

Tutorials

mod_perl related tutorials, teaching you things not only
about mod_perl, but also about any related topics of great
interest to mod_perl programmers.

Last modified Sun Feb 16 01:37:13 2014 GMT

115 Feb 2014

Table of Contents:Tutorials

Part I: Application Design

- 1. Building a Large-Scale E-commerce site with Apache and mod_perl
mod_perl’s speed and Perl’s flexibility make them very attractive for large-scale sites. Through
careful planning from the start, powerful application servers can be created for sites requiring excel-
lent response times for dynamic content, such as eToys.com, all by using mod_perl.

Part II: Templating

- 2. Choosing a Templating System
Everything you wanted to know about templating systems and didn’t dare to ask. Well, not every-
thing....

Part III: Tips and Tricks

- 3. Cute Tricks With Perl and Apache
Perl and Apache play very well together, both for administration and coding. However, adding
mod_perl to the mix creates a heaven for an administrator/programmer wanting to do cool things in
no time!

Part IV: Client side facts and bugs

- 4. Workarounds for some known bugs in browsers.
Unfortunately for web programmers, browser bugs are not uncommon, and sometimes we have to
deal with them; refer to this chapter for some known bugs and how you can work around them.

- 5. Web Content Compression FAQ
Everything you wanted to know about web content compression

15 Feb 20142

Table of Contents:

1 Building a Large-Scale E-commerce site with
Apache and mod_perl

315 Feb 2014

1 Building a Large-Scale E-commerce site with Apache and mod_perlBuilding a Large-Scale E-commerce site with Apache and mod_perl

1.1 Description
mod_perl’s speed and Perl’s flexibility make them very attractive for large-scale sites. Through careful
planning from the start, powerful application servers can be created for sites requiring excellent response
times for dynamic content, such as eToys.com, all by using mod_perl.

This paper was first presented at ApacheCon 2001 in Santa Clara, California, and was later published by
O’Reilly & Associates’ Perl.com site: http://perl.com/pub/a/2001/10/17/etoys.html

1.2 Common Myths
When it comes to building a large e-commerce web site, everyone is full of advice. Developers will tell
you that only a site built in C++ or Java (depending on which they prefer) can scale up to handle heavy
traffic. Application server vendors will insist that you need a packaged all-in-one solution for the software.
Hardware vendors will tell you that you need the top-of-the-line mega-machines to run a large site. This is
a story about how we built a large e-commerce site using mainly open source software and commodity
hardware. We did it, and you can do it too.

1.3 Perl Saves
Perl has long been the preferred language for developing CGI scripts. It combines supreme flexibility with
rapid development. Programming Perl is still one of O’Reilly’s top selling technical books, and commu-
nity support abounds. Lately though, Perl has come under attack from certain quarters. Detractors claim
that it’s too slow for serious development work and that code written in Perl is too hard to maintain.

The mod_perl Apache module changes the whole performance picture for Perl. Embedding a Perl inter-
preter inside of Apache provides performance equivalent to Java servlets, and makes it an excellent choice
for building large sites. Through the use of Perl’s object-oriented features and some basic coding rules,
you can build a set of code that is a pleasure to maintain, or at least no worse than other languages.

1.3.1 Roll Your Own Application Server

When you combine Apache, mod_perl, and open source code available from CPAN (the Comprehensive
Perl Archive Network), you get a set of features equivalent to a commercial application server:

Session handling

Load balancing

Persistent database connections

Advanced HTML templating

Security

15 Feb 20144

1.1 Description

http://perl.com/pub/a/2001/10/17/etoys.html

You also get some things you won’t get from a commercial product, like a direct line to the core develop-
ment team through the appropriate mailing list, and the ability to fix problems yourself instead of waiting
for a patch. Moreover, every part of the system is under your control, making you limited only by your
team’s abilities.

1.4 Case Study: eToys.com
When we first arrived at eToys in 1999, we found a situation that is probably familiar to many who have
joined a growing startup Internet company. The system was based on CGI scripts talking to a MySQL
database. Static file serving and dynamic content generation were sharing resources on the same machines.
The CGI code was largely written in a Perl4-ish style and not as modular as it could be, which was not
surprising since most of it was built as quickly as possible by a very small team.

Our major task was to figure out how to get this system to scale large enough to handle the expected
Christmas traffic. The toy business is all about seasonality, and the difference between the peak selling
season and the rest of the year is enormous. The site had barely survived the previous Christmas, and the
MySQL database didn’t look like it could scale much further.

The call had already been made to switch to Oracle, and a DBA team was in place. We didn’t have enough
time to do a re-design of the software, so we had to scramble to put in place whatever performance
improvements we could finish by Christmas.

1.4.1 Apache::PerlRun to the Rescue

Apache::PerlRun is a module that exists to smooth the transition between basic CGI and mod_perl. It
emulates a CGI environment, and provides some (but not all) of the performance benefits associated with
code written for mod_perl. Using this module and the persistent database connections provided by
Apache::DBI , we were able to do a basic port to mod_perl and Oracle in time for Christmas, and
combined with some new hardware we were ready to face the Christmas rush.

The peak traffic lasted for eight weeks, most of which were spent frantically fixing things or nervously
waiting for something else to break. Nevertheless, we made it through. During that time we collected the
following statistics:

60 - 70,000 sessions/hour

800,000 page views/hour

7,000 orders/hour

According to Media Metrix, we were the third most heavily trafficked e-commerce site, right behind eBay
and Amazon.

515 Feb 2014

1.4 Case Study: eToys.comBuilding a Large-Scale E-commerce site with Apache and mod_perl

1.4.2 Planning the New Architecture

It was clear that we would need to do a re-design for 2000. We had reached the limits of the current
system and needed to tackle some of the harder problems that we had been holding off on.

Goals for the new system included moving away from off-line page generation. The old system had been
building HTML pages for every product and product category on the site in a batch job and dumping them
out as static files. This was very effective when we had a small database of products since the static files
gave such good performance, but we had recently added a children’s bookstore to the site, which increased
the size of our product database by an order of magnitude and made the time required to generate every
page prohibitive. We needed a strategy that would only require us to build pages that customers were actu-
ally interested in and would still provide solid performance.

We also wanted to re-do the database schema for more flexibility, and structure the code in a more
modular way that would make it easier for a team to share the development work without stepping on each
other. We knew that the new codebase would have to be flexible enough to support a continuously evolv-
ing set of features.

Not all of the team had significant experience with object-oriented Perl, so we brought in Randal Schwartz
and Damian Conway to do training sessions with us. We created a set of coding standards, drafted a
design, and built our system.

1.5 Surviving Christmas 2000
Our capacity planning was for three times the traffic of the previous peak. That’s what we tested to, and
that’s about what we got:

200,000+ sessions/hour

2.5 million+ page views/hour

20,000+ orders/hour

The software survived, although one of the routers went up in smoke. Once again, we were rated the third
most highly trafficked e-commerce site for the season.

1.5.1 The Architecture

The machine strategy for the system is a fairly common one: low-cost Intel-based servers with a
load-balancer in front of them, and big iron for the database.

Figure 1. Server layout

Machine Layout

Like many commercial packages, we have separate systems for the front-end web servers (which we call
proxy servers) and the application servers that generate the dynamic content. Both the proxy servers and

15 Feb 20146

1.5 Surviving Christmas 2000

the application servers are load-balanced using dedicated hardware from f5 Networks.

We chose to run Linux on our proxy and application servers, a common platform for mod_perl sites. The
ease of remote administration under Linux made the clustered approach possible. Linux also provided
solid security features and automated build capabilities to help with adding new servers.

The database servers were IBM NUMA-Q machines, which ran on the DYNIX/ptx operating system..

1.5.2 Proxy Servers

The proxy servers ran a slim build of Apache, without mod_perl. They have several standard Apache
modules installed, in addition to our own customized version of mod_session, which assigned session
cookies. Because the processes were so small, we could run up to 400 Apache children per machine. These
servers handled all image requests themselves, and passed page requests on to the application servers.
They communicated with the app servers using standard HTTP requests, and cached the page results when
appropriate headers are sent from the app servers. The cached pages were stored on a shared NFS partition
of a Network Appliance filer. Serving pages from the cache was nearly as fast as serving static files.

This kind of reverse-proxy setup is a commonly recommended approach when working with mod_perl,
since it uses the lightweight proxy processes to send out the content to clients (who may be on slow
connections) and frees the resource-intensive mod_perl processes to move on to the next request. For more
information on why this configuration is helpful, see the strategy section in the users guide.

Figure 2. Proxy Server Setup

Proxy Server Setup

1.5.3 Application Servers

The application servers ran mod_perl, and very little else. They had a local cache for Perl objects, using
Berkeley DB. The web applications ran there, and shared resources like HTML templates were mounted
over NFS from the NetApp filer. Because they did the heavy lifting in this setup, these machines were
somewhat beefy, with dual CPUs and 1GB of RAM each.

Figure 3. Application servers layout

Application servers layout

1.5.4 Search servers

There was a third set of machines dedicated to handling searches. Since searching was such a large
percentage of overall traffic, it was worthwhile to dedicate resources to it and take the load off the applica-
tion servers and database.

The software on these boxes was a multi-threaded daemon which we developed in-house using C++. The
application servers talked to the search servers using a Perl module. The search daemon accepted a set of
search conditions and returned a sorted list of object IDs of the products whose data fits those conditions.

715 Feb 2014

1.5.2 Proxy ServersBuilding a Large-Scale E-commerce site with Apache and mod_perl

Then the application servers looked up the data to display these products from the database. The search
servers knew nothing about HTML or the web interface.

This approach of finding the IDs with the search server and then retrieving the object data may sound like
a performance hit, but in practice the object data usually came from the application server’s cache rather
than the database. This design allowed us to minimize the duplicated data between the database and the
search servers, making it easier and faster to refresh the index. It also let us reuse the same Perl code for
retrieving product objects from the database, regardless of how they were found.

The daemon used a standard inverted word list approach to searching. The index was periodically built
from the relevant data in Oracle. There are modules on CPAN which implement this approach, including
Search::InvertedIndex and DBIx::FullTextSearch . We chose to write our own because of
the very tight performance requirements on this part of the system, and because we had an unusually
complex set of sorting rules for the returned IDs.

