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Résumé en français

La quantité d’images et de vidéos transmises a augmenté significativement au cours
des vingt dernières années avec le développement de plateformes comme Facebook et
Netflix. Et cette tendance va se poursuivre. Par exemple, Cisco a prédit en 2016 que le
trafic de contenu vidéo sur internet va se multiplier par quatre entre 2016 et 2021 1. Malgré
l’accroîssement des capacités de transmission, l’augmentation des contenus images et
vidéos exige de meilleures méthodes de compression. Actuellement, le meilleur standard
de compression d’images et de vidéos est High Efficiency Video Coding (HEVC), aussi
appelé H.265. Il a été lancé en 2013. H.265 a remplacé l’ancien standard de compression
Advanced Video Coding (AVC), aussi appelé H.264, en améliorant les performances de
compression par deux. L’effort de standardisation en compression se poursuit toujours.
Un nouveau standard, qui sera appelé Versatile Video Coding (VVC), est en cours de
développement 2.

Principes de la compression d’images
Les standards de compression utilisés couramment sont avec perte. Cela signifie

qu’une image est encodée en un train binaire, et le train binaire est décodé en une ap-
proximation de l’image d’origine. L’erreur entre l’image d’origine et son approximation
est caractérisée par une mesure de distorsion. Un algorithme de compression d’image a
pour objectif de fournir le taux de compression le plus petit possible, c’est-à-dire le train
binaire le plus petit possible, tout en engendrant la plus petite distorsion possible.

L’étape nécessaire à la compression des échantillons de données est leur quantifica-
tion. Plus précisément, la plage de valeurs prises par les échantillons de données est trans-
formée en un relativement petit nombre de symboles discrets du côté de l’encodeur. En-
suite, la transformation est approximativement inversée du côté du décodeur afin d’obtenir
une approximation des échantillons d’origine. La théorie débit-distorsion montre qu’un
quantificateur vectoriel peut induire le plus petit taux de compression parmi tous les
codes possibles à une distorsion moyenne maximale donnée, à condition que la taille
des vecteurs soit très grande [1]. Malheureusement, la quantification vectorielle n’est
pas mise en place dans les algorithmes de compression couramment utilisés à cause de
la forte complexité de la quantification vectorielle. Une alternative à la quantification
vectorielle est la quantification scalaire. Lorsque le taux de compression est élevé et la

1. https://www.cisco.com/c/dam/en/us/solutions/collateral/
service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.
pdf

2. http://phenix.it-sudparis.eu/jvet/
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Figure 1: Illustration du quantificateur scalaire uniforme et du codeur à longueur vari-
able sans perte en tant que fondement des standards de compression d’image. Q et Q−1

représentent le quantificateur scalaire uniforme du côté encodeur et son inverse approxi-
mative du côté décodeur respectivement.

mesure de distorsion est quadratique, un quantificateur scalaire uniforme combiné avec
un codeur sans perte à longueur variable fournissent un compromis débit-distorsion 1.53
dB en dessous du meilleur compromis possible. En d’autres termes, c’est 0.254 bits par
échantillon supérieur au meilleur compromis débit-distorsion possible. Cette affirmation
est valable pour n’importe quelle distribution de données indépendantes et identiquement
distribuées [2, 3]. Il est même possible d’aller plus loin. Il est prouvé que, pour n’importe
quel taux de compression, lorque la mesure de distorsion est quadratique, sans aucune hy-
pothèse au sujet de la distribution de données, un quantificateur scalaire uniforme avec une
codeur sans perte à longueur variable fournissent un compromis débit-distorsion 0.754
bits par échantillon supérieur au meilleur compromis possible [4]. Étant donné ces ré-
sultats, l’association d’un quantificateur scalaire uniforme et d’un codeur sans perte à
longueur variable est la pierre fondatrice de tous les standards de compression (voir Fig-
ure 1).

Le problème au sujet du quantificateur scalaire uniforme est qu’il ne peut pas exploiter
les corrélations statistiques entre les différents échantillons de données. Ceci implique
que ces corrélations statistiques doivent être prises en compte par le codeur sans perte
à longueur variable mentionné ci-dessus. Par exemple, notons X un vecteur aléatoire
discret de taille m ∈ N∗ qui représente m pixels déjà quantifiés. L’entropie jointe H (X)
de X satisfait

H (X) ≤
m∑
i=1

H (Xi) . (1)

H (Xi) désigne l’entropie de la variable aléatoire discrète Xi. Si le codeur sans perte
à longueur variable compresse les pixels quantifiés comme des variables mutuellement
indépendantes, le taux de compression obtenu est égal à la somme des entropies indi-
viduelles. En revanche, si le codeur sans perte à longueur variable compresse jointement
les pixels quantifiés, le taux de compression obtenu est égal à l’entropie jointe. Sachant
que les pixels d’une image ou d’un bloc d’image sont localement très dépendants (voir
Figure 2), (1) révèle que la compression sans perte des pixels quantifiés comme des vari-
ables mutuellement indépendantes occasionne une perte importante en performance de
compression par rapport à la compression sans perte jointe des pixels quantifiés. Afin
d’atteindre le plus petit taux de compression envisageable, c’est-à-dire l’entropie jointe,
la fonction de masse de probabilité jointe des pixels quantifiés doit être modélisée, et le
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Figure 2: Dépendances entre les pixels d’une image. Deux blocs de pixels dans la même
image, chacun représenté dans un rectangle jaune, sont très corrélés.

modèle doit être stocké à la fois du côté encodeur et du côté décodeur. Cependant, l’étape
de modélisation est extrêmement complexe. Par ailleurs, le coût de stockage croît expo-
nentiellement avec le nombre de pixels quantifiés. C’est pourquoi le codeur sans perte à
longueur variable ne peut pas exploiter seul toutes les corrélations statistiques entre les
pixels d’une image, ce qui se traduit en corrélations statistiques entre les pixels quantifiés
dans notre exemple précédent.

Une solution est de transformer les pixels en employant une transformée inversible de
façon à ce que, suite à l’étape de quantification scalaire uniforme, les coefficients trans-
formés quantifiés sont quasiment indépendants. Notons Y un vecteur aléatoire discret de
taille m représentant les coefficients transformés quantifiés. Sous condition d’une quasi-
indépendance des coefficients transformés quantifiés, on peut écrire

H (Y) .
m∑
i=1

H (Yi) . (2)

H (Yi) désigne l’entropie de la variable aléatoire discrète Yi. (2) montre que la compres-
sion de chaque coefficient transformé quantifié individuellement en utilisant le codeur
sans perte à longueur variable est à peu près aussi efficace que leur compression jointe.
C’est pourquoi tous les standards de compression d’image avec perte incluent une trans-
formée inversible, un quantificateur scalaire uniforme et un codeur sans perte à longueur
variable (voir Figure 3). Il faut mentionner que les standards de compression d’image
avec perte n’emploient pas un quantificateur scalaire uniforme à strictement parlé, mais
plutôt certaines de ses variantes. Par exemple, le quantificateur scalaire uniforme dans
JPEG2000 possède une zone morte dans laquelle la taille du pas de quantification autour
de 0 est doublée [5]. H.265 inclut un quantificateur à reconstruction uniforme [6] dont
la partie décodeur est identique à la partie décodeur du quantificateur scalaire uniforme
pour une taille de pas de quantification équivalente, et sa fonction du côté encodeur con-
tient un décalage par rapport à la fonction du côté encodeur de la quantification scalaire
uniforme. Il faut aussi noter qu’une transformée appliquée à un bloc de pixels pourrait
ne pas fournir des coefficients transformés totalement indépendants. Par conséquent, un
modèle de contexte complète souvent le codeur sans perte à longueur variable de façon à
exploiter les corrélations restantes au sein des coefficients transformés quantifiés [7, 8].

Une autre solution visant à rendre les composantes en entrée du codeur sans perte
à longueur variable aussi indépendantes que possible est le codage prédictif. Pour le
moment, ignorons la transformée et le codeur sans perte à longueur variable pour sim-
plifier l’explication du codage prédictif. De plus, considérons une séquence d’entrée
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Figure 3: Illustration d’une transformée inversible, un quantificateur scalaire uniforme,
et un codeur à longueur variable sans perte en tant qu’amélioration du schéma fondateur
affiché dans Figure 1. T et T−1 indiquent la transformée directe du côté encodeur et sa
rétro-transformée du côté décodeur respectivement.

(a) (b)

Figure 4: Illustration du codage prédictif. Contrairement au schéma montré en (a), le
schéma présenté en (b) n’exige pas la transmission de la prédiction de l’entrée actuelle un
de l’encodeur au décodeur.

(a) (b)

Figure 5: Illustration de (a) l’encodeur et (b) le décodeur pour la compression d’image
par l’intermédiaire d’un prédicteur et d’une transformée.
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{ui}i. C’est typiquement une séquence de pixels dans le cadre de la compression d’image.
Dans la formulation basique du codage prédictif, du côté encodeur, une prédiction vn de
l’entrée actuelle un est calculée à partir de la séquence passée en entrée {ui}i=0...n−1 par
l’intermédiaire du filtre prédictif F . La différence entre un et vn produit le résidu rn.
Le résidu est ensuite quantifié (voir Figure 4a). Mais le problème concernant ce schéma
prédictif est que vn doit être envoyé de l’encodeur au décodeur. Afin d’éviter cet envoi,
le filtre prédictif est dupliqué du côté décodeur, et la prédiction de un est calculée à partir
de la reconstruction {ûi}i=0...n−1 de la séquence passée après encodage et décodage (voir
Figure 4b). À noter que JPEG2000 n’implique aucun schéma prédictif. Par contre, H.265
combine un prédicteur et une transformée. Tout d’abord, le prédicteur renvoie un résidu
de prédiction qui est aussi décorrélé que possible des pixels précédemment encodés et
décodés. Ensuite, la transformée est appliquée au résidu. Le schéma de référence en com-
pression d’image via l’association de la prédiction et de la transformée est résumé dans
Figure 5.

Objectif de la thèse

Étant donné l’explication précédente, un élément décisif pour l’obtention d’une com-
pression d’image performante est la capacité du filtre prédictif et de la transformée à
fournir au codeur sans perte à longueur variable un vecteur avec des composantes in-
dépendantes.

Le choix de la transformée dans un standard de compression d’image est motivé
par des résultats d’optimalité. Cependant, la distribution des pixels d’une image ne se
conforme pas exactement aux hypothèses nécessaires pour aboutir à ces résultats. Afin
d’approfondir ce point, considérons le schéma de compression d’image contenant une
transformée, un quantificateur scalaire uniforme, et un codeur sans perte à longueur vari-
able. Lorsque l’entrée de la transformée est un vecteur Gaussien de moyenne zéro et que
la taille du pas de quantification est petite, pour un taux de compression donné, la trans-
formée de Karhunen-Loève (KLT) minimise l’espérance de la distorsion parmi toutes les
transformées linéaires [9, Proposition 7.2]. Il est essentiel d’insister sur le fait que le ré-
sultat précédent portant sur la KLT n’est pas le résultat classique provenant de la théorie
de l’approximation, qui énonce que, lorsque seulement les k ∈ N∗ premiers coefficients
transformés sont préservés, la KLT minimise la distorsion parmi toutes les transformées
linéaires [9, Proposition 7.1]. La base de la KLT contient les vecteurs propres de la ma-
trice de covariance des données. Il convient de préciser que la KLT génère des coeffi-
cients transformés décorrélés et, puisque les échantillons de données en entrée de la KLT
sont jointement Gaussiens, décorrélation implique indépendance. Par conséquent, dans
le cas précédent, chaque coefficient transformé quantifié peut être encodé séparément par
le codeur sans perte à longueur variable. Dans le contexte de la compression d’image,
le problème est que la distribution des pixels d’une image n’est pas connue. La matrice
de covariance des pixels doit être estimée et transmise de l’encodeur au décodeur. Afin
d’éviter de l’envoyer, la transformée en Cosinus Discrète (DCT) est couramment choisie
plutôt que la KLT. La DCT est indépendante des données. Si l’entrée de la transformée
suit un processus de Gauss-Markov d’ordre 1 à haute corrélation, la DCT est une approx-
imation fiable de la KLT [9, Section 7.1.1], [10, Section 7.5.3]. Étant donné les deux
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points précédents, la DCT est utilisée dans JPEG et H.265. En remarque, il convient de
noter que les auteurs dans [11] montrent que, lorsque l’entrée de la transformée suit un
processus auto-régressif d’ordre 1 avec des excitations parcimonieuses et que la taille de
l’entrée est grande, la transformée en ondelettes fournit des coefficients transformés plus
indépendants que ceux fournis part la DCT.

Malheureusement, la distribution des pixels d’une image n’est ni exactement un pro-
cessus de Gauss-Markov d’ordre 1 à haute corrélation ni un processus auto-regressif
d’ordre 1 avec des excitations parcimonieuses. C’est pourquoi le premier objectif de cette
thèse est l’apprentissage à partir d’une grande base d’images d’une transformée pour la
compression d’image. L’apprentissage est effectué en amont, la transformée apprise étant
ensuite enregistrée à la fois du côté encodeur et du côté décodeur de façon à ne transmettre
aucune information supplémentaire liée à la transformée.

Par ailleurs, comme les pixels d’une image ne sont pas jointement Gaussiens, décor-
rélation n’implique pas indépendance. C’est pourquoi l’application de la KLT à des pixels
n’engendre pas des coefficients transformés indépendants. Si elle existe, la transformation
des pixels qui fournit des coefficients transformés indépendants est probablement non-
linéaire. L’algorithme d’apprentissage doît être capable d’approximer cette transformée
non-linéaire. Par conséquent, il est nécessaire de se doter d’un algorithme d’apprentissage
qui peut approximer quasiment n’importe quelle fonction. La capacité d’approximation
universelle est une caractéristique des réseaux de neurones [12, 13, 14]. La transformée
pour la compression d’image sera ainsi apprise par l’intermédiaire de réseaux de neurones.

Dans la continuité de ce qui a été mentionné concernant la transformée, l’élaboration
des filtres de prédiction ne prend pas en compte la distribution complexe des pixels d’une
image. Afin de clarifier ce point, la manière classique d’élaborer des filtres de prédic-
tion est d’abord justifiée en partant du cas de la prédiction optimale. Considérons un
pixel, modélisé par une variable aléatoire discrète X , à prédire à partir de pixels voisins
précédemment encodés et décodés. Ces pixels voisins sont représentés par un ensemble
B de variables aléatoires observées. La prédiction optimale X̂∗ de X , c’est-à-dire la pré-
diction qui minimise l’espérance de l’erreur de prédiction élevée au carré, est l’espérance
conditionnelle E [X|B] [10, Section 6.1]. Mais, le nombre de paramètres de la distribu-
tion conditionnelle croît exponentiellement avec le nombre de pixels dans l’ensemble B
et la distribution conditionnelle n’est pas stationnaire. Par conséquent, il est difficile de
l’estimer et de la transmettre. La manière traditionnelle de corriger ces deux problèmes
dans le cadre de la compression d’image est de définir dans un premier temps un ensemble
de fonctions de prédiction qui est connu de l’encodeur et du décodeur. Cet ensemble de
fonctions de prédiction est fini et fixe. Ensuite, pour un bloc de pixels donné à prédire,
l’encodeur trouve la meilleure fonction de prédiction en se basant sur un critère débit-
distorsion et l’indice de la fonction de prédiction choisie est envoyé de l’encodeur au
décodeur. Cette approche permet d’adapter la prédiction à la texture du bloc à prédire tout
en limitant le coût d’envoi du modèle de prédiction. Cependant, deux facteurs, indiqués
par (i) et (ii), empêchent cette approche de prédire précisément des blocs d’image avec
des textures complexes. (i) Le nombre de fonctions de prédiction est restreint puisque
le coût d’envoi du modèle de prédiction est maintenu relativement bas. (ii) Les fonc-
tions de prédiction sont linéaires. Pour illustrer les raisons pour lesquelles (ii) peut poser
problème, concentrons nous sur la prédiction intra dans H.265. H.265 a 35 fonctions
de prédiction intra linéaires et prédéfinies. Hormis les deux premières fonctions de pré-
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diction intra, appelées DC et planaire (voir Figures A.7, A.12, et A.15 dans Appendice
A), chaque fonction de prédiction intra consiste à propager les valeurs des pixels voisins
précédemment encodés et décodés selon une direction spécifique [15]. Cette approche est
appropriée en présence de contours, et donc dans des petites zones contenant des bords
orientés [16, 17, 18] (voir Figures A.1 à A.8 dans Appendice A). Par contre, elle échoue
dans des larges zones renfermant souvent des textures plus complexes [19, 20, 21] (voir
Figures A.9 à A.16 dans Appendice A). Le défi est de construire une fonction de prédic-
tion intra pouvant prédire à la fois de simples textures dans des petits blocs d’image, aussi
bien que des textures complexes dans des larges blocs.

Pour relever ce défi, cette fonction de prédiction intra a besoin d’un modèle fiable
de la distribution jointe des pixels d’une image. Les réseaux de neurones ont demontré
leur capacité à apprendre ce modèle. Par exemple, dans [22, 23], des réseaux de neurones
récurrents mettent séquentiellement à jour leur représentation interne des dépendances en-
tre les pixels dans une région connue d’une image et ensuite génère le prochain pixel dans
la région inconnue de l’image. Par conséquent, les réseaux de neurones seront utilisés
pour apprendre un modèle fiable des dépendances entre un bloc, contenant potentielle-
ment une texture complexe, et ses pixels voisins qui ont été précédemment encodés et
décodés.

Structure de la thèse
Ce document peut être divisé en deux parties. La première partie introduit la compres-

sion d’image (voir Chapitre 2) et se concentre sur les méthodes les plus récentes portant
sur l’apprentissage de la compression d’image via des réseaux de neurones (voir Chapitre
3). Le deuxième partie rassemble les contributions de ce doctorat (voir Chapitres 4 et 5).

Chapitre 2 Ce chapitre fournit des informations préliminaires sur la compression d’image
qui seront réutilisées à travers le document. Notamment, la structure de chaque com-
posante clé dans H.265 est justifiée. L’attention est portée sur H.265 pour deux raisons.
(i) H.265 est à ce jour le standard de compression d’image [24] et de vidéo [25] le plus
performant. (ii) H.265 inclut à la fois un prédicteur intra et une transformée, apparaîssant
ainsi comme le fondement le plus pertinent pour développer nos travaux par la suite.

Chapitre 3 La littérature sur les réseaux de neurones est extrêmement vaste. Parmi
tous les modèles de réseaux de neurones existants, la famille des réseaux de neurones
à propagation avant entraînés par backpropagation, qui est la famille d’intérêt dans ce
document, est introduite. Puis, ce chapitre analyse deux questions ouvertes essentielles
au sujet des réseaux de neurones et explique comment elles ont influencé nos recherches.
Enfin, les approches les plus récentes en apprentissage de la compression d’image via des
réseaux de neurones sont présentées. Chapitre 3 se termine par une comparaison entre
des algorithmes de décomposition parcimonieuse sur un dictionaire et des auto-encodeurs
peu profonds et parcimonieux dans le cadre de l’apprentissage d’une transformée pour la
compression d’image. Le lecteur est prié de se référer à Section 3.1.1.4 pour une définition
des auto-encodeurs. Les résultats de cette comparaison servent de point d’ancrage pour
Chapitre 4.
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Chapitre 4 Dans ce premier chapitre de contribution, l’apprentissage d’une transformée
via les réseaux de neurones pour la compression d’image est étudié. Dans ce contexte,
deux problèmes majeurs émergent. (i) La manière traditionelle d’apprendre une transfor-
mée est d’utiliser un auto-encodeur, et d’entraîner l’auto-encodeur en minimisant l’erreur
de reconstruction. L’auto-encodeur contient habituellement moins de neurones dans la
dernière couche de son encodeur que la dimension de son vecteur d’entrée, ce qui sig-
nifie que la représentation est sous-complète. Ceci s’appelle un auto-encodeur avec une
représentation en goulot d’étranglement. Dans le contexte de la compression d’image, le
problème réside dans le fait qu’une transformée apprise via un auto-encodeur avec une
représentation en goulot d’étranglement n’est pas efficace en termes débit-distorsion. Il y
a deux raisons à cela. Tout d’abord, lors de la phase d’apprentissage, la compressibilité
de la représentation est mesurée en utilisant le nombre de coefficients dans la représen-
tation, ce qui est très éloigné du taux de compression obtenu par la quantification de la
représentation via un quantificateur scalaire uniforme et ensuite l’encodage du résultat via
un codeur sans perte à longueur variable. Ensuite, le fait que la représentation est sous-
complète implique que l’espace de code est très restreint. Le premier défi est donc de
rendre la transformée apprise efficace en termes débit-distorsion en intégrant une mesure
fiable du taux de compression au sein de la phase d’apprentissage et en augmentant le
nombre de neurones dans la représentation. (ii) L’apprentissage d’un réseau de neu-
rones, comme n’importe quel modèle de Machine Learning, est séparé en deux phases:
un graphe est construit et les paramètres du graphe sont appris en utilisant un large ensem-
ble de données d’apprentissage. Par conséquent, un réseau de neurones est dédié à une
tâche spécifique après son entraînement. Dans le contexte de la compression d’image, cela
implique que le réseau de neurones est entraîné pour un taux de compression donné. Ici,
le défi est d’apprendre une transformée unique pour compresser à n’importe quel taux de
compression. Ceci est appelé une transformée agnostique quant au taux de compression.

Pour résoudre (i), c’est-à-dire apprendre une transformée efficace en termes débit-
distorsion, notre première solution est de forcer, pendant la phase d’apprentissage et la
phase de test, une contrainte de parcimonie sur la représentation. Cela signifie que, pour
un large sous-ensemble des coefficients dans la représentation, la valeur de chaque coeffi-
cient doit être 0. Ensuite, uniquement la position de chaque coefficient quantifié non-nul
et sa valeur sont encodés par un codeur sans perte à longueur variable. De cette manière, le
taux de compression est exprimé comme une fonction du nombre de coefficients non-nuls
dans la représentation, ce qui est toujours une approximation assez grossière du vrai taux
de compression. Mais, dans cette approche, la représentation peut-être soit complète soit
sur-complète tout en étant compressible. La deuxième solution est d’imposer, pendant la
phase d’apprentissage, une contrainte sur l’entropie de la représentation quantifiée. Cette
fois-ci, le taux de compression est approximé par l’entropie de la représentation quan-
tifiée. Pour résoudre (ii), c’est-à-dire avoir une transformée agnostique quant au taux de
compression, dans le cas de la contrainte de parcimonie, la contrainte varie au cours de la
phase d’apprentissage. Dans le cas de la contrainte d’entropie, la taille du pas de quan-
tification est simplement agrandie au cours de la phase de test. La première solution est
proche de JPEG en termes de performance débit-distorsion alors que le codeur sans perte
à longueur variable utilisé n’a pas de modèle de contexte. La seconde solution fournit
de meilleurs performances que JPEG2000 en termes débit-distorsion alors que le codeur
sans perte à longueur variable utilisé n’a pas non plus de modèle de contexte.
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Chapitre 5 Dans ce deuxième chapitre de contribution, l’apprentissage d’une fonction
de prédiction intra via des réseaux de neurones pour la compression d’image est consid-
éré. Un réseau de neurones prédit un bloc de pixels donné à partir de pixels voisins déjà
encodés et décodés. Comme pour l’apprentissage d’une transformée via des réseaux de
neurones, les problèmes portent sur l’adaptibilité de la fonction apprise. Ici, l’adaptabilité
a trois aspects. (i) La fonction apprise doit prédire des blocs de différentes tailles. (ii) Elle
doit prédire à partir d’un nombre variable de pixels voisins déjà encodés et décodés. (iii)
Le niveau de bruit de quantification dans le voisinage du bloc à prédire pourrait fluctuer.

Afin de résoudre (i), une architecture de réseau de neurones est dédié à la prédiction
des blocs de pixels de chaque taille. Concernant (ii), certains des pixels voisins déjà
encodés et décodés sont masqués aléatoirement pendant la phase d’apprentissage de façon
à ce que le réseau de neurones apprenne le fait qu’une partie de l’information dans son
voisinage de pixels pourrait manquer. Par rapport à (iii), nous montrons que la fonction
de prédiction apprise a une robustesse au bruit de quantification dans son entrée. En
integrant l’ensemble de réseaux de neurones dans H.265, un gain significatif en termes
débit-distorsion est observé. 1.46% à 5.20% de bits dans le train binaire est économisé à
qualité de reconstruction équivalente.
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Chapter 1

Introduction

The amount of transmitted images and videos has grown significantly over the last
twenty years with the advent of platforms such as Facebook or Netflix and that trend will
carry on. For instance, Cisco predicted in 2016 that the internet video traffic will grow
fourfold from 2016 to 2021 1. Despite improved broadcast capacities, this increasing
amount of images and videos requires increasingly efficient compression methods. The
currently most efficient image and video compression standard is High Efficiency Video
Coding (HEVC), also called H.265. It was released in 2013. It has replaced the older
compression standard Advanced Video Coding (AVC), also called H.264, by improving
the compression performance by two. The standardization effort is still pursued. A new
standard, to be called Versatile Video Coding (VVC), is currently under development 2.

This introduction first justifies the design of the recent image compression standards.
In particular, it explains why the transform and the prediction are crucial to image com-
pression. Based on this, it is presented how neural networks can improve the transform
and the prediction, which is the purpose of the thesis.

1.1 Principles of image compression
The commonly used image compression standards are lossy. This means that an im-

age is encoded into a bitstream, and the bitstream is decoded into an approximation of
the original image. The error between the original image and its approximation is char-
acterized by a distortion measure. An image compression algorithm aims at giving the
smallest possible rate, i.e. the shortest possible bitstream, while providing the smallest
possible distortion.

The necessary step for compressing data samples is to quantize them. More pre-
cisely, the range of data samples values is mapped to a relatively small number of discrete
symbols on the encoder side. Then, the mapping is approximatively inversed on the de-
coder side to get an approximation of the original data samples. Rate-distortion theory
shows that a vector quantizer can achieve the smallest compression rate among all possi-
ble codes for a given maximum average distortion, provided that the vector size is very

1. https://www.cisco.com/c/dam/en/us/solutions/collateral/
service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.
pdf

2. http://phenix.it-sudparis.eu/jvet/
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Figure 1.1: Illustration of a uniform scalar quantizer and a variable length lossless coder
as baseline for image compression standards. Q and Q−1 denote respectively the uniform
scalar quantizer on the encoder side and its approximate inverse on the decoder side.

large [1]. Unfortunately, vector quantization is not implemented in common compression
algorithms due to its enormous complexity. An alternative to vector quantization is scalar
quantization. When the rate is large and the distortion measure is quadratic, a uniform
scalar quantizer with a variable length lossless coder is 1.53 dB below the best possible
rate-distortion performance. In other words, it is 0.254 bits per sample larger than the best
possible rate-distortion performance. This is true for any i.i.d data distribution [2, 3]. Even
better, it is demonstrated that, for any rate and when the distortion measure is quadratic,
without any assumption regarding the data distribution, a uniform scalar quantizer with a
variable length lossless coder is 0.754 bits per sample larger than the best possible rate-
distortion performance [4]. Given these results, uniform scalar quantization and variable
length lossless coding form the backbone of all image compression standards (see Figure
1.1).

The problem concerning uniform scalar quantization is that it cannot exploit the sta-
tistical correlations between data samples. This implies that these statistical correlations
have to be considered by the above-mentioned variable length lossless coding. For in-
stance, let X be a discrete random vector of size m ∈ N∗ representing a block of m
quantized image pixels. The joint entropy H (X) of X satisfies

H (X) ≤
m∑
i=1

H (Xi) . (1.1)

H (Xi) denotes the entropy of the discrete random variable Xi. If the variable length
lossless coder compresses the quantized image pixels as mutually independent variables,
its rate equals the sum of the individual entropies. However, if the variable length loss-
less coder jointly compresses the quantized image pixels, its rate equals the joint entropy.
Given that the image pixels are highly dependent (see Figure 1.2), (1.1) reveals that the
lossless compression of the quantized image pixels as mutually independent variables in-
curs a substantial loss in terms of compression performance compared to the joint lossless
compression of the quantized image pixels. To reach the lowest rate, i.e. the joint en-
tropy, the joint probability mass function of the quantized image pixels must be modeled,
and the model must be stored on both the encoder side and the decoder side. But, the
modelling step is extremely complex. Moreover, the storage grows exponentially with the
number of quantized image pixels. That is why the variable length lossless coder cannot
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Figure 1.2: Dependencies between image pixels. Two blocks of pixels in the same image,
each in a yellow box, are highly correlated.

exploit alone all the statistical correlations between the image pixels, which translate into
the statistical correlations between the quantized image pixels in our previous example.

A solution is to transform the image pixels via an invertible mapping such that, after
uniform scalar quantization, the resulting quantized transform coefficients are almost in-
dependent. Let Y be a discrete random vector of size m representing the quantized trans-
form coefficients. Under quasi-independence of the quantized transform coefficients, it
holds

H (Y) .
m∑
i=1

H (Yi) . (1.2)

H (Yi) denotes the entropy of the discrete random variable Yi. (1.2) shows that the sepa-
rate compression of each quantized transform coefficient via the variable length lossless
coder is nearly as efficient as their joint compression. That is why all image compression
standards involve an invertible transform, a uniform scalar quantizer and a variable length
lossless coder (see Figure 1.3). Note that common image compression standards do not
use, strictly speaking, uniform scalar quantization, but rather use variants thereof. For
instance, the uniform scalar quantizer in JPEG2000 has a dead-zone which doubles the
quantization step size around 0 [5]. H.265 includes a uniform reconstruction quantizer [6]
whose decoder mapping is identical to the decoder mapping of the uniform scalar quan-
tizer at equivalent quantization step size and its encoder mapping is offset with respect to
the encoder mapping of the uniform scalar quantizer. Note also that a transform applied
to the image pixels may not yield fully independent transform coefficients. Therefore, a
context model usually supplements the variable length lossless coder to exploit the corre-
lations left among the quantized transform coefficients [7, 8].

Another solution to make the components of the input to the variable length lossless
coder as independent as possible is predictive coding. Let us ignore for the moment the
transform and the variable length lossless coder to simplify the explanation of predictive
coding. Let {ui}i be an input sequence. It is typically a sequence of image pixels in image
compression. In the basic form of predictive coding, on the encoder side, a prediction vn
of the current input un is computed from the past input sequence {ui}i=0...n−1 via the
prediction filter F . vn is subtracted from un, yielding the residue rn. The residue is
then quantized (see Figure 1.4a). But, the problem regarding this prediction scheme is
that vn has to sent from the encoder to the decoder. To avoid sending it, the prediction
filter is reproduced on the decoder side, and the prediction of un is computed from the
reconstruction {ûi}i=0...n−1 of the past sequence after encoding and decoding (see Figure
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Figure 1.3: Illustration of an invertible transform, a uniform scalar quantizer and a variable
length lossless coder as improvement of the baseline in Figure 1.1. T and T−1 denote
respectively the forward transform on the encoder side and the inverse transform on the
decoder side.

(a) (b)

Figure 1.4: Illustration of predictive coding. Unlike the scheme shown in (a), the scheme
presented in (b) does not require to transmit the prediction of the current input un from
the encoder to the decoder.

(a) (b)

Figure 1.5: Illustration of (a) the encoder and (b) the decoder for image compression via
the cascade of the prediction and the transform.
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Figure 1.6: Fully-connected feedforward neural network for approximating continuous
functions [0, 1]d → R in [12]. The activation function σ in the first layer is sigmoidal,
meaning that lim

x→−∞
σ (x) = 0 and lim

x→+∞
σ (x) = 1. The activation function in the second

layer is the identity.

1.4b). Note that JPEG2000 does not involve any prediction. In contrast, H.265 combines
the prediction and the transform. The prediction first computes a residue of prediction
which is as uncorrelated with the past encoded and decoded pixels as possible. Then,
the transform applies to the residue. In brief, the baseline for image compression via the
prediction and the transform is summarized in Figure 1.5.

1.2 Purpose of the thesis

Given the above explanation, a key for efficient image compression is the capacity of
the prediction filter and the transform to provide the variable length lossless coder with
inputs of independent components.

The choice of the transform in an image compression standard is justified by optimal-
ity results. However, the distribution of the image pixels does not comply with the exact
assumptions to derive these results. To develop this point, let us first consider the im-
age compression scheme containing a transform, a uniform scalar quantizer, and variable
length lossless coder. When the input to the transform is a zero-mean Gaussian vector
and the quantization step size is small, at a given compression rate, the Karhunen-Loève
Tranform (KLT) minimizes the expected distortion among all linear transforms [9, Propo-
sition 7.2]. Note that the previous result on the KLT is not the classical result from the
approximation theory, which states that, when only the first k ∈ N∗ transform coefficients
are kept, the KLT minimizes the distorsion among all linear transforms [9, Proposition
7.1]. The basis of the KLT is the eigenvectors of the covariance matrix of the data. Note
that the KLT leads to uncorrelated transform coefficients, and, as the input samples to the
KLT are jointly Gaussian, decorrelation implies independence. Therefore, in the previ-
ous case, each quantized transform coefficient can be separately encoded by the variable
length lossless coder. The problem in image compression is that the distribution of the
image pixels is unknown. The covariance matrix of the image pixels has to be estimated
and transmitted from the encoder to the decoder. To avoid sending it, the Discrete Cosine
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Transform (DCT) is usually preferred over the KLT. The DCT is data-independent. If the
input to the transform follows a Gaussian-Markov process of order 1 with high correla-
tion, the DCT is a close approximation of the KLT [9, Section 7.1.1], [10, Section 7.5.3].
For these two reasons, the DCT is used in JPEG and H.265. As a side note, the authors in
[11] show that, when the input to the transform follows an auto-regressive process of or-
der 1 with sparse excitations and the input length is large, the wavelet transform provides
more independent transform coefficients than the DCT.

