Nuclear Astrophysics - I

Carl Brune Ohio University, Athens Ohio

Exotic Beam Summer School 2016

July 20, 2016

Astrophysics and Cosmology

Observations

- Electromagnetic Spectrum: radio, microwave, IR, optical, UV, x-rays, γ-rays
- Neutrinos
- Cosmic Rays
- Meteorites
- Terrestrial Abundances
- Gravitational Waves

Underlying Physics

- Atomic Physics
- Nuclear Physics
- Particle Physics
- Statistical Mechanics
- Hydrodynamics
- Gravity (General Relativity)

Nuclear Astrophysics

Nuclear Physics plays a very important role in astrophysics because:

- Nuclear reactions can provide a tremendous amount of energy e.g. ³He + ³He → 2p + ⁴He + 13 MeV
- Nuclei are created and destroyed via nuclear reactions (aka nucleosynthesis) – Origin of the Elements

Scenarios include:

- Stellar processes
- Big Bang
- Cosmic-ray induced processes
- Neutron star structure

_ ...

Origin of the Elements

"Laundry List" of Processes

Big Bang Nucleosynthesis	Light Elements (A<10)	
Hydrogen Burning	Main sequence of stellar evolution (A<60)	
Helium Burning	Red giants (A<60, especially ¹² C and ¹⁶ O)	
"Heavy Ion" Burning	Late stages of massive star evolution (terminates at Fe)	
S Process	"Slow" neutron capture (A>60)	
R Process	"Rapid" neutron capture (A>60)	
RP Process	Rapid proton capture: novae and x-ray bursts	
y (or P) Process	Y-, p- and Q - induced	
Cosmic-Ray Spallation	Li and Be	
v-induced reactions	5	
Neutron Stars	R-Process site?	

Life of a Massive Star (25 solar-mass)

Hydrogen burning	5 x 10 ⁷ K	10^7 years
Helium burning	10 ⁸ K	10 ⁶ years
C, O burning	10 ⁹ K	500 years
Si burning (➔ Fe)	4 x 10 ⁹ K	1 day
Supernova (type II)		

Si Burning

Image credit: Brooks/Cole Thompson Learning

Supernova Remnant N132D

- Exploded 3,000 years ago
- 169,000 light-years away
- Blue: O⁺
- Green: O²⁺
- Pink: S⁺

N132D HST • WFPC2 SN Remnant in LMC PF95-13 • ST Scl OPO • April 10, 1995 • J. Morse (ST Scl), NASA

What is the needed Nuclear Physics?

- Nuclear masses, Q values
- Half lives, decay modes
- Resonance energies, partial widths
- Reaction cross sections

Breit-Wigner Formula

$$\sigma(E) = \frac{2J+1}{(2J_1+1)(2J_2+1)} \frac{\pi}{k^2} \frac{\Gamma_1 \Gamma_3}{(E-E_R)^2 + \Gamma^2/4}$$

Reaction Rate Formalism:

- T = temperature
- k = Boltzmann constant
- μ = reduced mass
- σ = cross section
- E = c.m. energy

consider the process: $1 + 2 \rightarrow 3 + 4$

where n_i = number density of species i

$$\frac{\mathrm{d}n_3}{\mathrm{d}t} = n_1 n_2 \langle \sigma v \rangle$$

$$\langle \sigma v \rangle = \sqrt{\frac{8}{\pi \mu}} (kT)^{-3/2} \int_0^\infty E \, \sigma(E) \, \exp(-E/kT) \, \mathrm{d}E$$

More Nuclear Physics

Statistical Reactions (roughly A>30)

- Reaction rate determined by many resonances
- Rates can be computed using statistical methods
- Requires systematic information: level densities, optical potentials,...

Example S-factor

An example from my thesis:

The ${}^{3}H(\alpha,\gamma){}^{7}Li$ reaction

85

Figure 5.2: The final result for σ , found by combining data sets shown in Figure 5.1.