Figure 4. Search server layout

Search server layout

1.6 Load Balancing and Failover
We took pains to make sure that we would be able to provide load balancing among nodes of the cluster
and fault tolerance in case one or more nodes failed. The proxy servers were balanced using a random
selection algorithm. A user could end up on a different one on every request. These servers didn’t hold any
state information, so the goal was just to distribute the load evenly.

The application servers used ‘‘sticky’’ load balancing. That means that once a user went to a particular app
server, all of her subsequent requests during that session were also passed to the same app server. The f5
hardware accomplished this using browser cookies. Using sticky load balancing on the app servers
allowed us to do some local caching of user data.

The load balancers ran a periodic service check on every server and removed any servers that failed the
check from rotation. When a server failed, all users that were ‘‘stuck’’; to that machine were moved to
another one.

In order to ensure that no data was lost if an app server died, all updates were written to the database. As a
result, user data like the contents of a shopping cart was preserved even in cases of catastrophic hardware
failure on an app server. This is essential for a large e-commerce site.

The database had a separate failover system, which we will not go into here. It followed standard practices
recommended by our vendors.

15 Feb 20148

1.6 Load Balancing and Failover

1.7 Code Structure
The code was structured around the classic Model-View-Controller pattern, originally from SmallTalk and
now often applied to web applications. The MVC pattern is a way of splitting an application’s responsibil-
ities into three distinct layers.

Classes in the Model layer represented business concepts and data, like products or users. These had an
API but no end-user interface. They knew nothing about HTTP or HTML and could be used in non-web
applications, like cron jobs. They talked to the database and other data sources, and managed their own
persistence.

The Controller layer translated web requests into appropriate actions on the Model layer. It handled
parsing parameters, checking input, fetching the appropriate Model objects, and calling methods on them.
Then it determined the appropriate View to use and send the resulting HTML to the user.

View objects were really HTML templates. The Controller passed data from the Model objects to them
and they generated a web page. These were implemented with the Template Toolkit, a powerful templat-
ing system written in Perl. The templates had some basic conditional statements and looping in them, but
only enough to express the formatting logic. No application control flow was embedded in the templates.

Figure 5. Code structure and interaction between the layers

1.8 Caching
The core of the performance strategy is a multi-tier caching system. On the application servers, data
objects are cached in shared memory with a backing store on local disk. Applications specify how long a
data object can be out of sync with the database, and all future accesses during that time are served from
the high-speed cache. This type of cache control is known as "time-to-live." The local cache is imple-
mented using a Berkeley DB database. Objects are serialized with the standard Storable module from
CPAN.

Data objects are divided into pieces when necessary to provide finer granularity for expiration times. For
example, product inventory is updated more frequently than other product data. By splitting the product
data up, we can use a short expiration for inventory that keeps it in tighter sync with the database, while
still using a longer expiration for the less volatile parts of the product data.

The application servers’ object caches share product data between them using the IP Multicast protocol
and custom daemons written in C. When a product is placed in the cache on one server, the data is repli-
cated to the cache on all other servers. This technique is very successful because of the high locality of
access in product data. During the 2000 Christmas season this cache achieved a 99% hit ratio, thus taking
a large amount of work off the database.

In addition to caching the data objects, entire pages that are not user-specific, like product detail pages, can
be cached. The application takes the shortest expiration time of the data objects used in the pages and
specifies that to the proxy servers as a page expiration time, using standard Expires headers. The proxy
servers cache the generated page on a shared NFS partition. Pages served from this cache have perfor-
mance close to that of static pages.

915 Feb 2014

1.7 Code StructureBuilding a Large-Scale E-commerce site with Apache and mod_perl

To allow for emergency fixes, we added a hook to mod_proxy that deletes the cached copy of a speci-
fied URL. This was used when a page needed to be changed immediately to fix incorrect information.

An extra advantage of this mod_proxy cache is the automatic handling of If-Modified-Since requests.
We did not need to implement this ourselves since mod_proxy already provides it.

Figure 6. Proxy and Cache Interaction

1.9 Session Tracking
Users are assigned session IDs using HTTP cookies. This is done at the proxy servers by our customized
version of mod_session . Doing it at the proxy ensures that users accessing cached pages will still get a
session ID assigned. The session ID is simply a key into data stored on the server-side. User sessions are
assigned to an application server and continue to use that server unless it becomes unavailable. This is
called ‘‘sticky” load balancing. Session data and other data modified by the user -- such as shop-
ping cart contents -- is written to both the object cache and the database. The double write carries a slight
performance penalty, but it allows for fast read access on subsequent requests without going back to the
database. If a server failure causes a user to be moved to a different application server, the data is simply
fetched from the database again.

Figure 7. Session tracking and caches

Session tracking and caches

1.10 Security
A large e-commerce site is a popular target for all types of attacks. When designing such a system, you
have to assume that you will be attacked and build with security in mind, at the application level as well as
the machine level.

The main rule of thumb is ‘‘don’t trust the client!’’ User-specific data sent to the client is protected using
multiple levels of encryption. SSL keeps sensitive data exchanges private from anyone snooping on
network traffic. To prevent ‘‘session hijacking’’ (when someone tampers with their session ID in order to
gain access to another user’s session), we include a Message Authentication Code (MAC) as part of the
session cookie. This is generated using the standard Digest::SHA1 module from CPAN, with a seed
phrase known only to our servers. By running the ID from the session cookie through this MAC algorithm
we can verify that the data being presented was generated by us and not tampered with.

In situations where we need to include some state information in an HTML form or URL and don’t want it
to be obvious to the user, we use the CPAN Crypt:: modules to encrypt and decrypt it. The
Crypt::CBC module is a good place to start.

To protect against simple overload attacks, when someone uses a program to send high volumes of
requests at our servers hoping to make them unavailable to customers, access to the application servers is
controlled by a throttling program. The code is based on some work by Randal Schwartz in his Stone-
henge::Throttle module. Accesses for each user are tracked in compact logs written to an NFS
partition. The program enforces limits on how many requests a user can make within a certain period of

15 Feb 201410

1.9 Session Tracking

time.

For more information on web security concerns including the use of MAC, encryption, and overload
prevention, we recommend looking at the books CGI Programming with Perl, 2nd Edition and Writing
Apache Modules with Perl and C, both from O’Reilly.

1.11 Exception Handling
When planning this system, we considered using Java as the implementation language. We decided to go
with Perl, but we really missed Java’s nice exception handling features. Luckily, Graham Barr’s Error
module from CPAN supplies similar capabilities in Perl.

Perl already has support for trapping runtime errors and passing exception objects, but the Error module
adds some nice syntactic sugar. The following code sample is typical of how we used the module:

 try {
 do_some_stuff();
 } catch My::Exception with {
 my $E = shift;
 handle_exception($E);
 };

The module allows you to create your own exception classes and trap for specific types of exceptions.

One nice benefit of this is the way it works with DBI . If you turn on DBI ’s RaiseError flag and use try
blocks in places where you want to trap exceptions, the Error module can turn DBI errors into simple
Error objects.

 try {
 $sth->execute();
 } catch Error with {
 # roll back and recover
 $dbh->rollback();
 # etc.
 };

This code shows a condition where an error would indicate that we should roll back a database transaction.
In practice, most DBI errors indicate something unexpected happened with the database and the current
action can’t continue. Those exceptions are allowed to propagate up to a top-level try{} block that
encloses the whole request. When errors are caught there, we log a stacktrace and send a friendly error
page back to the user.

1.12 Templates
Both the HTML and the formatting logic for merging application data into it is stored in the templates.
They use a CPAN module called Template Toolkit, which provides a simple but powerful syntax for
accessing the Perl data structures passed to them by the application. In addition to basics like looping and
conditional statements, it provides extensive support for modularization, allowing the use of includes and
macros to simplify template maintenance and avoid redundancy.

1115 Feb 2014

1.11 Exception HandlingBuilding a Large-Scale E-commerce site with Apache and mod_perl

We found Template Toolkit to be an invaluable tool on this project. Our HTML coders picked it up very
quickly and were able to do nearly all of the templating work without help from the Perl coders. We
supplied them with documentation of what data would be passed to each template and they did the rest. If
you have never experienced the joy of telling a project manager that the HTML team can handle his
requested changes without any help from you, you are seriously missing out!

Template Toolkit compiles templates into Perl bytecode and caches them in memory to improve effi-
ciency. When template files change on disk they are picked up and re-compiled. This is similar to how
other mod_perl systems like Mason and Apache::Registry work.

By varying the template search path, we made it possible to assign templates to particular sections of the
site, allowing a customized look and feel for specific areas. For example, the page header template in the
bookstore section of the site can be different from the one in the video game store section. It is even possi-
ble to serve the same data with a different appearance in different parts of the site, allowing for co-brand-
ing of content.

This is a sample of what a basic loop looks like when coded in Template Toolkit:

 [% FOREACH item = cart.items %]
 name: [% item.name %]
 price: [% item.price %]
 [% END %]

1.13 Controller Example
Let’s walk through a simple Hello World example that illustrates how the Model-View-Controller pattern
is used in our code. We’ll start with the controller code.

 package ESF::Control::Hello;
 use strict;
 use ESF::Control;
 @ESF::Control::Hello::ISA = qw(ESF::Control);
 use ESF::Util;
 sub handler {
 ### do some setup work
 my $class = shift;
 my $apr = ESF::Util->get_request();

 ### instantiate the model
 my $name = $apr->param(’name’);

 # we create a new Model::Hello object.
 my $hello = ESF::Model::Hello-E<gt>new(NAME =E<gt> $name);

 ### send out the view
 my $view_data{’hello’} = $hello->view();

 # the process_template() method is inherited
 # from the ESF::Control base class

15 Feb 201412

1.13 Controller Example

 $class->process_template(
 TEMPLATE => ’hello.html’,
 DATA => \%view_data);
 }

In addition to the things you see here, there are a few interesting details about the ESF::Control base
class. All requests are dispatched to the ESF::Control->run() method first, which wraps them in a
try{} block before calling the appropriate handler() method. It also provides the
process_template() method, which runs Template Toolkit and then sends out the results
with appropriate HTTP headers. If the Controller specifies it, the headers can include Last-Modified
and Expires , for control of page caching by the proxy servers.

Now let’s look at the corresponding Model code.

 package ESF::Model::Hello;
 use strict;
 sub new {
 my $class = shift;
 my %args = @_;
 my $self = bless {}, $class;
 $self{’name’} = $args{’NAME’} || ’World’;
 return $self;
 }

 sub view {
 # the object itself will work for the view
 return shift;
 }

This is a very simple Model object. Most Model objects would have some database and cache interaction.
They would include a load() method which accepts an ID and loads the appropriate object state from
the database. Model objects that can be modified by the application would also include a save() method.