Unfortunately, the distribution of the image pixels is neither exactly a Gaussian-Markov
process of order 1 with high correlation nor an auto-regressive process of order 1 with
sparse excitations. That is why the first aim of this thesis is to learn from a large image
dataset a transform for image compression. The learning is offline, the learned transform
being then stored on both the encoder side and the decoder side so that no additional
information related to the transform has to be transmitted.

Moreover, as the image pixels are not jointly Gaussian, decorrelation does not imply
independence. That is why the application of the KLT to image pixels does not yield
independent transform coefficients. If it exists, the transformation of the image pixels
that provides independent transform coefficients is likely to be non-linear. The learning
algorithm must be able to approximate this non-linear transform. Therefore, a learning
algorithm that can approximate almost any function is needed. The capacity of universal
approximation is a characteristic of neural networks. This has been well studied in the
literature. One of the first result on neural networks as universal approximators states that
any continuous function [0, 1]d → R can be approximated with arbitrary precision by a
fully-connected feedforward neural network composed of a first layer, called hidden layer,
with a finite number of neurons and a sigmoidal activation function, and a second layer
with one output neuron and the identity as activation function [12] (see Figure 1.6). But,
the main issue concerning this result is that the number of neurons in the hidden layer
can be unrealistically large. A solution to this problem is given by recent works [13, 14].
They show that, in order to achieve a given approximation error via a fully-connected
feedforward neural network while setting a realistic constraint on its number of neurons,
its number of layers must be increased. In details, the authors in [13] first fix specific func-
tions to be approximated and an approximation error ε ∈ R∗+ to be reached. Then, they
search for a minimum number of layers and a minimum number of neurons of a given type
in a fully-connected feedforward neural network, the two numbers depending on ε, such
that this fully-connected feedforward neural network is able to achieve ε as approximation
error. Amongs other results, the authors in [13] demonstrate that, for any function from
a large class of smooth piecewise functions [0, 1]d → R to be approximated, using the
binary threshold and ReLU [26] as activation functions, a shallow fully-connected feed-
forward neural network requires exponentially more neurons than its deep counterpart.
In [13], deep refers to a neural network whose number of layers grows with 1/ε . The
authors in [14] find a simple function Rd → R for which a fully-connected feedforward
neural network with 3 layers and a reasonable number of neurons in each of its first two
layers can achieve a given approximation error. However, this approximation error cannot
be achieved by any fully-connected feedforward neural network with 2 layers, unless the
number of neurons in its first layer grows exponentially with d. Note that the third layer of
the 3-layer fully-connected feedforward neural network and the second layer of a 2-layer
fully-connected feedforward neural network have one output neuron as the output space
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of the function to be approximated is uni-dimensional. The previous result holds for all
the standard activation functions in the literature. Given [12, 13, 14], the transform for
image compression will be learned via neural networks with multiple layers.

Like the transform, the classic design of the prediction filter does not capture the
complex distribution of the image pixels. To clarify this point, the classic design of the
prediction filter is first justified by starting from the case of optimal prediction. Let us
consider a pixel, modelled by the random variable X , to be predicted from its previously
encoded and decoded neighboring pixels. These neighboring pixels are represented as a
set B of observed random variables. The optimal prediction X̂∗ of X , i.e. the prediction
that minimizes the mean squared prediction error, is the conditional expectation E [X|B]
[10, Section 6.1]. However, the number of parameters of the conditional distribution
grows exponentially with the number of pixels in the set B and the conditional distribu-
tion is not stationary. So it is difficult to estimate and difficult to transmit. The common
way to correct these two issues in image compression is to first define a set of prediction
functions which is known by the encoder and the decoder. The set of prediction functions
is finite and fixed. Then, given an image block to be predicted, the encoder finds the best
prediction function according to a rate-distortion criterion and the index of the selected
function is transmitted from the encoder side to the decoder side. This approach enables
to adapt the prediction to the texture of the image block to be predicted while restricting
the cost of sending the prediction model. However, two factors, indicated by (i) and (ii),
prevent this approach from predicting accurately image blocks with complex textures. (i)
The number of prediction functions is limited as the cost of sending the prediction model
is kept low. (ii) The prediction functions are linear. To illustrate why (ii) can be prob-
lematic, let us focus on the intra prediction in H.265. H.265 has 35 predefined linear intra
prediction functions. Apart from the first two intra prediction functions, called DC and
planar (see Figures A.7, A.12, and A.15 in Appendix A), each intra prediction function
consists in simply propagating previously encoded and decoded neighboring pixel values
along a specified direction [15]. This approach is suitable in the presence of contours,
hence in small regions containing oriented edges [16, 17, 18] (see Figures A.1 to A.8 in
Appendix A). However, it fails in large areas usually containing more complex textures
[19, 20, 21] (see Figures A.9 to A.16 in Appendix A). The challenge is to design an intra
prediction function that can predict both simple textures in small image blocks, as well as
complex textures in larger ones.

To this end, this intra prediction function needs a reliable model of the joint distribu-
tion of image pixels. Neural networks have proved capable of learning this model. For
example, in [22, 23], recurrent neural networks sequentially update their internal repre-
sentation of the dependencies between the pixels in the known region of an image and
then generate the next pixel in the unknown region of the image. Therefore, neural net-
works will be used to learn a reliable model of dependencies between a block, possibly
containing a complex texture, and its previously encoded and decoded neighborhood.

1.3 Outline of the thesis

This document can be divided into two parts. The first one gives background on
image compression (see Chapter 2) and deals with the state-of-the-art in the learning of
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image compression via neural networks (see Chapter 3). The second part gathers the
contributions of the PhD (see Chapters 4 and 5).

Chapter 2 This chapter provides background information on image compression. No-
tably, it justifies the design of the key components of H.265. The focus is on H.265 for
two reasons. (i) H.265 is to date the most efficient standardized image [24] and video
[25] compression algorithm. (ii) H.265 involves both an intra prediction and a transform,
thus being the most relevant foundation for explaining our work later on.

Chapter 3 The literature on neural networks is extremely vast. Among all the existing
neural network models, the family of feedforward neural networks trained via backprop-
agation, which is the family of interest in this document, is introduced. Then, this chapter
analyzes two major open issues regarding neural networks and explains how they influ-
ence our research. Finally, the state-of-the-art approaches in the learning of image com-
pression via neural networks are reviewed. Chapter 3 ends with a comparison between
algorithms for sparse decomposition over a dictionary and shallow sparse autoencoders in
the context of the learning of a transform for image compression. Please, refer to Section
3.1.1.4 for a detailed definition of autoencoders. This is the starting point for Chapter 4.

Chapter 4 In this first chapter of contribution, we study the learning of a transform via
neural networks for image compression. In this context, two main issues emerge. (i) The
traditional way of learning a transform is to use an autoencoder, i.e. a neural network
whose encoder turns an input vector into a representation and whose decoder reconstructs
the input vector from this representation, and train the autoencoder by minimizing the
error of reconstruction. The autoencoder usually has much less neurons in the last layer
of its encoder than the dimension of the input vector, meaning that the representation is
undercomplete. This is called an autoencoder with a bottleneck representation. In the
context of image compression, the problem is that a transform learned via an autoencoder
with a bottleneck representation is not efficient in terms of rate-distortion. This has two
reasons. First, during the training phase, the compressibility of the representation is mea-
sured using the number of coefficients in the representation, which is very different from
the rate obtained by quantizing the representation via a uniform scalar quantization and
then encoding it via a variable length entropy coder, as it is done in common image com-
pression schemes. Second, the undercomplete representation implies that the code space
is very limited. The first challenge is thus to make the learned transform efficient in terms
of rate-distortion by integrating a reliable measure of the rate into the training phase and
increasing the number of neurons in the representation. (ii) The training of a neural net-
work, as for any other Machine Learning model, is split into two phases: a graph is built
and the parameters of the graph are learned on a large dataset. Therefore, a neural net-
work is dedicated to a specific task after its training. For image compression, this means
that the neural network is trained to meet a given rate constraint. Here, the challenge is to
learn a unique transform for compressing at any rate, which is called rate-agnostic.

To solve (i), i.e learning an efficient transform in terms of rate-distortion, our first
solution is to enforce, during the training and test phases, a sparsity constraint on the
representation. This means that, for a large subset of the coefficients in the representa-
tion, the value of each coefficient has to be 0. Then, only the position of each non-zero
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quantized coefficient and its value are encoded via a variable length lossless coder. In this
case, the rate is viewed as a function of the number of non-zero coefficients in the rep-
resentation, which is still a coarse approximation of the true rate. But, in this approach,
the representation can be either complete or overcomplete while being compressible. The
second solution is to set, during the training phase, a constraint on the entropy of the quan-
tized representation. This time, the rate is approximated by the entropy of the quantized
representation, which is a more reliable approximation. To solve (ii), i.e. having a rate-
agnostic transform, in the case of the sparsity constraint, the constraint varies during the
training phase. In the case of the entropy constraint, the quantization step size is simply
increased during the test phase. The first solution is near JPEG in terms of rate-distortion
performance, while using a variable length entropy coder without any context model. The
second solution provides better performance than JPEG2000 in terms of rate-distortion,
while also using a variable length entropy coder without any context model.

Chapter 5 In this second chapter of contribution, the learning of an intra prediction
function via neural networks for image compression is considered. A neural network pre-
dicts a given block of image pixels from already encoded and decoded pixels surrounding
this block. As for the learning of a transform via neural networks, the issues relate to
the adaptibility of the learned function. Here, the adaptibility has three aspects. (i) The
learned function has to predict blocks of various sizes. (ii) It has to predict from a variable
number of already encoded and decoded neighboring pixels. (iii) The level of quantiza-
tion noise in these neighboring pixels may vary.

To solve (i), one neural network architecture is dedicated to the prediction of the
blocks of each size. For (ii), some of the already encoded and decoded neighboring pix-
els are randomly masked during the training phase so that the neural network integrates
the fact that some information may be missing in the neighborhood of the block to be
predicted. Regarding (iii), we demonstrate that the learned function of prediction ex-
hibits robustness to the quantization noise in its input. When integrating the set of neural
networks into H.265, a significant gain in terms of rate-distortion is reported. 1.46% to
5.20% of bits in the bitstream are saved for equivalent quality of image reconstruction.
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Chapter 2

Overview of H.265

This section gives background information on image compression through an overview
of H.265. H.265 was developped by the collaboration between the Video Coding Expert
Group (VCEG) from the International Telecommunication Union (ITU-T) and the Mov-
ing Picture Experts Group (MPEG) from the International Organization for Standardiza-
tion/International Electrotechnical Commission (ISO/IEC). H.265 will be presented as an
image compression algorithm. This means that the components specific to video com-
pression will not be considered.

2.1 Chrominance subsampling
Before the actual compression of an image via H.265, the first method to reduce the

image size consists in converting the image color space into the Y
′
CbCr color space and

subsampling the two channels Cb and Cr.

2.1.1 Why use the Y
′
CbCr color space in image compression?

To understand the origin of the Y
′
CbCr color space and the reason for its use in image

compression, the notion of color space and its link to the human eye physiology must be
first explained.

Under normal light conditions, photoreceptors in the retina of the human eye, called
cones, are responsible for color vision [27]. There are three kinds of cone cells, namely
S-cones, M-cones, and L-cones. Each cone type has a different spectral sensitivity. S-
cones have a peak sensitivity around 440 nanometers (see Figure 2.1). For M-cones and
L-cones, the peak sensitivity are around respectively 545 nanometers and 580 nanome-
ters [28]. The color of a light entering the human eye is represented as three cone
stimuli. As an example, yellow, near 600 nanometers, is perceived when L-cones are
slightly more stimulated than M-cones and much more stimulated than S-cones. In 1924,
the Commission Internationale de l’Eclairage (CIE) defined the CIE luminous efficiency
function V (λ) [29], λ ∈ R∗+ denoting the wavelength. The CIE luminous efficiency
function, dimensionless, is the average spectral sensitivity of human brightness percep-
tion under normal light conditions. Two light stimuli with difference radiance spectra
Φ (λ) and Φ

′
(λ), expressed in watts per nanometer, are perceived as equally bright if∫ +∞

0
Φ (λ)V (λ) dλ =

∫ +∞
0

Φ
′
(λ)V (λ) dλ.

25



26 CHAPTER 2. OVERVIEW OF H.265

Figure 2.1: Evolution of the relative spectral sensitivity of L-cones, M-cones, and S-cones
with the wavelength λ.

(a) (b)

Figure 2.2: Evolution of the CIE 1931 (a) RGB and (b) XYZ color-matching functions
with the wavelength λ.

The concept of color space draws on the human eye physiology. A color space is a
defined range of colors where each color is described using three channels 1, just as three
cone stimuli in the human eye characterize a color. More precisely, each color C can be
reproduced using a linear combination of three primaries R, G, and B with the channels
R, G, and B as respective weights,

C = RR+ GG + BB. (2.1)

In 1931, the CIE standardized the CIE 1931 RGB color space with R at red 700
nanometers, G at green 546.1 nanometers, and B at blue 435.8 nanometers. Given this
standard, the amount R, G, and B of each respective primary R, G, and B in the color
perceived by the human eye for a given radiance spectrum Φ (λ) must be known. That
is why color-matching functions r (λ), g (λ), and b (λ) (see (2.2)) were determined from
experiments with human observers [30, 31] and tabulated for wavelengths from 380 to
780 nanometers at intervals of 5 nanometers [32, 33].

R =

∫ +∞

0

Φ (λ)

Φ0

r (λ) dλ, G =

∫ +∞

0

Φ (λ)

Φ0

g (λ) dλ, B =

∫ +∞

0

Φ (λ)

Φ0

b (λ) dλ (2.2)

1. Note that some color spaces involve four or more channels. But, these color spaces are less common
than those with three channels. For instance, the CMYK color space uses four channels.
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Figure 2.3: CIE 1931 chromaticity diagram. z is not represented as z = 1− x− y.

The reference radiance Φ0 defines the range of the three channels for the considered view-
ing condition. Figure 2.2a shows that r (λ) has negative values inside the range from 435.8
to 546.1 nanometers. This implies that most of the monochromatic lights cannot be repre-
sented by a physically mixture of the three standardized primaries. To correct this, the CIE
introduced, also in 1931, the CIE 1931 XYZ color space with X , Y , and Z as primaries
and x, y, and z as color-matching functions (see Figure 2.2b, (2.3), (2.4), and (2.5)).

C = XX + YY + ZZ (2.3)

X =

∫ +∞

0

Φ (λ)

Φ0

x (λ) dλ, Y =

∫ +∞

0

Φ (λ)

Φ0

y (λ) dλ, Z =

∫ +∞

0

Φ (λ)

Φ0

z (λ) dλ (2.4)

x (λ)
y (λ)
z (λ)

 =
1

0.17697

0.49000 0.31000 0.20000
0.17697 0.81240 0.01063
0.00000 0.01000 0.99000

r (λ)
g (λ)

b (λ)

 (2.5)

The derivation of the linear relation in (2.5) is based upon two key conditions, indicated
by (i) and (ii). (i) The color-matching functions x (λ), y (λ), and z (λ) have to be non-
negative. (ii) y (λ) has to be equal to the CIE luminous efficiency function V (λ). Note
that (ii) will be essential when considering image compression in the next paragraph. The
details concerning the remaining conditions for finding this linear relation can be found
in [34]. Note also that a common visualization focusing on the ratio between the channels
X, Y, and Z is the CIE 1931 chromaticity diagram. The two coordinates x and y in the
CIE 1931 chromaticity diagram correspond to respectively X and Y inside the plane X +
Y + Z = 1 (see Figure 2.3),

x =
X

X + Y + Z
y =

Y
X + Y + Z

z =
Z

X + Y + Z
. (2.6)
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(a) (b) (c) (d)
Figure 2.4: Visualization of (a) a natural image, (b) its channel R, (c) its channel G, and
(d) its channel B. The three channels are displayed using a grayscale.

From the CIE 1931 XYZ color space, a RGB color space, different from the CIE 1931
RGB color space, can be created by setting the first primary in the red area in Figure 2.3,
the second primary in the green area, the third primary in the blue area, and defining the
color when its three channels take their maximum value. Given (2.6), there is a linear
relation between the channels X, Y, and Z and the three RGB color space channels. But,
neither a RGB color space nor the CIE 1931 XYZ color space is suitable for image com-
pression. Indeed, the three RGB color space channels have redundant information. Put
differently, using a RGB color space, if a natural image pixel has a channel with large
value, the other two channels also have large values with high probability (see Figure
2.4). In this sense, the CIE 1931 XYZ color space seems to be more appropriate for
image compression since, as said in the previous paragraph, the color-matching function
y (λ) is equal to the CIE luminous efficiency function V (λ), i.e. the luminance informa-
tion is decorrelated from the color information. But, the fact that the CIE 1931 XYZ color
space has non-uniformly distributed colors [35], i.e. the Euclidean distance between two
points in the CIE 1931 color space is not a valid metric for the color change perceived by
the human eye, raises another problem for image compression. Let us illustrate this via
an example. In Figure 2.3, the green area is larger than the blue area. As a consequence,
if a compression algorithm encodes and decodes a pixel in the green area, making a small
error of reconstruction for its channel X for instance. The same compression algorithm
encodes and decodes a pixel in the blue area, making the same error of reconstruction for
its channel X. Then, the color change due to the compression perceived by the human eye
will be more pronounced for the pixel in the blue area. That is why color spaces with
uniformly distributed colors are preferred in image compression. The Y

′
CbCr color space

corrects these two problems simultaneously.
• The Y

′
CbCr color space is derived so that its channel Y

′
is proportional to the chan-

nel Y. This implies that the luminance information is decorrelated from the color
information.
• It has almost uniformly distributed colors.

Besides, two additional properties are advantageous for image compression.
• The Y

′
CbCr color space is defined as a linear transformation of a RGB color space,

Y
′
= krR

′
+ kgG

′
+ kbB

′

Cb =
1

2 (1− kb)

(
B
′ − Y

′
)

+O (2.7)

Cr =
1

2 (1− kr)

(
R
′ − Y

′
)

+O.
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(a) (b) (c) (d)
Figure 2.5: Visualization of (a) same natural image as in Figure 2.4, (b) its channel Y

′
, (c)

its channel Cb, and (d) its channel Cr. The three channels are displayed using a grayscale.

Table 2.1: Subsampling of the two chrominance channels.

Y
′
CbCr 4 : 4 : 4 No subsampling of the two chrominance channels.

Y
′
CbCr 4 : 2 : 2 The two chrominance channels are subsampled horizontally by a

factor of two.
Y
′
CbCr 4 : 2 : 0 The two chrominance channels are subsampled both horizontally and

vertically by a factor of two.

O is an offset depending on the range of the channels. kr, kg, and kb depend on the
RGB color space associated to the Y

′
CbCr color space. R

′
, G
′
, and B

′
are the result

of the so-called gamma encoding of respectively R, G, and B. Gamma encoding is
a non-linear transformation to account for the perceptual non-uniformity of lumi-
nance and colors [36]. (2.7) implies that the conversion of an image from a RGB
color space to its associated Y

′
CbCr color space can be quickly computed.

• The Y
′
CbCr color space belongs to the family of the color opponent spaces [37] as

the channels Cb and Cr correspond to a difference between the channel Y
′

and a
channel of the associated RGB color space. This induces a decorrelation of the two
color channels.

Gamma encoding is beyond the scope of the study of the Y
′
CbCr color space for im-

age compression. Yet, it is essential to stress that, if the gamma encoding was not applied
before the linear transformation in (2.7), the color information would be effectively decor-
related from the luminance information. But, with this gamma encoding, changes in the
Cb and Cr channels slightly impact the channel Y

′
. By comparing Figures 2.4 and 2.5, we

see the superiority of the Y
′
CbCr color space over its associated RGB color space in terms

of channels decorrelation. Given the four reasons listed above, the Y
′
CbCr color space

will be systematically used thoughout the document.

2.1.2 Chrominance subsampling as preliminary compression

The human eye perceives more spatial details with brightness discrimination than with
color discrimination [38]. That is why the spatial resolution of the channels Cb and Cr can
be reduced whereas that of the channel Y

′
remains unchanged. Table 2.1 summarizes

the different types of subsampling for the two chrominance channels. Note that the input
to H.265 usually has already subsampled chrominance channels. This means that the
measures of the H.265 compression performance do not take into account the compression
due to this subsampling.



30 CHAPTER 2. OVERVIEW OF H.265

Figure 2.6: Structure of the encoder of H.265 for encoding a Y
′
CbCr image. Note that the

splitting into Coding Tree Blocks and the splitting into Coding Blocks is performed on
the three channels Y

′
, Cb, and Cr. But, these splittings are illustrated on the channel Y

′

exclusively for readability. The subsampling of the two channels Cb and Cr is 4 : 2 : 0.

2.2 Global structure of H.265
The structure of H.265 is based on the principle presented in Figure 1.5. Figure 2.6

illustrates the encoder of H.265 as an image compression algorithm. To get the encoder
of H.265 as a video compression algorithm, motion compensation and inter prediction
[39, 40], i.e. the prediction of a block in the current video frame to be encoded from a
block inside an already encoded and decoded video frame, must be added to Figure 2.6.

2.3 Block-based structure
The most important aspect of H.265 is its block-based structure. This means that a

Y
′
CbCr image is split into square blocks of different size (see Figure 2.6). Then, one

block at a time is encoded and decoded. The reason for using a block-based structure is
that it enables the combination of the prediction and the transform, which are two keys
for an efficient image compression scheme (see Section 1.2). The splitting of the image
into square blocks in H.265, called quadtree structure partitioning, can generate blocks of
sizes 4× 4, 8× 8, 16× 16, 32× 32, and 64× 64 pixels 2. This choice can only be justified
after describing the H.265 intra prediction in Section 2.4. In details, the quadtree structure
partitioning involves four types of splitting.

2. In image and video compression, the image size in pixels is written w×h, where w ∈ N∗ and h ∈ N∗
denote the image width and height respectively. This convention is adopted throught the document.
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• Coding Tree Block (CTB). An image is first split into Coding Tree Units (CTUs)
of the same size. A CTU contains a luminance CTB, two chrominance CTBs, and
syntax elements. From now on, let us focus on luminance CTBs, simply called
CTBs. The differences between luminance CTBs and chrominance CTBs will be
pointed out later on. The CTB size is a design parameter. It can take the following
values: 64× 64, 32× 32, or 16× 16 pixels [41]. After the first splitting, the CTBs
are processed one at a time in raster-scan order, i.e. from left to right and top to
bottom.
• Coding Block (CB). Each CTB is further split into CBs (see Figure 2.7). The CTB

can be first split into either one or four CBs. Then, if the CTB is split into four CBs,
each of them can be recursively split into four CBs. The largest CB size is equal to
the selected CTB size. The smallest CB size is a design parameter, which is usually
set to 8× 8 pixels. The CBs are processed in a Z-scanning order (see Figure 2.7).
• Prediction Block (PB). The PB is the block on which the intra prediction is per-

formed. If the CB size is not equal to the smallest CB size, the PB is similar to the
CB. Otherwise, the CB can be split into four PBs. Note that, when dealing with
video compression, i.e. when inter-prediction exists, the CB partitioning into PBs
has more options [42].
• Transform Block (TB). The TB is the block on which the transform is performed.

As for the PBs, the CB can be further split into TBs.
In a CTU, the height of the two chrominance CTBs are smaller than the height of the

luminance CTB by a factor depending on the type of subsampling for the two chrominance
channels. The same rule goes for the width of the two chrominance CTBs. For instance,
in 4 : 2 : 0, the factor for the height and that of the width are equal to 2. As another
example, in 4 : 2 : 2, the factor for the height is equal to 1 whereas that for the width
is equal to 2. The same sequence of splittings is applied to the luminance CTB and
the two chrominance CTBs (see Figure 2.8). But, there exists an exception to this rule.
When a luminance CB with the smallest CB size is split into four luminance PBs, the two
corresponding chrominance CBs are not split.

It is essential to stress that the common splitting of a luminance CTB and its two cor-
responding chrominance CTBs on the encoding side has to be signalled to the decoder
so that the luminance CTB and its two corresponding chrominance CTBs can be recon-
structed on the decoding side. This signalling is illustrated in Figure 2.6 by the gray ar-
row leaving the component that splits into CBs, going through the encoder control before
pointing to the variable length encoder which generates bits. The finer is the splitting, the
larger is the signalling cost. To find the optimal splitting among all the possible splittings,
a recursive rate-distortion optimization is run on the encoding side 3.

2.4 Intra prediction

Intra prediction consists in creating a prediction for the current PB using previously
encoded and decoded pixels in its close neighborhood. Due to the raster-scanning order

3. See the method "TEncCU::xCompressCU" in the file "TEncCu.cpp" of the reference H.265
software at https://hevc.hhi.fraunhofer.de/trac/hevc/browser/tags/HM-16.15/
source/Lib/TLibEncoder/TEncCu.cpp for details on this optimization.

https://hevc.hhi.fraunhofer.de/trac/hevc/browser/tags/HM-16.15/source/Lib/TLibEncoder/TEncCu.cpp
https://hevc.hhi.fraunhofer.de/trac/hevc/browser/tags/HM-16.15/source/Lib/TLibEncoder/TEncCu.cpp
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(a)

(b)

Figure 2.7: Partitioning of a luminance CTB of size 64 × 64 pixels into luminance CBs
viewed as (a) a tree and (b) blocks.

Figure 2.8: Partitioning of a luminance CTB into luminance CBs and its two correspond-
ing chrominance CTBs into chrominance CBs. Here, the type of subsampling for the two
chrominance channels is 4 : 2 : 0. The black arrows show the association between a
luminance CB and its two corresponding chrominance CBs.
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(a) (b)

Figure 2.9: HEVC intra prediction: (a) the prediction of the current luminance PB from
already encoded and decoded pixels via the mode of index 30 and (b) the 33 directional
modes. In (a), (1) denotes the group of 2m+1 already encoded and decoded pixels located
above the current luminance PB of width m ∈ N∗ pixels. (2) refers to the group of 2m
already encoded and decoded pixels located on the left side of the current luminance PB.

of the CTBs, the Z-scanning order of the CBs, and the quadtree structure partitioning, the
used pixels are located above and on the left side of the current PB (see Figures 2.9a).
Note that, in Figure 2.9a, when the rightmost pixels in the group of pixels located above
the current PB, denoted (1), or the bottommost pixels in the group of pixels located on the
left side of the current PB, denoted (2), are not encoded and decoded yet, they are padded
from the available ones.

The intra prediction can be derived with several modes. For luminance PBs, HEVC
has 35 intra prediction modes: one DC mode, one planar mode, and 33 directional modes.
These directional modes consist in propagating the neighboring pixels values in a given
direction (see Figure 2.9b). The DC mode simply predicts all the pixels of the current
luminance PB with the average value of all neighboring pixels. Finally, the planar mode,
designed to prevent the discontinuities along the block boundaries that can occur with the
DC mode, averages the horizontal mode of index 10 and the vertical mode of index 26.
Unlike the 35 available modes for a luminance PB, only 5 modes can be used for the two
corresponding chrominance PBs: DC, planar, horizontal of index 10, vertical of index 26,
and the direct mode. The direct mode is the mode selected for the luminance PB.

For each PB, the best intra prediction mode according to a rate-distortion criterion 4

is selected on the encoding side and signalled in the bitstream using only the chosen
mode index. This signalling is shown in Figure 2.6 by the gray arrow leaving the intra
prediction component, going trough the encoder control before pointing to the variable
length encoder which generates bits. On the decoding side, the prediction mode to be
used for reconstructing the PB is determined by this index.

4. To avoid overloading the explanation of the H.265 intra prediction with details, this rate-distortion
criterion will be developped later on when needed. See the method "TEncSearch::estIntraPredLumaQT" in
the file "TEncSearch.cpp" of the H.265 reference software at https://hevc.hhi.fraunhofer.de/
trac/hevc/browser/tags/HM-16.15/source/Lib/TLibEncoder/TEncSearch.cpp to
understand the criterion exactly.

https://hevc.hhi.fraunhofer.de/trac/hevc/browser/tags/HM-16.15/source/Lib/TLibEncoder/TEncSearch.cpp
https://hevc.hhi.fraunhofer.de/trac/hevc/browser/tags/HM-16.15/source/Lib/TLibEncoder/TEncSearch.cpp
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Now that the mechanism of the intra prediction in H.265 is clarified, the motivations
for designing a quadtree structure partitioning that produces PBs of sizes 4×4, 8×8, 16×
16, 32×32, and 64×64 pixels can be explained. The quadtree structure partitioning adapts
the size of the PBs so that their texture can be fairly accurately predicted by the H.265
intra prediction, while considering the cost of signalling the partitioning. Indeed, small
regions in natural images usually contain oriented edges, cf. Section 1.2. As directional
modes are designed for predicting oriented edges, the intra prediction in H.265 can yield
a very accurate prediction of a small PB. However, the intra prediction in H.265 struggles
to predict a large PB with slightly complex textures. That is why, in the presence of a CTB
with complex textures, it is worth in terms of quality of the reconstructed CTB to split the
CTB into very small PBs, then predict each PB separately during the encoding and the
decoding of the CTB. And this even if it requires more bits to signal to the decoder the
fine splitting of the CTB. Conversely, in the presence of a CTB with a basic texture, the
quality of the reconstructed CTB will be sufficient if the CTB is split into large PBs. This
time, the advantage is that the cost of signalling the splitting of the CTB to the decoder is
low.

2.5 Transform and quantization
After the prediction step, we obtain a residual CB which can be further split into resid-

ual TBs, as explained in Section 2.3. Each of these residual TBs is then transformed via a
Discrete Cosine Transform (DCT) (see Figure 2.10). An advantage of the DCT that was
not mentioned in Section 1.2 is its separability. The DCT can be computed independently
on each line and then on each column of a residual TB, giving the possibility to com-
pute the DCT at low complexity. If the size of a residual TB is 4 × 4 pixels, a Discrete
Sine Transform (DST) is used instead of the DCT as the DST yields a gain in terms of
rate-distortion compared to the DCT in the context of intra predictive coding.

The coefficients resulting from the application of the DCT to a residual TB are scaled
to give more weight to lower frequency coefficients and quantized via a uniform recon-
struction quantizer. The scaling is justified by the fact that the human eye is much less
sensitive to high frequencies than low ones. The fixed quantization step size ∆ of the uni-
form reconstruction quantizer is defined as a function of a Quantization Parameter (QP),
QP ∈ [|0, 51|],

∆ = 2
QP−4

6 . (2.8)

The amount of distortion and the resulting rate of the block is controlled by this QP value.

2.6 In-loop filtering
When QP is large, a strong quantization is applied to the scaled transform coefficients,

generating artifacts such as banding in uniform areas or ringing around edges in the re-
constructed image. These artifacts are characterized by the appearance of lines in the
reconstructed image that are not present in the original image. Due to the block structure
of H.265, the block boundaries are also prone to the appearance of artifacts, referred to
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(a)

(b)

(c)

Figure 2.10: Basis of the DCT applied to (a) 4 × 4 TBs, (b) 8 × 8 TBs, and (c) 16 × 16
TBs.

as blocking since the blocks can be distinguished in the reconstructed image (see Figures
2.11, 2.12, and 2.13).

To attenuate these banding, ringing, and blocking artifacts, two filters are performed
during the HEVC encoder: the DeBlocking Filter (DBF) [43] and the Sample Adaptive
Offset (SAO) [44]. The DBF reduces the blocking artifacts. It consists in performing an
adaptive filtering to the block boundaries. The SAO attenuates the banding and ringing
artifacts. It selects regions of the image containing one or multiple CTBs where two SAO
types can be applied: Edge Offset (EO) or Band Offset (BO). In both cases, each pixel
is classified into a category, 5 for EO and 32 for BO. Then, a common offset is added
to each sample depending on its category. The offset is signalled in the bitstream for
the decoder. This signalling is indicated in Figure 2.6 by the gray arrow leaving the in-
loop filter component, crossing the encoder control before pointing to the variable length
encoder. The DBF and the SAO are referred to as in-loop filters since they are included in
the encoding and decoding loops.

2.7 Entropy coding

The data to be entropy-coded in H.265 are divided into two categories. The first
category contains the quantized transform coefficients resulting from the chaining of the
transform of a residual TB and the quantization of the transform coefficients. The second
category gathers all the signalling information, i.e., inter alia, the quadtree partitioning
of each CTB, the selected intra prediction mode of each PB, and the SAO offsets. The
entropy coding of all the signalling information is shown in Figure 2.6 by the gray arrow
leaving the encoder control and pointing to the variable length encoder. The entropy
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(a) (b) (c)

Figure 2.11: Visualization of blocking artifacts: (a) a 300 × 300 crop of the first frame
of PeopleOnStreet, (b) its reconstruction via H.265 with the DBF turned off, and (c) its
reconstruction via H.265 with the DBF turned on. QP = 42.

(a) (b) (c)

Figure 2.12: Visualization of blocking artifacts: (a) another 300 × 300 crop of the first
frame of the video PeopleOnStreet, (b) its reconstruction via H.265 with the DBF turned
off, and (c) its reconstruction via H.265 with the DBF turned on. QP = 42.

(a) (b) (c)

Figure 2.13: Visualization of blocking artifacts: (a) a 300 × 300 crop of the first frame
of the video Traffic, (b) its reconstruction via H.265 with the DBF turned off, and (c) its
reconstruction via H.265 with the DBF turned on. QP = 42.
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coding of the two categories of data is done by a Context-Adaptive Binary Arithmetic
Coder (CABAC) [8].

