Biodiversity distribution

How to count species?

Global distribution of biodiversity

Breeding bird richness in Florida

Global distribution of biodiversity on land

Is eveness or richness a good indicator for conservation?

- Treats all species the same
- Favors large population sizes (not all measures)

Towards a phylogenetic informed biodiversity measure

- instead of weighting population sizes we also could weight position on the phylogeny
- What is worth more, a Sphenodon (Tuatara) or a 10 song bird species?

Endemism

High endemism correlates with high diversity

Taxon	Correlation of richness with endemism
Mammals	.81
Lasioglossum (bee)	.85
Papilionidae (butterflies)	.7
Plusiinae (moths)	.77

Extinctions

- Background extinction
- Current, recent extinctions

Diversification of marine organisms

The number of families of known marine organisms becoming
extinct per unit time in each stratigraphic stage as a function of time extinct per unit time in each stratigraphic stage as a function of time during the Phanerozoic. The red line is the average decline in extinction. The data are from the compilation of Sepkowsi (1992) [Newman \& Eble, 1999]

Extinction rate: general patterns

- Extinction rates vary a lot
- A steady rate of extinctions, it even seems that the extinction rate was larger long time ago
- Speciation rate > Extinction rate
- Species last about I- 25 My years
- On average about I-2 species go extinct each year

Catastrophic extinction events

Possible Sources

- Large meteorites hitting earth
- Climate change
- Vulcanism: Effect on climate, changing landscape
- Glaciation: Cooling shrinks range of species, might increase competition
- Formation of super-continents: better adapted species win, changes in number of habitats

Passenger pigeon

- Many millions during 19th century
- Last died in the Cincinnati Zoo in 1914

Passenger pigeon

Panthera leo barbaricus Barbary Lion

Tasmanian Tiger

Gastric brooding frog

- Extinct ?
- Not found since 1985

Species-Area relationship

Species-Area relationship

Estimating extinction rates

$\frac{S_{\text {now }}}{S_{\text {original }}}=\frac{c A_{\text {now }}^{z}}{c A_{\text {original }}^{z}} \quad$ Logecies S) ${ }^{2}$

Estimating how many species go extinct

$$
S_{\text {now }}=S_{\text {original }} \frac{A_{\text {now }}^{z}}{A_{\text {original }}^{z}} \quad \log (\text { Area A) }
$$

using
$z=.15$ (this is arbitrary)
deforestation $=1.8 \%$ per year $\left(A_{\text {now }} / A_{\text {original }}=98.2 / 100\right)$
10 million species ($\mathrm{S}_{\text {original }}$)
$S_{\text {now }}=9,973,000$
Difference between $\mathrm{S}_{\text {now }}$ and $\mathrm{S}_{\text {original }}=27,000$ species per year