Note that because of Perl’s flexible OO style, it is not necessary to call new() when loading an object
from the database. The load() and new() methods can both be constructors for use in different circum-
stances, both returning a blessed reference.

The load() method typically handles cache management as well as database access. Here’s some
pseudo-code showing a typical load() method:

 sub load {
 my $class = shift;
 my %args = @_;
 my $id = $args{’ID’};
 my $self;
 unless ($self = _fetch_from_cache($id)) {
 $self = _fetch_from_database($id);
 $self->_store_in_cache();
 }
 return $self;
 }

1315 Feb 2014

1.13 Controller ExampleBuilding a Large-Scale E-commerce site with Apache and mod_perl

The save method would use the same approach in reverse, saving first to the cache and then to the
database.

One final thing to notice about our Model class is the view() method. This method exists to give the
object an opportunity to shuffle it’s data around or create a separate data structure that is easier for use
with a template. This can be used to hide a complex implementation from the template coders. For
example, remember the partitioning of the product inventory data that we did to allow for separate cache
expiration times? The product Model object is really a façade for several underlying implementation
objects, but the view() method on that class consolidates the data for use by the templates.

To finish off our Hello World example, we need a template to render the view. This one will do the job:

 <html>
 <title>Hello, My Oyster</title>
 <body>
 [% PROCESS header.html %]
 Hello [% hello.name %]!
 [% PROCESS footer.html %]
 </body>
 </html>

1.14 Performance Tuning
Since Perl code executes so quickly under mod_perl , the performance bottleneck is usually at the
database. We applied all the documented tricks for improving DBD::Oracle performance. We used
bind variables, prepare_cached() , Apache::DBI , and adjustments to the RowCache buffer size.

The big win of course is avoiding going to the database in the first place. The caching work we did had a
huge impact on performance. Fetching product data from the Berkeley DB cache was about ten times
faster than fetching it from the database. Serving a product page from the proxy cache was about ten times
faster than generating it on the application server from cached data. Clearly the site would never have
survived under heavy load without the caching.

Partitioning the data objects was also a big win. We identified several different subsets of product data that
could be loaded and cached independently. When an application needed product data, it could specify
which subset was required and skip loading the unnecessary data from the database.

Another standard performance technique we followed was avoiding unnecessary object creation. The
Template object is created the first time it’s used and then cached for the life of the Apache process.
Socket connections to search servers are cached in a way similar to what Apache::DBI does for
database connections. Resources that are used frequently within the scope of a request, such as database
handles and session objects, were cached in mod_perl ’s $r->pnotes() until the end of the request.

1.15 Trap: Nested Exceptions
When trying out a new technology like the Error module, there are bound to be some things to watch out
for. We found a certain code structure that causes a memory leak every time it is executed. It involves
nested try{} blocks, and looks like this:

15 Feb 201414

1.14 Performance Tuning

 my $foo;
 try {
 # some stuff...
 try {
 $foo++;
 # more stuff...
 } catch Error with {
 # handle error
 };

 } catch Error with {
 # handle other error
 };

It’s not Graham Barr’s fault that this leaks; it is simply a by-product of the fact that the try and catch
keywords are implemented using anonymous subroutines. This code is equivalent to the following:

 my $foo;
 $subref1 = sub {
 $subref2 = sub {
 $foo++;
 };
 };

This nested subroutine creates a closure for $foo and will make a new copy of the variable every time it
is executed. The situation is easy to avoid once you know to watch out for it.

1.16 Berkeley DB
One of the big wins in our architecture was the use of Berkeley DB. Since most people are not familiar
with it’s more advanced features, we’ll give a brief overview here.

The DB_File module is part of the standard Perl distribution. However, it only supports the interface of
Berkeley DB version 1.85, and doesn’t include the interesting features of later releases. To get those, you’ll
need the BerkeleyDB.pm module, available from CPAN. This module can be tricky to build, but
comprehensive instructions are included.

Newer versions of Berkeley DB offer many features that help performance in a mod_perl environment.
To begin with, database files can be opened once at the start of the program and kept open, rather than
opened and closed on every request. Berkeley DB will use a shared memory buffer to improve data access
speed for all processes using the database. Concurrent access is directly supported with locking handled
for you by the database. This is a huge win over DB_File , which requires you to do your own locking.
Locks can be at a database level, or at a memory page level to allow multiple simultaneous writers. Trans-
actions with rollback capability are also supported.

This all sounds too good to be true, but there are some downsides. The documentation is somewhat sparse,
and you will probably need to refer to the C API if you need to understand how to do anything compli-
cated.

1515 Feb 2014

1.16 Berkeley DBBuilding a Large-Scale E-commerce site with Apache and mod_perl

A more serious problem is database corruption. When an Apache process using Berkeley DB dies from a
hard kill or a segfault, it can corrupt the database. A corrupted database will sometimes cause subsequent
opening attempts to hang. According to the people we talked to at Sleepycat Software (which provides
commercial support for Berkeley DB), this can happen even with the transactional mode of operation.
They are working on a way to fix the problem. In our case, none of the data stored in the cache was essen-
tial for operation so we were able to simply clear it out when restarting an application server.

Another thing to watch out for is deadlocks. If you use the page-level locking option, you have to handle
deadlocks. There is a daemon included in the distribution that will watch for deadlocks and fix them, or
you can handle them yourself using the C API.

After trying a few different things, we recommend that you use database-level locking. It’s much simpler,
and cured our problems. We didn’t see any significant performance hit from switching to this mode of
locking. The one thing you need to watch out for when using exclusive database level write locks are long
operations with cursors that tie up the database. We split up some of our operations into multiple writes in
order to avoid this problem.

If you have a good C coder on your team, you may want to try the alternate approach that we finally ended
up with. You can write your own daemon around Berkeley DB and use it in a client/server style over Unix
sockets. This allows you to catch signals and ensure a safe shutdown. You can also write your own dead-
lock handling code this way.

1.17 Valuable Tools
If you plan to do any serious Perl development, you should really take the time to become familiar with
some of the available development tools. The debugger in particular is a lifesaver, and it works with
mod_perl . There is a profiler called Devel::DProf , which also works with mod_perl . It’s defi-
nitely the place to start when performance tuning your application.

We found the ability to run our complete system on individual’s workstations to be extremely useful.
Everyone could develop on his own machine, and coordinate changes using CVS source control.

For object modeling and design, we used the open source Dia program and Rational Rose. Both support
working with UML and are great for generating pretty class diagrams for your cubicle walls.

1.18 Do Try This at Home
Since we started this project, a number of development frameworks that offer support for this kind of
architecture have appeared. We didn’t use one of these, but they have a similar design to what we did and
may prove useful to you if you want to take an MVC approach with your system.

Some of the most interesting tools for MVC web development in Perl include Apache::PageKit ,
OpenInteract2 , CGI::Application , Maypole , and Catalyst . There isn’t room here to get
deeply into the differences between these tools, but watch for an article comparing these frameworks in
the future.

15 Feb 201416

1.17 Valuable Tools

If you want a ready-to-use cache module, there are several on CPAN now. The most popular is the
Cache::Cache framework, which can use files or shared memory for storage. Since the original writing
of this article, newer and faster options have appeared, particularly Cache::FastMmap and
Cache::Memcached .

The Java world has many options as well. The Struts framework, part of the Jakarta project, is a good
open source choice. There are also commercial products from several vendors that follow this sort of
design. Top contenders include ATG Dynamo, BEA WebLogic, and IBM WebSphere.

1.19 An Open Source Success Story
By building on the open source software and community, we were able to create a top-tier web site with a
minimum of cost and effort. The system we ended up with is scalable to huge amounts of traffic. It runs on
mostly commodity hardware making it easy to grow when the need arises. Perhaps best of all, it provided
tremendous learning opportunities for our developers, and made us a part of the larger development
community.

We’ve contributed patches from our work back to various open source projects, and provided help on
mailing lists. We’d like to take this opportunity to officially thank the open source developers who
contributed to projects mentioned here. Without them, this would not have been possible. We also have to
thank the hardworking web developers at eToys. The store may be closed, but the talent that built it lives
on.

1.20 Maintainers
The maintainer is the person(s) you should contact with updates, corrections and patches.

Per Einar Ellefsen <per.einar (at) skynet.be>

1.21 Authors
Bill Hilf <bill (at) hilfworks.com>
Perrin Harkins <perrin (at) elem.com>

Only the major authors are listed above. For contributors see the Changes file.

1715 Feb 2014

1.19 An Open Source Success StoryBuilding a Large-Scale E-commerce site with Apache and mod_perl

2 Choosing a Templating System

15 Feb 201418

2 Choosing a Templating System

2.1 Description
Everything you wanted to know about templating systems and didn’t dare to ask. Well, not everything....

2.2 Introduction
Go on, admit it: you’ve written a templating system. It’s okay, nearly everyone has at some point. You
start out with something beautifully simple like $HTML =~ s/\$(\w+)/${$1}/g and end up adding
conditionals and loops and includes until you’ve created your very own unmaintainable monster.

Luckily for you, you are not the first to think it might be nice to get the HTML out of your code. Many
have come before, and more than a few have put their contributions up on CPAN. At this time, there are so
many templating modules on CPAN that it’s almost certain you can find one that meets your needs. This
document aims to be your guide to those modules, leading you down the path to the templating system of
your dreams.

And, if you just went straight to CPAN in the first place and never bothered to write your own, congratula-
tions: you’re one step ahead of the rest of us.

2.2.1 On A Personal Note

Nothing can start an argument faster on the mod_perl mailing list than a claim that one approach to
templating is better than another. People get very attached to the tools they’ve chosen. Therefore, let me
say up front that I am biased. I’ve been at this for a while and I have opinions about what works best. I’ve
tried to present a balanced appraisal of the features of various systems in this document, but it probably
won’t take you long to figure out what I like. Besides, attempts to be completely unbiased lead to useless
documents that don’t contain any real information. So take it all with a pound of salt and if you think I’ve
been unfair to a particular tool through a factual error or omission, let me know.

2.3 Why Use Templates?
Why bother using templates at all? Print statements and CGI.pm were good enough for Grandpa, so why
should you bother learning a new way to do things?