2.7.1 Entropy encoding of the quantized transform coefficients
Let us focus on the quantized transform coefficients to be entropy-encoded by CABAC.

More specifically, the beginning of this entropy encoding is considered as it involves an
interesting dependency with the intra prediction in H.265.

A key characteristic of the transform coefficients obtained by applying the DCT to a
residual TB is that few of them, with relatively large absolute values, concentrate most
of the information on the spatial distribution of the residual samples. This stems from
the strong energy compaction of the DCT [45]. Due to this, after quantization, the set of
quantized transform coefficients is sparse. A way to encode efficiently this set is sparse
encoding, i.e. the values of the non-zero quantized transform coefficients exclusively
and the position of the quantized transform coefficients within the 2D array of quantized
transform coefficients are encoded. The sparse encoding in H.265 has four steps.

1. Encoding a flag indicating whether the 2D array of quantized transform coefficients
contains at least one non-zero quantized transform coefficient.

2. Selecting an order for scanning the 2D array of quantized transform coefficients.

3. Encoding the position of the last non-zero quantized transform coefficient.

4. From the position of the last non-zero quantized transform coefficient to the position
of the DC coefficient, in reverse scanning order, encoding the values of the non-
zero quantized transform coefficients exclusively and the position of the quantized
transform coefficients.

Each of the four steps is further detailed below.

1. A flag, called coded_block_flag, is encoded to indicate whether the 2D array of
quantized transform coefficients contains at least one non-zero quantized transform
coefficient. If not, i.e. coded_block_flag = 0, the sparse encoding stops.

2. The scan enables to convert the 2D array of quantized transform coefficients into a
1D array. The default scan is diagonal (see Figure 2.14). But, for 4 × 4 and 8 × 8
arrays of quantized transform coefficients, horizontal and vertical scans are allowed
(see Figure 2.15). The choice of scan is determined by the intra prediction mode
selected for predicting the PB associated to the residual TB [46]. The vertical scan
is used when the intra prediction mode is close to horizontal, i.e. the mode of index
10. The horizontal scan is used when the intra prediction mode is close to vertical,
i.e. the mode of index 26. For other intra prediction modes, the diagonal scan is
used. This choice aims at exploiting the horizontal or vertical correlation among
the residual samples, depending on the intra prediction mode. For instance, in the
case of vertical intra prediction mode, the correlation among the residual samples
is likely to be vertical. Therefore, the quantized transform coefficients with rela-
tively large absolute values are likely to be clustered in the first few rows of the 2D
array of quantized transform coefficients. The previous statement is justified when
looking at the DCT basis (see Figure 2.10). In the third step of the sparse encod-
ing, the horizontal scan will reach the last non-zero quantized transform coefficient
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earlier than the two other scans, thus saving bits during the fourth step of the sparse
encoding.
For 8 × 8 arrays of quantized transform coefficients with diagonal scan and larger
ones, for which the scan is necessarily diagonal, the 2D array of quantized trans-
form coefficients is split into 4 × 4 subblocks. Then, the scan is nested, i.e. it
goes diagonally from one 4 × 4 subblock to another while, within each subblock,
scanning diagonally (see Figure 2.16). Two reasons motivate the splitting of the 2D
array of quantized transform coefficients into 4× 4 subblocks, indicated by (i) and
(ii). (i) The implementation complexity of diagonal scan for the entire 2D array is
higher than the 4 × 4 subblock scan. (ii) The position of the quantized transform
coefficients can be encoded in a multi-level approach during the fourth step of the
sparse encoding. Note that, in the case of 8 × 8 arrays of quantized transform co-
efficients, if the horizontal scan is used, the 2D array is split into 2 × 8 subblocks
instead of 4 × 4 subblocks. Similarly, if the vertical scan is used, the 2D array is
split into 8× 2 subblocks instead of 4× 4 subblocks (see Figure 2.15).

3. The horizontal and vertical coordinates of the last non-zero quantized transform
coefficient in the scanning order are encoded [47] (see Figure 2.17).

4. The scan goes from the position of the last non-zero quantized transform coeffi-
cient to the position of the DC coefficient in reverse scanning order. This approach
incurs low encoding cost as the last non-zero quantized transform coefficient is usu-
ally close to the DC coefficient in terms of spatial positioning. Indeed, as the spatial
frequencies of residual TBs are known to be majoritarily low, the quantized trans-
form coefficients with relatively large absolute values are often all grouped near the
top-left corner of the 2D array of quantized transform coefficients.
Each subblock is scanned via up to five passes [48, 49], each pass encoding a dif-
ferent syntax element, denoted from (a) to (e) below.

(a) significant_coeff_flag, a flag indicating whether the current quantized trans-
form coefficient is non-zero. Note that significant_coeff_flag indirectly en-
codes the position of the current quantized transform coefficient.

(b) coeff_abs_level_greater1_flag, a flag indicating whether the absolute value of
the current quantized transform coefficient is strictly larger than 1.

(c) coeff_abs_level_greater2_flag, a flag indicating whether the absolute value of
the current quantized transform coefficient is strictly larger than 2.

(d) coeff_sign_flag, a flag indicating the sign of the current quantized transform
coefficient, 0 meaning positive and 1 negative.

(e) coeff_abs_level_remaining, being the remaining value for the absolute value
of the current quantized transform coefficient. Let coeff_abs_level denote the
absolue value of the current quantized transform coefficient.

coeff_abs_level_remaining = coeff_abs_level
− significant_coeff_flag
− coeff_abs_level_greater1_flag
− coeff_abs_level_greater2_flag
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Figure 2.14: Diagonal scan of a 4× 4 array of quantized transform coefficients.

(a) (b)

Figure 2.15: Two non-diagonal scans of 8× 8 arrays of quantized transform coefficients:
(a) vertical and (b) horizontal scans. Each subblock has a background colored with a
different gray level.

Figure 2.16: Diagonal scan of a 8 × 8 array of quantized transform coefficients. Each
subblock has a background with a different gray level.

Figure 2.17: Coordinates xy of the last non-zero quantized transform coefficient.
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coeff_abs_level_remaining syntax element is encoded if coeff_abs_level is
strictly larger than 2 or whenever a specified maximum number of coeff_abs-
_level_greater1_flag or coeff_abs_level_greater2_flag per subblock is reached.

Note that in each pass, a syntax element is encoded only if necessary. For instance,
if a quantized transform coefficient is equal to zero, the syntax elements from (b) to
(e) are not encoded.

It is essential to stress that the above-mentioned 5 different flags are intermediate flags.
This means that a flag is never written to the bitstream as it is. Each flag undergoes further
processings to get their bit code in the bitstream. For example, each coded_block_flag
goes through a binary arithmetic encoding with context model 5. Similarly, each signifi-
cant_coeff_flag is encoded in a multi-level fashion, considering this flag at the subblock
level [50]. A method called sign data hiding [51] is applied to each coeff_sign_flag.

The horizontal and vertical coordinates of the last non-zero coefficient in the scan-
ning order are binarized with a truncated unary prefix and a fixed length suffix [52] be-
fore running the binary arithmetic encoding of the prefix with context model. Each co-
eff_abs_level_remaining is binarized using a combination of a truncated Golomb-Rice
code [53] and a 0th-order Exponential-Golomb code.

2.7.2 Entropy encoding of the signalling information
The entropy encoding of the signalling information is a topic that involves plenty of

implementation details, thus falling outside the scope of a simple overview of H.265 for
image compression. Therefore, this topic, and in particular the entropy encoding of the
selected intra prediction mode for a given PB, will be explained at a later stage, when
needed.

2.8 Quality evaluation
The quality evaluation measures the amount of distortion brought by an image com-

pression algorithm. An image compression standard can be considered better than another
one if it gives reconstructed images of better quality for the same compression rate or con-
versely a lower rate for the same quality of image reconstruction.

The most obvious way of evaluating the quality of image reconstruction is to use sub-
jective experiments, as defined in [54]. In these approaches, a panel of human observers
assess the quality of reconstructed images. Then, the results are averaged as a mean opin-
ion score. This way, an estimation of the perceived distortion is obtained. These methods
remain the most reliable, yet being generally impractical as a significant number of view-
ers are needed over a long time. In practice, objective metrics enable to evaluate quickly
an image compression algorithm with many different parameters on large sets of images.
Below is presented three objective metrics widely used in image compression: the Peak
Signal to Noise Ratio (PSNR), the Structural SIMilarity (SSIM), and Bjontegaard’s met-
ric.

5. See the method "TEncSbac::codeQtCbf" in the file "TEncSbac.cpp" of the reference H.265
software at https://hevc.hhi.fraunhofer.de/trac/hevc/browser/tags/HM-16.15/
source/Lib/TLibEncoder/TEncSbac.cpp for details on this encoding.

https://hevc.hhi.fraunhofer.de/trac/hevc/browser/tags/HM-16.15/source/Lib/TLibEncoder/TEncSbac.cpp
https://hevc.hhi.fraunhofer.de/trac/hevc/browser/tags/HM-16.15/source/Lib/TLibEncoder/TEncSbac.cpp
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2.8.1 PSNR
The PSNR, in decibels (dB), between an image channel C of height hc ∈ N∗ and width

wc ∈ N∗ and its reconstruction Ĉ is derived from the mean-squared error MSE
(
C, Ĉ

)
between the channel and its reconstruction,

MSE
(
C, Ĉ

)
=

1

hc × wc

hc∑
i=1

wc∑
j=1

(
C [i, j]− Ĉ [i, j]

)2
(2.9)

PNSR
(
C, Ĉ

)
= 10 log10

 (
2b − 1

)2
MSE

(
C, Ĉ

)
 . (2.10)

C [i, j] is the pixel at the position [i, j] in the image channel C. b denotes the bit depth
of the channel, usually b = 8. The PSNR is commonly computed on each of the three
channels Y

′
, Cb, and Cr independently.

2.8.2 SSIM
In contrast with the pixelwise PSNR, the SSIM is computed on blocks of the image

displaced pixel by pixel. This method detects structural or contrast changes. Since the
human visual system is specialized in detecting structural information, this metric well
approximates the perceived image quality. The blockwise SSIM is defined for a block X̂
in the reconstructed image and its colocated block X in the original image,

SSIM
(
X, X̂

)
=

(2µXµX̂ + c1) (2σXX̂ + c2)(
µ2

X + µ2
X̂

+ c1

)(
σ2

X + σ2
X̂

+ c2

) . (2.11)

µX ∈ R∗+ and µX̂ ∈ R∗+ are the averages of the blocks X and X̂ respectively. σX ∈
R∗+ and σX̂ ∈ R∗+ denote the variances of each block respectively. σXX̂ ∈ R∗+ is the
covariance. c1 = 0.01

(
2b − 1

)
. c2 = 0.03

(
2b − 1

)
. The typical block size is 8×8 pixels.

All blockwise SSIMs are averaged over the entire image to obtain the imagewise SSIM.

2.8.3 Bjontegaard’s metric
It is difficult to compare two compression standards using only the distortion because

it implies to have two images encoded and decoded with the exact same compression rate.
To overcome this problem, Bjontegaard suggests to compute an average difference

between two rate-distortion curves [55]. The principle is to encode and decode an image
with both compression standards at different compression rates and compute the resulting
PSNR in each case. The rate-distortion points are then put onto a graph (see Figures
2.18, 2.19, and 2.20). An approximate rate-distortion for each compression standard is
obtained via a third order polynomial interpolation of its rate-distortion points. The gain
of one compression standard over the other one corresponds to the area between the two
approximate rate-distortion curves. This area can be computed in two ways, either at
equivalent rate or at equivalent distortion.
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Figure 2.18: Comparison of the rate-distortion curve of H.265 with DeBlocking Fil-
ter (DBF) and that of H.265 without DBF for the luminance channel of the first frame
of the video Kimono. For each of the two rate-distortion curves, each of the 6 rate-
distortion points is associated to a different QP in {17, 22, 27, 32, 37, 42}. Note that the
rate-distortion points are linked to each other; the third order polynomial interpolation is
not shown. Here, Bjontegaard’s metric of H.265 with DBF with respect to H.265 without
DBF is 4.63% of rate savings at equivalent distortion.

Figure 2.19: Comparison of the rate-distortion curve of H.265 with DBF and that of H.265
without DBF for the luminance channel of the first frame of the video ParkScene. Here,
Bjontegaard’s metric of H.265 with DBF with respect to H.265 without DBF is 1.25%.

Figure 2.20: Comparison of the rate-distortion curve of H.265 with DBF and that of H.265
without DBF for the luminance channel of the first frame of the video ParkScene. Here,
Bjontegaard’s metric of H.265 with DBF with respect to H.265 without DBF is 0.37%.



Chapter 3

Learning models for image compression

This section introduces the neural network model, discusses two major open issues
about neural networks that have influenced our research, and review the use of neural
networks for learning image compression. Then, two families of methods for learning a
transform yielding sparse representation, which are algorithms for sparse decomposition
over a dictionary and shallow sparse autoencoders, are introduced and compared in the
context of image compression. More precisely, an experimental framework is set up to
analyze what makes a method for learning a transform yielding sparse representation ef-
ficient in terms of rate-distortion. The conclusions arising from this study will form the
basis for Chapter 4.

3.1 Neural networks for image compression

3.1.1 Neural network model
The motivation behind the neural network model, the layerwise organisation in a neu-

ral network, and the neural network training are explained. It is important to stress that
there exists many families of neural networks, e.g. restricted boltzmann machines [56]
or recurrent neural networks [57]. In this document, we only deal with the family of
feedforward neural networks trained via backpropagation.

3.1.1.1 Modeling a neuron

The human brain is very efficient for solving tasks such as the object recognition in
images perceived by the human eye [58] or the object segmentation in the images. This
has motivated the research community to understand the human brain by modeling it since
1943 [59, 60]. The basic computational unit of the brain is a neuron. Approximately 86
billion neurons are inside the human nervous system. The neurons are connected with
approximately 1014 synapses.

A neuron receives input signals from its dendrites and produces an output signal along
its axon. Its axon is connected to dendrites of other neurons (see Figure 3.1a). In the
standard mathematical model of a neuron, the signal x0 that travels along the axon of
a neuron interacts multiplicatively with the dendrite of the current neuron based on the
synaptic strength of the dendrite w0. The dendrites carry different signals to the body

43
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(a) (b)

Figure 3.1: Comparison of (a) the sketch of a neuron from the point of view of biologists
and (b) the standard mathematical model of a neuron.

Figure 3.2: Logistic non-linearity σ (x) = 1/(1 + exp (−x))

of the current neuron where they get summed and a bias b is added. If the result of the
previous linear combination exceeds a certain threshold, the neuron fires, sending a spike
along its axon. A common assumption is that the scheduling of the spikes along the axon
does not matter. The information emitted by the current neuron is coded in the frequency
of the spikes. That is why the previous linear combination is converted into the frequency
of the spikes via an activation function σ (see Figure 3.1b). The basic activation function is
the logistic non-linearity σ (x) = 1/(1 + exp (−x)) , x ∈ R as the logistic non-linearity
takes a real-valued input and squashes it to ]0, 1[ (see Figure 3.2).

3.1.1.2 Neural networks as neurons in a graph

Neural networks are viewed as groups of neurons that are connected in an acyclic
graph. This way, the outputs of some neurons become inputs to other neurons. Instead of
using unstructured groups of connected neurons, neurons are organized into layers.

Fully-connected layer The most common type of layer is the fully-connected layer in
which each output neuron is connected to all the input neurons. However, the output
neurons are not connected to one another. A fully-connected layer with m input neurons
and n output neurons (see Figure 3.3) is expressed as

z = σ (Vx + b) . (3.1)
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Figure 3.3: Fully-connected layer with m inputs neurons and n output neurons.

x ∈ Rm and z ∈ Rn store respectively the m input neurons and the n output neurons.
V ∈ Rn×m and b ∈ Rn denote respectively the weights connecting the output neurons to
the input neurons and the biases.

Fully-connected feedforward neural network A fully-connected feedforward neural
network is a stack of fully-connected layers. For instance, a fully-connected feedforward
neural network composed of two fully-connected layers (see Figure 3.4) is expressed as

ŷ = σ (Φσ (Vx + b) + c) . (3.2)

ŷ ∈ Rl stores the l output neurons of the fully-connected feedforward neural network.
Φ ∈ Rl×n and c ∈ Rl denote respectively the weights and the biases of the second fully-
connected layer.

Convolutional layer Unlike fully-connected layers, convolutional layers forces local
connectivity between neurons. This means that, instead of connecting each output neuron
to all the input neurons, each output neuron is connected to neighboring input neurons.
Moreover, the connection weights are shared among the output neurons.

In details, in the case where the input to the convolutional layer is an image with m
channels, this image is first convolved with n 3D filters, the third dimension of each 3D
filter being equal to m. Then, biases are added to the result of the convolution and a
non-linearity is applied. The output of the convolutional layer is a 3D tensor whose third
dimension is equal to n. This tensor is said to be a stack of n 2D feature maps. The
convolutional layer (see Figure 3.5) is expressed as

Z = σ (X ∗W +t b) . (3.3)

X and Z denote respectively the input image and the output stack of n 2D feature maps.
W ∈ Rh×w×m×n and b ∈ Rn denote respectively the bank of n convolutional filters and
the biases. The operator +t in (3.3) is not the common elementwise addition between two
tensors. +t means that the ith bias is added to all the coefficients in the output resulting
from the convolution of the input image with the ith convolutional filter, i ∈ [|1, n|]. In the
literature +t is simply denoted +.
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Figure 3.4: Fully-connected feedforward neural network made of two fully-connected
layers. It has m inputs neurons and l output neurons.

Figure 3.5: Convolutional layer when its input is an image with m channels and n 3D
convolutional filters are involved.

Figure 3.6: Convolutional feedforward neural network containing a convolutional layer, a
max-pooling operation, and another convolutional layer. The input image has m channels
and the output stack contains l 2D feature maps. In this illustration, the non-overlapping
sub-regions in max-pooling are 2× 2.
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Convolutional feedforward neural network In its standard form, a convolutional feed-
forward neural network is a feedforward neural network containing an alternance between
convolutional layers and max-pooling operations. In the case where the input to max-
pooling is a stack of 2D feature maps, max-pooling downsamples each input 2D feature
map by appling a max filter to non-overlapping sub-regions. For a given sub-region,
the max filter picks the maximum value over this sub-region. The dimension of the non-
overlapping sub-regions is often 2×2 as it is observed that, in many applications, a convo-
lutional feedforward neural network yields better performances when the non-overlapping
sub-regions in each max-pooling operation are very small and max-pooling is alternated
many times with convolutional layers [61, 62]. For instance, a convolutional feedforward
neural network composed of the convolutional layer in (3.3), a max-pooling operation,
and another convolutional layer (see Figure 3.6) is expressed as

Ŷ = σ (max-pooling (σ (X ∗W +t b)) ∗U +t c) . (3.4)

Ŷ is the stack of l ∈ N 2D feature maps returned by the convolutional feedforward neural
network. U ∈ Rh×w×n×l and c ∈ Rl denote respectively the l convolutional kernels and
the biases in the second convolutional layer.

The main difference between a convolutional feedforward neural network and a fully-
connected feedforward neural network is that prior knowledge about the input data is
incorporated into the architecture of the convolutional feedforward neural network. First,
filters with local connectivity are applied because it is assumed that the data components
exhibit high local correlations. Then, a multi-layer architecture with max-pooling is used
as the data is assumed to have a multi-resolution structure. The high local correlations and
the multi-resolution structure are two key properties of images [63]. This prior knowledge
reduces the number of weights and biases to be learned, thus enhancing the trainability of
the neural network.

3.1.1.3 Training a feedforward neural network

Let us consider a regression task to explain the training of a feedforward neural net-
work f ( . ;θ) whose weights and biases are inside the vector θ. For instance, a regression
task will be considered in Chapter 5 with the learning of intra prediction for image com-
pression. A training set containing N ∈ N∗ inputs vectors, each paired with its target
vector,

{(
x(1),y(1)

)
, ...,

(
x(N),y(N)

)}
is given. The goal of the training is to minimize

over the trainable parameters θ an objective function L
((

x(1),y(1)
)
, ...,

(
x(N),y(N)

)
;θ
)

measuring the error between the training target vector and its approximation provided by
the feedforward neural network when feeding the associated input vector into it, averaged
over the training set,

min
θ
L
((

x(1),y(1)
)
, ...,

(
x(N),y(N)

)
;θ
)
. (3.5)

For simplicity, the training does not take into consideration the problem of the general-
ization to new input vectors during the test phase. As an example, if the training target
vectors have binary values, the objective function is usually the cross-entropy between the
training target vector and its approximation provided by the feedforward neural network
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when feeding the associated input vector into it, averaged over the training set,

L
((

x(1),y(1)
)
, ...,

(
x(N),y(N)

)
;θ
)

=

− 1

N

N∑
i=1

∑
j

(
y
(i)
j log

(
ŷ
(i)
j

)
+
(

1− y(i)j
)

log
(

1− ŷ(i)j
))

ŷ(i) = f
(
x(i);θ

)
.

(3.6)

In the case of training target vectors with binary values, the last layer of the feedforward
neural network usually has the logistic non-linearity as activation function so that the
coefficients of ŷ belong to ]0, 1[.

For the minimization, a gradient descent is used. The step t ∈ N∗ of the gradient
descent is expressed as

θ(t) ← θ(t−1) − ε(t)
∂L
((

x(1),y(1)
)
, ...,

(
x(N),y(N)

)
;θ(t−1)

)
∂θ(t−1)

. (3.7)

ε(t) ∈ R∗+ is the learning rate for the gradient descent at step t. For the trainable parameters
at initialization θ(0), the weights are drawn from specific distributions [64, 65] whereas
the biases are set to a constant [66].

Backpropagation is an algorithm for computing the derivative of the objective function
with respect to the trainable parameters θ at low computational cost. Backpropagation is
based on the decomposition of this derivative via iterative chain rules [67, 68].

To speed up the gradient descent, a coarse approximation of the derivative in (3.7) can
be computed using a single training input vector randomly drawn from the training set,
paired with its target vector. This is called online stochastic gradient descent [69, 70].
Alternatively, a more precise approximation of the derivative in (3.7) can be calculated
using a mini-batch of training input vectors randomly drawn from the training set, each
paired with its target vector. In this case, the name is mini-batch stochastic gradient
descent [71].

3.1.1.4 Autoencoders

An autoencoder is a neural network that is trained to first compute a representation of
the input and then, from this representation, reproduce the input at the output. Its archi-
tecture can be viewed as consisting of an encoder and a decoder. The encoder ge ( . ;θ),
parametrized by θ, takes an input vector and computes a representation of the input vec-
tor. The decoder gd ( . ;φ), parametrized by φ, takes the representation and returns a
reconstruction of the input vector.

z = ge (x;θ) (3.8)
x̂ = gd (z;φ) (3.9)

x ∈ Rm, z ∈ Rn, and x̂ ∈ Rm denote respectively the input vector, its representation, and
its reconstruction.

An autoencoder is trained by minimizing over its trainable parameters {θ;φ} the re-
construction error, averaged over a training set of N input vectors

{
x(1), ...,x(N)

}
. For
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instance, if the measure of error is the l2-norm of the difference between the input vector
and its reconstruction, the minimization over the trainable parameters {θ;φ} is

min
θ,φ

1

N

N∑
i=1

‖x(i) − gd
(
ge
(
x(i);θ

)
;φ
)
‖22. (3.10)

If the autoencoder learns the identity function, it is not useful. It is more interesting to
obtain a representation that captures the most salient features of the training data. To this
end, a solution is to set n < m, i.e. to have an undercomplete representation [72].

Another solution is to set n ≥ m, i.e. to have an overcomplete representation, and
constrain the representation space to be contractive in the neighborhood of the training
input vectors. In other words, the representation is stable when the training input vector
slightly changes. This constraint is introduced by adding to the objective function to be
minimized over the trainable parameters {θ;φ} the Frobenius norm of the Jacobian of the
encoder mapping, averaged over the training set of input vectors. The minimization over
the trainable parameters {θ;φ} then becomes

min
θ,φ

1

N

N∑
i=1

(
‖x(i) − gd

(
ge
(
x(i);θ

)
;φ
)
‖22 + γ‖Jge

(
x(i)
)
‖2F
)
, γ ∈ R∗+

‖Jge
(
x(i)
)
‖2F =

m∑
j=1

n∑
k=1

(
∂ge
(
x(i);θ

)
k

∂x
(i)
j

)2

.

(3.11)

This autoencoder is called contractive autoencoder [73].

3.1.2 Open issues regarding neural networks
Two major open issues regarding neural networks, i.e. the generalization of neural

networks and the choice of the neural network architecture, are explained. Then, this
section mentions the impact of the two issues on our research process.

3.1.2.1 Generalization of neural networks

The problem of generalization comes from the fact that a Machine Learning algorithm
is trained on training data but the measure of performance is computed on test data.

The common wisdom justifies a small generalization error by either properties of the
model family, regularization techniques used during the training phase, or the number of
training examples. But, these reasons are no longer valid when it comes to the ability of
large neural networks to generalize well.

This is shown experimentally by the authors in [74] in the context of image classifica-
tion. Two different image classification datasets, the CIFAR10 dataset and the ILSVRC
2012 ImageNet dataset, are considered. Three deep feedforward neural network architec-
tures from the literature are set up. For each pair of a dataset and a feedforward neural
network architecture, the authors in [74] study the case where all the labels in the training
set are replaced by random ones, which is called the corrupted training set, and the case
where the training set is uncorrupted. For the uncorrupted training set, the deep feedfor-
ward neural network reaches almost perfect accuracy on the training set at the end of the
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training phase. The accuracy on the test set is high. For the corrupted training set, the
accuracy on the training set is still almost perfect whereas the accuracy of the test set is at
the level of the random guess. This shows that a deep feedforward neural network has the
capacity to memorize a large training set. The problem is that, for the uncorrupted training
set, the deep feedforward neural network converges to a solution generalizing well. Why
did not it memorize the training set?

Another evidence shakes up the conventional view of regularization. l2-norm weight
decay is the addition of the l2-norm of all the weights of the neural networks to the objec-
tive function to be minimized over the neural network parameters. This is equivalent to
setting a Gaussian prior on these weights [75]. It is observed that, in the context of image
classification, the l2-norm weight decay increases the classifcation accuracy on the train-
ing set [74, 66]. This is not consistent with the fact that a regularizer is usually expected
to decrease the training accuracy.

The question of the generalization of large neural networks is still an open issue. In
this document, we resort to experimentation to select the number of examples in the train-
ing set and the regularizers during the training phase.

3.1.2.2 Choice of the neural network architecture

Recent works have established links between the architecture of deep neural networks
and their state-of-the-art results in classification and regression in high dimension. For
instance, let us consider the problem of supervised learning where a deep convolutional
feedforward neural network approximates a function fo using training data examples.
The author in [76] shows that the cascade of convolutional layers including a contractive
pointwise non-linearity progressively scatters the data at different scales and reduce the
range of variations of the result along directions for which fo does not vary. This yields a
transformation of the data having the main invariant of fo.

Despite this progress, the design of a neural network requires extensive empirical
evaluations. This is due to the fact that the neural network architecture often depends on
the application. The example of the Batch Normalization layer (BN) perfectly illustrates
this point. BN takes a batch of input examples and normalizes each input coefficient over
all the examples in the batch by centering it and reducing its scale [77]. In the context
of image classification, a deep neural network containing several BNs is less prone to
overfitting and its training is faster. However, in the context of image super-resolution, a
deep neural network containing BNs returns images of worse quality than its counterparts
without any BN [78].

Consequently, in Chapter 5, the proposed neural network architectures cannot be jus-
tified theoretically. They are rather motivated by the structure of the data to be processed.

3.1.3 Review of neural networks for image compression

The approaches for learning image compression via neural networks can be classified
into two categories. The first category gathers the works aiming at learning a simple
image compression scheme. The second category contains propositions for improving
components of H.265 via learning.
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Figure 3.7: Convolutional residual autoencoder in [79], where the three numbers sepa-
rated by commas are respectively the height and width of the convolutional kernels, the
number of convolutional kernels, and the convolution stride. tanh denotes the hyperbolic
tangent non-linearity. Two iterations of residual encoding and decoding are depicted. In
the first iteration, the encoder takes a 32× 32 image patch X and generates a stack of fea-
ture maps B whose coefficients belong to {−1, 1}. This stack contains two 8× 8 feature
maps. The decoder takes the stack of feature maps and computes a reconstruction X̂ of
the image patch X. The second iteration encodes and decodes the residue R1 = X − X̂
from the first iteration. In each block, conv and tconv mean respectively convolution and
transpose convolution [80]. Note that the hyperbolic tangent non-linearity is a rescaled
version of the logistic non-linearity as tanh (x) = 2σ (2x) − 1, x ∈ R. At the end of
the two-iteration residual encoding and decoding, the refined reconstruction of the image
patch is X̂+R̂1. Note that the pixels values in the input patches are rescaled to [−0.9, 0.9],
which is within the range of the hyperbolic tangent non-linearity.

Figure 3.8: Convolutional autoencoder in [81, 82, 83]. The Arithmetic Coder (AC), gath-
ering the arithmetic encoder and the arithmetic decoder, is lossless and fixed. It has no
impact on the training of the convolutional autoencoder. That is why it is no longer drawn
in the illustrations in Chapter 4.
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3.1.3.1 Towards end-to-end learning of an image compression scheme

As alternatives to traditional compression standards, several works attempt to learn a
simple image compression scheme in an end-to-end manner. To date, most of the learned
image compression schemes include a transform, a quantizer, and a context model for
entropy coding.

Joint learning of a transform and a quantizer The first work proposing an end-to-
end learned image compression scheme based on neural networks is [79]. In this work, a
convolutional residual autoencoder turns an image patch into a binary representation and
then computes a reconstruction of this image patch from the representation. A residue
between the image and its reconstruction is computed. Finally, the encoding and decod-
ing iteration is applied iteratively to the residue from the previous iteration (see Figure
3.7). To get a binary representation, the hyperbolic tangent non-linearity is chosen for the
last convolutional layer in the encoder and the output of this layer is fed into the binary
threshold btest,

btest (x) =

{
−1 if x < 0

1 if x ≥ 0
, x ∈ ]−1, 1[ . (3.12)

The binary threshold is problematic during the training phase via gradient descent as its
derivative with respect to its input always equals to 0. Therefore, a stochastic approxima-
tion btraining of the binary threshold btest is used during the training phase,

btraining (x) = x+ ε, x ∈ ]−1, 1[ , btraining (x) ∈ {−1, 1}

ε =

{
1− x with probability (1 + x)/2

−1− x with probability (1− x)/2 .

(3.13)

Then, as E [btraining] (x) = x, btraining is replaced by E [btraining] when computing the deriva-
tive of the stochastic approximation of the binary threshold with respect to its input during
the training phase. The convolutional residual autoencoder is trained via the minimization
over its trainable parameters of the l2-norm of the difference between the input and the
reconstruction of the input, cumulated over all residual encoding and decoding iterations,
and averaged over a training set of image patches. The residual convolutional autoencoder
has the capability of variable rate image compression as, at each encoding and decoding
iteration, bits are added to the bistream while the reconstruction of the image is refined.
The problem regarding this approach is that it is applied to 32 × 32 image patches. The
subsequent works [84, 85] extend it to full resolution image compression. Likewise, all
the approaches presented below apply to full resolution images.

Unlike in [79], there is no residual mechanism in [81, 82, 83]. A convolutional au-
toencoder encodes and decodes an image via a single pass (see Figure 3.8). The binary
threshold is replaced by a uniform scalar quantizer Q followed by an arithmetic coder
for converting the representation Z into a bitstream. The uniform scalar quantization is
problematic during the training phase via gradient descent as its derivative with respect
to its input always equals to 0. Therefore, in [81], the uniform scalar quantizer is re-
placed by the identity during the training phase. In [82], the uniform scalar quantizer
is replaced by the identity only when computing its derivative with respect to its input
during the training phase. In contrast, the authors in [83] fix the quantization step size to
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1 during the test phase and approximate the uniform scalar quantization with a uniform
noise of support [−0.5, 0.5] during the training phase. The main difference between [81]
and [82, 83] lies in the objective function to be minimized over the trainable parameters
of the convolutional autoencoder. In [81], the rate is controlled via a constraint on the
number of non-zero coefficients in the representation. The objective function only con-
tains a distortion term, which is the l2-norm of the difference between the input image
and its reconstruction, averaged over a training set of images. However, in [82, 83], the
objective function combines this distortion term and a term approximating the entropy of
the quantized representation, averaged over the training set.

Note that the approaches in [82, 83] learn one transform per target rate. During the
test phase, each learned transform compresses at a single rate. The question of a single
learned transform compressing at several rates during the test phase is not addressed. This
question is a key topic in [81, 86] (see Chapter 4).

