
Stomata & Guard Cells

- Overview
- Stomata: morphology
- Physiology of stomata
- Environmental factors

Overview

- Located in epidermal tissue
- Have chloroplasts
- Found in stems, floral parts, fruits

Stomatal morphology

- Guard cells
- Subsidary cells
- Radial micellation
- Substomatal cavity

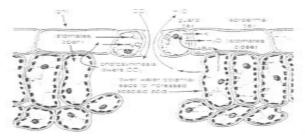


Figure 3-10. Two important feedback loops one for CO₂ and one for H₂O. that control sometal action. The left part of the prevention of light upon to provide the effects of light upon tomotes, protosyndrosis, time effects of light upon tomotes, protosyndrosis, time loops CO₂, every in the leaf; the leaf's response is to cause more KT to move into guard cells. And water follows dismocally, causing stometies to cone. (There is also a direct effect of light on stomats coeming, notecondent of CO₂, eversil. The ingrit-mans side shows the effects of water stress. When more water exist that can enter from the code, of CO₂ are the control of CO₃ and the code of CO₃ are the code of CO₃ and the code of CO₃ are the code of CO₃ and the code of CO₃ are the code of CO₃ are the code of CO₃ are the code of CO₃ and the code of CO₃ are the code of CO₃ are

Stomatal

- 1% of leaf area
- Found on upper surface
- Lower surface
- Both amphistomatous
- Floating leaves: epistomatous



TABLE 5.1 Stomatal frequencies on the upper and lower surfaces of leaves.

	Number of Stomata mm ⁻²				
Genus	Upper Surface	Lower Surface			
Monocotyledonae					
Allium (onion)	175	175			
Hordeum (barley)	70	85			
Triticum (wheat)	50	40			
Dicotyledonae					
<u>Herbacious species</u>					
Helanthus (sunflower)	120	175			
Medicago (alfalfa)	169	188			
Pelargonium (geranium)	29	179			
Woody species					
Aesculus (horse chestnut)	more <u>—</u> to be rectar	210			
Quercus (oak)	_	340			
Tilia (linden)	_	370			

Data from Meidner and Mansfield, 1968.

Stomatal Dimensions

mon plants

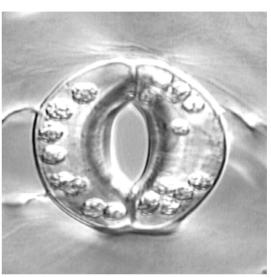
Plant	Stomata per cm²	Aperture* (diameter in µm)	Spacing † (stomatal diameters)	
Bean	28.100	5.4	12.6	
Begonia	4,000	15.6 .	11.5	
Castor bean	17,600	7.6	11.2	
Coieus	14,100	7.9	12.0	
English ivy	15.300	8.3	10.9	
Geranium	5.900	15.9	9.2	
Maize	6.300	13.9	9.9	
Oat	2,300	27.5	8.6	
Sunilower	15,600	16.5	5.5	
Tomato	13.000	10.4	9.5	
Wheat	1,400	27.4	11.0	
Average	11.327	14.2	10.2	

^{*} Aperture is calculated from length X width and assumes a perfect circle.

TABLE 5.3 Frequency of stomata and assumed open area of leaf when stomata are open

	Stomati		
Species	Upper	Lower	Open Space. %
Pinus sylvestris	12,000	12,000	1.2
Larix decidua	1,400	1,600	0.15
Allium cepa	17,500	17,500	2.0
Zea mavs	9.800	10.800	0.7
Tilia europea	_	37.000	0.9
Helianthus annuus	12,000	17.500	1.1
Vicia faba	6.500	7,500	1.0
Sedum speciabilis	2,300	3.500	0.32

Open pore area calculated by assuming 6 µm maximum aperture.

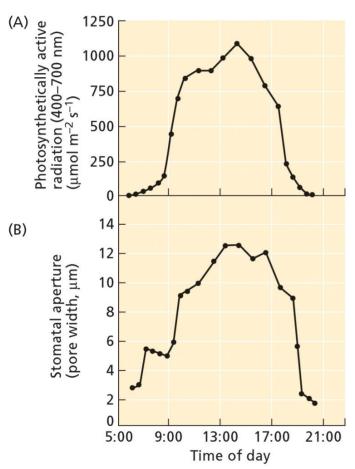

Data from Meidner and Mansfield (1968).

[&]quot;Spacing, expressed in relative stomatal diameters, is calculated from the ratio of the absolute center-to-center distance to the maximum gore diameter. If stomata are 100 μ m apart and the absolute is 10 μ m, the relative spacing is 10 (100 μ m/10 μ m). Data from Verduin (1949).