2.3.1 Consistency of Appearance

It doesn’t take a genius to see that making one navigation bar template and using it in all of your pages is
easier to manage than hard-coding it every where. If you build your whole site like this, it’s much easier to
make site-wide changes in the look and feel.

1915 Feb 2014

2.1 DescriptionChoosing a Templating System

2.3.2 Reusability

Along the same lines, building a set of commonly used components makes it easier to create new pages.

2.3.3 Better Isolation from Changes

Which one changes more often, the logic of your application or the HTML used to display it? It actually
doesn’t matter which you answered, as long as it’s one of them. Templates can be a great abstraction layer
between the application logic and the display logic, allowing one to be updated without touching the other.

2.3.4 Division of Labor

Separating your Perl code from your HTML means that when your marketing department decides every-
thing should be green instead of blue, you don’t have to lift a finger. Just send them to the HTML coder
down the hall. It’s a beautiful thing, getting out of the HTML business.

Even if the same people in your organization write the Perl code and the HTML, you at last have the
opportunity for more people to be working on the project in parallel.

2.4 What Are the Differences?
Before we look at the available options, let’s go through an explanation of some of the things that make
them different.

2.4.1 Execution Models

Although some try to be flexible about it, most templating systems expect you to use some variation of the
two basic execution models, which I will refer to as "pipeline" and "callback." In the callback style, you let
the template take over and it has the application’s control flow coded into it. It uses callbacks to modules
or snippets of in-line Perl code to retrieve data for display or perform actions like user authentication.
Some popular examples of systems using this model include Mason, Embperl, and Apache::ASP.

The pipeline style does all the work up front in a standard CGI or mod_perl handler, then decides which
template to run and passes some data to it. The template has no control flow logic in it, just presentation
logic, e.g. show this graphic if this item is on sale. Popular systems supporting this approach include
HTML::Template and Template Toolkit.

The callback model works very well for publishing-oriented sites where the pages are essentially mix and
match sets of articles and lists. Ideally, a site can be broken down into visual "components" or pieces of
pages which are general enough for an HTML coder to re-combine them into entirely new kinds of pages
without any help from a programmer.

The callback model can get a bit hairy when you have to code logic that can result in totally different
content being returned. For example, if you have a system that processes some form input and takes the
user to different pages depending on the data submitted. In these situations, it’s easy to end up coding a
spaghetti of includes and redirects, or putting what are really multiple pages in the same file.

15 Feb 201420

2.4 What Are the Differences?

On the other hand, a callback approach can result in fewer files (if the Perl code is in the HTML file), and
feels easier and more intuitive to many developers. It’s a simple step from static files to static files with a
few in-line snippets of code in them. This is part of why PHP is so popular with new developers.

The pipeline model is more like a traditional model-view-controller design. Working this way can provide
additional performance tuning opportunities over an approach where you don’t know what data will be
needed at the beginning of the request. You can aggregate database queries, make smarter choices about
caching, etc. It can also promote a cleaner separation of application logic and presentation. However, this
approach takes longer to get started with since it’s a bigger conceptual hurdle and always involves at least
two files: one for the Perl code and one for the template.

Keep in mind, many systems offer significant flexibility for customizing their execution models. For
example, Mason users could write separate components for application logic and display, letting the logic
components choose which display component to run after fetching their data. This allows it to be used in a
pipeline style. A Template Toolkit application could be written to use a simple generic handler (like the
Apache::Template module included in the distribution) with all the application logic placed in the template
using object calls or in-line Perl. This would be using it in a callback style.

HTML::Template is fairly rigid about insisting on a pipeline approach. It doesn’t provide methods for
calling back into Perl code during the HTML formatting stage; you have to do the work before running the
template. The author of the module consider this a feature since it prevents developers from cheating on
the separation of application code and presentation.

2.4.2 Languages

Here’s the big issue with templating systems. This is the one that always cranks up the flame on web
development mailing lists.

Some systems use in-line Perl statements. They may provide some extra semantics, like Embperl’s opera-
tors for specifying whether the code’s output should be displayed or Mason’s <%init> sections for spec-
ifying when the code gets run, but at the end of the day your templates are written in Perl.

Other systems provide a specialized mini-language instead of (or in addition to) in-line Perl. These will
typically have just enough syntax to handle variable substitution, conditionals, and looping.
HTML::Template and Template Toolkit are popular systems using this approach.

Here’s how a typical discussion of the merits of these approaches might go:

IN-LINE: Mini-languages are stupid. I already know Perl and it’s easy enough. Why would you want to
use something different?

MINI-LANG: Because my HTML coder doesn’t know Perl, and this is easier for him.

IN-LINE: Maybe he should learn some Perl. He’d get paid more.

MINI-LANG: Whatever. You just want to use in-line Perl so you can handle change requests by putting
little hacks in the template instead of changing your modules. That’s sloppy coding.

2115 Feb 2014

2.4.2 LanguagesChoosing a Templating System

IN-LINE: That’s efficient coding. I can knock out data editing screens in half the time it takes you, and
then I can go back through, putting all the in-line code into modules and just have the templates call them.

MINI-LANG: You could, but you won’t.

IN-LINE: Is it chilly up there in that ivory tower?

MINI-LANG: Go write some VBScript, weenie.

etc.

Most people pick a side in this war and stay there. If you are one of the few who hasn’t fully decided yet,
you should take a moment to think about who will be building and maintaining your templates, what skills
those people have, and what will allow them to work most efficiently.

Here’s an example of a simple chunk of template using first an in-line style (Apache::ASP in this case)
and then a mini-language style (Template Toolkit). This code fetches an object and displays some proper-
ties of it. The data structures used are identical in both examples. First Apache::ASP:

 <% my $product = Product->load(’sku’ => ’bar1234’); %>

 <% if ($product->isbn) { %>
 It’s a book!
 <% } else { %>
 It’s NOT a book!
 <% } %>

 <% foreach my $item (@{$product->related}) { %>
 You might also enjoy <% $item->name %>.
 <% } %>

And now Template Toolkit:

 [% USE product(sku=bar1234) %]

 [% IF product.isbn %]
 It’s a book!
 [% ELSE %]
 It’s NOT a book!
 [% END %]

 [% FOREACH item = product.related %]
 You might also enjoy [% item.name %].
 [% END %]

There is a third approach, based on parsing an HTML document into a DOM tree and then manipulating
the contents of the nodes. The only module using this approach is HTML_Tree. The idea is similar to
using a mini-language, but it doesn’t require any non-standard HTML tags and it doesn’t embed any logic
about loops or conditionals in the template itself. This is nice because it means your templates are valid
HTML documents that can be viewed in a browser and worked with in most standard HTML tools. It also
means people working with the templates can put placeholder data in them for testing and it will simply be
replaced when the template is used. This preview ability only breaks down when you need an if/else type

15 Feb 201422

2.4.2 Languages

construct in the template. In that situation, both the "if" and "else" chunks of HTML would show up when
previewing.

2.4.3 Parsers and Caching

The parsers for these templating systems are implemented in one of three ways: they parse the template
every time ("repeated parse"), they parse it and cache the resulting parse tree ("cached parse tree"), or they
parse it, convert it to Perl code, and compile it ("compiled").

Systems that compile templates to Perl take advantage of Perl’s powerful runtime code evaluation capabil-
ities. They examine the template, generate a chunk of Perl code from it, and eval the generated code.
After that, subsequent requests for the template can be handled by running the compiled bytecode in
memory. The complexity of the parsing and code generation steps varies based on the number of bells and
whistles the system provides beyond straight in-line Perl statements.

Compiling to Perl and then to Perl bytecode is slow on the first hit but provides excellent performance
once the template has been compiled, since the template becomes a Perl subroutine call. This is the same
approach used by systems like JSP (Java ServerPages). It is most effective in environments with a
long-running Perl interpreter, like mod_perl.

HTML::Template, HTML_Tree, and the 2.0 beta release of Embperl all use a cached parse tree approach.
They parse templates into their respective internal data structures and then keep the parsed structure for
each processed template in memory. This is similar to the compiled Perl approach in terms of performance
and memory requirements, but does not actually involve Perl code generation and thus doesn’t require an
eval step. Which way is faster, caching the parse tree or compiling? It’s hard to objectively measure, but
anecdotal evidence seems to support compilation. Template Toolkit used a cached parse tree approach for
version 1, but switched to a compilation approach for version 2 after tests showed it to offer a significant
speed increase. However, as will be discussed later, either approach is more than fast enough.

In contrast to this, a repeated parse approach may sound very slow. However, it can be pretty fast if the
tokens being parsed for are simple enough. Systems using this approach generally use very simple tokens,
which allows them to use fast and simple parsers.

Why would you ever use a system with this approach if compilation has better performance? Well, in an
environment without a persistent Perl interpreter like vanilla CGI this can actually be faster than a
compiled approach since the startup cost is lower. The caching of Perl bytecode done by compilation
systems is useless when the Perl interpreter doesn’t stick around for more than one request.

There are other reasons too. Compiled Perl code takes up a lot of memory. If you have many unique
templates, they can add up fast. Imagine how much RAM it would take up if every page that used
server-side includes (SSI) had to stay in memory after it had been accessed. (Don’t worry, the
Apache::SSI module doesn’t use compilation so it doesn’t have this problem.)

2315 Feb 2014

2.4.3 Parsers and CachingChoosing a Templating System

2.4.4 Application Frameworks vs. Just Templates

Some of the templating tools try to offer a comprehensive solution to the problems of web development.
Others offer just a templating solution and assume you will fit this together with other modules to build a
complete system.

Some common features offered in the frameworks include:

2.4.4.1 URL Mapping

All of the frameworks offer a way to map a URL to a template file. In addition to simple mappings similar
to the handling of static documents, some offer ways to intercept all requests within a certain directory for
pre-processing, or create an object inheritance scheme out of the directory structure of a site.

2.4.4.2 Session Tracking

Most interactive sites need to use some kind of session tracking to associate application state data with a
user. Some tools make this very easy by handling all the cookies or URL-munging for you and letting you
simply read and write from an object or hash that contains the current user’s session data. A common
approach is to use the Apache::Session module for storage.

2.4.4.3 Output Caching

While caching of output is outside the scope of most templating systems, Mason includes it as a standard
feature. In addition to page-level caching, Mason also offers fine-grained caching of output from sections
within a page.

2.4.4.4 Form Handling

How will you live without CGI.pm to parse incoming form data? Many of these tools will do it for you,
making it available in a convenient data structure. Some also validate form input, and even provide
"sticky" form widgets that keep their selected values when re-displayed or set up default values based on
data you provide.