Differently from [81, 82, 83], the image compression scheme in [87] integrates a vec-
tor quantizer instead of a uniform scalar quantizer. Let say that the representation Z
at the output of the convolutional encoder is reshaped into Z =

[
z(1), ..., z(p)

]
where,

∀i ∈ [|1, p|] , z(i) ∈ Rd. C =
{
c(1), ..., c(L)

}
denotes a set of L ∈ N∗ centers vectors. For

j ∈ [|1, L|], c(j) ∈ Rd. Each of the p vectors in the quantized representation is defined as
a linear combination of the centers vectors,

Q
(
z(i)
)

=
L∑
j=1

c(j)φtest,j
(
z(i)
)
. (3.14)

φtest

(
z(i)
)
∈ {0, 1}L contains the coefficients of the linear combination for the vector

Q
(
z(i)
)

in the quantized representation. During the test phase, the coefficients are deter-
mined by the nearest neighbor assignment,

φtest,j
(
z(i)
)

=

1 if j = argmin
k∈[|1,L|]

‖z(i) − c(k)‖2

0 otherwise
. (3.15)

But, the nearest neighbor assignment makes φtest,j
(
z(i)
)

non-differentiable with respect to
either z(i) or c(k), k ∈ [|1, L|]. That is why the authors in [87] use a relaxed version of the
nearest neighbor assignment during the training phase,

φtraining,j
(
z(i);λ

)
=

exp
(
−λ‖z(i) − c(j)‖22

)
L∑
k=1

exp
(
−λ‖z(i) − c(k)‖22

) , λ ∈ R∗+. (3.16)

This way, the trainable parameters of the convolutional autoencoder and the set of centers
vectors can be learned jointly. Note that φtraining,j

(
z(i);λ

)
tends to φtest,j

(
z(i)
)

as λ →
+∞. That is why, during the training phase, the relaxed version of the nearest neighbor
assigment can get close to the nearest neighbor assignment by increasing progressively λ.

Joint learning of a transform, a quantizer, and a context model for the entropy coder
In many applications, neural networks show efficiency when they learn the entire pro-
cessing pipeline. This point is well illustrated by the case of the generation of image
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descriptions, where the transformation of an image into an embedded representation via a
feedforward neural network and the transformation of text descriptions into another em-
bedded representation via a recurrent neural network are jointly learned [88].

Given this trend, it seems natural in image compression to try to learn jointly as many
components in an image compression scheme as possible. That is why, the next step is to
learn jointly a transform, a quantizer, and a context model for entropy coding. The authors
in [89] extends [83] by pursuing this aim. A branch convolutional encoder is placed be-
fore the uniform scalar quantizer to map the representation Z to a stack of feature maps C,
which is a representation of the scale of spatially neighboring coefficients in the quantized
representation Ẑ. C is quantized, yielding Ĉ. Then, a branch convolutional decoder maps
Ĉ to an approximation Σ̂ of the scale of each coefficient in the quantized representation
Ẑ (see Figure 3.9). This mechanism acts as a context model for the quantized represen-
tation Ẑ. The entire architecture in Figure 3.9 is trained by minimizing over its trainable
parameters an objective function combining the distortion term, a term approximating the
entropy of the quantized representation Ẑ, and another term approximating the entropy
of Ĉ. The last two terms are averages over the training set, like the distortion term. It
is essential to stress that, in [89], the compressed context model is sent from the encoder
side to the decoder side. However, to save rate, the two approaches presented below do
not send the context model. It is inferred from either already decoded bits [90] or from
the quantized representation [91].

The authors in [90] propose another way of learning a context model. A bitplane de-
composition is first applied to the quantized representation. Then, in the bitplane decom-
position, for a given bit to be encoded via the arithmetic encoder, features are extracted
from the bits that have already been decoded by the arithmetic decoder in the neighbor-
hood of the current bit. A classifier infers the probability of the current bit being 1 from
these features. The probability is fed into the arithmetic encoder (see Figure 3.10).

Finally, the authors in [91] extend their previous contributions in [87] also by targeting
the learning of a context model for entropy coding. A convolutional feedforward neural
network provides an approximation of the probability mass function of each coefficient
in the quantized representation given the previous coefficients in the raster-scan order of
the arithmetic encoding and decoding. To setup this method, the number of quantization
levels first has to be fixed. That is why the vector quantizer in [87] is turned into a scalar
variant with scalar centers C = {c1, ..., cL} where, for l ∈ [|1, L|], cl ∈ R. During the test
phase, each coefficient in the representation Z is quantized via the scalar nearest neighbor
assignment,

ẑijk = min
c1,...,cL

|zijk − cl|. (3.17)

zijk and ẑijk are the coefficients at the position [i, j, k] in Z and Ẑ respectively. (3.17) gives
L quantization levels. During the training phase, to resolve the non-differentiability of the
scalar nearest neighbor assignment with respect to its input, the scalar nearest neighbor
assignment is replaced by its relaxed version,

z̃ijk =
L∑
j=1

exp (−λ|zijk − cj|)
L∑
k=1

exp (−λ|zijk − ck|)
cj, λ ∈ R∗+. (3.18)

A convolutional feedforward neural network maps the quantized representation Ẑ to a 4D
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Figure 3.9: Convolutional autoencoder supplemented by a branch convolutional autoen-
coder that compresses a context model for entropy coding. For a given input image to
be compressed, the bitstream is obtained by grouping the two bitstreams provided by the
two Arithmetic Coders (ACs). ./. denotes the elementwise division between two tensors.
. ∗ . denotes the elementwise multiplication between two tensors. The approximation Σ̂
of the scale of each coefficient in the quantized representation Ẑ has the same shape as
the quantized representation Ẑ.

Figure 3.10: Context model at the bitplane decomposition level. The current bit to be
encoded via the Arithmetic Coder (AC) is colored in red. Its neighboring decoded bits in
the same bitplane are colored in orange.
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Figure 3.11: Context model P for entropy coding directly inferred from the quantized
representation via a convolutional feedforward neural network.

tensor P whose coefficient at the position [i, j, k, l] gives the probability that ẑijk equals
to cl, l ∈ [|1, L|], given the value of the coefficients that have already been decoded by the
arithmetic decoder in the quantized representation (see Figure 3.11). P is thus the context
model for arithmetic coding. Let I (ẑijk) be the index of ẑijk in C. The convolutional
feedforward neural network is trained by minimizing over its trainable parameters the
maximum likelihood, averaged over a training set of images. For a single training image,
providing a single quantized representation, the maximum likelihood is

L
(
Ẑ
)

= −
∑
i,j,k

log
(
Pijk I(ẑijk)

)
. (3.19)

In Figure 3.11, masks are applied to the convolutions in the convolutional feedforward
neural network so that ẑijk can only depend on the coefficients in the quantized represen-
tation Ẑ that have already been decoded by the arithmetic decoder.

End-to-end scalable image compression scheme The originality of the approach in
[92] is the learning of an end-to-end scalable image compression scheme. Indeed, a re-
current variational auto-encoder creates a representation of an image in which the infor-
mation is ordered. Taking the first few bits in the bitstream, the variational decoder pro-
vides the semantic content of the decoded image. With the remaining bits, the variational
decoder refines the low level details in the decoded image. The residual mechanism of the
convolutional residual autoencoder in [79, 84] also enables scalable image compression.

Rate-distortion performance The take-home message regarding the rate-distortion per-
formance of the end-to-end learning of an image compression scheme is that the rate-
distortion performance improves very fast. Indeed, [84], which appeared for the first time
in late 2016 in arXiv, shows rate-distortion curves close to that of JPEG whereas the work
in [93], which is an improvement over [89] and was published in September 2018 in arXiv,
gives rate-distortion curves slightly above that of H.265.
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3.1.3.2 Improving components of H.265 via learning

The quadtree partitioning in H.265 takes approximatively 80% of the encoding time
because of the recursive rate-distortion optimization. One of the first application of learn-
ing in H.265 is the reduction of the complexity of the quadtree partitioning. To avoid
running the recursive rate-distortion optimization, the quadtree partitioning is predicted
in advance. Let us begin with two approaches that are not based on neural networks to
highlight the difference between them and a neural network based approach. In [94],
given a CB to be possibly split in the current CTB, features are first computed from the
quadtree partitioning history. For instance, a feature is the average number of splits in
the already encoded and decoded CTBs around the current CTB. Another feature is the
selected intra or inter prediction mode for predicting this CB. Then, a decision tree in-
fers from these features whether the iterative splitting of this CB should cease. In [95], a
support vector machine replaces the decision tree. Unlike the two previous approaches in
which hand-crafted features are fed into classifiers, in [96], a convolutional feedforward
neural network maps the pixels in a given CB to be possibly split in the current CTB and
the pixels in its neighboring CBs inside the same CTB to the decision of stopping the
iterative splitting of this CB.

A convolutional feedforward neural network can also give a context model for en-
coding the index of the selected intra prediction mode in H.265 for predicting a given
luminance PB. For instance, the convolutional feedforward neural network in [97] takes
3 already encoded and decoded luminance PBs around the given luminance PB and the 3
most probable modes to infer the probability of each of the 35 intra prediction modes of
being the selected mode.

Another problem learning approaches tackle is the reduction of the blocking artifacts
in the images H.265 decodes. As H.265 uses block-based prediction and transform cod-
ing, discontinuites appear around the block boundaries in the decoded images. To limit
this, H.265 applies successively the DBF and the SAO (see Section 2.6) to the decoded
images. The authors in [98] replace these two filters by a convolutional feedforward neu-
ral network. In [99], the approach differs slightly. The DBF and the SAO are kept and a
convolutional feedforward neural network is added as a complementary filter. Similarly,
the authors in [100] train a neural network whose architecture is very similar to the neural
network called EDSR [78] to remove the compression artifacts on the images decoded
by H.265. In [101], the authors show that an approach for compression artifact removal
based on generative adversarial networks provides reconstructed images with higher fi-
delity to the uncompressed versions of images than the approaches based on standard
convolutional neural networks, according to the human eyes.

Regarding the intra prediction in H.265, a feedforward neural network is used to pre-
dict a given PB from already encoded and decoded pixels in the neighborhood of this PB
[102, 103]. In H.265, the size of a PB can be either 4 × 4, 8 × 8, 16 × 16, 32 × 32, or
64 × 64 pixels (see Chapter 2). The PBs of each size are predicted via a different feed-
forward neural network. In [102], only fully-connected feedforward neural networks are
used. Besides, PBs of size 4 × 4, 8 × 8, 16 × 16, and 32 × 32 only are considered. The
PBs of size 64 × 64 pixels are not considered as a fully-connected feedforward neural
network for predicting these PBs would contain too many trainable parameters. In con-
trast, in [103], convolutional feedforward neural networks predict large PBs. In H.265,
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pixels may not be encoded and decoded yet in the neighborhood of the current PB. That
is why the feedforward neural networks are trained to predict from a variable number
of already encoded and decoded neighboring pixels by randomly masking some of these
pixels during the training phase.

From now on, a feedforward neural network will be simply called neural network as
only the focus will be on this family of neural networks exclusively.

3.2 Learning sparse decompositions versus learning shal-
low sparse autoencoder transforms

Sparse decompositions share similarities with shallow sparse autoencoder transforms.
In this section, we first review sparse decomposition and its learning, and compare it with
shallow sparse autoencoder transforms.

3.2.1 Sparse representation algorithms
The sparse approximation problem (P0) looks for the best approximation of a data

vector as a linear combination of a given small numberK ∈ N∗ of atoms from a redundant
dictionary [104],

z = min
zv
‖x−Dzv‖22 such that ‖zv‖0 ≤ K. (3.20)

z ∈ Rn denotes the sparse decomposition of the data vector x ∈ Rm over the dictionary
D ∈ Rm×n. Note that best means with minimum approximation error. (P0) has a so-
called sparse-constrained formulation. Another formulation of (P0) is error-constrained.
The target is now to find the sparsest approximation of the data vector that achieves a
given error ε ∈ R∗+ [105],

z = min
zv
‖zv‖0 such that ‖x−Dzv‖22 ≤ ε. (3.21)

Throughout Section 3.2.1, only (P0) in its sparse-contrained formulation will be consid-
ered. This is because a given number of non-zero coefficients in the sparse decomposition
of an image patch over a dictionary is a type of fixed rate constraint, and the compression
task usually aims at obtaining the most accurate reconstruction of the image patch at a
given rate.

The major issue concerning (P0) is that it is NP-hard [106, 107]. At the present time,
two approaches to this non-linear approximation exist. Convex relaxation methods turn
(P0) into a convex program (see LARS-Lasso and CoD described below). Greedy meth-
ods do a series of locally optimal choices to provide an approximate solution of (P0) (see
OMP described below).

Sparse autoencoders also provides a sparse decomposition of a data vector. More pre-
cisely, the coefficients of the sparse decomposition are computed by multiplying the data
vector with a fixed matrix and then only the most significant terms are kept (see the T-
sparse Auto-Encoder (T-sparse AE) and the Winner-Take-All Auto-Encoder (WTA AE)
described below). Note that, as the rate-distortion criterion is a key, we pay attention
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to sparse autoencoders able to create codes containing coefficients with 0 as value. For
instance, the type of sparse autoencoder used for image denoising in [108, 109] is not
relevant for image compression. Indeed, the autoencoder in [108] has the logistic non-
linearity in the last layer of its encoder which computes the representation. Each coeffi-
cient in the representation is constrained to have a small positive value on average during
the training phase. This does not yield coefficients with 0 as value in the representation.

From now on, the data vector x will be an image patch.

LARS-Lasso and Coordinate Descent (CoD) [110, 111] LARS-Lasso and CoD at-
tempt to solve a relaxed version of (P0) to find a sparse decomposition of an image patch
over the dictionary,

z = min
zv

(
‖x−Dzv‖22 + λ ‖zv‖1

)
, λ ∈ R∗+ (3.22)

x̃ = Dz. (3.23)

Orthogonal Matching Pursuit (OMP) [112] OMP is the canonical greedy algorithm
for (P0) (see Algorithm 1). At each iteration l ∈ [|1, K|], OMP computes a new ap-
proximation x̃l of the image patch x. The approximation residue rl = x − x̃l is used to
determine which new atom in the dictionary is selected during the next iteration for refin-
ing the approximation. More precisely, the selected atom is the one whose inner product
with the current residue rl is the largest in absolute value.

Algorithm 1 : OMP.
Inputs: x, D, and K.

1: At initialization, r0 = x and S0 = ∅.
2: for all l ∈ [|1, K|] do
3: j = argmin

i∈Sl−1

|DT
i rl−1| where S

l−1
= [|1, n|] \ Sl−1

4: Sl = Sl−1 ∪ j
5: zl

Sl
= (DSl)

† x and zl
S
l = 0

6: x̃l = Dzl

7: rl = x− x̃l

8: end for
Output: z = zK .

Di denotes the ith column of D. DSl is the subdictionary obtained by keeping the
columns of D of indices in Sl. (DSl)

† is the More-Penrose pseudo inverse of DSl . As for
LARS-Lasso and CoD, the product between the dictionary and the sparse decomposition
provides a reconstruction of the image patch,

x̃ = Dz. (3.24)

T-sparse Auto-Encoder (T-sparse AE) [113] The non-linearity in the encoder of the
T-sparse AE imposes a given number T ∈ N∗ of non-zero coefficients in the sparse rep-
resentation of an image patch. To do this, it keeps the T largest coefficients in its input
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vector and sets the rest to 0 (see (3.25)). Then, the decoder of the T-sparse AE gives a
reconstruction of this image patch from the sparse representation (see (3.26)).

z = fT (Vx + b) (3.25)
x̃ = Φz + c (3.26)

The trainable parameters of the T-sparse AE are the encoder weights V ∈ Rn×m and
biases b ∈ Rn, the decoder weights Φ ∈ Rm×n and biases c ∈ Rm. x̃ ∈ Rm is the
reconstruction of x. fT : Rn → Rn denotes the T-sparse AE non-linearity.

We also introduce a variant of the T-sparse AE called T-absolute AE. It is identical to
the T-sparse AE except that its application fT keeps the T coefficients in its input vector
which absolute values are the largest and sets the rest to 0.

Winner-Take-All Auto-Encoder (WTA AE) [114] The non-linearity in the encoder of
the WTA AE allows only a proportion α ∈]0, 1[ of the coefficients in the set of sparse
representations of the patches in an image to be different from 0 (see (3.27)). Then, the
decoder of the WTA AE provides a reconstruction of the patches in this image from the
set of sparse representations (see (3.28)). Unlike the case of the T-sparse AE, the sparsity
constraint for the WTA AE considers the entire image representation.

Mz = gα (WMx + Cd) (3.27)
Mx̃ = UMz + Ce (3.28)

p image patches x(1), ...,x(p) are concatenated into a matrix Mx ∈ Rm×p. p sparse vectors
z(1), ..., z(p) are concatenated into a matrix Mz ∈ Rn×p. The trainable parameters of the
WTA AE are the encoder weights W ∈ Rn×m and biases d ∈ Rn, the decoder weights
U ∈ Rm×n and biases e ∈ Rm. p copies of d are concatenated into a matrix Cd ∈ Rn×p.
p copies of e are concatenated into a matrix Ce ∈ Rm×p. gα : Rn×p → Rn×p denotes the
WTA AE non-linearity that keeps the α×n× p largest coefficients in its input matrix and
sets the rest to 0.

(3.22), (3.25), (3.27), and Algorithm 1 illustrate that, unlike the T-sparse AE and the
WTA AE, LARS-Lasso, CoD, and OMP go through an iterative process for encoding.

3.2.2 Comparison in terms of rate-distortion
In this section, LARS-Lasso, CoD, OMP, the T-sparse AE, and the WTA AE are com-

pared on the same image compression experiment in terms of rate-distortion.

3.2.2.1 Training phase

Before running any comparison, LARS-Lasso, CoD, and OMP need pre-trained dic-
tionaries. Similarly, the parameters of the T-sparse AE and those of the WTA AE must be
learned.

The first aspect of the training phase to consider is the training data extraction. The
Caltech-256 dataset [115] is a set of 256 objects categories containing 30607 images.
The first 200 categories are dedicated to training which makes a total of 22823 images
for training. The RGB color space is transformed into the Y

′
CbCr color space and we
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only keep the luminance channel. N ∈ N∗ patches of size
√
m ×

√
m are randomly

extracted from the 22823 luminance images. We remove the DC component from each
patch. It yields a bank of patches B =

{
x(1),x(2), ...,x(N)

}
. We define µj and σj as

respectively the mean and the standard deviation of the j th pixel xj over all the patches
in B. For m ≤ 144 and N ≥ 600000, we have noticed that, ∀j ∈ [|1,m|], µj ≈ 0 and
σj ≈ σ ∈ R∗+. This remark must be kept aside as it will hold importance in the next
paragraph.

The learning algorithms developped below are all gradient-based methods. This is
because gradient-based methods have interesting convergence bounds in the context of
large-scale Machine Learning [116]. In our case, the number of training image patches is
600000, i.e. close to the large-scale Machine Learning regime.

Learning DλDλDλ for LARS-Lasso Given B and λ, the algorithm in [117] 1 generates Dλ

by solving

min
Dλ∈C,z(1),...,z(N)

1

N

N∑
i=1

L
(
x(i), z(i),Dλ, λ

)
L
(
x(i), z(i),Dλ, λ

)
=
∥∥x(i) −Dλz

(i)
∥∥2
2

+ λ
∥∥z(i)

∥∥
1

C =
{
D ∈ Rm×n such that,∀j ∈ [|1, n|] , ‖Dj‖2 = 1

}
.

(3.29)

In (3.29), the l2-norm of each dictionary atom is constrained to prevent the dictionary
from having arbitrarily large values, leading to arbitrarily small values of the coefficients
in the sparse decomposition of an image patch over the dictionary.

LearningDδDδDδ for CoD Given S and δ ∈ R∗+, Algorithm 2 generates Dδ by solving

min
Dδ∈C,z(1),...,z(N)

1

N

N∑
i=1

L
(
x(i), z(i),Dδ, δ

)
. (3.30)

Algorithm 2 alternates between sparse decomposition steps that involve CoD and dictio-
nary updates that use online stochastic gradient descent.

Learning DoDoDo for OMP K-SVD [118] is the commonly used dictionary learning algo-
rithm for OMP. But K-SVD is too slow when the number of examples in the training set
is large. Unlike K-SVD, Algorithm 3 can quickly generate the dictionary Do when the
training set is large. Section 3.2.2.4 compares K-SVD and Algorithm 3 inside an image
compression scheme in terms of rate-distortion. Given B and K, Algorithm 3 generates
Do by solving

min
Do∈C,z(1),...,z(N)

1

N

N∑
i=1

G
(
x(i), z(i),Do

)
such that, ∀i ∈ [|1, N |] ,

∥∥z(i)
∥∥
0
≤ K

G
(
x(i), z(i),Do

)
=
∥∥x(i) −Doz

(i)
∥∥2
2
.

(3.31)

1. Its implementation is the one from the SPAMS library at http://spams-devel.gforge.
inria.fr/

http://spams-devel.gforge.inria.fr/
http://spams-devel.gforge.inria.fr/
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Algorithm 2 : gradient descent dictionary learning for CoD.
Inputs: B, δ, and ε ∈ R∗+.

1: The coefficients of Dδ are initialized from U [−0.2, 0.2].
2: ∀j ∈ [|1, n|] ,Dδ,j ← Dδ,j

/
‖Dδ,j‖2

3: for several epochs do
4: for all i ∈ [|1, N |] do
5: z(i) = min

zv
L
(
x(i), zv,Dδ, δ

)
using CoD.

6: Dδ ← Dδ − ε ∂L
(
x(i), z(i),Dδ, δ

)/
∂Dδ

7: ∀j ∈ [|1, n|] ,Dδ,j ← Dδ,j

/
‖Dδ,j‖2

8: end for
9: end for

Output: Dδ.

Algorithm 3 alternates between sparse decomposition steps that involve OMP and dictio-
nary updates that use online stochastic gradient descent. All the details regarding these
dictionary updates are provided in Appendix B.1.

Algorithm 3 : gradient descent dictionary learning for OMP.
Inputs: B, K, and ε.

1: The coefficients of Do are initialized from U [−0.2, 0.2].
2: ∀j ∈ [|1, n|] , Do,j ← Do,j

/
‖Do,j‖2

3: for several epochs do
4: for all i ∈ [|1, N |] do
5: z(i) = OMP

(
x(i),Do, K

)
6: Do ← Do − ε ∂G

(
x(i), z(i),Do

)/
∂Do

7: ∀j ∈ [|1, n|] , Do,j ← Do,j

/
‖Do,j‖2

8: end for
9: end for

Output: Do.

Algorithm 3 and K-SVD mainly differ in the scheduling of dictionary updates. At
epoch t, for a given training image patch of B, Algorithm 3 updates all the atoms of Do

used in the sparse decomposition of that patch over Do. At epoch t, K-SVD updates only
one time each atom of the dictionary; each atom update takes into account the approxima-
tion error of all the training patches of B using that atom in their sparse decomposition.

Training the T-sparse AE The T-sparse AE is trained by simply minimizing the aver-
age reconstruction error over the training set of image patches, i.e. given B and T ,

min
V,b,Φ,c

1

N

N∑
i=1

∥∥x(i) − x̃(i)
∥∥2
2

such that, ∀i ∈ [|1, N |] ,
∥∥fT (Vx(i) + b

)∥∥
0
≤ T.

(3.32)

The non-linearity of the T-sparse AE alone defines the constraint on the number of non-
zero coefficients in the sparse representation of an image patch during the training phase.



64 CHAPTER 3. LEARNING MODELS FOR IMAGE COMPRESSION

Training the WTA AE In a similar manner to the T-sparse AE, only the non-linearity
of the WTA AE sets the constraint on the number of non-zero coefficients in the set of
sparse representations of a group of image patches. Given B, α, and p,

min
W,d,U,e

1

N

Np∑
i=1

∥∥∥M(i)
x −M

(i)
x̃

∥∥∥2
F

where Np =
N

p

such that, ∀i ∈ [|1, Np|] ,
∥∥gα (WM(i)

x + Cd

)∥∥
0
≤ α× n× p.

(3.33)

‖.‖F stands for the Frobenius norm and ‖.‖0 counts the number of non-zero elements in
its input matrix. p must be a divisor of N .

For the minimizations in (3.32) and (3.33), mini-batch stochastic gradient descent with
momentum [119] is used. [120] gives many tricks to run backpropagation. In particular,
we must be careful that the mean of each input to a neural network over all training
examples be zero and all inputs have the same standard deviation. As explained in the
previous paragraph, B satisfies this requirement.

3.2.2.2 Test phase

After the training phase in Section 3.2.2.1, the algorithms for sparse decomposition
over a dictionary and the shallow sparse autoencoders undergo the same image compres-
sion experiment.

Before introducing the image compression scheme, test luminance images must be
generated. In the Caltech-256 dataset, the 250th category gathers 96 images of zebras. We
pick them out of the dataset, convert the RGB color space into the Y

′
CbCr color space

and only keep the luminance channel. It yields the bank of luminance images denoted
Γ =

{
X(1), ...,X(96)

}
. We choose the images of zebras for testing because they have

disparate backgrounds. This makes them difficult to reconstruct. Note that the training set
B does not contain any patches of zebras.

For each i ∈ [|1, 96|], the luminance image X(i) passes through the system displayed in
Figure 3.12. Note that the 96 luminance images in Γ have different sizes. For i ∈ [|1, 96|],
N (i) varies. The quantizer applies a uniform scalar quantization on the values of the non-
zero coefficients in the set

{
z(1), ..., z(N(i))

}
. The coding part draws on the codec in [121].

The set of indexes
{
a
(j)
k

}
j∈[|1,N(i)|], k∈[|1,‖z(j)‖0|]

is encoded using a fixed length code. The

set of quantized values
{
γ̃
(j)
k

}
j∈[|1,N(i)|], k∈[|1,‖z(j)‖0|]

is entropy coded with an Huffman

code. Here, we call PSNR, in decibels (dB), the average PSNR over the 96 luminance
images in Γ. The mean rate over the 96 luminance images in Γ, denoted R, in bits per
pixel (bbp), is defined as

R =
1

96

96∑
i=1

R(i)

R(i) =
(
E(i) + log2(n)

) 1

m×N (i)

N(i)∑
j=1

‖z(j)‖0.
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Figure 3.12: Image compression scheme on the test bank of luminance images.

For i ∈ [|1, 96||], E(i) refers to the entropy of the distribution of the set of quantized
values

{
γ̃
(j)
k

}
j∈[|1,N(i)|], k∈[|1,‖z(j)‖0|]

. Note that R does not take into account the encoding

cost of the DC components, as this has to be encoded for each evaluated method. R
should also include the encoding cost of the number of non-zero coefficients. Note that,
for the T-sparse AE and OMP, ∀j ∈

[
|1, N (i)|

]
, ‖z(j)‖0 = ‖z‖0 independent of both

i and j. For the WTA AE, LARS-Lasso, and CoD, for each j ∈
[
|1, N (i)|

]
, ‖z(j)‖0

varies. However, we neglect this contribution as its cost is small with respect to the cost
of encoding the set of indexes

{
a
(j)
k

}
j∈[|1,N(i)|], k∈[|1,‖z(j)‖0|]

and the set of quantized values{
γ̃
(j)
k

}
j∈[|1,N(i)|], k∈[|1,‖z(j)‖0|]

.

Moreover, for OMP, R can be further optimized. Indeed, the coefficients associated to
the first iterations of OMP have larger absolute values than the coefficients associated to
the last iterations of OMP. Therefore, an entropy coding can be performed per iteration of
OMP. For k ∈ [|1, ‖z‖0|], let E(i)

k be the entropy of the distribution of the set of quantized

values
{
γ̃
(j)
k

}
j∈[|1,N(i)|]

. For OMP only, R becomes Ro,

Ro =
1

96×m

96∑
i=1

‖z‖0∑
k=1

(
E

(i)
k + log2 (n)

)
.

3.2.2.3 Rate-distortion analysis

For each dimension n of the sparse decompsition of an image patch over a dictionary,
we start with the training phase in Section 3.2.2.1. N = 600000, m = 144, T = K = 10,
p = 20000, α = 10

n
, and λ = δ

2
= 0.1. The relationship between λ and δ comes from
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(a) n = 144, 8-bit uniform quantization (b) n = 144, 5-bit uniform quantization

(c) n = 288, 8-bit uniform quantization (d) n = 288, 5-bit uniform quantization

Figure 3.13: Evolution of PNSR with R for three shallow sparse autoencoders (T-sparse
AE, T-absolute AE, and WTA AE) and three algorithms for sparse decomposition over a
dictionary (LARS-Lasso, CoD, and OMP).

the fact that the minimization problem in [117] differs from (3.29) by a factor 0.5. We
have observed that these values for T , K, p, α, λ, and δ bring to each algorithm the best
model for Section 3.2.2.2. For the T-sparse AE and the WTA AE, the learned weights are
displayed in Appendix B.2. For CoD and OMP, the learned dictionaries are shown.

During the test phase, several values for the sparsity parameters of the T-sparse AE,
the WTA AE, LARS-Lasso, CoD, and OMP are used to draw Figure 3.13. Note that,
during the test phase, for the WTA AE, for i ∈ [|1, 96|], p = N (i) varies.

Analysis for 8-bit uniform quantization The experiments in Figure 3.13 are conducted
when LARS-Lasso uses Dλ, CoD uses Dδ, and OMP uses Do. We also ran other exper-
iments where LARS-Lasso, CoD, and OMP shared a common dictionary. We noticed
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insignificant differences from what is displayed in Figure 3.13. The domination of OMP
over LARS-Lasso and CoD has nothing to do with pre-trained dictionaries. It must be
related to the nature of OMP. Note that this observation coincides with the conclusions
of the authors in [122]. Their framework differs from ours as it is classification. They
also suggest that the quality of pre-trained dictionaries has little impact as long as the
dictionaries express relatively well the diversity of image patches. However, the sparse
decomposition mechanism matters a lot.

For OMP, we previously compared R with its optimized variant Ro used in Figure
3.13. Over the range of PSNRs in Figure 3.13, R − Ro typically belonged to [0.01, 0.05]
dB. It was not large. The good rate-distortion trade-offs of OMP compared to those of
LARS-Lasso and CoD cannot be attributed to the fact that the measure of rate for OMP
has been optimized.

We observe that, for equivalent rates, the PSNRs provided by the T-sparse AE are
below those of OMP. We try to put forward an explanation. The main difference between
autoencoders and the algorithms for sparse decomposition over a dictionary lies in the
relation linking an image patch to its sparse vector. For autoencoders, this relation simply
couples a linear combination and a point-wise non-linear function (see (3.25)). However,
in the case of the algorithms for sparse decomposition over a dictionary, it is an iterative
process. Given an image patch, autoencoders put more restrictions on the form its sparse
vector can take. This limited diversity of sparse vectors leads to poorer reconstruction of
image patches.

The WTA AE beats all its competitors in terms of rate-distortion trade-off. This can
be explained by the way the sparsity constraint is handled. For OMP and the T-sparse
AE, the number of non-zero coefficients in the sparse decomposition is fixed per image
patch (see (3.25) and 1). Instead, for the WTA AE, it is fixed per set of image patches
(see (3.27)). This allows to spread the resources over the patches, using less non-zero
coefficients for patches with less complex texture. This WTA AE approach can be viewed
as a suboptimal form of the block sparsity selection using a global rate-distortion criterion
for OMP [121], where the coefficients leading to the largest distortion decrease are kept.
Yet, the approach in [121] is highly complex.

Analysis for variable uniform scalar quantization Unlike OMP, the T-sparse AE and
the WTA AE seem to be rarely affected by the quantization level. For i ∈ [|1, 96|], the
non-zero coefficients in the set

{
z(1), ..., z(N(i))

}
created by OMP are either positive or

negative and most of them gather around zero. However, the T-sparse AE produces a
set
{

z(1), ..., z(N(i))
}

whose non-zero coefficients are positive and are spreaded over a
wide range. We assume that the impact of quantization arises from this difference in the
distribution of the non-zero coefficients in the set

{
z(1), ..., z(N(i))

}
. To verify this, we

look at the behavior of the T-absolute AE. Basically, the only distinction between the T-
sparse AE and the T-absolute AE comes from the fact that the T-absolute AE generates a
set
{

z(1), ..., z(N(i))
}

that contains both positive and negative non-zero coefficients. Like
OMP, the 5-bit uniform scalar quantization harms the PSNRs in the T-absolute AE curve.
For OMP and the T-absolute AE, the quantization operation might cause many confusions
between the small positive and negative non-zero coefficients in the set

{
z(1), ..., z(N(i))

}
.
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Figure 3.14: Evolution of PSNR with R when n = 288 and a 8-bit uniform scalar quan-
tization is used. Algorithm 3, called gradient descent dictionary learning for OMP and
defined in Section 3.2.2.1, considers one training image patch at a time and updates all
the dictionary atoms used in the sparse decomposition of that patch over the dictionary via
stochastic gradient descent. In contrast, K-SVD updates each dictionary atom by consid-
ering the approximaton error of all the training image patches that use that atom in their
sparse decomposition. The dictionary learned via the gradient descent dictionary learning
for OMP and that learned via K-SVD yield similar rate-distortion performance inside the
image compression experiment.

The reconstruction of image patches is damaged by these confusions.

3.2.2.4 Comparison between K-SVD and the gradient descent dictionary learning
for OMP

We restart the entire scheme in Sections 3.2.2.1 and 3.2.2.2. N = 50000 and n = 288.
This way, K-SVD quickly trains a dictionary. Figure 3.14 compares two cases: OMP
uses the dictionary from K-SVD and OMP uses the dictionary from the gradient descent
dictionary learning for OMP. The dictionary learned via the gradient descent dictionary
learning for OMP and the dictionary learned via K-SVD provide equivalent rate-distortion
curves in the image compression scheme.

3.2.3 Complexity comparison
As additional analysis, LARS-Lasso, CoD, OMP, the T-sparse AE, and the WTA AE

are compared in terms of algorithmic complexity.
Table 3.2 summarizes the complexity per image patch for OMP based on a fast QR-

1 decomposition [123], the T-sparse AE, and the WTA AE. The basic implementation
of LARS-Lasso [124] has complexity O (n3), assuming that m ≤ n. [117] suggests an
efficient Cholesky-based implementation of LARS-Lasso and processes batches of η ∈
N∗ image patches. Using these optimizations, LARS-Lasso becomes only slightly slower
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Table 3.2: complexity per image patch assuming that ‖z‖0 � m ≤ n. The T-sparse AE
and the WTA AE are the least complex methods.