Figure 5.3: The final result for S, found by combining data sets shown in Figure 5.1. The error bars do not include the additional systematic error of 6%.

At High Temperatures above (a few)x10⁹ K

- Reaction rates tend to be "fast" faster than dynamical timescales
- Production and destruction rates of a given nucleus are nearly balanced
- Abundances are determined by equilibrium considerations
- Q-values (masses) are most important
- Reaction *rates* are less important

Important Temperatures for various Processes

Big Bang Nucleosynthesis	(1-10)x10 ⁸ K
Hydrogen Burning (non-explosive)	(1-10)x10 ⁷ K
Helium Burning	(1-4)x10 ⁸ K
"Heavy Ion" Burning	(1-4)x10 ⁹ K
S Process	(1.5-4)x10 ⁸ K
R Process	(several→0)x10 ⁹ K
Explosive hydrogen burning	(1-10)x10 ⁸ K

Temperature and Energy Scales

- For T=10⁹ K, kT=86 keV a pretty low energy!
- Coulomb and/or angular momentum barriers are important
- Neutrons: Energies ~ kT most important for determining reaction rate
- Charged particles: Energies significantly higher than kT needed due to Coulomb barrier (Gamow Energy / Gamow Window)

• Example: $\alpha + {}^{12}C @ T = 2x10^8 K \rightarrow E_0 = 0.3 \text{ MeV}$

Big Bang Nucleosynthesis

- Standard Model of Particle Physics
- General Relativity
- Homogeneity and Isotropy
- Nuclear Cross Sections

single free parameter: Baryon Density (or η = baryon-to-photon ratio)

- Determine η
- Compare to astronomical observations
- Test physics input, e.g.
 - 3 neutrino generations
 - extra particles
 - phase transitions?

Nuclear Physics

Inverse reactions also included

Evolution of the Elements

Figure: Ken Nollett

Observing ²H with QSOs

D/H can be extracted:

QSO	\log_{10} D/H
PKS 1937-1009	-4.49(4)
Q1009+2956	-4.40(7)
Q0130-4021	< -4.17
HS 0105+1619	-4.60(4)

It would appear that we know the primordial Deuterium abundance within ~5%!

HS 0105+1619

Relative Velocity [km/s]

We have observations for D, ³He, ⁴He, and ⁷Li which are thought to represent primordial abundances.

Big Bang Nucleosynthesis: $\eta = 5.1(6) \times 10^{-10}$

The lithium data are not in good agreement.

Figure: Ken Nollett and Scott Burles

Angular Scale [Degrees] 100 20 т LCDM $\begin{bmatrix} \boldsymbol{\ell} (\boldsymbol{\ell} + 1) \mathbf{C}_{\boldsymbol{\ell}} / 2\pi \end{bmatrix}^{1/2} [\mu \mathbf{K}]$ MAP ARCHEOPS BOOM MAXIMA 500 5 20 100 1000 1500 1 $\boldsymbol{\ell}_{\mathrm{eff}}$

Cosmic Microwave Background

Ned Wright - 23 Jan 2003

Cosmic Microwave Background: Inferences

WMAP 15 January 2010 release

quantity	value
Ω_{Λ} (dark energy density)	0.734(29)
Ω _m (matter density)	0.266(29)
Ω _b (baryon density)	0.0449(28)
t ₀ (age of universe)	13.75(13) Gyr
η (baryon-to-photon ratio)	6.18(16) x 10 ⁻¹⁰

Big Bang Nucleosynthesis: $\eta = 5.1(6) \times 10^{-10}$

Present Status of BBN

- Exciting developments in observations of the CMB, light elements, and distant supernovae.
- Agreement is reasonable but not perfect. Lithium?
 - Reactions on ⁷Be ???
- From a nuclear physics point of view the field is mature, but higher-accuracy data are needed for reactions involving Deuterium.