2.4.4.5 Debugging

Everyone knows how painful it can be to debug a CGI script. Templating systems can make it worse, by
screwing up Perl’s line numbers with generated code. To help fix the problem they’ve created, some offer
built-in debugging support, including extra logging, or integration with the Perl debugger.

If you want to use a system that just does templates but you need some of these other features and don’t
feel like implementing them yourself, there are some tools on CPAN which provide a framework you can
build on. The libservlet distribution, which provides an interface similar to the Java servlet API, is inde-
pendent of any particular templating system. Apache::PageKit and CGI::Application are other options in
this vein, but both of these are currently tied to HTML::Template. OpenInteract is another framework, this
time tied to Template Toolkit. All of these could be adapted for the "just templates" module of your choice
with fairly minimal effort.

15 Feb 201424

2.4.4 Application Frameworks vs. Just Templates

2.5 The Contenders
Okay, now that you know something about what separates these tools from each other, let’s take a look at
the top choices for Perl templating systems. This is not an exhaustive list: I’ve only included systems that
are currently maintained, well-documented, and have managed to build up a significant user community.
In short, I’ve left out a dozen or so less popular systems. At the end of this section, I’ll mention a few
systems that aren’t as commonly used but may be worth a look.

2.5.1 SSI

SSI is the granddaddy of templating systems, and the first one that many people used since it comes as a
standard part of most web servers. With mod_perl installed, mod_include gains some additional power.
Specifically, it is able to take a new #perl directive (though only if mod_perl is statically built) which
allows for in-line subroutine calls. It can also efficiently include the output of Apache::Registry scripts by
using the Apache::Include module.

The Apache::SSI module implements the functionality of mod_include entirely in Perl, including the addi-
tional #perl directive. The main reasons to use it are to post-process the output of another handler (with
Apache::Filter) or to add your own directives. Adding directives is easy through subclassing. You might
be tempted to implement a complete template processor in this way, by adding loops and other constructs,
but it’s probably not worth the trouble with so many other tools out there.

SSI follows the callback model and is mostly a mini-language, although you can sneak in bits of Perl code
as anonymous subs in #perl directives. Because SSI uses a repeated parse implementation, it is safe to
use it on large numbers of files without worrying about memory bloat.

SSI is a great choice for sites with fairly simple templating needs, especially ones that just want to share
some standard headers and footers between pages. However, you should consider whether or not your site
will eventually need to grow into something with more flexibility and power before settling on this simple
approach.

2.5.2 HTML::Mason

Mason has been around for a few years now, and has built up a loyal following. It was originally created
as a Perl clone of some of the most interesting features from Vignette StoryServer, but has since become
it’s own unique animal. It comes from a publishing background, and includes features oriented towards
splitting up pages into re-useable chunks, or "components."

Mason uses in-line Perl with a compilation approach, but has a feature to help keep the perl code out of the
HTML coder’s way. Components (templates) can include a section of Perl at the end of the file which is
wrapped inside a special tag indicating that it should be run first, before the rest of the template. This
allows programmers to put all the logic for a component down at the bottom away from the HTML, and
then use short in-line Perl snippets in the HTML to insert values, loop through lists, etc.

2515 Feb 2014

2.5 The ContendersChoosing a Templating System

Mason is a site development framework, not just a templating tool. It includes a very handy caching
feature that can be used for capturing the output of components or simply storing data that is expensive to
compute. It is currently the only tool that offers this sort of caching as a built-in. It also implements an
argument parsing scheme which allows a component to specify the names, types, and default values that it
expects to be passed, either from another component or from the values passed in the URI query string.

While the documentation mostly demonstrates a callback execution model, it is possible to use Mason in a
pipeline style. This can be accomplished in various ways, including designating components as "autohan-
dlers" which run before anything else for requests within a certain directory structure. An autohandler
could do some processing and set up data for a display template which only includes minimal in-line Perl.
There is also support for an object-oriented site approach, applying concepts like inheritance to the site
directory structure. For example, the component at /store/book/ might inherit a standard layout from the
component at /store/, but override the background color and navigation bar. Then /store/music/ can do the
same, with a different color. This can be a very powerful paradigm for developing large sites.

Mason’s approach to debugging is to create "debug files" which run Mason outside of a web server envi-
ronment, providing a fake web request and activating the debugger. This can be helpful if you’re having
trouble getting Apache::DB to behave under mod_perl, or using an execution environment that doesn’t
provide built-in debugger support.

Another unique feature is the ability to leave the static text parts of a large template on disk, and pull them
in with a file seek when needed rather than keeping them in RAM. This exchanges some speed for a
significant savings in memory when dealing with templates that are mostly static text.

There are many other features in this package, including filtering of HTML output and a page previewing
utility. Session support is not built-in, but a simple example showing how to integrate with
Apache::Session is included. Mason’s feature set can be a bit overwhelming for newbies, but the
high-quality documentation and helpful user community go a long way.

2.5.3 HTML::Embperl

Embperl makes its language choice known up front: embedded perl. It is one of the most popular in-line
Perl templating tools and has been around longer than most of the others. It has a solid reputation for speed
and ease of use.

It is commonly used in a callback style, with Embperl intercepting URIs and processing the requested file.
However, it can optionally be invoked through a subroutine call from another program, allowing it to be
used in a pipeline style. Templates are compiled to Perl bytecode and cached.

Embperl has been around long enough to build up an impressive list of features. It has the ability to run
code inside a Safe compartment, support for automatically cleaning up globals to make mod_perl coding
easier, and extensive debugging tools including the ability to e-mail errors to an administrator.

The main thing that sets Embperl apart from other in-line Perl systems is its tight HTML integration. It can
recognize TABLE tags and automatically iterate over them for the length of an array. It automatically
provides sticky form widgets. An array or hash reference placed at the end of a query string in an HREF or
SRC attribute will be automatically expanded into query string "name=value" format. META

15 Feb 201426

2.5.3 HTML::Embperl

HTTP-EQUIV tags are turned into true HTTP headers.

Another reason people like Embperl is that it makes some of the common tasks of web application coding
so simple. For example, all form data is always available just by reading the magic variable %fdat.
Sessions are supported just as easily, by reading and writing to the magic %udat hash. There is also a hash
for storing persistent application state. HTML-escaping is automatic (though it can be toggled on and off).

Embperl includes something called EmbperlObject, which allows you to apply OO concepts to your site
hierarchy in a similar way to the inheritance features mentioned for Mason, above. This is a very conve-
nient way to code sites with styles that vary by area, and is worth checking out.

One drawback of older versions of Embperl was the necessity to use built-in replacements for most of
Perl’s control structures like "if" and "foreach" when they are being wrapped around non-Perl sections.
For example:

 [$ if ($foo) $]
 Looks like a foo!
 [$ else $]
 Nope, it’s a bar.
 [$ endif $]

These may seem out of place in a system based around in-line Perl. As of version 1.2b2, it is possible to
use Perl’s standard syntax instead:

 [$ if ($foo) { $]
 Looks like a foo!
 [$ } else { $]
 Nope, it’s a bar.
 [$ } $]

At the time of this writing, a new 2.x branch of Embperl is in beta testing. This includes some interesting
features like a more flexible parsing scheme which can be modified to users’ tastes. it also supports direct
use of the Perl debugger on Embperl templates, and provides performance improvements.

2.5.4 Apache::ASP

Apache::ASP started out as a port of Microsoft’s Active Server Pages technology, and its basic design still
follows that model. It uses in-line Perl with a compilation approach, and provides a set of simple objects
for accessing the request information and formulating a response. Scripts written for Microsoft’s ASP
using Perl (via ActiveState’s PerlScript) can usually be run on this system without changes. (Pages written
in VBScript are not supported.)

Like the original ASP, it has hooks for calling specified code when certain events are triggered, such as the
start of a new user session. It also provides the same easy-to-use state and session management. Storing
and retrieving state data for a whole application or a specific user is as simple as a single method call. It
can even support user sessions without cookies by munging URLs -- a unique feature among these
systems.

2715 Feb 2014

2.5.4 Apache::ASPChoosing a Templating System

A significant addition that did not come from Microsoft ASP is the XML and XSLT support. There are
two options provided: XMLSubs and XSLT transforms. XMLSubs is a way of adding custom tags to your
pages. It maps XML tags to your subroutines, so that you can add something like <site:header
page="Page Title" /> to your pages and have it translate into a subroutine call like
&site::header({title => "Page Title"}) . It can handle processing XML tags with body
text as well.

The XSLT support allows the output of ASP scripts to be filtered through XSLT for presentation. This
allows your ASP scripts to generate XML data and then format that data with a separate XSL stylesheet.
This support is provided through integration with the XML::XSLT module.

Apache::ASP provides sticky widgets for forms through the use of the HTML::FillInForm module. It also
has built-in support for removing extra whitespace from generated output, gzip compressing output (for
browsers that support it), tracking performance using Time::HiRes, automatically mailing error messages
to an administrator, and many other conveniences and tuning options. This is a mature package which has
evolved to handle real-world problems.

One thing to note about the session and state management in this system is that it currently only supports
clusters through the use of network filesystems like NFS or SMB. (Joshua Chamas, the module’s author,
has reported much better results from Samba file-sharing than from NFS.) This may be an issue for
large-scale server clusters, which usually rely on a relational database for network storage of sessions.
Support database storage of sessions is planned for a future release.

2.5.5 Text::Template

This module has become the de facto standard general purpose templating module on CPAN. It has an
easy interface and thorough documentation. The examples in the docs show a pipeline execution style, but
it’s easy to write a mod_perl handler that directly invokes templates, allowing a callback style. The
module uses in-line Perl. It has the ability to run the in-line code in a Safe compartment, in case you are
concerned about mistakes in the code crashing your server.

The module relies on creative uses of in-line code to provide things that people usually expect from
templating tools, like includes. This can be good or bad. For example, to include a file you could just call
Text::Template::fill_in_file(filename). However, you’ll have to specify the complete file path and nothing
will stop you from using /etc/passwd as the file to be included. Most of the fancier templating tools have
concepts like include paths, which allow you to specify a list of directories to search for included files.
You could write a subroutine that works this way, and make it available in your template’s namespace, but
it’s not built in.