Physiology: Opening and closing

- Light receptors
- Movement of ions
- Turgor pressure changes: movement of water
- Evidence

Vicia faba


Guard cell opening

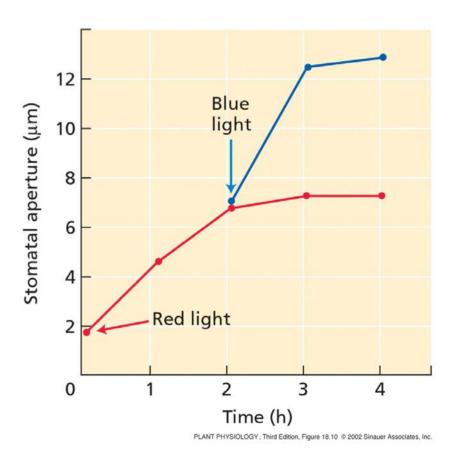
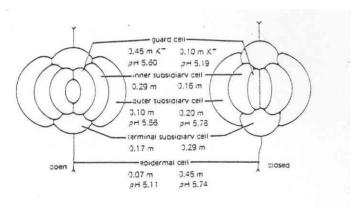


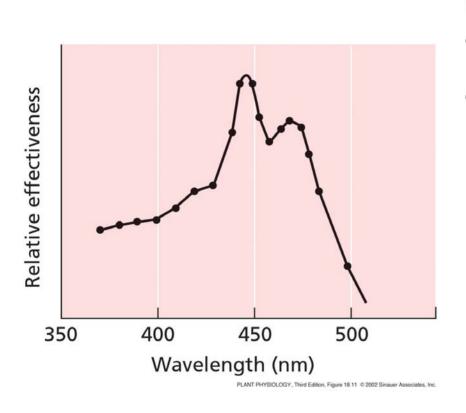
Figure 3-7 Two balloons representing a guard-cell pair.

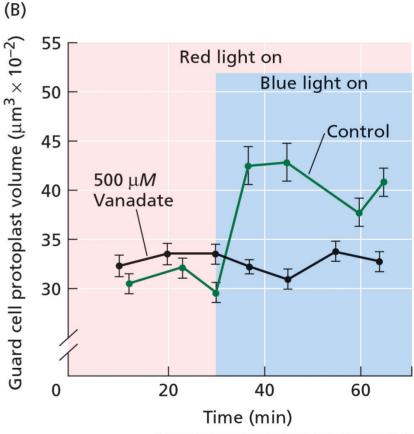
(a) Balloons in their "relaxed" state with masking tape applied represent both the "radial micellation" and the thickening long part of the ventral walls. (b) The balloon pair in an inflated state. Balloons were glued together at the ends with rubber cement before inflating (which weakened the rubber and caused eight pairs to burst when inflated before achieving success with the pair shown!).


Opening

PLANT PHYSIOLOGY, Third Edition, Figure 18.9 © 2002 Sinauer Associates, Inc.

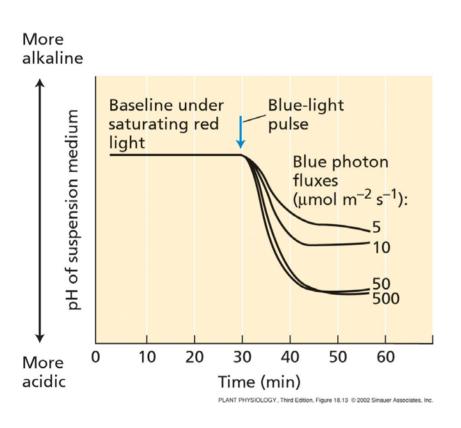
Ion Exchange

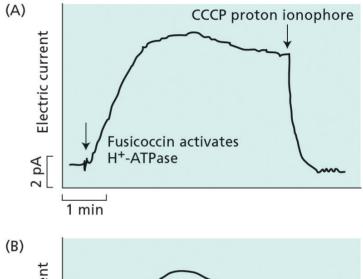

Figure 3-9 . Quantitative changes in K^+ concentrations and ρH values of the vacuoles in several cells making up the stomatal complex of *Commelina communis*. Values are given for the open and closed conditions of the stomatal pore. (Data of Penny and Bowling, 1974 and 1975.)

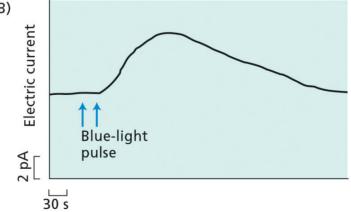

TABLE 5.3 Potassium content of open and closed guard cells.

Species	K ⁺ Content				
	pmol/Guard Cell			mM	
	Open	Closed	Open	Closed	
Vicia faba	2.72	0.55	552	112	
Commelina communis	3.1	0.4	448	95	

Data from MacRobbie, 1987.