Reaction Rate for a Narrow Resonance

Breit-Wigner Formula

$$\sigma(E) = \frac{2J+1}{(2J_1+1)(2J_2+1)} \frac{\pi}{k^2} \frac{\Gamma_1 \Gamma_3}{(E-E_R)^2 + \Gamma^2/4}$$

consider the process: $1+2 \rightarrow 3+4$

where n_i = number density of species i

$$\frac{\mathrm{d}n_3}{\mathrm{d}t} = n_1 n_2 \langle \sigma v \rangle$$
$$\langle \sigma v \rangle = \sqrt{\frac{8}{\pi \mu}} (kT)^{-3/2} \int_0^\infty E \,\sigma(E) \,\exp(-E/kT) \,\mathrm{d}E$$

For $\Gamma \ll E_R$, $\ll \sigma v \gg = (\text{const}) \times T^{-3/2} \times \Gamma_1 \Gamma_3 / \Gamma \times \exp(-E_R / kT)$

Very useful formula!

Focus on Helium Burning

	Hydrogen burning	5 x 10 ⁷ K	10^7 years
(Helium burning	10 ⁸ K	10 ⁶ years
	C, O burning	10 ⁹ K	500 years
	Si burning (➔ Fe)	4 x 10 ⁹ K	1 day
	Supernova (type II)		

(For a 25 solar mass star)

Si Burning

Image credit: Brooks/Cole Thompson Learning

Helium Burning Reactions

• $3\alpha \rightarrow {}^{12}C$

- -- $\alpha + \alpha \leftrightarrow 3^{8}$ Be (⁸Be ground state is just unboud)
- -- ⁸Be + $\alpha \rightarrow {}^{12}C + \gamma$ (via the 7.6-MeV "Hoyle" state) rate known with ~10%, but still under intense scrutiny
 - ~ electron scattering measurement [TU Darmstadt,
 - Chernykh et al., PRL 98, 032501 (2007)]

• ${}^{12}C(\alpha, \gamma){}^{16}O$

- -- rate only known within 30-50%
- Rates of these reactions are roughly equal
- Further α captures are hindered by the Coulomb barrier and absence of resonances

PRC96-04 · ST Scl OPO · January 15, 1996 · A. Dupree (CfA), NASA, ESA

Helium Burning Reactions Matter

They determine:

- The ¹²C/¹⁶O ratio in massive stars (and hence for the Universe)
- Nucleosynthesis of heavier elements
- The remnant mass after the supernova explosion (black hole versus neutron star)
- See recent studies:

Tur, Heger, and Austin, ApJ 671, 821 (2007)

Tur, Heger, and Austin, ApJ 702, 1068 (2009)

The Problem:

- cross section is abnormally small (E1 is isospin-forbidden)
- subthreshold resonances

1⁻ and 2⁺ states of ¹⁶O

Resonances correspond to nuclear excited states! Sub-threshold resonances... Ugh...

Classical Novae

- Elements as heavy as calcium may be synthesized
- Primary target for gamma-ray telescopes (⁷Be, ¹⁸F, ²²Na, ²⁶Al)

- 2-3 / month in our Galaxy
- Binary star systems
- Mass transferred from less massive star (red giant) to white dwarf companion
- Hydrogen gas burns
 explosively with CNO nuclei
 → thermonuclear explosion

Charged Particle Reactions A = 15 - 40

Key Features:

- Resonant contributions (usually dominant)
- Non-resonant contributions
- Coulomb barrier

Resonance Properties:

- Energy
- Partial Widths
- Spin and Parity
- All properties are important!

Typical Cross Section

Experimental Approaches for Novae

- Direct measurements (Si arrays, recoil separators)
- Indirect measurements (transfer reactions)
- Mirror nuclei
- Measurements of individual resonances is required

To Summarize

TODAY:

- Introduction
- BBN, He burning, Novae

NEXT:

- Heavier nuclei
- Higher temperatures