Bias and Variance of the Estimator

PRML 3.2 Ethem Chp. 4

- In previous lectures we showed how to build classifiers when the underlying densities are known
 - □ Bayesian Decision Theory introduced the general formulation
- In most situations, however, the true distributions are unknown and must be estimated from data.
 - □ Parameter Estimation (we saw the Maximum Likelihood Method)
 - Assume a particular form for the density (e.g. Gaussian), so only the parameters (e.g., mean and variance) need to be estimated
 - Maximum Likelihood
 - Bayesian Estimation
 - Non-parametric Density Estimation (not covered)
 - Assume NO knowledge about the density
 - Kernel Density Estimation
 - Nearest Neighbor Rule

Bias and variance (1)

- How good are these estimates? Two measures of "goodness" are used for statistical estimates
 - BIAS: how close is the estimate to the true value?
 - VARIANCE: how much does the estimate change for different runs (e.g. different datasets)?

- The bias-variance tradeoff
 - In most cases, you can only decrease one of them at the expense of the other

How Good is an Estimator

- Assume our dataset X is sampled from a population specified up to the parameter θ ; how good is an estimator d(X) as an estimate for θ ?
- Notice that the estimate depends on sample set X
- If we take an expectation of the difference over different datasets X, E_X[(d(X)-θ)²], and expand using the simpler notation of E[d]= E[d(X)], we get:

Using a simpler notation (dropping the dependence on X from the notation – but knowing it exists):

Properties of $\mu_{ m ML}$ and $\sigma_{ m ML}^2$

$$\mathbb{E}[\mu_{\mathrm{ML}}] = \mu \quad o \quad \mu_{\mathrm{ML}}$$
 is an unbiased estimator

$$\mathbb{E}[\sigma_{\mathrm{ML}}^2] = \left(rac{N-1}{N}
ight)\sigma^2 \quad \longrightarrow \quad \sigma_{\mathsf{ML}} ext{ is biased}$$

Use instead:

$$\widetilde{\sigma}^2 = \frac{N}{N-1} \sigma_{\text{ML}}^2$$

$$= \frac{1}{N-1} \sum_{n=1}^{N} (x_n - \mu_{\text{ML}})^2$$

(c)

Bias Variance Decomposition

The Bias-Variance Decomposition (1)

Recall the expected squared loss,

$$\mathbb{E}[L] = \int \{y(\mathbf{x}) - \mathbb{E}[t|\mathbf{x}]\}^2 p(\mathbf{x}) d\mathbf{x} + \int \operatorname{var}[t|\mathbf{x}] p(\mathbf{x}) d\mathbf{x}$$

Lets denote, for simplicity:

$$h(\mathbf{x}) = \mathbb{E}[t|\mathbf{x}] = \int tp(t|\mathbf{x}) dt.$$

- We said that the second term corresponds to the noise inherent in the random variable t.
- What about the first term?

The Bias-Variance Decomposition (2)

- Suppose we were given multiple data sets, each of size N.
- Any particular data set, D, will give a particular function y(x; D).
- Consider the error in the estimation:

$$\{y(\mathbf{x}; \mathcal{D}) - h(\mathbf{x})\}^{2}$$

$$= \{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] + \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}^{2}$$

$$= \{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})]\}^{2} + \{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}^{2}$$

$$+ 2\{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})]\}\{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}.$$

The Bias-Variance Decomposition (3)

$$\{y(\mathbf{x}; \mathcal{D}) - h(\mathbf{x})\}^{2}$$

$$= \{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] + \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}^{2}$$

$$= \{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})]\}^{2} + \{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}^{2}$$

$$+ 2\{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})]\}\{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}.$$

Taking the expectation over D yields:

$$\mathbb{E}_{\mathcal{D}} \left[\{ y(\mathbf{x}; \mathcal{D}) - h(\mathbf{x}) \}^{2} \right]$$

$$= \underbrace{\{ \mathbb{E}_{\mathcal{D}} [y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x}) \}^{2}}_{\text{(bias)}^{2}} + \underbrace{\mathbb{E}_{\mathcal{D}} \left[\{ y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}} [y(\mathbf{x}; \mathcal{D})] \}^{2} \right]}_{\text{variance}}.$$

