) => 256.4 ns

● Something really wrong
● lock+unlock only cost 6.6ns (26 cycles) on this CPU
● Clear sign of stalling on TX tailptr write

● Experiment adjust BQL: /sys/class/net/mlx5p1/queues/tx-0/byte_queue_limits/limit_max

● manually lower until qdisc queue kick in
● Result: 2.55 Mpps (2,556,346 pps) ← more than expected!

● +1Mpps and -252 ns

Network Performance Workshop, NetDev 1.238/41

Topic: TC/Qdisc – Background

● Issue: Base overhead too large
● Qdisc code path takes 6 LOCK operations

● Even for "direct" xmit case with empty queue

● Measured overhead: between 58ns to 68ns
● Experiment: 70-82% of cost comes from these locks

Network Performance Workshop, NetDev 1.239/41

Topic: TC/Qdisc – Solutions

● Implement lockless qdisc
● Still need to support bulk dequeue
● John Fastabend posted RFC implementation

● Still locking, but with a skb_array queue
● Important difference:

● Separating producer and consumer (locks)
● Perf improvement numbers?

Network Performance Workshop, NetDev 1.240/41

New Topic: Threaded NAPI

● (by Hannes Sows… own slides?)

● Identified live-lock bug in SoftIRQ processing
● Fixed by Eric Dumazet

Network Performance Workshop, NetDev 1.241/41

Extra slides

● If unlikely(too_much_time)
● goto extra_slides;

Network Performance Workshop, NetDev 1.242/41

Topic: RX-MM-allocator – Alternative

● Prerequisite: When page is writable

● Idea: No SKB alloc calls during RX!
● Don't alloc SKB,

● Create it inside head or tail-room in data-page

● skb_shared_info, placed end-of data-page
● Issues / pitfalls:

1) Clear SKB section likely expensive

2) SKB truesize increase(?)

3) Need full page per packet (ixgbe does page recycle trick)

Network Performance Workshop, NetDev 1.243/41

RX-stages: XDP packet-vector or bulking

● XDP could also benefit from packet-vectors
● Currently: XDP_TX implicit bulking via tairptr/doorbell

● Some XDP speedup only occur when 100% is XDP
● Why, implicit get icache benefit, due to small code size
● Intermixed traffic loose this implicit icache advantage

● General idea: Conceptually build two packet-vector's
● One related to XDP, one contain XDP_PASS packets
● XDP_PASS packet-vector proceeds to next RX-stage
● Either XDP_TX flush before stack or at end of pool loop

● Moves XDP TX code "outside" critical icache path

https://mid.mail-archive.com/netdev@vger.kernel.org/msg130706.html

Network Performance Workshop, NetDev 1.244/41

Topic: Netfilter Hooks – Background

● Background: Netfilter hook infrastructure
● iptables uses netfilter hooks (many places in stack)
● static_key constructs avoid jump/branch, if not used

● thus, zero cost if not activated

● Issue: Hooks registered on module load time
● Empty rulesets still “cost” hook overhead
● Every new namespaces inherits the hooks

● Regardless whether the functionality is needed

● Loading conntrack is particular expensive
● Regardless whether any system use it

Network Performance Workshop, NetDev 1.245/41

Topic: Netfilter Hooks – Benchmarks

● Setup, simple IPv4-UDP forward, no iptables rules!
● Single Core, 10G ixgbe, router CPU i7-4790K@4.00GHz

● Tuned for routing, e.g. ip_early_demux=0, GRO=no

● Step 1: Tune + unload all iptables/netfilter modules

● 1992996 pps → 502 ns
● Step 2: Load "iptable_raw", only 2 hooks "PREROUTING" and "OUTPUT"

● 1867876 pps → 535 ns → increased cost: +33 ns
● Step 3: Load "iptable_filter"

● 1762888 pps → 566 ns → increased: +64 ns (last +31ns)
● Step 4: Load "nf_conntrack_ipv4"

● 1516940 pps → 659 ns → increased: +157 ns (last +93 ns)

Network Performance Workshop, NetDev 1.246/41

Topic: Netfilter Hooks – Solutions

● Idea: don't activate hooks for empty chains/tables
● Pitfalls: base counters in empty hook-chains

● Patches posted to address for xtables + conntrack
● iptables: delay hook register until first ipt set/getsockopt is done

● conntrack: add explicit dependency on conntrack in modules

● nf_conntrack_get(struct net*) /_put() needed

● Issue: acceptable way to break backward compat?
● E.g. drop base counter, if ruleset empty?

Network Performance Workshop, NetDev 1.247/41

Topic: Netfilter Hooks – data structs

● Idea: split structs
● Into (1) config struct

● what you hand to netfilter to register your hook

● and into (2) run time struct
● what we actually need in packet hot path

● Memory waste in: “struct net”

● 13 families, 8 hooks, 2 pointers per hook -> 1.6k
memory per namespace.

● Conversion to single linked list, save 800 bytes per netns
● Aaron Conole posted patches!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