Method Complexity
OMP O (mn ‖z‖0) [123]
T-sparse AE O (mn)
WTA AE O (mn)

than OMP. One iteration of CoD has complexityO (n) [111] and the number of iterations
is related to a threshold on the reconstruction error. CoD can be either faster than OMP
or much slower depending on this threshold so we do not show the complexity of CoD.
Note that, in our experiments, CoD is much slower than OMP as we set a low threshold
to get the best PSNRs from CoD.

We clarify the complexity of the WTA AE displayed in Table 3.2. In (3.27), the
complexity of the matrix product WMx is O (nmp). In (3.27), gα requires a sorting
operation of complexity O (np log (np)). During the test phase, 200 ≤ p ≤ 8000 so
O (nmp) dominates O (np log (np)). The complexity per image patch of the WTA AE is
O (nm).

3.2.4 Conclusion on sparse decompositions versus shallow sparse au-
toencoders

Sparse decompositions and shallow sparse autoencoders share many similarities. In
Section 3.2, both approaches applied to image compression have been compared. This is
a contribution per se. In particular, the following conclusions can be drawn.
• On the encoder side, the iterative decomposition over a dictionary (OMP) is more

efficient in terms of rate-distortion than a single-step decomposition onto a basis
(T-sparse AE), see Section 3.2.2.3.
• A global sparsity constraint spread over the sparse decompositions of several im-

age patches (WTA AE) is more efficient in terms of rate-distortion than a sparsity
constraint on each sparse decomposition separately, see Section 3.2.2.3.
• The two considered shallow sparse autoencoders are robust to quantization noise.
• The two considered shallow sparse autoencoders are much less complex than LARS-

Lasso, CoD, and OMP.
• The algorithms for sparse decomposition over a dictionary solving a relaxed version

of (P0) (LARS-Lasso and CoD) are not efficient in terms of rate-distortion, see
Section 3.2.2.3.

3.3 Conclusion
In this section, the family of feedforward neural networks trained via backpropagation

is introduced. The generalization of neural networks and the choice of the neural network
architecture are two open issues. That is why, in the rest of the document, we resort to
experimentation to take decisions regarding the regularizations during the training phase,
the number of training examples in the training sets, and the architectures of the neural
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networks. This section ends with a comparison between the algorithms for sparse de-
composition over a dictionary and the shallow sparse autoencoders in the context of the
learning of a transform for image compression. This comparison indicates that a shallow
sparse autoencoder is promising in terms of rate-distortion, provided that a global sparsity
constraint is applied to the representation of the whole image. This serves as basis for
Chapter 4.



Chapter 4

Learning a transform for image
compression

The learning of a transform for image compression, which is reviewed in Chapter 3,
is motivated by the mismatch between the assumptions of the results of optimality in a
rate-distortion sense for transform coding on the distribution of the image pixels and their
true distribution. Indeed, there exists a result of optimality in a rate-distortion sense for
transform coding in two different cases. (i) If the input to the transform is a zero-mean
Gaussian vector, the KLT is optimal [9, Proposition 7.2]. (ii) If the input to the transform
follows a Gaussian-Markov process of order 1 with high correlation, the DCT is optimal
[9, Section 7.1.1] [10, Section 7.5.3] (see Section 1.2). But, the distribution of the image
pixels is neither jointly Gaussian nor a Gaussian-Markov process of order 1 with high
correlation. Hence, the idea of learning a transform from a large image database for
image compression.

The main challenge regarding the learning of a transform for image compression is to
make the learned transform efficient in terms of rate-distortion. This requires to integrate
a reliable measure of the rate into the training phase and increase the number of neurons
in the representation. For this purpose, two approaches are studied.
• Expressing the rate as a function of the number of non-zero coefficients in the

representation. A sparsity constraint is set on the representation. The number
of non-zero coefficients in the sparse representation of the entire image is con-
strained as a global sparsity constraint is shown to be more efficient in terms of
rate-distortion than a sparsity constraint on the sparse representation of each im-
age patch separately (see Section 3.2.2.3). Thanks to this sparsity constraint, the
representation can be either complete or overcomplete while being compressible.
• Approximating the rate via the entropy of the quantized representation. The

number of non-zero coefficients in the representation is still an unprecise measure
of the rate as the rate depends on the number of non-zero coefficients in the rep-
resentation and their distribution. An alternative is to integrate into the objective
function to be minimized an approximate measure of the entropy of the quantized
representation.

Besides, deep autoencoders rather than shallow ones will be explored for the following
reason. Recent works studying the approximation power of neural networks seem to
converge towards a common conclusion regarding the benefit of increasing the number of
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layers in a neural network. In order for a neural network to achieve a given approximation
error, the total number of required neurons decreases as the number of layers increases
[13, 14] (see Section 1.2). It is important to stress that, in the demonstrations of the
previous results, only some families of simple functions are considered. These functions
might be very different from the transform we want to approximate. The previous results
lead to the intuition that, without changing the number of neurons in the representation
of an autoencoder, i.e. without changing the rate computed from the representation, the
addition of layers to this autoencoder may raise its attainable accuracy of approximation
of the hypothetic optimal transform in terms of rate-distortion. This holds true for the
WTA AE introduced in Chapter 3.

The second challenge about the learning of a transform for image compression is to
learn a unique transform that can compress at any rate during the test phase. This kind of
transform is called rate-agnostic. We have observed that our shallow sparse autoencoders
are naturally rate-agnostic whereas, in the case of the deep sparse autoencoders, the spar-
sity level in the sparsity constraint on the representation need to vary during the training
phase to make the transform rate-agnostic. In the case of the autoencoders trained via an
entropy constraint on their quantized representation, the learned transform is viewed as
non-rate-agnostic as the level of the constraint is fixed during the training phase. How-
ever, it is shown that, during the test phase, the compression scheme including the learned
transform can compress efficiently at different rates by varying the quantization step size
according to a specific scheduling.

4.1 Rate as a function of the number of non-zero coeffi-
cients in the representation

The goal in Chapter 4 is to learn a transform that is both efficient in terms of rate-
distortion and rate-agnostic. This section presents the first approach to reach this goal. To
be efficient in terms of rate-distortion, a deep sparse autoencoder with an overcomplete
representation is designed and the rate is expressed as a function of the number of non-
zero coefficients in the representation. The architecture of this deep sparse autoencoder is
based on the architecture of the WTA AE presented in Section 3.2.1 as the WTA AE has
proven to be relatively efficient in terms of rate-distortion.

The contributions are:
• A deep sparse autoencoder architecture for image compression.
• A novel way to code the sparse quantized representation for rate-distortion efficient.
• A training with a stochastically varying sparsity parameter for adapting the deep

sparse autoencoder to the compression at different rates.

4.1.1 Stochastic Winner-Take-All Auto-Encoder (SWTA AE)

We now present a deeper version of the WTA AE, called Stochastic Winner-Take-All
Auto-Encoder (SWTA AE), whose architecture is shown in Figure 4.1. Two key choices
for the architecture of the SWTA AE are explained below. Then, details on the sparsity
constraint are provided.
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Figure 4.1: SWTA AE architecture. PReLU refers to Parametrized Rectified Linear Unit
[65].

Fully convolutional A compression algorithm must process images of various sizes.
However, the commonly used neural network architectures [66, 65] include both convo-
lutional layers and fully-connected layers, and the number of parameters of the latters
directly depends on the image size. This imposes to train one architecture per image size.
That is why our proposed SWTA AE only contains convolutional layers. Its encoder has
two convolutional layers and its decoder has two deconvolutional layers [125]. Each layer
indexed by i ∈ [|1, 4|] consists in convolving the layer input with the bank of filters W(i),
adding the biases b(i), and applying a non-linear mapping g(i) if i 6= 4, producing the
layer output. For the borders of the layer input, zero-padding of width p(i) is used.

Strided convolution Max-pooling is a core component of neural networks [126] that
downsamples its input representation by applying a max filter to non-overlapping sub-
regions. But max-pooling increases the rate. Indeed, if the encoder contains a max-
pooling layer, the locations of maximum activations selected during pooling operations
must be recorded and transmitted to the corresponding unpooling layer in the decoder
[127, 128]. Instead, for i ∈ [|1, 2|], we downsample using a fixed stride s(i) > 1 for
convolution, which does not need any signalling.

Semi-sparse representation In Figure 4.1, Z is the representation of the input image
that is quantized and entropy coded to give the bitstream. The WTA constraint controls
the coding cost of the representation. The WTA constraint is defined via a mapping gα :
Rh×w×64 → Rh×w×64, where α ∈]0, 1[ is the WTA parameter. gα keeps the α×h×w×64
most representative coefficients of all input feature maps, i.e. those whose absolute values
are the largest, and sets the rest to 0. gα only applies to the output of the convolution in
the second layer involving the first 64 filters in W(2), producing the first 64 sparse feature
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maps in the output of the encoder Z. Figure 4.1 displays these sparse feature maps in
orange. Varying α leads to various coding costs of Z. Note that [114] uses WTA, but our
WTA rule is different and gα does not apply to specific dimensions of its input tensor as
this constraint is not relevant for image compression.

A patch of the input image might be represented by a portion of the first 64 sparse
feature maps in Z that only contains zeros. We want to ensure that each image patch has
a minimum code in Z to guarantee a sufficient quality of reconstruction per patch. That is
why the last feature map in Z is not sparse. Figure 4.1 displays it in red. Interestingly, we
have noticed that, at the end of the training phase in Section 4.1.3, the SWTA AE stores
in the last feature map a subsampled version of its input image.

Bitstream generation The coding of the positions of the non-zero coefficients repre-
sents an important part of the rate. The coding cost for a brute force coding of the positions
of the non-zero coefficients increases linearly with the number of non-zero coefficients in-
side the first 64 features maps in Z and logarithmically with the number of coefficients.
By contrast, we propose to code the positions of the non-zero coefficients as explained
hereafter. Figure 4.1 defines a coordinate system (x, y, z) for Z. The non-zero coeffi-
cients inside the first 64 feature maps in Z are scanned along (x, y, z) where z changes the
fastest. For each pair (x, y), the number of non-zero coefficients along z is coded with a
Huffman code and the position of each non-zero coefficient along z is coded with a fixed-
length code. A Huffman code is used for coding the number of non-zero coefficients
along z as, at a given position (x, y), a small number of non-zero coefficients is much
more frequent than a large one. This coding unequivocally characterizes the position of
each non-zero coefficient inside the first 64 feature maps in Z.

The values of the non-zero coefficients inside the first 64 feature maps in Z are uni-
formly quantized over 8 bits and coded with a Huffman code.

Number of trainable parameters The trainable parameters of the SWTA AE are all the
weights and biases displayed in Figure 4.1. By counting them, the number of trainable
parameters is 218562.

4.1.2 Winner-Take-All Orthogonal Matching Pursuit (WTA OMP)

OMP, with a learned dictionary, is an algorithm for sparse decomposition yielding
better rate-distortion trade-offs than the T-sparse AE, which is a shallow sparse autoen-
coder with a sparsity constraint on the representation of each image patch individually.
However, OMP provides worse rate-distortion trade-offs than the WTA AE, which is a
shallow sparse autoencoder with a global sparsity constraint on the representations of all
the patches in an image (see Section 3.2.2.3). For fairness, the SWTA AE, a deep version
of the WTA AE, must be compared to a variant of OMP that incorporates a global sparsity
constraint on the representations of all the patches in an image. We thus introduce this
variant of OMP, called Winner-Take-All Orthogonal Matching Pursuit (WTA OMP).

In a given set of image patches, WTA OMP first decomposes each image patch over
a dictionary. Then, it keeps a given number of coefficients with largest absolute value
in the set of sparse decompositions and sets the rest to 0. The support of the sparse
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decomposition of each image patch over the dictionary has therefore been changed. Hence
the need for a final least-square minimization (see Algorithm 4).

Algorithm 4 : WTA_OMP
Inputs: X, D, K < m, and γ.

1: ∀j ∈ [|1, p|], Yj = OMP (Xj,D, K)
2: I = fγ (Y)
3: ∀j ∈ [|1, p|], Zj = min

z∈Rn
‖Xj −Dz‖22 such that supp (z) = supp (Ij)

Output: Z.

X ∈ Rm×p is a matrix whose columns are formed by p image patches of m pixels.
Y ∈ Rn×p is a matrix whose columns are formed by the sparse decompositions of the
image patches over the dictionary D. For γ ∈ ]0, 1[, fγ : Rn×p → Rn×p keeps the
γ × n× p coefficients with largest absolute value in its input matrix and sets the rest to 0.
For j ∈ [|1, p|], Xj denotes the j th column of X. supp (z) = {i ∈ [|1, n|] | zi 6= 0} is the
support of vector z.

4.1.3 Training phase
Before moving on to the image compression experiment in Section 4.1.4, the SWTA

AE needs training. Similarly, the dictionary must be learned for WTA OMP.
1.0 × 105 RGB images are extracted from the ILSVRC2012 ImageNet training set

[129]. The RGB color space is transformed into the Y
′
CbCr color space and only the

luminance channel is kept. For the SWTA AE, the luminance images are resized to 321×
321. M ∈ R321×321 denotes the mean of all luminance images. σ ∈ R∗+ is the mean of the
standard deviation over all luminance images. Each luminance image is subtracted by M
and divided by σ. These images are concatenated into a training set ∆ ∈ R321×321×105 .
For WTA OMP, η = 1.2 × 106 image patches of size

√
m ×

√
m are randomly sampled

from the luminance images. We remove the DC component from each patch. These
patches are concatenated into a training set Γ ∈ Rm×η.

Training the SWTA AE The WTA parameter α, which is the proportion of non-zero
coefficients in the first 64 feature maps of Z, tunes the coding cost of Z. If the WTA
parameter is fixed during the training phase, all the filters and the biases of the SWTA
AE are learned for one rate. That is why the WTA parameter is turned into a stochastic
hyperparameter during the training phase. This justifies the prefix Stochastic in SWTA
AE. Since there is no reason to favor some rates during the training phase, α is sampled
according to the uniform distribution U [µ − ε, µ + ε], where µ − ε > 0 and µ + ε < 1.
µ = 1.8 × 10−1 and ε = 1.7 × 10−1 are chosen so that the support of α is large. At each
training epoch, α is drawn for each training image of the training set ∆.

The SWTA AE is able to process images of various sizes. During the training phase,
we feed the SWTA AE with random crops of size 49 × 49 of the training images of
the training set ∆. This accelerates training considerably. The training objective is to
minimize the mean squared error between these cropped images and their reconstruction
plus l2-norm weights decay. Mini-batch stochastic gradient descent with momentum is
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used. The gradient descent learning rate is fixed to 2.0 × 10−5, the momentum is 0.9,
and the size of mini-batches is 5. The weights decay coefficient is 5.0 × 10−4. Our
implementation is based on Caffe [130]. It adds to Caffe the tools for the semi-sparse
representation and the bitstream generation in Section 4.1.1.

Learning Dw for WTA OMP WTA OMP is a novel algorithm for sparse decompo-
sition we introduced. It therefore requires a specific training, which is detailed below.
Given Γ, K < m, and γ, Algorithm 5 generates Dw by solving

min
Dw,Z1,...,Zη

1

η

η∑
j=1

‖Γj −DwZj‖22 such that ∀j ∈ [|1, η|] , ‖Zj‖0 ≤ K

such that
η∑
i=j

‖Zj‖0 ≤ γ × n× η.
(4.1)

Algorithm 5 alternates between sparse decomposition steps that involve WTA OMP and
dictionary updates that use mini-batch stochastic gradient descent. Given Γ and p, let φ
be a function that randomly partitions Γ into ηp = η / p mini-batches

{
X(1), ...,X(ηp)

}
,

where, for i ∈ [|1, ηp|], X(i) ∈ Rm×p.

Algorithm 5 : learning Dw for WTA OMP.
Inputs: Γ, K < m, γ, p, and ε ∈ R∗+.

1: The coefficients of Dw are initialized from U [−0.2, 0.2].
2: ∀j ∈ [|1, n|] , Dw,j ← Dw,j

/
‖Dw,j‖2

3: for several epochs do
4:

[
X(1), ...,X(ηp)

]
= φ (Γ, p)

5: for all i ∈ [|1, ηp|] do
6: Z(i) = WTA_OMP

(
X(i),Dw, K, γ

)
7: Dw ← Dw − ε ∂

∥∥X(i) −DwZ(i)
∥∥2
F

/
∂Dw

8: ∀j ∈ [|1, n|] , Dw,j ← Dw,j

/
‖Dw,j‖2

9: end for
10: end for
Output: Dw.

Learning Do for OMP In the image compression experiment in Section 4.1.4, OMP is
used as baseline for comparison. That is why OMP also needs a learned dictionary Do.
Given Γ, the dictionary Do is learned via Algorithm 3. m and n are optimized with an
exhaustive search. This leads to m = 64 and n = 1024. For the SWTA AE and WTA
OMP, the same values for m and n are used. Moreover, K = 15, γ = 4.5× 10−3, p = 10,
and ε = 2.0 × 10−2. For this configuration, the learned dictionaries Dw for WTA OMP
and Do for OMP are displayed in Appendix B.3.
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(a) Lena luminance 512× 512 pixels. (b) Barbara luminance 480× 384 pixels.

Figure 4.2: Evolution of PNSR with the rate for a deep sparse autoencoder (SWTA AE),
a regular autoencoder (AE), two algorithms for sparse decomposition over a dictionary
(OMP and WTA OMP), JPEG, and JPEG2000.

4.1.4 Image compression experiment
After the training phase in Section 4.1.3, the rate-distortion curves of OMP, WTA

OMP, the SWTA AE, JPEG, and JPEG2000 are compared. For this comparison, four test
luminance images are extracted from Lena, Barbara, Mandrill, and peppers respectively.
None of these four images exists in the training set.

Image codec for the SWTA AE Each input test luminance image is pre-processed sim-
ilarly to the training in Section 4.1.3. The mean learned image M is interpolated to match
the size of the input image. Then, the input image is subtracted by this interpolated mean
image and divided by the learned σ. The encoder of the SWTA AE computes the rep-
resentation Z. The bitstream is obtained by processing the representation as detailed in
Section 4.1.1.

Image codec for OMP and WTA OMP A luminance image is split into 8 × 8 non-
overlapping patches. The DC component is removed from each patch. The DC compo-
nents are uniformly quantized over 8 bits and coded with a fixed-length code. OMP (or
WTA OMP) finds the sparse decompositions of the image patches over Do (or Dw). The
non-zero coefficients are uniformly quantized over 8 bits and coded with a Huffman code
while their position is coded with a fixed-length code.

Then, for WTA OMP only, the number of non-zero coefficients of the sparse decom-
position of each patch over the dictionary Dw is coded with a Huffman code.

4.1.5 Rate-distortion analysis
We compare the SWTA AE with JPEG and JPEG2000 1. The target of the analysis is

to see whether the SWTA AE can exploit the statistical dependencies between the image

1. The code of both JPEG and JPEG2000 can be found at http://www.imagemagick.org/
script/index.php

http://www.imagemagick.org/script/index.php
http://www.imagemagick.org/script/index.php


78 CHAPTER 4. LEARNING A TRANSFORM FOR IMAGE COMPRESSION

pixels. That is why a simple Huffman code is used for coding the values of the non-
zero coefficients in the case of the SWTA AE, not a context-based entropy coder, as in
JPEG and JPEG2000. Furthermore, the SWTA AE is compared with its non-sparse Auto-
Encoder counterpart (AE). The AE has the same architecture as the SWTA AE but its
representation only contains non-sparse feature maps. Note that, to draw a new point in
the AE rate-distortion curve, the AE must be first re-trained with a different number of
feature maps in its representation.

Figure 4.2 shows the rate-distortion curves of OMP, WTA OMP, the AE, the SWTA
AE, JPEG, and JPEG2000 for two of the most common images: Lena and Barbara. In
terms of rate-distortion trade-off, the SWTA AE outperforms the AE and WTA OMP is
better than OMP. This highlights the value of the Winner-Take-All approach for image
compression. When comparing the SWTA AE and WTA OMP, we observe that the iter-
ative decomposition is more efficient for image compression via sparse representations.
Moreover, the SWTA AE can compete with JPEG. We also ran this image compression
experiment on several crops of Lena and Barbara and observed that the relative position
of the six rate-distortion curves was comparable to the relative positioning in Figure 4.2.
The size of the test image does not affect the performance of the SWTA AE. More simu-
lation results and a complexity analysis for OMP, WTA OMP, and the SWTA AE can be
found online 2.

4.1.6 Limitations of the deep sparse autoencoders

We have introduced a deep sparse autoencoder (SWTA AE) with a Winner-Take-All
non-linearity. The sparsity parameter of the non-linearity is stochastically driven during
the training phase so that the SWTA AE adapts to the compression at different rates.
Moreover, an efficient way of coding the quantized representation in the SWTA AE is
proposed. These contributions enable to improve the rate-distortion trade-offs provided
by the SWTA AE. But, the SWTA AE does not beat WTA OMP in terms of rate-distortion.

A problem is that the WTA constraint causes an extreme sparsity in the representation
of the SWTA AE. This implies that, during the training of the SWTA AE, the gradients
flow through the representation, and most of their components are set to 0. In other
words, the gradients vanish. As a consequence, the decoder of the SWTA AE is trained
much faster than the encoder. The vanishing gradients hamper the training of the SWTA
AE, especially when its depth is large. Note that the cause of the vanishing gradients
we observe is different from the cause of the vanishing gradients appearing during the
training of recurrent neural networks [131].

Given this issue, Section 4.2 develops another approach for learning a transform for
image compression that meets the two targets: efficiency in terms of rate-distortion and a
rate-agnostic transform. This approach is not based on sparsity but on the minimization
of the entropy of the quantized representation.

2. https://www.irisa.fr/temics/demos/NeuralNets/AutoEncoders/swtaAE.
htm

https://www.irisa.fr/temics/demos/NeuralNets/AutoEncoders/swtaAE.htm
https://www.irisa.fr/temics/demos/NeuralNets/AutoEncoders/swtaAE.htm
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4.2 Rate as the entropy of the quantized representation
There are two apparent limitations regarding the learning of a transform for image

compression via a deep sparse autoencoder. (i) The gradient vanishing issue hampers the
training of the deep sparse autoencoder (see Section 4.1.6). (ii) The expression of the rate
as a function of the number of non-zero coefficients in the sparse representation of the im-
age is not close enough to the true rate as, for instance, the fact that the quantized non-zero
coefficients are losslessly encoded via an entropy coder is not taken into account. Another
idea would be to train a deep autoencoder via the minimization over its parameters of an
objective function combining a distortion term and a term measuring the entropy of the
quantized representation.

But, the issue is that the deep autoencoder trained via the minimization of this objec-
tive function over its parameters must be rate-agnostic. Indeed, during the training phase,
the rate is determined by the weight between the two terms in the objective function. But,
during the test phase, this weight has no influence. In this case, a way to modify the rate
during the test phase is to change the quantization step sizes of the uniform scalar quan-
tizer. Now, the problem is the choice of quantization step sizes during both the training
phase and the test phase so that the entire compression scheme is efficient in terms of
rate-distortion at any rate. Should the quantization step sizes be imposed during the train-
ing phase? To answer this, we propose an approach where the transform and the uniform
scalar quantizer are learned jointly. Then, we investigate whether, during the test phase,
the compression falls apart when the representation obtained via the learned transform is
quantized using quantization step sizes which differ from those in the training stage.

4.2.1 Joint learning of the transform and the quantizer
Section 4.2.1 introduces the autoencoder trained via the minimization over its pa-

rameters of an objective function combining a distortion term and a term measuring the
entropy of the quantized representation. Then, it details our proposal for learning jointly
this autoencoder transform and the uniform scalar quantizer.

4.2.1.1 Autoencoder trained via a constraint on the entropy of the quantized rep-
resentation

The encoder ge of the autoencoder, parametrized by θ, computes a representation Y
from the image X. Its decoder gd, parametrized by φ, gives a reconstruction X̂ of the
image X from the quantized representation Ŷ = Q (Y) (see Figure 4.3). If an autoen-
coder has fully-connected layers [132, 133, 134], the number of parameters depends on
the image size. This implies that one autoencoder has to be trained per image size. To
avoid this, an architecture without fully-connected layer is chosen. It exclusively com-
prises convolutional layers and non-linear operators. In this case, Y ∈ Rh×w×m is a set of
m feature maps of size n = h× w (see Figure 4.3).

The basic autoencoder training minimizes the image reconstruction error [72]. In or-
der to perform a rate-distortion optimization, the authors in [83] add the minimization of
the entropy of the quantized representation. Moreover, a bit allocation is performed by
learning a normalization for each feature map of Y. The encoder followed by the nor-
malizations at the encoder side, parametrized by ϕe, are denoted ge ( . ;θ,ϕe). Similarly,
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Figure 4.3: Illustration of a baseline autoencoder for image compression.

the normalizations at the decoder side, parametrized by ϕd, followed by the decoder are
denoted gd ( . ;ϕd,φ). Finally, this leads to

min
θ,ϕe,
ϕd,φ

E

[
‖X− gd (Q (ge (X;θ,ϕe)) ;ϕd,φ)‖2F + γ

m∑
i=1

Hi

]

Hi = − 1

n

n∑
j=1

log2 (p̂i (ŷij)) , γ ∈ R∗+. (4.2)

p̂i is the probability mass function of the ith quantized feature map coefficients {ŷij}j=1...n.
The expectation E[.] is approximated by averaging over a training set of images. Unfortu-
nately, Q makes minimization (4.2) unusable. Indeed, the derivative of any quantization
with respect to its input is 0 at any point. Consequently, θ and ϕe cannot be learned via
gradient-based methods [135]. To get around this issue, [83] fixes the quantization step
size to 1 and approximates the uniform scalar quantization with the addition of a uniform
noise of support [-0.5, 0.5]. Note that, even though the quantization step size is fixed,
the bit allocation varies over the different feature maps via the normalizations. In the
next section, we consider instead to remove the normalizations and learn explicitly the
quantization step size for each feature map of Y.

4.2.1.2 Learning the quantization step sizes

We address the problem of optimizing the quantization step size for each feature map
of Y. Because of the uniform scalar quantizer, the function to be minimized is an implicit
function of the quantization step sizes {δi}i=1...m. The target is to make it an explicit
function of {δi}i=1...m. For q ∈ {...,−δi, 0, δi, ...},

p̂i (q) =

∫ q+0.5δi

q−0.5δi
pi (t) dt = δip̃i (q) . (4.3)

p̃i = pi ∗ li where pi is the probability density function of the ith feature map coefficients
{yij}j=1...n and li denotes the probability density function of the continuous uniform dis-
tribution of support [−0.5δi, 0.5δi]. The normalizations are removed from (4.2) and, using
(4.3), (4.2) becomes

min
θ,φ

E

[
‖X− gd (ge (X;θ) + E ;φ)‖2F + γ

m∑
i=1

h̃i

]
(4.4)
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h̃i =− log2 (δi)−
1

n

n∑
j=1

log2 (p̃i (yij + εij)) .

The ith matrix of E ∈ Rh×w×m contains n realizations {εij}j=1...n of Ei, Ei being a con-
tinuous random variable of probability density function li. In (4.4), the function to be
minimized is differentiable with respect to θ. θ can thus be learned via gradient-based
methods. However, {δi}i=1...m cannot yet be learned as the function to be minimized in
(4.4) is not differentiable with respect to {δi}i=1...m. This is resolved using the change
of variable Ei = δiT where T is a random variable following the continuous uniform
distribution of support [−0.5, 0.5]. Now, the minimization over {δi}i=1...m is feasible:

min
θ,φ,

δ1,...,δm

E

[
‖X− gd (ge (X;θ) + ∆�T;φ)‖2F + γ

m∑
i=1

h̃i

]

h̃i =− log2 (δi)−
1

n

n∑
j=1

log2 (p̃i (yij + δiτij)) . (4.5)

The ith matrix of T ∈ Rh×w×m contains n realizations {τij}j=1...n of T . All the coeffi-
cients in the ith matrix of ∆ ∈ Rh×w×m are equal to δi. ∆ � T denotes the elementwise
multiplication between ∆ and T. A detail has been left out so far: p̃i is unknown. In a
similar manner to [82, 83], p̃i can be replaced by a function f̃i, parametrized by ψ(i), and
ψ(i) is learned such that f̃i fits p̃i.

In the end, we end up with three groups of parameters: {θ, φ}, {δi}i=1...m and
{ψ(i)}i=1...m. These three groups are learned by alternating three different stochastic gra-
dient descents. All the training heuristics are detailed in the code4.

Section 4.2.1.2 has developped an approach for learning explictly the transform and
a quantization step size for each feature map of Y. Before evaluating this approach in
Section 4.2.3, Section 4.2.2 studies what would happen if, during the test phase, the co-
efficients in Y are quantized using quantization step sizes that differ from those in the
training stage. This first requires understanding the internal structure of Y after the train-
ing phase.

4.2.2 Inside the learned representation
This section studies the different feature maps of Y after the training phase. To this

end, a deep convolutional autoencoder must first be built and trained. ge is the composi-
tion of a convolutional layer, a generalized divisive normalization (GDN) [136], a convo-
lutional layer, a GDN, and a convolutional layer. gd is the reverse composition, replacing
each GDN with an inverse generalized divisive normalization (IGDN) [136] and each
convolutional layer with a transpose convolutional layer [80]. It is important to stress that
m = 128, X has one channel and the convolutional strides and paddings are chosen such
that h and w are 16 times smaller than respectively the height and the width of X. There-
fore, the number of pixels in X is twice the number of coefficients in Y. The training
set contains 24000 luminance images of size 256× 256 that are extracted from ImageNet
[129]. The minimization is (4.5), γ = 10000.0. Note that, if a GDN was placed immedi-
ately after ge, a IGDN was placed immediately before gd and, ∀i ∈ [|1,m|] , δi = 1.0 was
not learned, the autoencoder architecture and the training would correspond to [83].
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4.2.2.1 Distribution of the learned representation

After the training phase, a test set of 24 luminance images of size 768× 512 is created
from the Kodak suite 3. Here, X refers to a test luminance image. Figure 4.4 shows the
normed histograms of 9 feature maps of Y = ge (X;θ), averaged over the test set. Every
feature map of Y, except the 90th, has a normed histogram similar to those displayed. To
be more precise, let us write the probability density function of the Laplace distribution
with mean µ ∈ R and scale λ ∈ R∗+, denoted f ( . ;µ, λ).

f (x;µ, λ) =
1

2λ
exp

(
−|x− µ|

λ

)
∀i ∈ [|1,m|], i 6= 90, there exists µi ∈ R and λi ∈ R∗+ such that f ( . ;µi, λi) fits well
the normed histogram of the ith feature map of Y. Note that most of the m − 1 scales
belong to [0.5, 2.0] (see Figure 4.5). For transformed coefficients having a zero-mean
Laplace distribution, [137] proves that a uniform reconstruction quantizer (URQ) with
constant decision offsets approaches the optimal scalar quantizer in terms of squared-error
distortion for any quantization step size. Yet, in our case, (i) them−1 Laplace probability
density functions are not zero-mean, (ii) uniform scalar quantizers are used instead of
this URQ. The point (i) is not problematic as an extra set of luminance images is used to
compute an approximation µi ∈ R of the mean of the ith feature map of Y, then, during
the test phase, the ith feature map of Y is centered via µi before being quantized. Note that
{µi}i=1...m does not depend on the test luminance images, thus incurring no transmission
cost. Regarding the point (ii), it must be noted that the decoder mapping of the URQ is
exactly the decoder mapping of the uniform scalar quantization with same quantization
step size. Since our case comes close to the requirements of the proof in [137], during the
test phase, the rate-distortion trade-off should not collapse as the quantization step sizes
deviate from the learned values. This will be verified in Section 4.2.3.

4.2.2.2 Internal structure of the learned representation

The shortcoming of the previous fitting is that it does not reveal what information
each matrix of Y encodes. To discover it, further visualizations are needed. The most
common way of exploring a deep convolutional neural network (CNN) trained for image
recognition is to look at the image, at the CNN input, resulting from the maximization over
its pixels of a given neural activation in the CNN [138, 139, 140]. Precisely, [138, 139]
maximize over the image pixels a given neural activation at the CNN output, i.e a class
probability. This shows what image features characterize this class according to the CNN.
In our case, the maximization over the image pixels of a given coefficient in Y does not
yield interpretable images. Indeed, the coefficients in Y are not bounded. This may
explain why the maximization often returns saturated images.

Alternatively, the information the j th feature map of Y encodes, j ∈ [|1,m|], can
be seen as follows. ∀i ∈ [|1,m|], all the coefficients in the ith feature map of Y are
set to µi. This way, the feature maps of Y contains no significant information. Then, a
single coefficient in the j th feature map of Y is set to α ∈ R and X̂ = gd (Q (Y) ;φ) is
displayed. α is selected such that it is near one of the two tails of the Laplace distribution

3. http://r0k.us/graphics/kodak/

http://r0k.us/graphics/kodak/
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(a) i = 2 (b) i = 41 (c) i = 50

(d) i = 64 (e) i = 80 (f) i = 92

(g) i = 110 (h) i = 125 (i) i = 127

Figure 4.4: Normed histogram of the ith feature map of Y.