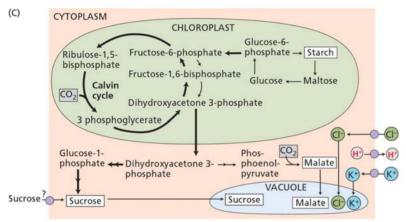

Blue Light Receptors

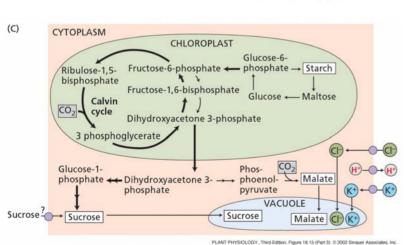


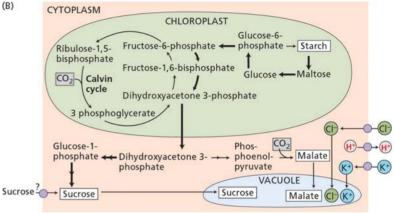


PLANT PHYSIOLOGY, Third Edition, Figure 18.12 © 2002 Sinauer Associates, Inc.

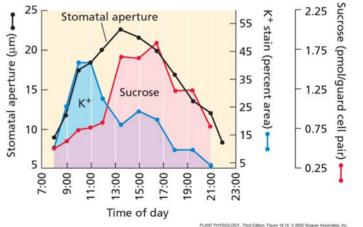
Proton Pump



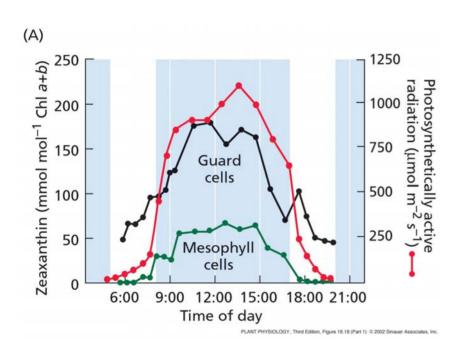


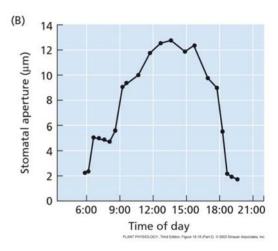

PLANT PHYSIOLOGY, Third Edition, Figure 18.14 © 2002 Sinauer Associates, Inc.

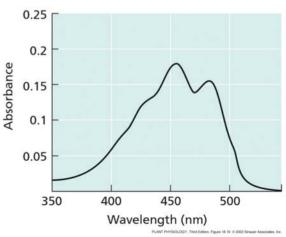
Osmotic Regulation



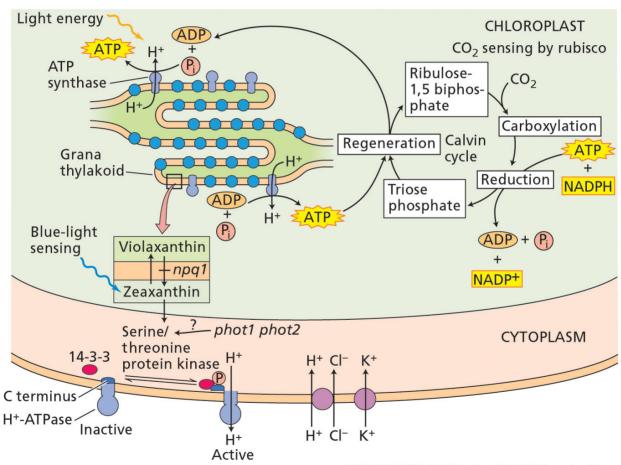
PLANT PHYSIOLOGY, Third Edition, Figure 18.15 (Part 3) © 2002 Sinauer Associates, Inc.




PLANT PHYSIOLOGY, Third Edition, Figure 18.15 (Part 2) © 2002 Sinauer Associates, Inc.



PLANT PHYSIOLOGY, Third Edition, Figure 18.16 © 2002 Sinauer Associates, Inc.


Receptor

Signal pathway

Diurnal curves of stomatal opening

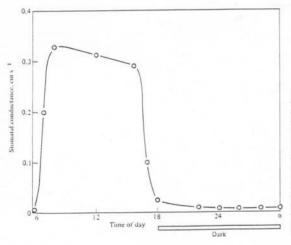


FIGURE 5.6 The diurnal curve of stomatal opening. The data are expressed as stomatal conductance (cm s-1), an indication of the capacity for diffusion through stomata and an indirect measure of stomatal opening. The stomata open rapidly in the light and close at the end of the daylight period. Stomata remain closed throughout the dark period. The data are from Peperomia, and were obtained by the author in 1978 at the University of California, Riverside.

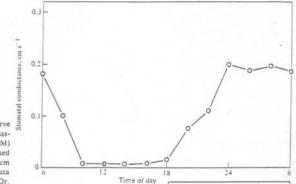


FIGURE 5.7 The diurnal curve of stomatal opening for a Crassulacean acid metabolism (CAM) succulent. The data are expressed as stomatal conductance (cm s⁻¹). Refer to Fig. 5.6. The data are from a cactus obtained by Dr.