Each template is loaded as a separate object. Templates are compiled to Perl and only parsed the first time
they are used. However, to take full advantage of this caching in a persistent environment like mod_perl,
your program will have to keep track of which templates have been used, since Text::Template does not
have a way of globally tracking this and returning cached templates when possible.

Text::Template is not tied to HTML, and is just a templating module, not a web application framework. It
is perfectly at home generating e-mails, PDFs, etc.

15 Feb 201428

2.5.5 Text::Template

2.5.6 Template Toolkit

One of the more recent additions to the templating scene, Template Toolkit is a very flexible
mini-language system. It has a complete set of directives for working with data, including loops and condi-
tionals, and it can be extended in a number of ways. In-line Perl code can be enabled with a configuration
option, but is generally discouraged. It uses compilation, caching the compiled bytecode in memory and
optionally caching the generated Perl code for templates on disk. Although it is commonly used in a
pipeline style, the included Apache::Template module allows templates to be invoked directly from URLs.

Template Toolkit has a large feature set, so we’ll only be able cover some of the highlights here. The TT
distribution sets a gold standard for documentation thoroughness and quality, so it’s easy to learn more if
you choose to.

One major difference between TT and other systems is that it provides simple access to complex data
structures through the concept of a dot operator. This allows people who don’t know Perl to access nested
lists and hashes or call object methods. For example, we could pass in this Perl data structure:

 $vars = {
 customer => {
 name => ’Bubbles’,
 address => {
 city => ’Townsville’,
 }
 }
 };

Then we can refer to the nested data in the template:

 Hi there, [% customer.name %]!
 How are things in [% customer.address.city %]?

This is simpler and more uniform than the equivalent syntax in Perl. If we pass in an object as part of the
data structure, we can use the same notation to call methods within that object. If you’ve modeled your
system’s data as a set of objects, this can be very convenient.

Templates can define macros and include other templates, and parameters can be passed to either.
Included templates can optionally localize their variables so that changes made while the included
template is executing do not affect the values of variables in the larger scope.

There is a filter directive, which can be used for post-processing output. Uses for this range from simple
HTML entity conversion to automatic truncation (useful for pulldown menus when you want to limit the
size of entries) and printing to STDERR.

TT supports a plugin API, which can be used to add extra capabilities to your templates. The provided
plugins can be broadly organized into data access and formatting. Standard data access plugins include
modules for accessing XML data or a DBI data source and using that data within your template. There’s a
plugin for access to CGI.pm as well.

2915 Feb 2014

2.5.6 Template ToolkitChoosing a Templating System

Formatting plugins allow you to display things like dates and prices in a localized style. There’s also a
table plugin for use in displaying lists in a multi-column format. These formatting plugins do a good job of
covering the final 5% of data display problems that often cause people who are using an in-house system
to embed a little bit of HTML in their Perl modules.

In a similar vein, TT includes some nice convenience features for template writers like eliminating white
space around tags and the ability to change the tag delimiters -- things that may sound a little esoteric, but
can sometimes make templates significantly easier to work with.

The TT distribution also includes a script called ttree which allows for processing an entire directory tree
of templates. This is useful for sites that pre-publish their templated pages and serve them statically. The
script checks modification times and only updates pages that require it, providing a make-like functional-
ity. The distribution also includes a sample set of template-driven HTML widgets which can be used to
give a consistent look and feel to a collection of documents.

2.5.7 HTML::Template

HTML::Template is a popular module among those looking to use a mini-language rather than in-line Perl.
It uses a simple set of tags which allow looping (even on nested data structures) and conditionals in addi-
tion to basic value insertion. The tags are intentionally styled to look like HTML tags, which may be
useful for some situations.

As the documentation says, it "does just one thing and it does quickly and carefully" -- there is no attempt
to add application features like form-handling or session tracking. The module follows a pipeline execu-
tion style. Parsed templates are stored in a Perl data structure which can be cached in any combination of
memory, shared memory (using IPC::SharedCache), and disk. The documentation is complete and
well-written, with plenty of examples.

You may be wondering how this module is different from Template Toolkit, the other popular
mini-language system. Beyond the obvious differences in syntax, HTML::Template is faster and simpler,
while Template Toolkit has more advanced features, like plugins and dot notation. Here’s a simple
example comparing the syntax:

HTML::Template:

 <TMPL_LOOP list>
 <a href="<TMPL_VAR url>"><TMPL_VAR name>
 </TMPL_LOOP>

Template Toolkit:

 [% FOREACH list %]
 [% name %]
 [% END %]

And now, a few honorable mentions:

15 Feb 201430

2.5.7 HTML::Template

2.5.8 AxKit2

Previous versions of this document covered Apache::AxKit. However, the coverage was not very good
and that project has since been replaced by AxKit2.

Like its predecessor, AxKit2 is all about XML. It is more of a framework than a templating system per se,
but includes support for multiple templating systems within it. The systems supported in the core release
include XSLT, TAL (see the notes on Petal and Template::TAL below), XSP, an XML-based
mini-language which can be extended with your own tags, and facilities for writing custom tag libraries.

Rather than short-change AxKit2 here with an inadequate description, I would encourage people who are
intrigued by what they’ve heard so far to go and check out AxKit2 on CPAN. If you like working with
XML, this may be a very good fit for you.

2.5.9 HTML_Tree

As mentioned earlier, HTML Tree uses a fairly unique method of templating: it loads in an HTML page,
parses it to a DOM, and then programmatically modifies the contents of nodes. This allows it to use
genuine valid HTML documents as templates, something which none of these other modules can do. The
learning curve is a little steeper than average, but this may be just the thing if you are concerned about
keeping things simple for your HTML coders. Unfortunately, HTML_Tree seems to be a dead project at
this point and has not had an update in years. (Note that the name is "HTML_Tree", not "HTML::Tree".)

2.5.10 Petal and Template::TAL

Both of these modules are based on the TAL templating language created by the developers of the
(Python) Zope CMS. (Petal offers some additions, while Template::TAL tries to be a strict implementation
of the TAL spec.) The basic idea is to make your templates XML documents and use attributes in a TAL
namepace to specify data, loops, and conditionals. This means it is essentially using a mini-language, but
the templates end up being valid XML documents, which allows them to be edited with XML tools.

There are a couple of downsides to TAL. One is the verbosity. Compared to most of the other tools listed
here, TAL is very verbose. This is a consequence of using XML attributes for everything. Here’s an
example from the Template::TAL docs:

 <li tal:repeat="user users">

The other issue is the need for your templates to be valid XML (most likely XHTML). Petal attempts to be
more forgiving by implementing a custom parser and allowing XHTML and HTML. This should allow the
use of WYSIWYG tools to edit templates. In practice though, the custom parser is easily confused by
HTML that browsers would handle without a problem. A custom parser is also problematic from a mainte-
nance perspective since it doesn’t benefit from improvements in the commonly used XML parsers.
Template::TAL uses XML::LibXML.

3115 Feb 2014

2.5.8 AxKit2Choosing a Templating System

Both Petal and Template::TAL have seen relatively recent maintenance releases, which makes them a
much safer bet than HTML_Tree at this point.

2.5.11 ePerl

Possibly the first module to embed Perl code in a text or HTML file, ePerl is getting a bit long in the tooth.
The mod_perl-aware version, Apache::ePerl, caches compiled bytecode in memory to achieve solid
performance, and some people find it refreshingly simple to use. However, it lacks many of the features
that the other more modern systems have, and may be difficult to compile on recent versions of Perl.

2.5.12 CGI::FastTemplate

This module takes a minimalistic approach to templating, which makes it unusually well suited to use in
CGI programs. It parses templates with a single regular expression and does not support anything in
templates beyond simple variable interpolation. Loops are handled by including the output of other
templates. Unfortunately, this leads to a Perl coding style that is more confusing than most, and a prolifer-
ation of template files. However, some people swear by this dirt-simple approach.

2.6 Performance
People always seem to worry about the performance of templating systems. If you’ve ever built a
large-scale application, you should have enough perspective on the relative costs of different actions to
know that your templating system is not the first place to look for performance gains. All of the systems
mentioned here have excellent performance characteristics in persistent execution environments like
mod_perl. Compared to such glacially slow operations as fetching data from a database or file, the time
added by the templating system is almost negligible.

If you think your templating system is slowing you down, get the facts: pull out Devel::DProf and see. If
one of the tools mentioned here is at the top of the list for wall clock time used, you should pat yourself on
the back -- you’ve done a great job tuning your system and removing bottlenecks! Personally, I have only
seen this happen when I had managed to successfully cache nearly every part of the work to handle a
request except running a template.

However, if you really are in a situation where you need to squeeze a few extra microseconds out of your
page generation time, there are performance differences between systems. They’re pretty much what you
would expect: systems that do the least run the fastest. Using in-line print() statements is faster than using
templates. Using simple substitution is faster than using in-line Perl code. Using in-line Perl code is faster
than using a mini-language.

The only templating benchmark available at this time is one developed by Joshua Chamas, author of
Apache::ASP. It includes a "hello world" test, which simply checks how fast each system can spit back
those famous words, and a "hello 2000" test, which exercises the basic functions used in most dynamic
pages. It is available from the following URL:

15 Feb 201432

2.6 Performance

http://www.chamas.com/bench/hello.tar.gz

Results from this benchmark currently show SSI, Apache::ASP, and HTML::Embperl having the best
performance of the lot. Not all of the systems mentioned here are currently included in the test. If your
favorite was missed, you might want to download the benchmark code and add it. As you can well
imagine, benchmarking people’s pet projects is largely a thankless task and Joshua deserves some recogni-
tion and support for this contribution to the community.

2.6.1 CGI Performance Concerns

If you’re running under CGI, you have bigger fish to fry than worrying about the performance of your
templating system. Nevertheless, some people are stuck with CGI but still want to use a templating system
with reasonable performance. CGI is a tricky situation, since you have to worry about how much time it
will take for Perl to compile the code for a large templating system on each request. CGI also breaks the
in-memory caching of templates used by most of these systems, although the slower disk-based caching
provided by Mason, HTML::Template, and Template Toolkit will still work. (HTML::Template does
provide a shared memory cache for templates, which may improve performance, although shared memory
on my Linux system is usually slower than using the filesystem. Benchmarks and additional information
are welcome.)

Your best performance bet with CGI is to use one of the simpler tools, like CGI::FastTemplate or
Text::Template. They are small and compile quickly, and CGI::FastTemplate gets an extra boost since it
relies on simple regex parsing and doesn’t need to eval any in-line Perl code. Almost everything else
mentioned here will add tenths of seconds to each page in compilation time alone.