Figure 4.5: Histogram of the m− 1 scales provided by the fitting.
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(a) j = 2;
α = 8.0

(b) j = 2;
α = −8.0

(c) j = 5;
α = 6.5

(d) j = 5;
α = −6.5

(e) j = 19;
α = 10.0

(f) j = 19;
α = −10.0

(g) j = 41;
α = 8.5

(h) j = 41;
α = −8.5

(i) j = 50;
α = 8.0

(j) j = 50;
α = −8.0

(k) j = 82;
α = 10.0

(l) j = 82;
α = −10.0

(m) j = 98;
α = 11.0

(n) j = 98;
α = −11.0

(o) j = 107;
α = 10.0

(p) j = 107;
α = −10.0

(q) j = 125;
α = 20.0

(r) j = 125;
α = −20.0

(s) j = 127;
α = 9.0

(t) j = 127;
α = −9.0

Figure 4.6: 64× 64 crop at the top-left of X̂.
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(a) (b) (c) (d)

Figure 4.7: Reconstructed luminance image when the 17th Kodak luminance image is
inserted into the encoder ge ( . ;θ) and all the feature maps of Y, except the j th feature
map, are masked. (a) 200 × 200 crop at the top-left of the 17th Kodak luminance image,
(b) 200 × 200 crop at the top-left of X̂ when j = 2, (c) 200 × 200 crop at the top-left of
X̂ when j = 50, and (d) 200× 200 crop at the top-left of X̂ when j = 125.

(a) (b) (c) (d)

Figure 4.8: Same visualization as in Figure 4.7 using the 24th Kodak luminance image
instead of the 17th Kodak luminance image.

Figure 4.9: Rate-distortion curves averaged over the 24 Kodak luminance images.
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of the j th feature map of Y. Figure 4.6 shows the 64× 64 crop at the top-left of X̂ when
the single coefficient is located at the top-left corner of the j th feature map of Y, j ∈
{2, 5, 19, 41, 50, 82, 98, 107, 125, 127}. We notice that the 2nd, 41st and 50th feature maps
of Y each encodes a spatially localized image feature whereas the 98th and 125th feature
maps each encodes a spatially extended image feature. Moreover, the image feature is
turned into its symmetrical feature, with respect to the mean pixel intensity, by moving α
from the right tail of the Laplace distribution of the j th feature map of Y to the left tail.
This linear behaviour is observed for each feature map of Y.

It is worth remarking that, given the fitting in Section 4.2.2.1, Y is similar to the DCT
coefficients for blocks of prediction error samples in H.265 [6] in terms of distribution.
However, when looking at the information each feature map of Y encodes, Y has nothing
to do with these DCT coefficients.

To validate this conclusion, another visualization of the information the j th feature
map of Y encodes can be used. The difference between the previous visualization and
the following one lies in the fact that an activation in a feature map of Y is artificially
triggered in the previous visualization whereas a feature map of Y is activated by inserted
a luminance image into the encoder in the following visualization. Precisely, after insert-
ing a Kodak luminance image into the encoder ge ( . ;θ), ∀i ∈ [|1,m|] , i 6= j, all the
coefficients in the ith feature map of Y are set to µi. Now, only the j th feature map of
Y keeps relevant information about the luminance image. Then, X̂ = gd (Q (Y) ;φ) is
displayed. Again, the 2nd and 50th feature maps of Y each encodes a spatially localized
image feature, unlike the 125th feature map (see Figures 4.7 and 4.8).

4.2.3 Experiments

We now evaluate in terms of rate-distortion performances: (i) whether the way of
learning the quantization matters, (ii) whether, during the test phase, it is efficient to
quantize the coefficients obtained with the learned transform using quantization step sizes
which differ from those in the training stage. This is done by comparing three cases.

The first case follows the approach in [83]. One transform is learned per rate-distortion
point, the bit allocation being learned via the normalizations. In details, an autoencoder is
trained for each γ ∈ S = {10000.0, 12000.0, 16000.0, 24000.0, 40000.0, 72000.0, 96000.0}.
During the training and test phases, the quantization step size is fixed to 1.0.

In the second case, a unique transform is learned, the bit allocation being done by
learning a quantization step size per feature map. More precisely, a single autoencoder
is trained for γ = 10000.0 and {δi}i=1...m is learned (see Section 4.2.1). During the test
phase, the rate varies as the quantization step sizes are equal to the learned quantization
step sizes multiplied by β ∈ B = {1.0, 1.25, 1.5, 2.0, 3.0, 4.0, 6.0, 8.0, 10.0}.

In the third case, a unique transform is learned, the bit allocation being learned via the
normalizations. In details, a single autoencoder is trained for γ = 10000.0 and, during the
training phase, the quantization step size is 1.0. During the test phase, the rate varies as
the quantization step size spans B.

In the second case, the autoencoder has the architecture described at the beginning
of Section 4.2.2. In the first and third cases, a GDN is also placed after ge and a IGDN
is placed before gd. The autoencoders are trained on 24000 luminance images of size
256 × 256 that are extracted from ImageNet. Then, during the test phase, the 24 lumi-
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(a) original
crops

(b) orange
(0.238, 34.815)

(c) green
(0.191, 34.446)

(d) red
(0.198, 34.421)

(e) JPEG2000
(0.191, 33.799)

(f) H.265
(0.183, 35.458)

Figure 4.10: Reconstruction of two 80 × 80 crops of the 2nd Kodak luminance image
via five compression algorithms. To associate (b) orange, (c) green, and (d) red to their
respective algorithm, please refer to the color code in Figure 4.9. Below each letter (b),
(c), (d), (e), and (f) is written inside brackets the rate (bbp) and the PSNR (dB) when the
corresponding algorithm is applied to the entire 2nd Kodak luminance image.

(a) original
crops

(b) orange
(0.242, 34.211)

(c) green
(0.258, 34.830)

(d) red
(0.266, 34.797)

(e) JPEG2000
(0.253, 33.391)

(f) H.265
(0.260, 37.003)

Figure 4.11: Same visualization as in Figure 4.10 using the 7th Kodak luminance image.

(a) original
crops

(b) orange
(0.179, 34.123)

(c) green
(0.120, 33.123)

(d) red
(0.124, 33.193)

(e) JPEG2000
(0.153, 33.641)

(f) H.265
(0.178, 36.280)

Figure 4.12: Same visualization as in Figure 4.10 using the 12th Kodak luminance image.
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(a) original
crops

(b) orange
(0.320, 33.822)

(c) green
(0.263, 33.295)

(d) red
(0.272, 33.336)

(e) JPEG2000
(0.322, 33.685)

(f) H.265
(0.290, 35.062)

Figure 4.13: Same visualization as in Figure 4.10 using the 16th Kodak luminance image.
Below each letter (b), (c), (d), (e), and (f) is written inside brackets the rate and the PSNR
when the corresponding algorithm is applied to the entire 16th Kodak luminance image.

(a) original
crops

(b) orange
(0.344, 31.031)

(c) green
(0.378, 31.543)

(d) red
(0.387, 31.514)

(e) JPEG2000
(0.393, 31.639)

(f) H.265
(0.469, 34.570)

Figure 4.14: Same visualization as in Figure 4.10 using the 21st Kodak luminance image.

(a) original
crop

(b) orange
(0.145, 36.144)

(c) green
(0.103, 34.770)

(d) red
(0.105, 34.750)

(e) JPEG2000
(0.134, 35.512)

(f) H.265
(0.081, 35.597)

Figure 4.15: Same visualization as in Figure 4.10 using the 23rd Kodak luminance image.
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nance images from the Kodak suite are inserted into the autoencoders. The rate is esti-
mated via the empirical entropy of the quantized coefficients, assuming that the quantized
coefficients are i.i.d. Note that, for the second and third cases, we have also implemented
a binarizer and a binary arithmetic coder to compress the quantized coefficients losslessly
(see the code4). The difference between the estimated rate and the exact rate via the loss-
less coding is always smaller than 0.04 bbp.

4.2.3.1 Rate-distortion analysis

Figure 4.9 shows the rate-distortion curves averaged over the 24 luminance images.
The JPEG2000 curve is obtained using ImageMagick. The H.265 [39] curve is computed
via the version HM-16.15. There is hardly any difference between the second case and the
third case. This means that the explicit learning of the transform and the quantization step
sizes is equivalent to learning the transform and the normalizations while the quantization
step size is imposed. The second and the third cases perform as well as the first case. The
minimization in (4.5) and the training in [83] provide learned transforms which can be
used with various quantization step sizes during the test phase. It is convenient not to train
one autoencoder per compression rate as a single training takes 4 days on a NVIDIA GTX
1080. Finally, we see that the learned transforms yield better rate-distortion performances
than JPEG2000. The quality of image reconstruction for the experiment in Figure 4.9 can
be checked in Figures 4.10, 4.11, 4.12, 4.13, 4.14, and 4.15. Much more visualizations
for the experiment in Figure 4.9 and another experiment on luminance images created
from the BSDS300 [141] are displayed online 4. Besides, the code to reproduce all the
numerical results in Section 4.2 and train the autoencoders is available online4.

4.2.3.2 Number of trainable parameters of each autoencoder

In the first and third cases, which are the orange curve and the red curve respectively
in Figure 4.9, the detailed architecture of each autoencoder corresponds exactly to the
architecture in [83] in order to have a fair comparison. Please, refer to [83] to know all
the details about the autoencoder architecture. The number of trainable parameters is
1758848.

The second case is the green curve in Figure 4.9. In this case, the autoencoder does
not contain the normalization parameters {ϕe,ϕd}, which removes 33024 parameters,
and the quantization step sizes {δi}i=1...m are learned, which adds 128 parameters. The
number of trainable parameters is thus 1725952.

4.3 Conclusion
To conclude, two approaches are proposed for learning a transform for image com-

pression that achieves rate-distortion efficiency and is rate-agnostic.
In the first approach, a deep sparse autoencoder is trained using a constraint on the

number of non-zero coefficients in the sparse representation of an entire image. The
sparsity parameter controlling this constraint is stochastically driven during the training

4. www.irisa.fr/temics/demos/visualization_ae/visualizationAE.htm

www.irisa.fr/temics/demos/visualization_ae/visualizationAE.htm
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phase so that the deep sparse autoencoder adapts to compressing at multiple rates. During
the test phase, the sparsity parameter provides a direct control over the rate.

In the second approach, a deep autoencoder is trained via the minimization of an
objective function combining a distortion term and a term approximating the rate via the
entropy of the quantized representation. It is shown that the uniform scalar quantizer can
be fixed during the training phase, or in other words, there is no apparent gain resulting
from the joint learning of the transform and the uniform scalar quantizer. During the test
phase, the quantization step sizes are increased from their value at the end of the training
phase in order to compress at multiple rates.



Chapter 5

Learning intra prediction for image
compression

Besides the transform, which is learned for image compression in Chapter 4, a key of
efficient image compression schemes is the predictor (see Section 1.2).

In the regular intra prediction for image compression, a set of prediction functions
is first predefined. It is known by both the encoder and the decoder. Then, given an
image block to be predicted, the encoder identifies the best prediction function according
to a rate-distortion criterion and the index of the best prediction function is sent to the
decoder. As the number of prediction functions is restricted and the functions are linear,
a regular intra predictor struggles to predict complex textures in large image blocks (see
Section 1.2). This brings about the idea of learning, with the help of neural networks,
a reliable model of dependencies between a block to be predicted, possibly containing a
complex texture, and its neighborhood that we refer to as its context.

Neural networks have already been considered in [102] for intra block prediction.
However, the authors in [102] only take into consideration blocks of sizes 4 × 4, 8 × 8,
16 × 16, and 32 × 32 pixels and use fully-connected neural networks. Here, we con-
sider both fully-connected and convolutional neural networks. We show that, while fully-
connected neural networks give good performance for small block sizes, convolutional
neural networks are more appropriate, both in terms of prediction PSNR and PSNR-rate
performance gains, for large block sizes. The choice of neural network is block size de-
pendent, hence does not need to be signalled to the decoder. This set of neural networks,
called Prediction Neural Networks Set (PNNS), has been integrated into a H.265 codec,
showing PSNR-rate performance gains from 1.46% to 5.20%.

The contributions of this chapter are as follows:
• A set of neural network architectures is proposed, including both fully-connected

and convolutional neural networks, for intra image prediction.
• It is shown that, in the case of large block sizes, convolutional neural networks yield

more accurate predictions compared with fully-connected ones.
• Thanks to the use of masks of random sizes during the training phase, the neural

networks of PNNS well adapt to the available context that may vary. E.g. in H.265,
the available context, hence the number of known pixels in the neighborhood, de-
pends on the position of the considered PB within the CB and within the CTB.
• Unlike the H.265 intra prediction modes, which are each specialized in predicting a

91
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specific texture, the proposed PNNS, trained on a large unconstrained set of images,
is able to model a large set of complex textures.
• A surprising property of the neural networks for intra prediction is proved experi-

mentally: they do not need to be trained on distorted contexts, i.e. the neural net-
works trained on undistorted contexts generalize well on distorted contexts, even
for severe distortions.

The code to reproduce all the numerical results and train the neural networks of PNNS
will be made available online 1 after the PhD defense.

5.1 Conditions for efficient neural network based intra
prediction

The use of neural networks for intra prediction within an image compression scheme
raises several questions that we address in this paper. What neural network architecture
provides enough power of representation to map causal and distorted data samples to an
accurate prediction of a given image block? What context size should be used? Section
5.2 looks for a neural network architecture and the optimal number of causal and distorted
data samples for predicting a given image block. Moreover, the amount of causal and
distorted data samples available at the decoder varies. It depends on the partitioning of
the image and the position of the block to be predicted within the image. Section 5.3
trains the neural networks so that they adapt to the variable context size. Finally, can
neural networks compensate for the quantization noise in its input and be efficient in a
rate-distortion sense? Sections 5.4 and 5.5 answer these two questions with experimental
evidence.

5.2 Proposed neural network based intra prediction

Unlike standard intra prediction in which the encoder chooses the best mode in a
rate-distortion sense among several pre-defined modes, only one neural network among
a set of neural networks does the prediction here. Unlike [102], our set contains both
fully-connected and convolutional neural networks. This section first presents our set of
neural networks. Then, it explains how one neural network is selected for predicting a
given image block and the context is defined according to the block size. Finally, the
specificities of the integration of our neural networks into H.265 are detailed.

5.2.1 Fully-connected and convolutional neural networks

Let X be a context containing decoded pixels above and on the left side of a square
image block Y of width m ∈ N∗ to be predicted (see Figure 5.1). The transformation of
X into a prediction Ŷ of Y via either a fully-connected neural network fm, parametrized
by θm, or a convolutional neural network gm, parametrized by φm, is described in (5.1).

1. https://www.irisa.fr/temics/demos/prediction_neural_network/
PredictionNeuralNetwork.htm

https://www.irisa.fr/temics/demos/prediction_neural_network/PredictionNeuralNetwork.htm
https://www.irisa.fr/temics/demos/prediction_neural_network/PredictionNeuralNetwork.htm
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The corresponding architectures are depicted in Figures 5.2 and 5.3.

Xc = X− α

Ŷc =

{
fm (Xc;θm)

gm (Xc;φm)
(5.1)

Ŷ = max
(

min
(
Ŷc + α, 255

)
, 0
)

During optimization, each input variable to a neural network must be approximatively
zero-centered over the training set to accelerate convergence [120]. Besides, since the
pixel space corresponds to both the input and output spaces in intra prediction, it makes
sense to normalize the input and output similarly. One could subtract from each image
block to be predicted and its context their respective mean during the training phase.
But, this entails sending the mean of a block to be predicted to the decoder during the
test phase. Instead, the mean pixel intensity α is first computed over all the training
images. Then, α is subtracted from each image block to be predicted and its context
during training. During the test phase, α is subtracted from the context (see (5.1) where
the subscript c stands for centered).

This preprocessing implies a postprocessing of the neural network output. More pre-
cisely, the learned mean pixels intensity is added to the output and the result is clipped to
[0, 255] (see (5.1)).

The first operation for both architectures consists in formatting the context to ease the
computations in the neural network. In the case of a fully-connected neural network, all
elements in the context are connected such that there is no need to keep the 2D struc-
ture of the context [63]. Therefore, the context is first vectorized, and fast vector-matrix
arithmetics can be used (see Figure 5.2). However, in the case of a convolutional neural
network, fast computation of 2D filtering requires to keep the 2D structure of the context.
Moreover, again for fast computation, the shape of the input to the convolution has to be
rectangular. That is why the context is split into two rectangles X0 and X1 (see Figures
5.1 and 5.3). X0 and X1 are then processed by distinct convolutions.

The proposed fully-connected architecture is composed of 4 fully-connected layers.
The first layer computes an overcomplete representation of the context to reach p ∈
N∗ output coefficients. Overcompleteness is chosen as it is observed empirically that
overcomplete representations in early layers boost the performance of neural networks
[142, 134, 61]. The next two layers keep the number of coefficients unchanged, while
the last layer reduces it to provide the predicted image block. The first three layers have
LeakyReLU [143] with slope 0.1 as non-linear activation. The last layer has no non-linear
activation. This is because the postprocessing discussed earlier contains already a non-
linearity, which consists in first adding the learned mean pixels intensity to the output and
clipping the result to [0, 255].

The first task of the convolutional architecture is the computation of features char-
acterizing the dependencies between the elements in X0. X0 is thus fed into a stack of
convolutional layers. This yields a stack Z0 of l ∈ N∗ feature maps (see Figure 5.3).
Similarly, X1 is fed into another stack of convolutional layers. This yields a stack Z1 of l
feature maps.



94 CHAPTER 5. LEARNING INTRA PREDICTION FOR IMAGE COMPRESSION

Figure 5.1: Illustration of the relative positions of X, X0, X1, and Y.

Figure 5.2: Illustration of the fully-connected architecture fm. FC:p|LeakyReLU denotes
the fully-connected layer with p output neurons and LeakyReLU with slope 0.1 as non-
linear activation. Unlike FC:p|LeakyReLU, FC:p has no non-linear activation. θm gathers
the weights and biases of the 4 fully-connected layers of fm.

Figure 5.3: Illustration of the convolutional architecture gm in which gcm, gm, and gtm
denote respectively a stack of convolutional layers, the merger, and the stack of transpose
convolutional layers. φcm, φm, and φtm gather the weights and biases of respectively gcm,
gm, and gtm. φm =

{
φc,0m ,φ

c,1
m ,φm,φ

t
m

}
.
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All the elements in the context can be relevant for predicting any image block pixel.
This implies that the information associated to all spatial locations in the context has to be
merged. Unfortunately, convolutions only account for short-range spatial dependencies.
That is why the next layer in the convolutional architecture merges spatially Z0 and Z1

(see Figure 5.3). More precisely, for i ∈ [|1, l|], all the coefficients of the ith feature map
of Z0 and of the ith feature map of Z1 are merged through affine combinations. Then,
LeakyReLU with slope 0.1 is applied, yielding the merged stack Z of feature maps. Note
that this layer bears similarities with the channelwise fully-connected layer [144]. But,
unlike the channelwise fully-connected layer, it merges two stacks of feature maps of
different height and width. Its advantage over a fully-connected layer is that it contains l
times less weights.

The last task of the convolutional architecture is to merge the information of the dif-
ferent feature maps of Z. Z is thus fed into a stack of transpose convolutional layers
[125, 80]. This yields the predicted image block (see Figure 5.3). Note that all convo-
lutional layers and transpose convolutional layers, apart from the last transpose convolu-
tional layer, have LeakyReLU with slope 0.1 as non-linear activation. The last transpose
convolutional layer has no non-linear activation due to the postprocessing discussed ear-
lier.

5.2.2 Growth rate of the context size with the block size

Now that the architectures and the shape of the context are defined, the size of the
context remains to be optimized. The causal neighborhood of the image block to be
predicted used by the H.265 intra prediction modes is limited to one row of 2m + 1
decoded pixels above the block and one column of 2m decoded pixels on the left side of
the block. However, a context of such a small size is not sufficient for neural networks
as a neural network relies on the spatial distribution of the decoded pixels intensity in
the context to predict complex textures. Therefore, the context size has to be larger than
4m+ 1.

But, an issue arises when the size of the context grows too much. Indeed, if the image
block to be predicted is close to either the top edge of the decoded image D or its left
edge, a large context goes out of the bounds of the decoded image. The neural network
prediction is impossible. There is thus a tradeoff to find a suitable size for the context.

Let us look at decoded pixels above and on the left side of Y to develop intuitions
regarding this tradeoff. When m is small, the long range spatial dependencies between
these decoded pixels are not relevant for predicting Y (see Figure 5.4). In this case, the
size of the context should be small so that the above-mentioned issue is limited. However,
when m is large, such long range spatial dependencies are informative for predicting Y.
The size of the context should now be large, despite the issue. Therefore, the context size
should be a function of mq, q ≥ 1.

From there, we ran several preliminary experiments in which q ∈ {1, 2, 3} and the
PSNR between Ŷ and Y was measured. The conclusion is that a neural network yields
the best PSNRs when the size of the context grows with m2, i.e. the ratio between the
size of the context and the size of the image block to be predicted is constant. This makes
sense as, in the most common regression tasks involving neural networks, such as super-
resolution [145, 78], segmentation [128, 146] or video interpolation [147, 148, 149], the
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ratio between the input image dimension and the output image dimension also remains
constant while the height and width of the output image increase. Given the previous
conclusions, X0 is a rectangle of height 2m and width m. X1 is a rectangle of height m
and width 3m.

5.2.3 Criterion for selecting a proposed neural network
Now that the context is defined with respect tom, all that remains is to choose between

a fully-connected neural network and a convolutional one according to m.
Convolutional neural networks allow better extracting 2D local image structures with

fewer parameters compared to fully-connected neural networks [63]. This is verified by
the better prediction performances of the convolutional neural networks for m > 8 (see
Sections 5.3.5 and 5.3.6). However, this property becomes less critical for small block
sizes. We indeed experimentally show that, when m ≤ 8, for the prediction problem,
fully-connected architectures outperform convolutional architectures.

Therefore, when integrating the neural network based intra predictor into a codec like
H.265, the criterion is to predict a block of width m > 8 via a proposed convolutional
neural network, and a block of width m ≤ 8 via a fully-connected neural network.

5.2.4 Integration of the neural network based intra prediction into
H.265

A specificity of H.265 is the quadtree structure partitioning, which determines the
range of values for m and the number of available decoded pixels in the context.

Due to the partioning in H.265 of an image channel into Coding Tree Blocks (CTBs),
and the partioning of each CTB into Coding Blocks (CBs), m ∈ {4, 8, 16, 32, 64}. For
each m ∈ {4, 8}, a fully-connected neural network is constructed with internal size p =
1200. Similarly, one convolutional neural network is constructed per block width m ∈
{16, 32, 64}. The convolutional architecture for each m ∈ {16, 32, 64} is detailed in
Appendix C.1.

Another consequence of this partitioning is that the number of available decoded pix-
els in the context depends on m and the position of image block to be predicted in the
current CTB. For instance, if the block is located at the bottom of the current CTB, the
bottommostm2 pixels in the context are not decoded yet. More generally, it might happen
that a group of m × n0 pixels, n0 ∈ {0, 4, ...,m}, located at the bottom of the context, is
not decoded yet. Similarly, a group of n1 ×m pixels, n1 ∈ {0, 4, ...,m}, located furthest
to the right in the context, may not have been decoded yet (see Figure 5.5). When pixels
are not decoded yet, the solution in H.265 is to copy a decoded pixel into its neighboring
undecoded pixels. But, this copy process cannot be re-used here. Indeed, it would fool
the neural network and make it believe that, in an undecoded group of pixels and its sur-
roundings, the spatial distribution of pixels intensity follows the regularity induced by the
copy process.

Alternatively, it is possible to indicate to a neural network that the two undecoded
groups are unknown by masking them. The mask is set to the learned mean pixels intensity
over the training set so that, after subtracting it from the context, the average of each input
variable to a neural network over the training set is still near 0. More precisely regarding
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Figure 5.4: Dependencies between D and Y. The luminance channel of the first image in
the Kodak suite [150] is being encoded via H.265 with Quantization Parameter QP = 17.

Figure 5.5: Masking of the undecoded pixels in X for H.265. The luminance channel of
the first image in the Kodak suite is being encoded via H.265 with QP = 37. Here, m = 8
and n0 = n1 = 4.

Figure 5.6: Neural network based intra prediction scheme inside H.265.
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the masking, the first undecoded group in the context is fully covered by an α-mask of
height n0 and width m. The second undecoded group in the context is fully covered by an
α-mask of height m and width n1 (see Figure 5.5). The two α-masks together are denoted
Mn0,n1 . In Section 5.3.1, the neural networks will be trained so that they adapt to this
variable number of available decoded pixels in the context.

Figure 5.6 summarizes the integration of the neural network based intra prediction
scheme into H.265. The last issue to address is when no context is available. This occurs
when the context goes out of the bounds of the decoded image, i.e. the pixel at the top-left
of the context is not inside the decoded image. In this case, no neural network is used, and
a zero prediction O of Y is returned. In Figure 5.6, etest extracts X from D with respect
to the position of Y while applying Mn0,n1 to X, following Figure 5.5.

5.3 Neural networks training

This section explains how our neural networks are trained. Notably, an adaptation to
the changing number of available decoded pixels in the input context is proposed. Then,
an experiment shows the effectiveness of this approach. Moreover, this experiment com-
pares the predictions of convolutional neural networks and those of fully-connected neural
networks in terms of prediction PSNR in the case of large image blocks to be predicted.

5.3.1 Adaptation of the neural networks to the variable number of
available decoded pixels via random context masking

The fact that n0 and n1 vary during the test phase, e.g. in H.265, has to be considered
during the training phase. It would be unpractical to train one set of neural networks for
each possible pair {n0, n1}. Instead, we propose to train the neural networks while feeding
them with contexts containing a variable number of known pixels. More precisely, during
the training phase, n0 and n1 are sampled uniformly from the set {0, 4, ...,m}. This way,
the amount of available information in a training context is viewed as a random process
the neural networks have to cope with.

5.3.2 Objective function to be minimized

The goal of the prediction is to minimize the Euclidean distance between the image
block to be predicted and its estimate, or in other words to minimize the variance of
the difference between the block and its prediction [10], also called the residue. The
choice of the l2 norm is a consequence of the l2 norm chosen to measure the distortion
between an image and its reconstruction. So, this Euclidean distance is minimized to learn
the parameters θm. Moreover, regularization by l2 norm of the weights (not the biases),
denoted [θm]W , is applied:

min
θm

E [‖Yc − fm (Xc;θm)‖2] + λ ‖[θm]W‖
2
2 (5.2)

Yc = Y − α.
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The expectation E [.] is approximated by averaging over a training set of image blocks to
be predicted, each paired with its context. λ = 0.0005. For learning the parameters φm,
(5.2) is used, replacing θm with φm and fm with gm.

The optimization algorithm is ADAM [151] with mini-batches of size 100. The learn-
ing rate is 0.0001 for a fully-connected neural network and 0.0004 for a convolutional one.
The number of iterations is 800000. The learning is divided by 10 after 400000, 600000,
and 700000 iterations. Regarding the other hyperparameters of ADAM, the recommended
values [151] are used. The learning rates and λ = 0.0005 were found via an exhaus-
tive search. For a given m, a neural network is trained for each combination of learn-
ing rate and λ value in {0.007, 0.004, 0.001, 0.0007, 0.0004, 0.0001, 0.00007, 0.00004} ×
{0.001, 0.0005, 0.0001}. We select the pair of parameter values giving the largest mean
prediction PSNR on a validation set.

For both fully-connected and convolutional neural networks, the weights of all layers
excluding the first one are initialized via Xavier’s initialization [64]. Xavier’s initialization
allows to accelerate the training of several consecutive layers by making the variance
of the input to all layers equivalent. The problem concerning the first layer is that the
pixel values in the input contexts, belonging to [−α, 255− α], have a large variance,
which leads to instabilities during training. That is why, in the first layer, the variance of
the output is reduced with respect to that of the input by initializing the weights from a
Gaussian distribution with mean 0 and standard deviation 0.01. The biases of all layers
are initialized to 0.

5.3.3 Training data

The experiments in Sections 5.3.4 and 5.5 involve luminance images. That is why,
for training, image blocks to be predicted, each paired with its context, are extracted from
luminance images.

One 320×320 luminance crop I is, if possible, extracted from each RGB image in the
ILSVRC2012 ImageNet training set [129]. This yields a set Γ =

{
I(i)
}
i=1...1048717

.
The choice of the training set of pairs of contexts and image blocks to be predicted

is a critical issue. Moreover, it needs to be handled differently for fully-connected and
convolutional neural networks. Indeed, a convolutional neural network predicts large im-
age blocks with complex textures, hence its need for high power of representation (see
Appendix C.1). As a consequence, it overfits during the training phase if no training
data augmentation [152, 153, 154] is used. In constrast, a fully-connected neural net-
work predicts small blocks with simple textures, hence its need for relatively low power
of representation. Thus, it does not overfit during the training phase without training
data augmentation. Moreover, we have noticed that a training data augmentation scheme
creates a bottleneck in training time for a fully-connected neural network. Therefore,
training data augmentation is used for a convolutional neural network exclusively. The
dependencies between a block to be predicted and its context should not be altered dur-
ing the training data augmentation. Therefore, in our training data augmentation scheme,
the luminance crops in Γ are exclusively randomly rotated and flipped. Precisely, for
each step of ADAM, the scheme is Algorithm 6. srotation rotates its input image by angle
ψ ∈ {0, π / 2, π, 3π / 2} radians. sflipping flips its input image horizontally with proba-
bility 0.5. etrain is the same function as etest, except that etrain extracts

{
X(i),Y(i)

}
from
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potentially rotated and flipped I instead of extracting X from D and the position of the
extraction is random instead of being defined by the order of decoding. For training a
fully-connected neural network,

{
X

(i)
c ,Y

(i)
c

}
i=1...10000000

is generated offline from Γ, i.e.
before the training starts.

Algorithm 6 : training data augmentation for the convolutional neural networks.
Inputs: Γ, m, α.

1: for all i ∈ [|1, 100|] do
2: i ∼ U [1, 1048717]
3: ψ ∼ U

{
0, π

2
, π, 3π

2

}
4: n0, n1 ∼ U {0, 4, ...,m}
5: J = sflipping

(
srotation

(
I(i), ψ

))
6:

{
X(i),Y(i)

}
= etrain (J,m, n0, n1, α)

7: X
(i)
c = X(i) − α

8: Y
(i)
c = Y(i) − α

9: end for
Output:

{
X

(i)
c ,Y

(i)
c

}
i=1...100

.

The issue regarding this generation of training data is that the training contexts have
no quantization noise whereas, during the test phase in an image compression scheme,
a context has quantization noise. This will be discussed during several experiments in
Section 5.5.4.

5.3.4 Effectiveness of the random context masking
A natural question is whether the random context masking applied during the training

phase to adapt the neural networks to the variable number of known pixels in the context
degrades the prediction performance. To address this question, a neural network trained
with random context masking is compared to a set of neural networks, each trained with
a fixed mask size. The experiments are performed using fully-connected neural networks
for block sizes 4× 4 and 8× 8 pixels (f4 and f8), and convolutional neural networks for
block sizes 16× 16, 32× 32, and 64× 64 pixels (g16, g32, and g64).

The experiments are carried out using the 24 RGB images in the Kodak suite [150],
converted into luminance. 960 image blocks to be predicted, each paired with its con-
text, are extracted from these luminance images. Table 5.1 shows the PSNR, denoted
PSNRPNNS,m, between the image block and its prediction via PNNS, averaged over the
960 blocks, for each block width m and each test pair {n0, n1}. We see that a neural
network trained with a fixed mask size has performance in terms of PSNR that signifi-
cantly degrades when the mask size during the training phase and the test phase differ.
By contrast, a neural network trained with random context masking allows to get the best
performance (written in bold) or the second best performance (written in italic) in terms
of PSNR for all the possible mask sizes during the test phase. Moreover, when the second
best PSNR performance is achieved, the second best PSNR is very close to the best one.

A second set of experiments is related to the success rate µPNNS,m of the neural network
based intra prediction, i.e. the rate at which PNNS provides a better prediction in terms of
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Table 5.1: Comparison of (a) PNSRPNNS,4, (b) PSNRPNNS,8, (c) PSNRPNNS,16, (d)
PSNRPNNS,32, and (e) PSNRPNNS,64 for different pairs {n0, n1} during the training and
test phases. U {0, 4, ...,m} denotes the fact that, during the training phase, n0 and n1 are
uniformly drawn from the set {0, 4, 8, 12, ...,m}

.