The Bias-Variance Decomposition (4)

- Thus we can write
- where

expected
$$loss = (bias)^2 + variance + noise$$

$$(\text{bias})^{2} = \int \{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}^{2} p(\mathbf{x}) d\mathbf{x}$$

$$\text{variance} = \int \mathbb{E}_{\mathcal{D}} \left[\{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})]\}^{2} \right] p(\mathbf{x}) d\mathbf{x}$$

$$\text{noise} = \iint \{h(\mathbf{x}) - t\}^{2} p(\mathbf{x}, t) d\mathbf{x} dt$$

- W
 - Bias measures how much the prediction (averaged over all data sets) differs from the desired regression function.
 - Variance measures how much the predictions for individual data sets vary around their average.
 - There is a trade-off between bias and variance
 - As we increase model complexity,
 - bias decreases (a better fit to data) and
 - variance increases (fit varies more with data)

Model Selection Procedures

- 1. Regularization (Breiman 1998): Penalize the augmented error:
 - 1. error on data + λ .model complexity
 - 1. If λ is too large, we risk introducing bias
 - 2. Use cross validation to optimize for λ
- 2. Structural Risk Minimization (Vapnik 1995):
 - 1. Use a set of models ordered in terms of their complexities
 - 1. Number of free parameters
 - 2. VC dimension,...
 - 2. Find the best model w.r.t empirical error and model complexity.
- 3. Minimum Description Length Principle
- **4. Bayesian Model Selection:** If we have some prior knowledge about the approximating function, it can be incorporated into the Bayesian approach in the form of p(model).

Reminder: Introduction to Overfitting PRML 1.1

Concepts: Polynomial curve fitting, overfitting, regularization, training set size vs model complexity

Polynomial Curve Fitting

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^M w_j x^j$$

Sum-of-Squares Error Function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Oth Order Polynomial

1st Order Polynomial

3rd Order Polynomial

9th Order Polynomial

Over-fitting

Root-Mean-Square (RMS) Error: $E_{\rm RMS} = \sqrt{2E(\mathbf{w}^\star)/N}$

Polynomial Coefficients

	M=0	M = 1	M = 3	M = 9
$\overline{w_0^{\star}}$	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^\star				1042400.18
w_8^\star				-557682.99
w_9^{\star}				125201.43

Regularization

One solution to control complexity is to penalize complex models -> regularization.

Regularization

Use complex models, but penalize large coefficient values:

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

Regularization on 9th Order Polynomial

 $\ln \lambda = -\inf$

Too small λ – no regularization effect

Regularization on 9th degree polynomial:

$$\ln \lambda = -18$$

Regularization:

$$\ln \lambda = 0$$

Regularization: $E_{\rm RMS}$ vs. $\ln \lambda$

Polynomial Coefficients

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0^{\star}	0.35	0.35	0.13
w_1^{\star}	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
w_3^{\star}	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^{\star}	1042400.18	-45.95	-0.00
w_8^\star	-557682.99	-91.53	0.00
w_9^{\star}	125201.43	72.68	0.01

The Bias-Variance Decomposition (5)

Example: 100 data sets, each with 25 data points from the sinusoidal $h(x) = \sin(2px)$, varying the degree of regularization, λ.

The Bias-Variance Decomposition (6)

Regularization constant $\lambda = \exp\{-0.31\}$.

The Bias-Variance Decomposition (7)

Regularization constant $\lambda = \exp\{-2.4\}$.

The Bias-Variance Trade-off

- From these plots, we note that;
 - \square an over-regularized model (large λ) will have a high bias
 - \square while an under-regularized model (small λ) will have a high variance.

Minimum value of bias²+variance is around λ =-0.31 This is close to the value that gives the minimum error on the test data.

Model Selection Procedures

Cross validation: Measure the total error, rather than bias/variance, on a validation set.

- Train/Validation sets
- K-fold cross validation
- Leave-One-Out
- No prior assumption about the models

