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n  In previous lectures we showed how to build classifiers 
when the underlying densities are known 
¨  Bayesian Decision Theory introduced the general formulation 

n  In most situations, however, the true distributions are 
unknown and must be estimated from data. 
¨  Parameter Estimation (we saw the Maximum Likelihood Method) 

n  Assume a particular form for the density (e.g. Gaussian), so only the parameters 
(e.g., mean and variance) need to be estimated 

n  Maximum Likelihood 
n  Bayesian Estimation 

¨  Non-parametric Density Estimation (not covered) 

n  Assume NO knowledge about the density 
n  Kernel Density Estimation 
n  Nearest Neighbor Rule 
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How Good is an Estimator 

n  Assume our dataset X is sampled from a population specified up to 
the parameter θ; how good is an estimator d(X) as an estimate for θ? 

n  Notice that the estimate depends on sample set X 
n  If we take an expectation of the difference over different datasets X, 

 EX[(d(X)-θ)2], and expand using the simpler notation of E[d]= E[d(X)], 
we get: 

 

 E[(d(X)-θ)2]= E[(d(X)-E[d])2]    +   (E[d]- θ)2 
                                           variance                                            bias sq. 
                                                                 of the estimator 
 
 
  Using a simpler notation (dropping the dependence on X from the  
  notation – but knowing it exists): 

     E[(d-θ)2]    = E[(d-E[d])2]          +   (E[d]- θ)2 
                                           variance                                            bias sq.  
                                                                 of the estimator 
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Properties of          and  

µML is an unbiased estimator 

σML is biased 

Use instead: 
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Bias Variance 
Decomposition 
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The Bias-Variance Decomposition (1) 

n  Recall the expected squared loss, 

 
 
Lets denote, for simplicity: 

n  We said that the second term corresponds to the noise 
inherent in the random variable t. 

n  What about the first term? 
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The Bias-Variance Decomposition (2) 

n  Suppose we were given multiple data sets, each of 
size N.  

n  Any particular data set, D, will give a particular function 
y(x; D).  

n  Consider the error in the estimation: 
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The Bias-Variance Decomposition (3) 

n  Taking the expectation over D yields: 
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The Bias-Variance Decomposition (4) 

n  Thus we can write 

n  where  
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n  Bias measures how much the prediction (averaged over all data sets) 
differs from the desired regression function. 

n  Variance measures how much the predictions for individual data 
sets vary around their average. 

n  There is a trade-off between bias and variance  

n  As we increase model complexity,  

n    bias decreases (a better fit to data) and  

n    variance increases (fit varies more with data) 
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Model Selection Procedures 

1.   Regularization (Breiman 1998): Penalize the augmented 
error:  

1.  error on data + λ.model complexity 
1.  If λ is too large, we risk introducing bias 
2.  Use cross validation to optimize for λ

2.   Structural Risk Minimization (Vapnik 1995):  
1.  Use a set of models ordered in terms of their complexities  

1.  Number of free parameters 
2.  VC dimension,… 

2.  Find the best model w.r.t empirical error and model complexity. 

3.   Minimum Description Length Principle 
4.   Bayesian Model Selection: If we have some prior knowledge about 

the approximating function, it can be incorporated into the Bayesian 
approach in the form of p(model). 



Reminder:  Introduction  to  
OverfiCing  
PRML  1.1	


Concepts:  Polynomial  curve  fi?ing,  	

overfi?ing,  regularization,  	

training  set  size  vs  model  complexity  	




15	


Polynomial Curve Fitting  
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Sum-of-Squares Error Function 
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0th Order Polynomial 
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1st Order Polynomial 
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3rd Order Polynomial 
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9th Order Polynomial 
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Over-fitting 

Root-­‐Mean-­‐Square	
  (RMS)	
  Error:	
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Polynomial Coefficients    



Regularization  
	


One  solution  to  control  complexity  is  to  
penalize  complex  models  -­‐‑>  regularization.	
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Regularization 

n  Use complex models, but penalize large coefficient values: 
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Regularization on 9th Order Polynomial 

ln  λ  =  -­‐‑inf	

	


Too  small  λ  –  no  regularization  effect	
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Regularization on 9th degree polynomial:  

Right  λ  –good  fit	
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Regularization:  

Large  λ  –regularization  dominates	
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Regularization:           vs.  
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Polynomial Coefficients    
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The Bias-Variance Decomposition (5) 

n  Example: 100 data sets, each with 25 data points from the sinusoidal 
h(x) = sin(2px), varying the degree of regularization, λ. 
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The Bias-Variance Decomposition (6) 

n  Regularization constant λ = exp{-0.31}. 
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The Bias-Variance Decomposition (7) 

n  Regularization constant λ = exp{-2.4}. 
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The Bias-Variance Trade-off 

n From these plots, we note that; 

¨  an over-regularized model (large λ) 
will have a high  bias 

¨  while an under-regularized model 
(small λ) will have a high variance. 

Minimum value of bias2+variance is around λ=-0.31 
This is close to the value that gives the minimum error on the test data. 
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Model Selection Procedures 

Cross validation: Measure the total error, rather than bias/variance, on a validation set. 
¨  Train/Validation sets 
¨  K-fold cross validation 
¨  Leave-One-Out 
¨  No prior assumption about the models 