Test {n0, n1}
Training f4 with {n0, n1}

{0, 0} {0, 4} {4, 0} {4, 4} U {0, 4}
{0, 0} 34.63 34.39 34.44 34.23 34 .57
{0, 4} 32.90 34 .39 32.82 34.23 34.42
{4, 0} 32.79 32.68 34.44 34.23 34 .39
{4, 4} 30.93 32.68 32.82 34.23 34 .20

(a)

Test {n0, n1}
Training f8 with {n0, n1}

{0, 0} {0, 8} {8, 0} {8, 8} U {0, 4, 8}
{0, 0} 31.85 31.73 31.68 31.62 31 .79
{0, 8} 30.93 31.73 30.83 31.62 31 .66
{8, 0} 30.70 30.75 31.68 31.62 31.68
{8, 8} 29.58 30.75 30.83 31.62 31 .56

(b)

Test {n0, n1}
Training g16 with {n0, n1}

{0, 0} {0, 16} {16, 0} {16, 16} U {0, 4, ..., 16}
{0, 0} 29 .23 22.69 24.85 20.76 29.25
{0, 16} 28.65 29.12 24.66 23.99 29 .11
{16, 0} 28.43 22.60 29 .06 22.99 29.12
{16, 16} 27.87 28.37 28.35 28.98 28 .97

(c)

Test {n0, n1}
Training g32 with {n0, n1}

{0, 0} {0, 32} {32, 0} {32, 32} U {0, 4, ..., 32}
{0, 0} 25.93 22.13 22.29 18.85 25 .92
{0, 32} 25.39 25.79 22.18 21.75 25 .76
{32, 0} 25.41 22.02 25.82 20.38 25 .80
{32, 32} 25.00 25.31 25.32 25.63 25 .62

(d)

Test {n0, n1}
Training g64 with {n0, n1}

{0, 0} {0, 64} {64, 0} {64, 64} U {0, 4, ..., 64}
{0, 0} 21 .46 19.41 19.78 18.17 21.47
{0, 64} 21.27 21 .35 19.68 19.95 21.38
{64, 0} 21.11 19.18 21.34 19.06 21.34
{64, 64} 20.94 21.08 21.16 21.27 21.27

(e)
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Table 5.2: Comparison of success rates in percentage (a) µPNNS,4, (b) µPNNS,8, (c) µPNNS,16,
(d) µPNNS,32, and (e) µPNNS,64 for different pairs {n0, n1} during the training and test
phases. U {0, 4, ...,m} denotes the fact that, during the training phase, n0 and n1 are
uniformly drawn from the set {0, 4, 8, 12, ...,m}

.

Test {n0, n1}
Training f4 with {n0, n1}

{0, 0} {0, 4} {4, 0} {4, 4} U {0, 4}
{0, 0} 22% 17% 19% 16% 19%
{0, 4} 15% 18% 13% 15% 17%
{4, 0} 11% 11% 20% 17% 19%
{4, 4} 11% 12% 13% 16% 15%

(a)

Test {n0, n1}
Training f8 with {n0, n1}

{0, 0} {0, 8} {8, 0} {8, 8} U {0, 4, 8}
{0, 0} 33% 30% 30% 30% 32%
{0, 8} 21% 31% 20% 31% 29%
{8, 0} 21% 20% 34% 31% 32%
{8, 8} 16% 20% 20% 31% 30%

(b)

Test {n0, n1}
Training g16 with {n0, n1}

{0, 0} {0, 16} {16, 0} {16, 16} U {0, 4, ..., 16}
{0, 0} 55% 18% 20% 9% 54%
{0, 16} 42% 51% 18% 18% 50%
{16, 0} 40% 15% 51% 17% 53%
{16, 16} 33% 36% 40% 52% 49%

(c)

Test {n0, n1}
Training g32 with {n0, n1}

{0, 0} {0, 32} {32, 0} {32, 32} U {0, 4, ..., 32}
{0, 0} 63% 30% 30% 14% 63%
{0, 32} 54% 61% 27% 27% 61%
{32, 0} 54% 28% 63% 22% 62%
{32, 32} 46% 53% 52% 60% 60%

(d)

Test {n0, n1}
Training g64 with {n0, n1}

{0, 0} {0, 64} {64, 0} {64, 64} U {0, 4, ..., 64}
{0, 0} 68% 39% 43% 27% 67%
{0, 64} 63% 64% 41% 44% 65%
{64, 0} 62% 36% 66% 38% 68%
{64, 64} 57% 61% 63% 64% 66%

(e)
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(a) (b)
(c) (d) (e)

Figure 5.7: Prediction of a block of size 16× 16 pixels via the best H.265 mode in terms
of PSNR and PNNS: (a) H.265 causal neighborhood, (b) PNNS context, (c) block to be
predicted, (d) predicted block via the best H.265 mode (of index 27) in terms of PSNR,
and (e) predicted block via PNNS.

PSNR than any other prediction of H.265. Again, the neural network trained with random
context masking achieves the best rate (written in bold) or the second best rate (written in
italic), where the second best rate is always very close to the best rate (see Table 5.2).

Therefore, we conclude that random context masking does not alter the performance
of the trained neural networks. Besides, random context masking is an effective way of
dealing with the changing number of known pixels in the context. Section 5.5 will discuss
rate-distortion performance. Note that, in order to fix n0 and n1 during the test phase, the
previous experiments have been carried out outside H.265.

5.3.5 Relevance of convolutional networks for predicting large blocks
Let us have a look at the overall efficiency of our convolutional neural networks for

predicting large image blocks before comparing convolutional neural networks and fully-
connected neural networks in this case. Figures 5.7 to 5.14 each compares the prediction
of an image block provided by the best H.265 intra prediction mode in terms of prediction
PSNR and the prediction provided by PNNS. Note that, the neural networks of PNNS
yielding these predictions are trained via random context masking. Note also that n0 =
n1 = 0 during the test phase. In Figure 5.13, the image block to be predicted contains
the frame of a motorbike. There is no better H.265 intra prediction mode in terms of
prediction PSNR than the DC mode in this case. In contrast, PNNS can predict a coarse
version of the frame of the motorbike. In Figure 5.14, the block to be predicted contains
lines of various directions. PNNS predicts a combination of diagonal lines, vertical lines
and horizontal lines, which is not feasible for a H.265 intra prediction mode. However,
Figures 5.11 and 5.12 show failure cases for the convolutional neural network. The quality
of the prediction provided by the convolutional neural network looks worse than that
provided by the best H.265 mode. Indeed, the prediction PSNRs are 27.09 dB and 23.85
dB for the H.265 mode of index 25 and the convolutional neural network respectively in
Figure 5.11. They are 29.35 dB and 27.37 dB for the H.265 mode of index 29 and the
convolutional neural network respectively in Figure 5.12. Therefore, unlike the H.265
intra prediction modes, the convolutional neural networks of PNNS can model a large set
of complex textures found in large image blocks.

Table 5.3a compares our set of neural networks {f4, f8, g16, g32, g64} with the set of
4 fully-connected neural networks in [102], called Intra Prediction Fully-Connected Net-
works Single (IPFCN-S), in terms of prediction PSNR. Single refers to the single set of 4
fully-connected neural networks. This differs from the two sets of fully-connected neural
networks mentioned later on in Section 5.5.3. The 4 fully-connected neural networks in
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(a) (b)
(c) (d) (e)

Figure 5.8: Prediction of a block of size 16× 16 pixels via the best H.265 mode in terms
of PSNR and PNNS: (a) H.265 causal neighborhood, (b) PNNS context, (c) block to be
predicted, (d) predicted block via the best H.265 mode (planar) in terms of PSNR, and (e)
predicted block via PNNS.

(a) (b)
(c) (d) (e)

Figure 5.9: Prediction of a block of size 16× 16 pixels via the best H.265 mode in terms
of PSNR and PNNS: (a) H.265 causal neighborhood, (b) PNNS context, (c) block to be
predicted, (d) predicted block via the best H.265 mode (planar) in terms of PSNR, and (e)
predicted block via PNNS.

(a) (b)
(c) (d) (e)

Figure 5.10: Prediction of a block of size 16× 16 pixels via the best H.265 mode in terms
of PSNR and PNNS: (a) H.265 causal neighborhood, (b) PNNS context, (c) block to be
predicted, (d) predicted block via the best H.265 mode (of index 11) in terms of PSNR,
and (e) predicted block via PNNS.

(a) (b)
(c) (d) (e)

Figure 5.11: Prediction of a block of size 16× 16 pixels via the best H.265 mode in terms
of PSNR and PNNS: (a) H.265 causal neighborhood, (b) PNNS context, (c) block to be
predicted, (d) predicted block via the best H.265 mode (of index 25) in terms of PSNR,
and (e) predicted block via PNNS.
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(a) (b)
(c) (d) (e)

Figure 5.12: Prediction of a block of size 16× 16 pixels via the best H.265 mode in terms
of PSNR and PNNS: (a) H.265 causal neighborhood, (b) PNNS context, (c) block to be
predicted, (d) predicted block via the best H.265 mode (of index 29) in terms of PSNR,
and (e) predicted block via PNNS.

(a) (b)

(c) (d) (e)

Figure 5.13: Prediction of a block of size 64× 64 pixels via the best H.265 mode in terms
of PSNR and PNNS: (a) H.265 causal neighborhood, (b) PNNS context, (c) block to be
predicted, (d) predicted block via the best H.265 mode (DC) in terms of PSNR, and (e)
predicted block via PNNS.

(a) (b)

(c) (d) (e)

Figure 5.14: Prediction of a block of size 64× 64 pixels via the best H.265 mode in terms
of PSNR and PNNS: (a) H.265 causal neighborhood, (b) PNNS context, (c) block to be
predicted, (d) predicted block via the best H.265 mode (planar) in terms of PSNR, and (e)
predicted block via PNNS.
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Table 5.3: Comparison of (a) PSNRPNNS,m and PSNRIPFCN-S,m [102] and (b) success rates
µPNNS,m and µIPFCN-S,m [102] in percentage for m ∈ {4, 8, 16, 32, 64}. f4, f8, g16, g32, and
g64 are trained via random context masking. During the test phase, n0 = n1 = 0. Note
that, there is no comparison for block width 64 pixels as this block width is not considered
in [102].

m PSNRPNNS,m PSNRIPFCN-S,m [102]
4 34.57 33.70
8 32.01 31.44
16 29.25 28.71
32 25.52 24.96
64 21.47 −

(a)

m µPNNS,m µIPFCN-S,m [102]
4 19% 14%
8 31% 26%
16 54% 35%
32 60% 41%
64 67% −

(b)

[102] predict image blocks of sizes 4 × 4, 8 × 8, 16 × 16, and 32 × 32 pixels respec-
tively. Let PSNRIPFCN-S,m be the PSNR between the image block and its prediction via
IPFCN-S, averaged over the 960 blocks. We thank the authors in [102] for sharing the
trained model of each fully-connected neural network of IPFCN-S. Table 5.3a reveals that
the performance of PNNS in terms of prediction PSNR is better than that of IPFCN-S for
all sizes of image blocks to be predicted. More interestingly, when looking at the success
rate µIPFCN-S,m of IPFCN-S, i.e. the rate at which IPFCN-S provides a better prediction in
terms of PSNR than any other prediction of H.265, the difference µPNNS,m−µIPFCN-S,m in-
creases with m (see Table 5.3b). This shows that convolutional neural networks are more
appropriate than fully-connected ones in terms of prediction PSNR for large block sizes.

5.3.6 Justification of fully-connected neural networks for predicting
small image blocks

Now that the benefit of using convolutional neural networks rather than fully-connected
ones for predicting large image blocks is shown, the choice of fully-connected neural net-
works for predicting small blocks must be justified. Table 5.4 displays the average PSNR
between the image block to be predicted and its prediction over the 960 blocks for both a
fully-connected architecture and a convolutional one for each block widthm ∈ {4, 8, 16}.
The two fully-connected architectures f4 and f8 are already presented in Figure 5.2. The
fully-connected architecture f16 is also that in Figure 5.2. The three convolutional ar-
chitectures g4, g8, and g16 are shown in Table C.1 in Appendix C.1. We see that the
convolutional neural network provides better prediction PSNRs on average than its fully-
connected counterpart only when m > 8. This justifies why f4 and f8 are selected for
predicting blocks of width 4 and 8 pixels respectively.

5.3.7 Different objective functions

In the objective function to be minimized over the neural network parameters, the
distortion term involves the L2 norm of the difference between the image block to be pre-
dicted and its estimate (see (5.2)). We also tried an alternative. This alternative consisted
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Table 5.4: Comparison of the average prediction PSNR given by the fully-connected ar-
chitecture and that given by the convolutional one for different pairs {n0, n1} during the
test phase: (a) PSNRPNNS,4 given by f4 and g4, (b) PSNRPNNS,8 given by f8 and g8, and (c)
PSNRPNNS,16 given by f16 and g16. All neural networks are trained by drawing n0 and n1

uniformly from the set U {0, 4, 8, 12, ...,m}.

Test {n0, n1} f4 g4
{0, 0} 34.57 33.82
{0, 4} 34.42 33.66
{4, 0} 34.39 33.79
{4, 4} 34.20 33.54

(a)

Test {n0, n1} f8 g8
{0, 0} 31.79 31.40
{0, 8} 31.66 31.41
{8, 0} 31.68 31.32
{8, 8} 31.56 31.32

(b)

Test {n0, n1} f16 g16
{0, 0} 29.07 29.25
{0, 16} 28.95 29.11
{16, 0} 28.95 29.12
{16, 16} 28.86 28.97

(c)

in replacing the L2 norm by the L1 norm. The choice of the L1 norm could be justified by
the fact that, in H.265, for a given image block to be predicted, the criterion for selecting
several intra prediction modes among all modes involves the sum of absolute differences
between the image block to be predicted and its estimate. But, this alternative distortion
term did not yield any increase of the mean prediction PSNRs compared to those shown
in Table 5.1.

A common alternative to the regularization by L2 norm of the weights is the regu-
larization by L1 norm of the weights [75]. Both approaches have been tested and it was
observed that the regularization by L2 norm of the weights slightly reduces the mean
prediction error on a validation set at the end of the training.

5.4 Signalling of the prediction modes in H.265

Before moving on to the experiments in Section 5.5 where PNNS is integrated into a
H.265 codec, the last issue is the signalling of the prediction modes inside H.265. Indeed,
the integration of PNNS into H.265 requires to revisit the way all modes are signalled.
Section 5.4 describes two ways of signalling PNNS into H.265. The purpose of setting
up these two ways is to identify later on which signalling yields the largest PSNR-rate
performance gains and discuss why a difference between them exists. The first signalling
is the substitution of a H.265 intra prediction mode with PNNS. The second signalling is
a switch between PNNS and the H.265 intra prediction modes.
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(a) (b) (c)

(d) (e) (f)

Figure 5.15: Analysis of (a, d) ν4, (b, e) ν16, and (c, f) ν64 for each mode. 100 luminance
crops from either (a, b, c) the BSDS300 dataset or (d, e, f) the INRIA Holidays dataset
are encoded via H.265 with QP = 32.

Table 5.5: Signalling of the modes described in [102].

Mode codeword
Neural network mode 1
First MPM 010
Second MPM 0110
Third MPM 0111
Non-MPM and non-neural network mode 00 {5bits}

5.4.1 Substitution of a H.265 intra prediction mode with PNNS
Section 5.4.1 first describes how H.265 selects the best of its 35 intra prediction modes

for predicting a given image block. Based on this, a criterion for finding the mode to be
replaced with PNNS is built.

To select the best of its 35 intra prediction modes for predicting a given image block,
H.265 proceeds in two steps. During the first step, the 35 modes compete with one another.
Each mode takes the causal neighborhood of the block to compute a different prediction
of the block. The sum of absolute differences between the input block and its prediction
is linearly combined with the mode signalling cost, yielding the mode fast cost 2. The
modes associated to a given number of lowest fast costs are put into a fast list. During the
second step, only the modes in the fast list compete with one another. The mode with the
lowest rate-distortion cost is the best mode.

Knowing this, it seems natural to replace the mode that achieves the least frequently

2. fast stresses that the cost computation is relatively low.
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the lowest rate-distortion cost. Therefore, the frequency of interest νm ∈ [0, 1] ,m ∈
{4, 8, 16, 32, 64}, is the number of times a mode has the lowest rate-distortion cost when
m = m divided by the number of times the above-mentioned selection process is run
when m = m. To be generic, νm should not be associated to luminance images of a
specific type. That is why 100 480 × 320 luminance crops extracted from the BSDS300
dataset [141] and 100 1600 × 1200 luminance crops extracted from the INRIA Holidays
dataset [155] are encoded with H.265 to compute νm. In this case, the mode of index 18
has on average the lowest νm when m ∈ {4, 16, 32, 64} (see Figure 5.15). Note that this
conclusion is verified with QP ∈ {22, 27, 32, 37, 42}. Note also that statistics about the
frequency of selection of each H.265 intra prediction mode have already been analyzed
[156, 157]. But, they are incomplete for our case as they take into account few videos and
do not differentiate each value of m. Thus, PNNS replaces the H.265 mode of index 18.

As explained thereafter, the signalling cost the H.265 intra prediction mode of index 18
is variable and can be relatively large. When substituting the H.265 intra prediction mode
of index 18 with PNNS, this variable cost transfers to PNNS. In contrast, the purpose
of the second signalling of PNNS inside H.265 is to induce a fixed and relatively low
signalling cost of PNNS.

5.4.2 Switch between PNNS and the H.265 intra prediction modes

The authors in [102] propose to signal the neural network mode with a single bit. This
leads to the signalling of the modes summarized in Table 5.5. In addition, we modify the
process of selecting the 3 Most Probable Modes (MPMs) [39] of the current PB to make
the signalling of the modes even more efficient. More precisely, if the neural network
mode is the mode selected for predicting the PB above the current PB or the PB on the
left side of the current PB, then the neural network mode belongs to the MPMs of the
current PB. As a result, redundancy appears as the neural network mode has not only
the codeword 1 but also the codeword of a MPM. That is why, in the case where PNNS
belongs to the MPMs of the current PB, we substitute each MPM being PNNS with either
planar, DC or the vertical mode of index 26 such that the 3 MPMs of the current PB are
different from each other. Besides, planar takes priority over DC, DC having priority over
the vertical mode of index 26. See the code1 for further details regarding this choice.

The key remark concerning Section 5.4 is that there is a tradeoff between the signalling
cost of PNNS versus the signalling cost of the H.265 intra prediction modes. Indeed, the
substitution (see Section 5.4.1) keeps the signalling cost of the H.265 intra prediction
modes constant but the signalling cost of PNNS can be up to 6 bits. Instead, the switch
decreases the signalling cost of PNNS and raises that of each H.265 intra prediction mode.

5.5 Experiments

Now that two ways of signalling PNNS inside H.265 are specified, these two ways
can be compared in terms of PSNR-rate performance gains. Moreover, PNNS integrated
into H.265 can be compared to IPFCN-S integrated into H.265 in terms of PSNR-rate
performance gains.
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5.5.1 Experimental settings
The H.265 HM16.15 software is used in all the following experiments. The configu-

ration is all-intra main. Note that the following settings only mention the integration of
PNNS into H.265 via the substitution of the H.265 intra prediction mode of index 18 with
PNNS, so called PNNS substitution. But, the same settings apply to the integration of
PNNS into H.265 via the switch between PNNS and the H.265 intra prediction modes, so
called PNNS switch. The PSNR-rate performance of PNNS substitution with respect to
H.265 is computed using Bjontegaard’s metric, which is the average saving in bitrate of
the rate-distortion curve of PNNS substitution with respect to the rate-distortion curve of
H.265.

It is interesting to analyze whether there exists a range of bitrates for which PNNS
substitution is more beneficial. That is why 3 different ranges of bitrates are presented.
The first range, called low rate, refers to QP ∈ {32, 34, 37, 39, 42}. The second range,
called high rate, corresponds to QP ∈ {17, 19, 22, 24, 27}. The third range, called all rate,
computes Bjontegaard’s metric with the complete set of QP values from 17 to 42. The
H.265 common test condition [158] recommends {22, 27, 32, 37} as QPs setting. Yet, we
add several QPs to the recommended setting. This is because, to compute Bjontegaard’s
metric for low rate for instance, a polynom of degree 3 is fitted to rate-distortion points,
and at least 4 rate-distortion points, i.e. 4 different QPs, are needed for a good fit.

Four test sets are used to cover a wide variety of images. The first test set contains
the luminance channels of respectively Barbara, Lena, Mandrill and Peppers. The second
test set contains the 24 RGB images in the Kodak suite, converted into luminance. The
third test set gathers the 13 videos sequences of the classes B, C, and D of the H.265 CTC,
converted into luminance. The fourth test set contains 6 widely used videos sequences 3,
converted into luminance. Our work is dedicated to image coding. That is why only
the first frame of each video sequence in the third and fourth test sets are considered. It
is important to note that the training in Section 5.3, the extraction of the frequency of
selection of each H.265 intra prediction mode in Section 5.4, and the current experiments
involve 7 distinct sets of luminance images. This way, PNNS is not tuned for any specific
test luminance image.

5.5.2 Analysis of the two ways of signalling the PNNS mode inside
H.265

The most striking observation is that the PSNR-rate performance gains generated by
PNNS switch are always larger than those provided by PNNS substitution (see Tables 5.6,
5.7, 5.8, and 5.9). This has two explanations. Firstly, PNNS substitution is hampered
by the suppression of the original H.265 intra prediction mode of index 18. Indeed, the
PSNR-rate performance gain is degraded when the original H.265 intra prediction mode of
index 18 is a relevant mode for encoding a luminance image. The most telling example is
the luminance channel of the first frame of BasketballDrill. When this channel is encoded
via H.265, for the original H.265 intra prediction mode of index 18, ν4 = 0.085, ν8 =
0.100, ν16 = 0.116, ν32 = 0.085, and ν64 = 0.088. This means that, compared to the
average statistics in Figure 5.15, the original H.265 intra prediction mode of index 18

3. ftp://ftp.tnt.uni-hannover.de/pub/svc/testsequences/

ftp://ftp.tnt.uni-hannover.de/pub/svc/testsequences/
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Table 5.6: PSNR-rate performance gains compared with H.265 of PNNS substitution and
PNNS switch for the first test set.

Image name
PSNR-rate performance gain

PNNS substitution PNNS switch
Low rate High rate All rate All rate

Barbara (480× 384) 2.47% 1.31% 1.79% 2.77%
Lena (512× 512) 1.68% 2.11% 2.05% 3.78%
Mandrill (512× 512) 0.77% 0.58% 0.67% 1.46%
Peppers (512× 512) 1.61% 1.50% 1.71% 3.63%

Table 5.7: PSNR-rate performance gains compared with H.265 of PNNS substitution and
PNNS switch for the second test set. The Kodak image size is 768× 512 pixels.

Kodak image index
PSNR-rate performance gain

PNNS substitution PNNS switch
Low rate High rate All rate All rate

1 1.20% 0.74% 0.95% 2.06%
2 0.59% 0.91% 0.88% 2.16%
3 0.91% 2.04% 1.59% 3.22%
4 1.78% 1.75% 1.80% 3.23%
5 1.40% 2.45% 2.08% 4.01%
6 1.43% 0.81% 1.12% 2.11%
7 1.12% 2.36% 1.76% 3.86%
8 1.01% 0.83% 0.98% 1.79%
9 1.54% 1.43% 1.46% 3.05%
10 2.20% 2.37% 2.42% 3.84%
11 0.93% 0.91% 1.00% 2.41%
12 0.96% 1.02% 1.07% 2.33%
13 0.83% 0.5% 0.64% 1.76%
14 0.96% 1.28% 1.20% 2.76%
15 1.53% 1.19% 1.37% 2.62%
16 0.66% 0.62% 0.70% 1.69%
17 1.35% 2.03% 1.80% 3.69%
18 0.68% 0.96% 0.88% 1.98%
19 1.44% 0.86% 1.05% 2.06%
20 0.92% 1.61% 1.38% 2.71%
21 0.99% 0.83% 0.94% 2.28%
22 0.56% 0.88% 0.78% 2.22%
23 1.20% 2.45% 2.03% 4.20%
24 0.68% 0.87% 0.80% 1.73%
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Table 5.8: PSNR-rate performance gains compared with H.265 of PNNS substitution and
PNNS switch for the third test set.

Video sequence
PSNR-rate performance gain

PNNS substitution PNNS switch
Low rate High rate All rate All rate

B (1920× 1080)

BQTerrace 1.66% 0.95% 1.29% 2.44%
BasketballDrive 4.80% 2.87% 3.65% 5.20%
Cactus 1.48% 1.51% 1.58% 3.05%
ParkScene 0.64% 1.16% 0.97% 2.58%
Kimono 1.28% 1.55% 1.65% 2.92%

C (832× 480)

BQMall 1.20% 1.30% 1.30% 3.14%
BasketballDrill −1.18% 1.34% 0.39% 3.50%
RaceHorsesC 1.34% 1.58% 1.53% 3.29%
PartyScene 1.02% 0.91% 0.96% 2.42%

D (416× 240)

BQSquare 0.79% 0.86% 0.86% 2.21%
BasketballPass 1.61% 1.80% 1.48% 3.08%
BlowingBubbles 0.66% 1.22% 1.02% 2.65%
RaceHorses 1.32% 1.63% 1.54% 3.28%

Table 5.9: PSNR-rate performance gains compared with H.265 of PNNS substitution and
PNNS switch for the fourth test set.

Video sequence
PSNR-rate performance gain

PNNS substitution PNNS switch
Low rate High rate All rate All rate

Bus (352× 288) 1.67% 1.17% 1.45% 2.74%
City (704× 576) 1.55% 1.19% 1.35% 2.51%
Crew (704× 576) 1.56% 1.24% 1.38% 3.10%
Football (352× 288) 1.44% 1.78% 1.78% 3.52%
Harbour (704× 576) 1.80% 0.73% 1.25% 2.51%
Soccer (704× 576) 0.96% 0.95% 1.03% 1.90%

is used approximatively 10 times more frequently. This explains why the PSNR-rate
performance gain provided by PNNS substitution is only 0.39% (see Table 5.8). The other
way round, the luminance channel of the first frame of BasketballDrive is an insightful
example. When this channel is encoded via H.265, for the original H.265 intra prediction
mode of index 18, ν4 = 0.004, ν8 = 0.005, ν16 = 0.004, ν32 = 0.004, and ν64 = 0.000.
In this case, the original H.265 intra prediction mode of index 18 is almost never used.
PNNS substitution thus yields 3.65% of PSNR-rate performance gain.

There is another explanation for the gap in PSNR-rate performance gain between
PNNS substitution and PNNS switch. As shown in Section 5.3.5, PNNS is able to model
a large set of complex textures found in large image blocks. PNNS is also able to model
a large set of simple textures found in small blocks. Following the principle of Huffman
Coding, an intra prediction mode that gives on average predictions of good quality, such
as PNNS, should be signalled using fewer bits. However, an intra prediction mode that
seldom yields the highest prediction quality, such as the H.265 intra prediction mode of
index 4, should be signalled using more bits. This corresponds exactly to the principle of
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(a) (b) (c)

Figure 5.16: Comparison of (a) a 100 × 100 crop of the luminance channel of the first
frame of BQMall, (b) its reconstruction via H.265, and (c) its reconstruction via PNNS
switch. In the two cases (b) and (c), QP = 27. For the entire luminance channel of the first
frame of BQMall, for H.265, {rate = 0.670 bpp,PSNR = 38.569 dB}. For PNNS switch,
{rate = 0.644 bpp,PSNR = 38.513 dB}.

(a) (b) (c)

Figure 5.17: Same comparison as in 5.16, using the luminance channel of the first frame
of BlowingBubbles and QP = 32. For H.265, {rate = 0.538 bpp,PSNR = 33.462 dB}.
For PNNS switch, {rate = 0.516 bpp,PSNR = 33.435 dB}.

(a) (b) (c)

Figure 5.18: Same comparison as in 5.16, using the luminance channel of the first frame
of City and QP = 37. For H.265, {rate = 0.257 bpp,PSNR = 30.992 dB}. For PNNS
switch, {rate = 0.249 bpp,PSNR = 30.972 dB}.
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the switch between PNNS and the H.265 intra prediction modes. Therefore, PNNS switch
beats PNNS substitution in terms of PSNR-rate performance gains. Figures 5.16, 5.17,
and 5.18 each compares the reconstruction of a luminance image via H.265 and its re-
construction via PNNS switch at similar reconstruction PSNRs. More visual comparisons
are available online1. Appendix C.3 shows the intra prediction mode selected for each PB
in H.265, PNNS substitution, and PNNS switch. This reveals that, in PNNS switch, the
PNNS mode is very often selected.

Another interesting conclusion emerges when comparing low rate and high rate. There
is no specific range of bitrate for which PNNS substitution is more profitable (see Tables
5.6, 5.7, 5.8, and 5.9). Note that, in few cases, the PNSR-rate performance gain in all rate
is slightly larger than those in low rate and high rate. This happens when the area between
the rate-distortion curve of PNNS substitution and the rate-distortion curve of H.265 gets
relatively large in the range QP ∈ [27, 32].

5.5.3 Comparison with the state-of-the-art

Now, PNNS switch is compared to IPFCN-S integrated into H.265 in terms of PSNR-
rate performance gains. It is important to note that the authors in [102] develop two
versions of their set of 4 fully-connected neural networks for intra prediction. The first
version, called IPFCN-S, is the one used in Section 5.3.5. The 4 fully-connected neural
networks are trained on an unconstrained training set of image blocks to be predicted, each
paired with its context. The second version is called Intra Prediction Fully-Connected
Networks Double (IPFCN-D). The training data are dissociated into two groups. One
group gathers image blocks exhibiting textures with angular directions, each paired with
its context. The other group gathers image blocks exhibiting textures with non-angular di-
rections, each paired with its context. In IPFCN-D, there are two sets of 4 fully-connected
neural networks, each set being trained on a different group of training data. Then, the
two sets are integrated into H.265. IPFCN-D gives slightly larger PSNR-rate performance
gains than IPFCN-S. The comparison below involves IPFCN-S as our training set is not
dissociated. But, this dissociation could also be applied to the training set of the neural
networks of PNNS.

PNNS switch and IPFCN-S integrated into H.265 are compared on the third test set.
The PSNR-rate performance gains of IPFCN-S are reported from [102]. We observe that
the PSNR-rate performance gains of PNNS switch are larger than those of IPFCN-S inte-
grated into H.265, apart from the case of the video sequence ParkScene (see Table 5.10).
Note that, for several videos sequences, the difference in PSNR-rate performance gains
between PNNS switch and IPFCN-S integrated into H.265 is significant. For instance, for
the video sequence BasketballPass, the PSNR-rate performance gain of PNNS switch is
3.08% whereas that of IPFCN-S integrated into H.265 is 1.1%. Therefore, the use of both
fully-connected neural networks and convolutional neural networks for intra prediction,
the training with random context masking and the training data augmentation for training
the convolutional neural networks of PNNS help boost the PSNR-rate performance gains.
This is consistent with the conclusion in Section 5.3.5. Note that, even when comparing
the PSNR-rate performance gains of PNNS switch with those of IPFCN-D integrated into
H.265 which are reported in [102], PNNS switch often yields larger gains.
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Table 5.10: PSNR-rate performance gains of our proposed PNNS switch and IPFCN-S
[102] inside H.265 for the third test set. The reference is H.265.

Video sequence
PSNR-rate performance gain

our PNNS switch IPFCN-S [102] inside H.265

B (1920× 1080)

BQTerrace 2.44% 1.8%
BasketballDrive 5.20% 3.4%
Cactus 3.05% 2.7%
ParkScene 2.58% 2.8%
Kimono 2.92% 2.7%

C (832× 480)

BQMall 3.14% 2.0%
BasketballDrill 3.50% 1.1%
RaceHorsesC 3.29% 2.9%
PartyScene 2.42% 1.3%

D (412× 240)

BQSquare 2.21% 0.6%
BasketballPass 3.08% 1.1%
BlowingBubbles 2.65% 1.6%
RaceHorses 3.28% 2.8%

Table 5.11: Average computation time ratio with respect to H.265. 1 means that the
computation time of the method is as long as that of H.265.

our PNNS switch IPFCN-S [102] inside H.265
Encoding 51 46
Decoding 191 190

5.5.4 Robustness of the neural networks to quantization noise in their
input context

Section 5.5.3 just showed the effectiveness of the proposed PNNS in a rate-distortion
sense. The last issue is that the neural networks of PNNS are trained on contexts without
quantization noise but, during the test phase inside H.265, these neural networks are fed
with contexts containing H.265 quantization noise. It is thus natural to ask whether, during
the test phase inside H.265, the quality of the predictions provided by the neural networks
of PNNS is degraded by the fact that no quantization noise exists in the contexts during
their training.

To answer this, let us consider two different PNNS switch. In the first PNNS switch,
our 5 neural networks, one for each block size, are dedicated to all QPs. Note that the
first PNNS switch corresponds to the PNNS switch that has been used so far. In the second
PNNS switch, a first set of 5 neural networks is dedicated to QP ≤ 27 whereas a second
set is dedicated to QP > 27. Unlike the first set of neural networks, the second set is
trained on contexts that are encoded and decoded via H.265 with QP ∼ U {32, 37, 42}
for each training context. For the third test set, the difference in PSNR-rate performance
gain between the first PNNS switch and the second PNNS switch ranges between 0.0% and
0.1%. This means that there is no need to train the neural networks of PNNS on contexts
with quantization noise.
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(a) (b) (c)

(d) (e) (f)

Figure 5.19: Analysis of (a) ε4, (b) ε16, (c) ε64, (d) ν4, (e) ν16, and (f) ν64 for each mode.
100 480× 320 luminance crops from the BSDS300 dataset are encoded via PNNS switch
with QP = 32. The PNNS mode is the mode of index 35 in this figure.

5.5.5 Complexity

A fully-connected neural network needs an overcomplete representation to provide
predictions with high quality. That is why the number of neurons in each fully-connected
layer is usually much larger than the size of the context. Likewise, the number of feature
maps in each convolutional layer of a convolutional neural network is usually large. This
incurs a high computational cost. Table 5.11 gives the encoding and decoding times for
PNNS switch and IPFCN-S, showing that PNNS switch has larger running times. But,
the differences in running times between PNNS switch and IPFCN-S are not large in
comparison with the increases of running times for both approaches with respect to H.265.
A Bi-Xeon CPU E5-2620 is used for PNNS switch.