2.7 Updates
These modules are moving targets, and a document like this is bound to contain some mistakes. Send your
corrections to <perrin (at) elem.com>. Future versions of this document will be announced on the
mod_perl mailing list, and possibly other popular Perl locations as well.

by Perrin Harkins

2.8 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Perrin Harkins <perrin (at) elem.com>.

2.9 Authors
Perrin Harkins <perrin (at) elem.com>.

3315 Feb 2014

2.7 UpdatesChoosing a Templating System

http://www.chamas.com/bench/hello.tar.gz

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 201434

2.9 Authors

3 Cute Tricks With Perl and Apache

3515 Feb 2014

3 Cute Tricks With Perl and ApacheCute Tricks With Perl and Apache

3.1 Description
Perl and Apache play very well together, both for administration and coding. However, adding mod_perl
to the mix creates a heaven for an administrator/programmer wanting to do cool things in no time!

This tutorial begins a collection of CGI scripts that illustrate the three basic types of CGI scripting:
dynamic documents, document filtering, and URL redirection. It also shows a few tricks that you might
not have run into -- or even thought were possible with CGI.

Then, we move to look at different uses of Perl to handle typical administrative tasks. Finally, we continue
with the next step beyond CGI scripting: the creation of high performance Apache modules with the
mod_perl API.

3.2 Part I: Tricks with CGI.pm
CGI.pm is the long-favored module for CGI scripting, and, as mod_perl can run CGI scripts (mostly)
unaltered, also provides significant advantages for mod_perl programmers. Let’s look at some of the more
interesting uses of this module in web programming.

3.2.1 Dynamic Documents

The most familiar use of CGI is to create documents on the fly. They can be simple documents, or get
incredibly baroque. We won’t venture much past the early baroque.

3.2.1.1 Making HTML look beautiful

<I> <hate> <HTML> <because> <it’s> <ugly> <and> <has> <too> <many> <$#@*&> <angle> <brack-
ets>. With CGI.pm it’s almost good to look at. Script I.1.1 shows what a nested list looks like with
CGI.pm.

 Script I.1.1: vegetables1.pl

 #!/usr/bin/perl
 # Script: vegetables1.pl
 use CGI::Pretty ’:standard’;
 print header,
 start_html(’Vegetables’),
 h1(’Eat Your Vegetables’),
 ol(
 li(’peas’),
 li(’broccoli’),
 li(’cabbage’),
 li(’peppers’,
 ul(
 li(’red’),
 li(’yellow’),
 li(’green’)
)
),
 li(’kolrabi’),

15 Feb 201436

3.1 Description

 li(’radishes’)
),
 hr,
 end_html;

3.2.1.2 Making HTML concise

But we can do even better than that because CGI.pm lets you collapse repeating tags by passing array
references to its functions. Script 1.2 saves some typing, and in so doing, puts off the onset of RSI by
months or years!

 Script I.1.2: vegetables2.pl

 #!/usr/bin/perl
 # Script: vegetables2.pl
 use CGI ’:standard’;
 print header,
 start_html(’Vegetables’),
 h1(’Eat Your Vegetables’),
 ol(
 li([’peas’,
 ’broccoli’,
 ’cabbage’,
 ’peppers’ .
 ul([’red’,’yellow’,’green’]),
 ’kolrabi’,
 ’radishes’
),
 hr,
 end_html;

Or how about this one?

 Script I.1.3: vegetables3.pl

 #!/usr/bin/perl

 # Script: vegetables3.pl
 use CGI::Pretty qw/:standard :html3/;

 print header,
 start_html(’Vegetables’),
 h1(’Vegetables are for the Strong’),
 table({-border=>undef},
 caption(strong(’When Should You Eat Your Vegetables?’)),
 Tr({-align=>CENTER,-valign=>TOP},
 [
 th([’’,’Breakfast’,’Lunch’,’Dinner’]),
 th(’Tomatoes’).td([’no’,’yes’,’yes’]),
 th(’Broccoli’).td([’no’,’no’,’yes’]),
 th(’Onions’).td([’yes’,’yes’,’yes’])
]
)
),
 end_html;

3715 Feb 2014

3.2.1 Dynamic DocumentsCute Tricks With Perl and Apache

3.2.1.3 Making Interactive Forms

Of course you mostly want to use CGI to create interactive forms. No problem! CGI.pm has a full set of
functions for both generating the form and reading its contents once submitted. Script I.1.4 creates a row
of radio buttons labeled with various colors. When the user selects a button and submits the form, the page
redraws itself with the selected background color. Psychedelic!

 Script I.1.4: customizable.pl

 #!/usr/bin/perl
 # script: customizable.pl

 use CGI::Pretty qw/:standard/;

 my $color = param(’color’) || ’white’;

 print header,
 start_html({-bgcolor=>$color},’Customizable Page’),
 h1(’Customizable Page’),
 "Set this page’s background color to:",br,
 start_form,
 radio_group(-name=>’color’,
 -value=>[’white’,’red’,’green’,’black’,
 ’blue’,’silver’,’cyan’],
 -cols=>2),
 submit(-name=>’Set Background’),
 end_form,
 p,
 hr,
 end_html;

3.2.2 Making Stateful Forms

Many real Web applications are more than a single page. Some may span multiple pages and fill-out
forms. When the user goes from one page to the next, you’ve got to save the state of the previous page
somewhere. A convenient and cheap place to put state information is in hidden fields in the form itself.
Script I.2.1 is an example of a loan application with a total of five separate pages. Forward and back
buttons allows the user to navigate between pages. The script remembers all the pages and summarizes
them up at the end.

 Script I.2.1: loan.pl

 #!/usr/local/bin/perl

 # script: loan.pl
 use CGI qw/:standard :html3/;

 # this defines the contents of the fill out forms
 # on each page.
 my @PAGES = (’Personal Information’,’References’,’Assets’,’Review’,’Confirmation’);
 my %FIELDS = (’Personal Information’ => [’Name’,’Address’,’Telephone’,’Fax’],
 ’References’ => [’Personal Reference 1’,’Personal Reference 2’],
 ’Assets’ => [’Savings Account’,’Home’,’Car’]
);

15 Feb 201438

3.2.2 Making Stateful Forms

 my %ALL_FIELDS = ();
 # accumulate the field names into %ALL_FIELDS;
 foreach (values %FIELDS) {
 grep($ALL_FIELDS{$_}++, @$_);
 }

 # figure out what page we’re on and where we’re heading.
 my $current_page = calculate_page(param(’page’),param(’go’));
 my $page_name = $PAGES[$current_page];

 print_header($page_name);
 print_form($current_page) if $FIELDS{$page_name};
 print_review($current_page) if $page_name eq ’Review’;
 print_confirmation($current_page) if $page_name eq ’Confirmation’;
 print end_html;

 # CALCULATE THE CURRENT PAGE
 sub calculate_page {
 my ($prev, $dir) = @_;
 return 0 if $prev eq ’’; # start with first page
 return $prev + 1 if $dir eq ’Submit Application’;
 return $prev + 1 if $dir eq ’Next Page’;
 return $prev - 1 if $dir eq ’Previous Page’;
 }

 # PRINT HTTP AND HTML HEADERS
 sub print_header {
 my $page_name = shift;
 print header,
 start_html("Your Friendly Family Loan Center"),
 h1("Your Friendly Family Loan Center"),
 h2($page_name);
 }

 # PRINT ONE OF THE QUESTIONNAIRE PAGES
 sub print_form {
 my $current_page = shift;
 print "Please fill out the form completely and accurately.",
 start_form,
 hr;
 draw_form(@{$FIELDS{$page_name}});
 print hr;
 print submit(-name=>’go’,-value=>’Previous Page’)
 if $current_page > 0;
 print submit(-name=>’go’,-value=>’Next Page’),
 hidden(-name=>’page’,-value=>$current_page,-override=>1),
 end_form;
 }

 # PRINT THE REVIEW PAGE
 sub print_review {
 my $current_page = shift;
 print "Please review this information carefully before submitting it. ",
 start_form;
 my (@rows);
 foreach $page (’Personal Information’,’References’,’Assets’) {
 push(@rows,th({-align=>LEFT},em($page)));

3915 Feb 2014

3.2.2 Making Stateful FormsCute Tricks With Perl and Apache

 foreach $field (@{$FIELDS{$page}}) {
 push(@rows,
 TR(th({-align=>LEFT},$field),
 td(param($field)))
);
 print hidden(-name=>$field);
 }
 }

 print table({-border=>1},caption($page),@rows),
 hidden(-name=>’page’,-value=>$current_page,-override=>1),
 submit(-name=>’go’,-value=>’Previous Page’),
 submit(-name=>’go’,-value=>’Submit Application’),
 end_form;
 }

 # PRINT THE CONFIRMATION PAGE
 sub print_confirmation {
 print "Thank you. A loan officer will be contacting you shortly.",
 p,
 a({-href=>’../source.html’},’Code examples’);
 }

 # CREATE A GENERIC QUESTIONNAIRE
 sub draw_form {
 my (@fields) = @_;
 my (%fields);
 grep ($fields{$_}++, @fields);
 my (@hidden_fields) = grep(!$fields{$_}, keys %ALL_FIELDS);
 my (@rows);
 foreach (@fields) {
 push(@rows,
 TR(th({-align=>LEFT},$_),
 td(textfield(-name=>$_,-size=>50))
)
);
 }
 print table(@rows);

 foreach (@hidden_fields) {
 print hidden(-name=>$_);
 }
 }

3.2.2.1 Keeping State with Cookies

If you want to maintain state even if the user quits the browser and comes back again, you can use cookies.
Script I.2.2 records the user’s name and color scheme preferences and recreates the page the way the user
likes up to 30 days from the time the user last used the script.