5.5.6 Memory consumption

In addition to the complexity, another issue arising from the integration of PNNS into
H.265 is the increase of the memory consumption. For a regular intra prediction mode in
H.265, the context around the image block to be predicted consists of one row of 2m+ 1
pixels above the block and one column of 2m pixels on the left side of the block. However,
for a neural network of PNNS, the context around the image block consists of m rows of
3m pixels above the block and m columns of 2m pixels on the left side of the block (see
Figure 5.5). Therefore, the hardware must be adapted to handle the large memory required
by the input contexts to the neural networks of PNNS.
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(a) (b) (c)

(d) (e) (f)

Figure 5.20: Analysis of (a) ε4, (b) ε16, (c) ε64, (d) ν4, (e) ν16, and (f) ν64 for each mode.
100 1600×1200 luminance crops from the INRIA Holidays dataset are encoded via PNNS
switch with QP = 32. The PNNS mode is the mode of index 35 in this figure.

5.5.7 Need for a rate-distortion objective function?

In an image codec, the ultimate criterion for selecting a prediction function among a
predefined set of prediction functions must be a rate-distortion criterion. For example, the
criterion in H.265 for selecting the best mode in terms of rate-distortion among the set
of intra prediction modes is briefly described in Section 5.4.1. However, as mentioned in
Section 5.3.2, the objective function for training a neural network of PNNS is based on
the Euclidean distance between the image block to be predicted and the neural network
prediction. Therefore, it is intuitive to think that the neural networks of PNNS should
become more efficient for the intra prediction inside an image codec when a term reflect-
ing the cost of encoding the residue of prediction is added to the objective function to be
minimized.

To verify whether this intuition is correct, we can compare two frequencies inside
PNNS switch. The first frequency εm ∈ [0, 1], m ∈ {4, 8, 16, 32, 64}, is the number of
times an intra prediction mode has the lowest fast cost when the width of the block to be
predicted m = m divided by the number of times the entire process of selecting the best
intra prediction mode in terms of rate-distortion is run when m = m. The second fre-
quency νm ∈ [0, 1] is defined in Section 5.4.1. In fact, ∀m ∈ {4, 8, 16, 32, 64}, QP = 32,
for the PNNS mode, εm is slightly smaller than νm (see Figures 5.19 and 5.20). This
means that the PNNS mode is not penalized by the rate-distortion selection occuring af-
ter the fast selection of the intra prediction modes. This surprising observation may be
justified by the fact that a neural network of PNNS tends to provide a blurry prediction
of the image block to be predicted, implying that the residue of prediction rarely contains
large coefficients in absolute value, which usually incur large encoding costs. Given this
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conclusion, we did not give priority to the search for an objective function that reflects
the rate-distortion target of image compression in this work on intra prediction. Note that,
when the QP value changes, there exist exceptions to the previous observation. For in-
stance, for m = 64, QP = 22, for the PNNS mode, ε64 − ν64 = 0.1 using the luminance
crops from the INRIA Holidays dataset.

5.6 Conclusion
To conclude, a set of neural network architectures, including both fully-connected

neural networks and convolutional neural networks, is presented for intra prediction. It
is shown that fully-connected neural networks are well adapted to the prediction of im-
age blocks of small sizes whereas convolutional ones provide better predictions in large
blocks. Our neural networks are trained via a random context masking of their context
so that they adapt to the variable number of available decoded pixels for the prediction
in an image compression scheme. When integrated into a H.265 codec, the proposed
neural networks are shown to give rate-distortion performance gains compared with the
H.265 intra prediction. Moreover, it is shown that these neural networks can cope with
the quantization noise present in the prediction context, i.e. they can be trained on undis-
torted contexts, and then generalize well on distorted contexts in an image compression
scheme. This greatly simplifies training as quantization noise does not need to be taken
into account during the training phase.



Chapter 6

Conclusion and perspectives

6.1 Conclusion

This thesis investigated the learning of a transform and the learning of an intra predic-
tor for image compression via neural networks. The results of rate-distortion optimality
for transform coding requires assumptions on the distribution of the image pixels that do
not exactly meet their true distribution (see Section 1.2). Likewise, the complex distribu-
tion of the image pixels is not fully considered in the design of the classic prediction filters
(see Section 1.2). The learning from a set of natural images is a way to discover a model
of the transform and a model of the prediction filter that best suit the true distribution of
the image pixels.

The major challenge regarding the learning of a transform for image compression is
to obtain a learned transform that is efficient in terms of rate-distortion while being able
to compress at different rates during the test phase, which is called rate-agnostic. To
achieve rate-distortion efficiency, it is essential to integrate into the training of a deep
autoencoder a reliable measure of the rate. That is why a first approach is to train a
deep sparse autoencoder using a constraint on the number of non-zero coefficients in
the sparse representation of the image and approximate the rate via a function of the
number of the non-zero coefficients in this representation. In this case, a way to make
the deep sparse autoencoder rate-agnostic is to drive the sparsity parameter stochastically
during the training phase. A second approach to reach rate-distortion efficiency is to insert
into the objective function to be minimized during the training of the deep autoencoder
a term approximating the entropy of the quantized representation. In this case, during
the test phase, the quantization step sizes can be increased from their value at the end
of the training phase in order to compress at multiple rates. This means that the image
compression scheme is rate-agnostic by influencing the uniform scalar quantizer.

Regarding the learning of an intra predictor for image compression via neural net-
works, the challenge is that the learned intra predictor must be adaptive in a number of
respects. The intra predictor must be able to predict accurately blocks of different sizes.
That is why we propose a set of neural network architectures. Fully-connected archi-
tectures are dedicated to the prediction of blocks of small sizes whereas convolutional
architectures are dedicated to the prediction of large blocks. Moreover, in the input con-
text to a neural network, pixels surrounding the block to be predicted may have not been
encoded and decoded yet. This means that some information may be missing. Therefore,
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the neural networks are trained via a random masking of their input context. This way,
they learn the prediction from a variable amount of information. Finally, a neural network
must predict accurately a given image block, whatever the level of quantization noise in
its input context. We show experimentally that the neural networks trained on undistorted
contexts generalize well on distorted contexts.

6.2 Perspectives

This section describes perspectives arising from the results of the thesis. These per-
spectives can be split into two categories. First, one may wonder whether the learned
transform via neural networks has lived up to the expectation of providing quasi-independent
transform coefficients (see Section 6.2.1). Then, the focus will be on a neural network
based intra predictor that runs faster during the test phase and consumes less memory
so that it better meets the requirements of the image and video compression normaliza-
tion (see Section 6.2.2). Finally, this section discusses how to further improve the neural
network based intra predictor in terms of quality of prediction (see Section 6.2.3).

6.2.1 Dependencies between the transform coefficients

In the recent approaches for learning transforms via neural networks for image com-
pression, some evidence indicate that the transform coefficients provided by the encoder
exhibit spatial dependencies. Let us consider the autoencoder in Section 4.2.2. Figures
6.1b and 6.1d show respectively an input luminance image to the encoder and the feature
map with the largest amount of spatial dependencies in the stack of feature maps returned
by the encoder. The spatial structure in this feature map is obvious. Moreover, in all recent
end-to-end learned image compression schemes, improvements in rate-distortion perfor-
mance have emerged thanks to the joint learning of a transform and a context model for
entropy coding [159] (see Section 3.1.3.1). This means that the learned transform does not
manage to exploit alone all the statistical dependencies within the input images. Finally,
during the thesis, we tried to learn transforms that exploit longer-range spatial dependen-
cies by designing deeper neural networks. For instance, convolutional layers with various
strides, i.e. spatial subsamplings, were added to the autoencoder architecture in Section
4.2.2 . However, none of these attempts resulted in better rate-distortion tradeoffs on av-
erage. Given these remarks, one might believe that the learning of a transform for image
compression via neural networks has plateaued in terms of rate-distortion performance.

The term on average in the above remarks might be an essential detail. In transform
coding, one looks for a single transform domain in which, for any image, the transform
coefficients are ideally independent and the signal energy is compacted in few of them.
Given the tremendeous variability from one natural image to another, it might be difficult
to find one transform domain with such properties for all images. For instance, Figures
6.1a and 6.1b display two luminance images. For each of them, Figures 6.1c and 6.1d
show the feature map with the largest amount of spatial dependencies in the stack of
feature maps returned by the encoder of the autoencoder in Section 4.2.2. For the first
image, the displayed feature map looks like noise. The transform domain is suitable. But,
this is not the case for the second image. In this case, a context model is necessary.
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(a) (b)

(c) (d)

Figure 6.1

To further improve the learning of a transform via neural networks, several transforms
can be learned jointly, each transform specializing in one class of natural images.

6.2.2 Neural network based intra predictor for the image and video
compression normalization

The integration of a neural network based intra prediction mode into H.265 yields
significant gains in terms of rate-distortion. But, the neural network based intra prediction
mode incurs a large increase of the running time and the memory consumption of H.265.

6.2.2.1 Reduction of the running time

On the encoder side, the running time of H.265 with the neural network based intra
prediction mode is around 50 times larger than the running time of H.265. On the decoder
side, the running time of H.265 with the neural network based intra prediction mode is
approximatively 200 times larger than the running time of H.265 (see Section 5.5.5). This
is especially critical on the decoder side as a slower decoding damages the user experience
for those who are watching images and videos.

To speed up the running time of the neural network based intra predictor, the heuristics
in the literature for designing smaller neural network architectures with less parameters
can be explored. These heuristics have been mainly developped in the context of image
recognition. For instance, SqueezeNet [160] is a small convolutional neural network that
meets the accuracy of AlexNet [66] on the ILSVRC2012 image recognition challenge.
SqueezeNet contains 50 times less parameters than AlexNet.
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6.2.2.2 Reduction of the memory consumption

The input contexts to the neural networks of the neural network based intra prediction
mode are much larger than the input contexts to the regular H.265 intra prediction modes.
Moreover, the parameters of the neural networks must be stored on both the encoder and
decoder sides. These cause an increase of the memory consumption when integrating the
neural network based intra prediction mode.

Two lines of research can yield a reduction of the memory cost of storing the parame-
ters of the neural networks. First, the design of smaller neural network architectures with
less parameters (see Section 6.2.2.1) decreases both the running time and this memory
cost. Then, the parameters of the neural networks can be compressed [161, 162, 163].
This compression takes several forms. First, the neural network can be pruned by learn-
ing only the important connections. In addition, the weights of the neural network can be
quantized and entropy coded.

6.2.3 Neural network based intra predictor with improved quality of
prediction

6.2.3.1 Matching the block to be predicted with relevant context

A problem appears when a convolutional neural network takes a large context of pix-
els previously encoded and decoded around a given image block to be predicted to infer a
prediction of this block. Most regions of the large context may be irrelevant for the predic-
tion whereas a few regions may contain all the information of interest for the prediction.
But, convolutional neural networks are not designed to copy regions of their input context
and paste them into their output prediction. Note that, unlike convolutional neural net-
work, the locally linear embedding methods [164, 165] have the capability of performing
this copy-paste task.

To correct this defect, a neural network module can match each region of a coarse
prediction of the block to be predicted with a region of the input context, and use the
selected regions of the input context to infer a refined prediction. More specifically, the
convolutional neural network for intra prediction first provides a coarse prediction of the
image block to be predicted. Then, the neural network module evaluates which region of
the input context best matches each region of the coarse prediction. Finally, the selected
regions of the input context and the coarse prediction can be transformed into a refined
version of the prediction via a neural network, in a similar manner to [166].

6.2.3.2 Learned side information

The main limitation of the neural network based intra prediction mode is that it strug-
gles at accurately predicting an image block that is uncorrelated from its neighboring
already encoded and decoded pixels. For instance, let us say that, for a given image
block, there is a discontinuity in the distribution of pixel intensity between this block and
its neighboring already encoded and decoded pixels. In the rest of this section, this case
will be called an unpredictable case. The neural network based intra prediction mode can
only rely on the input context of neighboring already encoded and decoded pixels to infer
a prediction of the block, hence its failure.
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A way to circumvent the problem of unpredictable cases would be to supplement the
neural network for intra prediction with a learned module that encodes side information.
In details, this learned module takes the image block to be predicted and its context as
inputs to generate a compressible representation. This compressible representation can
be quantized and converted into a bitstream via binary arithmetic encoding. Then, the
reconstructed quantized representation obtained via binary arithmetic decoding is fed into
an intermediate layer of the neural network for intra prediction. By constraining the cod-
ing cost of the quantized representation and jointly optimizing the neural network for
intra prediction and the learned module, the compressible representation should contain
exclusively information that is not redundant with the context information.
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Appendix A

A.1 Intra prediction in H.265
The prediction of a luminance image block via the best intra prediction function

among the 35 H.265 intra prediction functions according to a rate-distortion criterion is
shown in Figures from A.1 to A.16. In Figures A.1, A.2, A.3, A.4, A.5, A.6, A.7, and A.8,
the image block to be predicted is small, i.e. of size smaller than 8× 8 pixels. In Figures
A.9, A.10, A.11, A.12, A.13, A.14, A.15, and A.16, the image block to be predicted is
large, i.e. of size larger than 32× 32 pixels.
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(a)
(b) (c)

(d)

Figure A.1: Prediction of a luminance image block of size 4 × 4 pixels via the selected
H.265 function: (a) previously encoded and decoded neighboring pixels, (b) block to be
predicted, (c) predicted block via the selected H.265 function, and (d) prediction sketch
(the dotted arrows showing the direction of propagation). The index of the selected H.265
function is 17.

(a)
(b) (c)

(d)

Figure A.2: Prediction of a luminance image block of size 4 × 4 pixels via the selected
H.265 function. The legend is the one in Figure A.1. The index of the selected H.265
function is 7.

(a)
(b) (c)

(d)

Figure A.3: Prediction of a luminance image block of size 4 × 4 pixels via the selected
H.265 function. The index of the selected H.265 function is 8.

(a)
(b) (c)

(d)

Figure A.4: Prediction of a luminance image block of size 4 × 4 pixels via the selected
H.265 function. The index of the selected H.265 function is 25.
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(a)

(b) (c)

(d)

Figure A.5: Prediction of a luminance image block of size 8 × 8 pixels via the selected
H.265 function: (a) previously encoded and decoded neighboring pixels, (b) block to be
predicted, (c) predicted block via the selected H.265 function, and (d) prediction sketch
(the dotted arrows showing the direction of propagation). The index of the selected H.265
function is 6.

(a)

(b) (c)

(d)

Figure A.6: Prediction of a luminance image block of size 8 × 8 pixels via the selected
H.265 function. The legend is the one in Figure A.5. The index of the selected H.265
function is 9.

(a)

(b) (c)

(d)

Figure A.7: Prediction of a luminance image block of size 8 × 8 pixels via the selected
H.265 function. The selected H.265 function, called planar, has 0 as index.

(a)

(b) (c)

(d)

Figure A.8: Prediction of a luminance image block of size 8 × 8 pixels via the selected
H.265 function. The index of the selected H.265 function is 9.
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(a)

(b) (c)

(d)

Figure A.9: Prediction of a luminance image block of size 32× 32 pixels via the selected
H.265 function: (a) previously encoded and decoded neighboring pixels, (b) block to be
predicted, (c) predicted block via the selected H.265 function, and (d) prediction sketch
(the dotted arrows indicating the direction of propagation). The index of the selected
H.265 function is 7.

(a)

(b) (c)

(d)

Figure A.10: Prediction of a luminance image block of size 32×32 pixels via the selected
H.265 function. The legend is the one in Figure A.9. The index of the selected H.265
function is 5.

(a)

(b) (c)

(d)

Figure A.11: Prediction of a luminance image block of size 32×32 pixels via the selected
H.265 function. The index of the selected H.265 function is 10.

(a)

(b) (c)

(d)

Figure A.12: Prediction of a luminance image block of size 32×32 pixels via the selected
H.265 function. The selected H.265 function, called planar, has 0 as index.
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(a)

(b) (c)

(d)

Figure A.13: Prediction of a luminance image block of size 64×64 pixels via the selected
H.265 function: (a) previously encoded and decoded neighboring pixels, (b) block to be
predicted, (c) predicted block via the selected H.265 function, and (d) prediction sketch
(the dotted arrows indicating the direction of propagation). The index of the selected
H.265 function is 32.

(a)

(b) (c)

(d)

Figure A.14: Prediction of a luminance image block of size 64×64 pixels via the selected
H.265 function. The legend is the one in Figure A.13. The index of the selected H.265
function is 2.

(a)

(b) (c)

(d)

Figure A.15: Prediction of a luminance image block of size 64×64 pixels via the selected
H.265 function. The selected H.265 function, called DC, predicts each block pixel as the
average of the neighboring pixels colored in red. Its index is 1.

(a)

(b) (c)

(d)

Figure A.16: Prediction of a luminance image block of size 64×64 pixels via the selected
H.265 function. The index of the selected H.265 function is 21.
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Appendix B

B.1 Details on the dictionary updates in Algorithm 3

The minimization in (3.31) over the dictionary Do and the set of sparse decomposi-
tions

{
z(1), ..., z(N)

}
is not jointly convex. However, if the set of sparse decompositions

is fixed, i.e. it is assumed not to depend on the dictionary, the minimization over the
dictionary is convex. That is why the common way of solving problems like (3.31) is to
alternate between the set of sparse decompositions and the dictionary, minimizing over
one while keeping the other one fixed [167, 168, 117]. Algorithm 3 draws on this ap-
proach. For i ∈ [|1, N |], given a training image patch x(i) and the fixed dictionary, a
sparse decomposition z(i) of x(i) over the dictionary is computed via OMP. Then, given
the training image patch and its fixed sparse decomposition, a gradient descent step is
applied to the dictionary.

Appendix B.1 first details the gradient descent step. Then, it is demonstrated that, to
derive the gradient descent step, it is not necessary to fix this sparse decomposition. It is
sufficient to assume that the support of the sparse decomposition does not change when a
coefficient of the dictionary slightly varies.

B.1.1 Gradient descent step applied to the dictionary

G
(
x(i), z(i),Do

)
=
(
x(i) −Doz

(i)
)T (

x(i) −Doz
(i)
)

=
(
x(i)
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+
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(i)
(
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as z(i) is fixed.

= 2
(
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(i) − x(i)
) (

z(i)
)T

(B.1)

B.1.2 Assumption on the sparse decomposition

From now on, the equations are written using vector coefficients to avoid introducing
complicated notations, like tensors of dimension 3.
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(B.2)

r(i) = x(i) − x̂(i) is the residue of the sparse decomposition of x(i) over Do. As z(i) was
previously computed via OMP, z(i) is defined as

z
(i)

S(i) =
(
Do,S(i)

)†
x(i).

S(i) = supp
(
z(i)
)

=
{
k ∈ [|1, n|] | z(i)k 6= 0

}
is the support of z(i). Do,S(i) is the dictio-

nary obtained by keeping the columns of Do whose indices belong to S(i). z
(i)

S(i) is the
vector obtained by keeping the coefficients of z(i) whose indices belong to S(i).

Now, if we assume that S(i) does not change whenDo,αβ slightly varies, (B.2) becomes
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. (B.3)

Knowing that the residue r(i) is orthogonal to any column in Do whose index belongs to
S(i) [169, Section 3.1.2], (B.3) becomes

∂G
(
x(i), z(i),Do

)
∂Do,αβ

= 2
(
x̂(i)α − x(i)α

)
z
(i)
β . (B.4)

By writing (B.4) in vector form, (B.4) is turned into (B.5), which is similar to (B.1).

∂G
(
x(i), z(i),Do

)
∂Do

= 2
(
Doz

(i) − x(i)
) (

z(i)
)T

(B.5)

This shows that the assumption that the support of the sparse decomposition does not
change when a coefficient of the dictionary slightly varies is sufficient to derive the update
rule in (B.1).
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B.2 Visualization of the learned weights of the shallow
sparse autoencoders

The learned weights of the T-sparse AE and those of the WTA AE are displayed in
Figure B.1. The learned dictionary for CoD and that for OMP are also shown. The matrix
of encoder weights of the T-sparse AE look almost identical to the transpose of the matrix
of decoder weights of the T-sparse AE. Likewise, the matrix of encoder weights of the
WTA AE is almost identical to the transpose of the matrix of decoder weights of the WTA
AE. The weight features for the shallow sparse autoencoders appear to be more distributed
around high spatial frequencies than the dictionary features in the case of the algorithms
for sparse decomposition over a dictionary.

B.3 Visualization of the learned dictionaries for OMP and
WTA OMP

The learned dictionary for WTA OMP and that for OMP are displayed in Figure B.2.
The dictionary features for WTA OMP seem to be better balanced between low and high
spatial frequencies than the dictionary features for OMP.
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(a) (b)

(c) (d)

(e) (f)

Figure B.1: Visualization of (a) the encoder weights V of the T-sparse AE, (b) the decoder
weights Φ of the T-sparse AE, (c) the encoder weights W of the WTA AE, (d) the decoder
weights U of the WTA AE, (e) the dictionary Dδ for CoD, and (f) the dictionary Do

for OMP. n = 288. For Φ, U, Dδ, and Do, a block corresponds to a column, i.e. a
dictionary atom in the cases of Dδ and Do, reshaped to (

√
m,
√
m). For, V and W, a

block corresponds to a row reshaped to (
√
m,
√
m).
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(a)

(b)

Figure B.2: Visualization of (a) the dictionary Dw for WTA OMP and (b) the dictionary
Do for OMP. n = 1024.
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Appendix C

C.1 Convolutional architectures for H.265

The architecture of the stack of convolutional layers gcm
(
. ;φc,0m

)
that is applied to the

context portion X0 located on the left side of the image block to be predicted is shown
in Table C.1 for m ∈ {4, 16, 64}. The architecture of the stack of convolutional layers
gcm
(
. ;φc,1m

)
that is applied to the context porton X1 located above the image block is

identical to that of gcm
(
. ;φc,0m

)
. The slope of LeakyReLU is equal to 0.1.

The architecture of gc8
(
. ;φc,08

)
is similar to that of gc4

(
. ;φc,04

)
but, in the first layer,

the filter size is 5× 5× 1, the number of filters is 64, and the stride is 2. Moreover, in the
second layer, the filter size is 3× 3× 64 and the number of filters is 64. The architecture
of gc32

(
. ;φc,032

)
is similar to that of gc64

(
. ;φc,064

)
but, in the third layer, the filter size is

3× 3× 128, the number of filters is 128, and the stride is 1. Moreover, in the fourth layer,
the filter size is 5 × 5 × 128 and the number of filters is 256. In the fifth layer, the filter
size is 3× 3× 256 and the number of filters is 256.

To obtain the architecture of gtm, each sequence of layers in gcm is reversed. Besides,
each convolution is replaced by a transposed convolution (see Table C.1).

C.2 Number of trainable parameters

It is interesting to count the number of trainable parameters in each neural network of
PNNS to highlight how the number of trainable parameters evolves with the width m of
the image block to be predicted.

Fully-connected neural network for m = 4 The number of weights in a fully-connected
layer is equal to the number of input neurons times the number of output neurons. The
number of biases in a fully-connected layer is equal to the number of output neurons.
Therefore, the number of trainable parameters in the fully-connected architecture in Fig-
ure 5.2 is equal to 5m2p+ p+ p2 + p+ p2 + p+ pm2 +m2 = m2 (6p+ 1) + 2p2 + 3p.

For m = 4, p = 1200, this gives 2998816 trainable parameters.

Fully-connected neural network for m = 8 For m = 8, p = 1200, the number of
trainable parameters is equal to 3344464.
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Table C.1: Architectures of the stack of convolutional layers gcm
(
. ;φc,0m

)
that is applied

to the context portion X0 located on the left side of the image block to be predicted ((a)
m = 4, (c) m = 16, and (e) m = 64) and the stack of transposed convolutional layers
gtm
(
. ;φtm

)
((b) m = 4, (d) m = 16, and (f) m = 64). conv means convolution and tconv

means transposed convolution.

Layer Layer
Filter size

Number of
Stride Non-linearity

number type filters
1 conv 3× 3× 1 32 1 LeakyReLU
2 conv 3× 3× 32 32 1 LeakyReLU

(a)

Layer Layer
Filter size

Number of
Stride Non-linearity

number type filters
1 tconv 3× 3× 32 32 1 LeakyReLU
2 tconv 3× 3× 32 1 1 -

(b)

Layer Layer
Filter size

Number of
Stride Non-linearity

number type filters
1 conv 5× 5× 1 64 2 LeakyReLU
2 conv 3× 3× 64 64 1 LeakyReLU
3 conv 5× 5× 64 128 2 LeakyReLU
4 conv 3× 3× 128 128 1 LeakyReLU

(c)

Layer Layer
Filter size

Number of
Stride Non-linearity

number type filters
1 tconv 3× 3× 128 128 1 LeakyReLU
2 tconv 5× 5× 128 64 2 LeakyReLU
3 tconv 3× 3× 64 64 1 LeakyReLU
4 tconv 5× 5× 64 1 2 -

(d)

Layer Layer
Filter size

Number of
Stride Non-linearity

number type filters
1 conv 5× 5× 1 64 2 LeakyReLU
2 conv 5× 5× 64 128 2 LeakyReLU
3 conv 5× 5× 128 256 2 LeakyReLU
4 conv 5× 5× 256 512 2 LeakyReLU
5 conv 3× 3× 512 512 1 LeakyReLU

(e)

Layer Layer
Filter size

Number of
Stride Non-linearity

number type filters
1 tconv 3× 3× 512 512 1 LeakyReLU
2 tconv 5× 5× 512 256 2 LeakyReLU
3 tconv 5× 5× 256 128 2 LeakyReLU
4 tconv 5× 5× 128 64 2 LeakyReLU
5 tconv 5× 5× 64 1 2 -

(f)
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Figure C.1: Illustration of the dimensions of the two input stacks of feature maps to the
merger and the dimensions of the output stack of feature maps.

Convolutional neural network for m = 16 The number of weights in a convolutional
layer is equal to the number of input feature maps times the number of output feature maps
times the height of the convolutional kernels times their width. The number of biases in a
convolutional layer is equal to the number of output feature maps.

For the merger denoted gm in Figure 5.3, the counting of the number of trainable
parameters is not straightforward. First, it is essential to stress that the height of each
feature map in the output stack of feature map Z is equal to m/st, where st is the product
of the convolutional strides in the stack of transpose convolutional layers gtm. This is
because the application of gtm to Z provides a prediction of the image block to be predicted
of size m×m. Likewise, the width of each feature map in Z is equal to m / st. Now, let
sc be the product of the convolutional strides in the stack of convolutional layers gcm. Note
that sc = st. Figure C.1 summarizes the dimensions of the two input stacks of feature
maps to the merger and the dimensions of the output stack of feature maps. Now, as each
input feature map to the merger is fully-connected to a different output feature map, the
number of weights connecting a pair input-output feature maps is equal to 5m4 / (sc)4.
For this pair input-output feature maps, m2 / (sc)2 biases are involved.

For m = 16, given the architecture displayed in Tables C.1c and C.1d, the number of
trainable parameters in the merger alone is equal to 165888. The total number of trainable
parameters is equal to 947968.

Convolutional neural network for m = 32 The number of trainable parameters in the
merger alone is equal to 331776. The total number of trainable parameters is equal to
3858944.

Convolutional neural network for m = 64 Given the architecture displayed in Tables
C.1e anf C.1f, the number of trainable parameters in the merger alone is equal to 663552.
The total number of trainable parameters is equal to 13989376.
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Figure C.2: Color legend for coloring each PB depending on its selected intra prediction
mode.

(a) (b)

(c) (d)

Figure C.3: Comparison of the three maps of intra prediction modes: (a) 832 × 480
luminance channel of the first frame of BQMall, (b) map of intra prediction modes via
H.265, (c) map of intra prediction modes via PNNS substitution, and (d) map of intra
prediction modes via PNNS switch. For the three encodings, QP = 32.

C.3 Selected intra prediction mode for each PB
For a given image channel encoded by a given variant of H.265, let us define the

map of intra prediction modes as the image obtained by coloring each PB using the color
associated to its selected intra prediction mode. The legend for associating each intra
prediction mode to a color is explained in Figure C.2. Figures C.3 to C.9 compare the
three maps of intra prediction modes obtained via H.265, PNNS substitution, and PNNS
switch respectively for a different luminance image to be encoded. Note that, for PNNS
substitution, the color of the regular intra prediction mode of index 18 never appears in
the maps of intra prediction modes as this mode is replaced by the neural networks mode.
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(a) (b)

(c) (d)

Figure C.4: Comparison of the three maps of intra prediction modes: (a) 1920 × 1080
luminance channel of the first frame of Kimono, (b) map of intra prediction modes via
H.265, (c) map of intra prediction modes via PNNS substitution, and (d) map of intra
prediction modes via PNNS switch. For the three encodings, QP = 32.

(a) (b)

(c) (d)

Figure C.5: Comparison of the three maps of intra prediction modes: (a) 1920 × 1080
luminance channel of the first frame of Cactus, (b) map of intra prediction modes via
H.265, (c) map of intra prediction modes via PNNS substitution, and (d) map of intra
prediction modes via PNNS switch. For the three encodings, QP = 32.
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(a) (b)

(c) (d)

Figure C.6: Comparison of the three maps of intra prediction modes: (a) 1920 × 1080
luminance channel of the first frame of ParkScene, (b) map of intra prediction modes via
H.265, (c) map of intra prediction modes via PNNS substitution, and (d) map of intra
prediction modes via PNNS switch. For the three encodings, QP = 32.

(a) (b)

(c) (d)

Figure C.7: Comparison of the three maps of intra prediction modes: (a) 2560 × 1600
luminance channel of the first frame of Traffic, (b) map of intra prediction modes via
H.265, (c) map of intra prediction modes via PNNS substitution, and (d) map of intra
prediction modes via PNNS switch. For the three encodings, QP = 32.
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(a) (b)

(c) (d)

Figure C.8: Same comparison as in Figure C.7 but QP = 27.

(a) (b)

(c) (d)

Figure C.9: Same comparison as in Figure C.7 but QP = 37.
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Titre : apprentissage profond pour la compression d’image  

Mots clés : réseaux de neurones profonds, compression d’image, codage par transformée, prédiction intra. 

Résumé : Ces vingt dernières années, la quantité 
d’images et de vidéos transmises a augmenté 
significativement, ce qui est principalement lié à 
l’essor de Facebook et Netflix. Même si les capacités 
de transmission s’améliorent, ce nombre croissant 
d’images et de vidéos transmises exige des 
méthodes de compression plus efficaces. Cette thèse 
a pour but d’améliorer par l’apprentissage deux 
composants clés des standards modernes de 
compression d’image, à savoir la transformée et la 
prédiction intra. Plus précisément, des réseaux de 
neurones profonds sont employés car ils ont un grand 
pouvoir d’approximation, ce qui est nécessaire pour 
apprendre une approximation fidèle d’une 
transformée optimale (ou d’un filtre de prédiction intra 
optimal) appliqué à des pixels d’image. 
En ce qui concerne l’apprentissage d’une transformée 
pour la compression d’image via des réseaux de 
neurones, un défi est d’apprendre une transformée 
unique qui est efficace en termes de compromis 
débit-distorsion, à différents débits. C’est pourquoi 
deux approches sont proposées pour relever ce défi. 
Dans la première approche, l’architecture du réseau 

 

de neurones impose une contrainte de parcimonie 
sur les coefficients transformés. Le niveau de 
parcimonie offre un contrôle sur le taux de 
compression. Afin d’adapter la transformée à 
différents taux de compression, le niveau de 
parcimonie est stochastique pendant la phase 
d’apprentissage. Dans la deuxième approche, 
l’efficacité en termes de compromis débit-distorsion 
est obtenue en minimisant une fonction de débit-
distorsion pendant la phase d’apprentissage. 
Pendant la phase de test, les pas de quantification 
sont progressivement agrandis selon un schéma afin 
de compresser à différents débits avec une unique 
transformée apprise. 
Concernant l’apprentissage d’un filtre de prédiction 
intra pour la compression d’image via des réseaux 
de neurones, le problème est d’obtenir un filtre 
appris qui s’adapte à la taille du bloc d’image à 
prédire, à l’information manquante dans le contexte 
de prédiction et au bruit de quantification variable 
dans ce contexte. Un ensemble de réseaux de 
neurones est conçu et entraîné de façon à ce que le 
filtre appris soit adaptif à ces égards. 
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Abstract: Over the last twenty years, the amount of 
transmitted images and videos has increased 
noticeably, mainly urged on by Facebook and Netflix. 
Even though broadcast capacities improve, this 
growing amount of transmitted images and videos 
requires increasingly efficient compression methods. 
This thesis aims at improving via learning two critical 
components of the modern image compression 
standards, which are the transform and the intra 
prediction. More precisely, deep neural networks are 
used for this task as they exhibit high power of 
approximation, which is needed for learning a reliable 
approximation of an optimal transform (or an optimal 
intra prediction filter) applied to image pixels. 
Regarding the learning of a transform for image 
compression via neural networks, a challenge is to 
learn an unique transform that is efficient in terms of 
rate-distortion while keeping this efficiency when 
compressing at different rates. That is why two 
approaches are proposed to take on this challenge. In 
the first approach, the neural network architecture 
 

sets a sparsity on the transform coefficients. The 
level of sparsity gives a direct control over the 
compression rate. To force the transform to adapt to 
different compression rates, the level of sparsity is 
stochastically driven during the training phase. In the 
second approach, the rate-distortion efficiency is 
obtained by minimizing a rate-distortion objective 
function during the training phase. During the test 
phase, the quantization step sizes are gradually 
increased according a scheduling to compress at 
different rates using the single learned transform. 
Regarding the learning of an intra prediction filter for 
image compression via neural networks, the issue is 
to obtain a learned filter that is adaptive with respect 
to the size of the image block to be predicted, with 
respect to missing information in the context of 
prediction, and with respect to the variable 
quantization noise in this context. A set of neural 
networks is designed and trained so that the learned 
prediction filter has this adaptibility. 
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