 Script I.2.2: preferences.pl

 #!/usr/local/bin/perl

 # file: preferences.pl

15 Feb 201440

3.2.2 Making Stateful Forms

 use CGI qw(:standard :html3);

 # Some constants to use in our form.
 my @colors = qw/aqua black blue fuchsia gray green lime maroon navy olive
 purple red silver teal white yellow/;
 my @sizes=("<default>",1..7);

 # recover the "preferences" cookie.
 my %preferences = cookie(’preferences’);

 # If the user wants to change the background color or her
 # name, they will appear among our CGI parameters.
 foreach (’text’,’background’,’name’,’size’) {
 $preferences{$_} = param($_) || $preferences{$_};
 }

 # Set some defaults
 $preferences{’background’} ||= ’silver’;
 $preferences{’text’} ||= ’black’;

 # Refresh the cookie so that it doesn’t expire.
 my $the_cookie = cookie(-name=>’preferences’,
 -value=>\%preferences,
 -path=>’/’,
 -expires=>’+30d’);
 print header(-cookie=>$the_cookie);

 # Adjust the title to incorporate the user’s name, if provided.
 $title = $preferences{’name’} ?
 "Welcome back, $preferences{name}!" : "Customizable Page";

 # Create the HTML page. We use several of the HTML 3.2
 # extended tags to control the background color and the
 # font size. It’s safe to use these features because

 # cookies don’t work anywhere else anyway.
 print start_html(-title=>$title,
 -bgcolor=>$preferences{’background’},
 -text=>$preferences{’text’}
);

 print basefont({-size=>$preferences{size}}) if $preferences{’size’} > 0;

 print h1($title);

 # Create the form
 print hr,
 start_form,

 "Your first name: ",
 textfield(-name=>’name’,
 -default=>$preferences{’name’},
 -size=>30),br,

 table(
 TR(

4115 Feb 2014

3.2.2 Making Stateful FormsCute Tricks With Perl and Apache

 td("Preferred"),
 td("Page color:"),
 td(popup_menu(-name=>’background’,
 -values=>\@colors,
 -default=>$preferences{’background’})
),
),
 TR(
 td(’’),
 td("Text color:"),
 td(popup_menu(-name=>’text’,
 -values=>\@colors,
 -default=>$preferences{’text’})
)
),
 TR(
 td(’’),
 td("Font size:"),
 td(popup_menu(-name=>’size’,

 -values=>\@sizes,
 -default=>$preferences{’size’})
)
)
),

 submit(-label=>’Set preferences’),
 end_form,
 hr,
 end_html;

3.2.3 Creating Non-HTML Types

CGI can do more than just produce HTML documents. It can produce any type of document that you can
output with Perl. This includes GIFs, Postscript files, sounds or whatever.

Script I.3.1 creates a clickable image map of a colored circle inside a square. The script is responsible both
for generating the map and making the image (using the GD.pm library). It also creates a fill-out form that
lets the user change the size and color of the image!

 Script I.3.1: circle.pl

 #!/usr/local/bin/perl

 # script: circle.pl
 use GD;
 use CGI qw/:standard :imagemap/;

 use constant RECTSIZE => 100;
 use constant CIRCLE_RADIUS => 40;
 my %COLORS = (
 ’white’ => [255,255,255],
 ’red’ => [255,0,0],
 ’green’ => [0,255,0],
 ’blue’ => [0,0,255],

15 Feb 201442

3.2.3 Creating Non-HTML Types

 ’black’ => [0,0,0],
 ’bisque’=> [255,228,196],
 ’papaya whip’ => [255,239,213],
 ’sienna’ => [160,82,45]
);

 my $draw = param(’draw’);
 my $circle_color = param(’color’) || ’bisque’;
 my $mag = param(’magnification’) || 1;

 if ($draw) {
 draw_image();
 } else {
 make_page();
 }

 sub draw_image {
 # create a new image
 my $im = new GD::Image(RECTSIZE*$mag,RECTSIZE*$mag);

 # allocate some colors
 my $white = $im->colorAllocate(@{$COLORS{’white’}});
 my $black = $im->colorAllocate(@{$COLORS{’black’}});
 my $circlecolor = $im->colorAllocate(@{$COLORS{$circle_color}});

 # make the background transparent and interlaced
 $im->transparent($white);
 $im->interlaced(’true’);

 # Put a black frame around the picture
 $im->rectangle(0,0,RECTSIZE*$mag-1,RECTSIZE*$mag-1,$black);

 # Draw the circle
 $im->arc(RECTSIZE*$mag/2,RECTSIZE*$mag/2,
 CIRCLE_RADIUS*$mag*2,
 CIRCLE_RADIUS*$mag*2,
 0,360,$black);

 # And fill it with circlecolor
 $im->fill(RECTSIZE*$mag/2,RECTSIZE*$mag/2,$circlecolor);

 # Convert the image to GIF and print it
 print header(’image/gif’),$im->gif;
 }

 sub make_page {
 print header(),
 start_html(-title=>’Feeling Circular’,-bgcolor=>’white’),
 h1(’A Circle is as a Circle Does’),
 start_form,
 "Magnification: ",radio_group(-name=>’magnification’,-values=>[1..4]),br,
 "Color: ",popup_menu(-name=>’color’,-values=>[sort keys %COLORS]),
 submit(-value=>’Change’),
 end_form;
 print em(param(’message’) || ’click in the drawing’);

 my $url = url(-relative=>1,-query_string=>1);

4315 Feb 2014

3.2.3 Creating Non-HTML TypesCute Tricks With Perl and Apache

 $url .= ’?’ unless param();
 $url .= ’&draw=1’;

 print p(
 img({-src=>$url,
 -align=>’LEFT’,
 -usemap=>’#map’,
 -border=>0}));

 print Map({-name=>’map’},
 Area({-shape=>’CIRCLE’,
 -href=>param(-name=>’message’,-value=>"You clicked in the circle")
 && url(-relative=>1,-query_string=>1),
 -coords=>join(’,’,RECTSIZE*$mag/2,RECTSIZE*$mag/2,CIRCLE_RADIUS*$mag),
 -alt=>’Circle’}),
 Area({-shape=>’RECT’,
 -href=>param(-name=>’message’,-value=>"You clicked in the square")
 && url(-relative=>1,-query_string=>1),
 -coords=>join(’,’,0,0,RECTSIZE*$mag,RECTSIZE*$mag),
 -alt=>’Square’}));
 print end_html;
 }

Script I.3.2 creates a GIF89a animation. First it creates a set of simple GIFs, then uses the combine
program (part of the ImageMagick package) to combine them together into an animation.

I’m not a good animator, so I can’t do anything fancy. But you can!

 Script I.3.2: animate.pl

 #!/usr/local/bin/perl

 # script: animated.pl
 use GD;
 use File::Path;

 use constant START => 80;
 use constant END => 200;
 use constant STEP => 10;
 use constant COMBINE => ’/usr/local/bin/convert’;
 my @COMBINE_OPTIONS = (-delay => 5,
 -loop => 10000);

 my @COLORS = ([240,240,240],
 [220,220,220],
 [200,200,200],
 [180,180,180],
 [160,160,160],
 [140,140,140],
 [150,120,120],
 [160,100,100],
 [170,80,80],
 [180,60,60],
 [190,40,40],
 [200,20,20],
 [210,0,0]);

15 Feb 201444

3.2.3 Creating Non-HTML Types

 @COLORS = (@COLORS,reverse(@COLORS));

 my @FILES = ();
 my $dir = create_temporary_directory();
 my $index = 0;
 for (my $r = START; $r <= END; $r+=STEP) {
 draw($r,$index,$dir);
 $index++;
 }
 for (my $r = END; $r > START; $r-=STEP) {
 draw($r,$index,$dir);
 $index++;

 }

 # emit the GIF89a
 $| = 1;
 print "Content-type: image/gif\n\n";
 system COMBINE,@COMBINE_OPTIONS,@FILES,"gif:-";

 rmtree([$dir],0,1);

 sub draw {
 my ($r,$color_index,$dir) = @_;
 my $im = new GD::Image(END,END);
 my $white = $im->colorAllocate(255,255,255);
 my $black = $im->colorAllocate(0,0,0);
 my $color = $im->colorAllocate(@{$COLORS[$color_index % @COLORS]});
 $im->rectangle(0,0,END,END,$white);
 $im->arc(END/2,END/2,$r,$r,0,360,$black);
 $im->fill(END/2,END/2,$color);
 my $file = sprintf("%s/picture.%02d.gif",$dir,$color_index);
 open (OUT,">$file") || die "couldn’t create $file: $!";
 print OUT $im->gif;
 close OUT;
 push(@FILES,$file);
 }

 sub create_temporary_directory {
 my $basename = "/usr/tmp/animate$$";
 my $counter=0;
 while ($counter < 100) {
 my $try = sprintf("$basename.%04d",$counter);
 next if -e $try;
 return $try if mkdir $try,0700;
 } continue { $counter++; }
 die "Couldn’t make a temporary directory";
 }

3.2.4 Document Translation

Did you know that you can use a CGI script to translate other documents on the fly? No s**t! Script I.4.1
is a script that intercepts all four-letter words in text documents and stars out the naughty bits. The docu-
ment itself is specified using additional path information. We’re a bit over-literal about what a four-letter
word is, but what’s the fun if you can’t be extravagant?

4515 Feb 2014

3.2.4 Document TranslationCute Tricks With Perl and Apache

 Script I.4.1: naughty.pl

 #!/usr/local/bin/perl
 # Script: naughty.pl

 use CGI ’:standard’;
 my $file = path_translated() ||
 die "must be called with additional path info";
 open (FILE,$file) || die "Can’t open $file: $!\n";
 print header(’text/plain’);
 while (<FILE>) {
 s/\b(\w)\w{2}(\w)\b/$1**$2/g;
 print;
 }
 close FILE;

4.1 won’t work on HTML files because the HTML tags will get starred out too. If you find it a little limit-
ing to work only on plain-text files, script I.4.2 uses LWP’s HTML parsing functions to modify just the
text part of an HTML document without touching the tags. The script’s a little awkward because we have
to guess the type of file from the extension, and redirect when we’re dealing with a non-HTML file. We
can do better with mod_perl.

 Script I.4.2: naughty2.pl

 #!/usr/local/bin/perl

 # Script: naughty2.pl
 package HTML::Parser::FixNaughty;

 require HTML::Parser;
 @HTML::Parser::FixNaughty::ISA = ’HTML::Parser’;

 sub start {
 my ($self,$tag,$attr,$attrseq,$origtext) = @_;
 print $origtext;
 }
 sub end {
 my ($self,$tag) = @_;
 print "</$tag>";
 }
 sub text {
 my ($self,$text) = @_;
 $text =~ s/\b(\w)\w{2}(\w)\b/$1**$2/g;
 print $text;
 }

 package main;
 use CGI qw/header path_info redirect path_translated/;

 my $file = path_translated() ||
 die "must be called with additional path info";
 $file .= "index.html" if $file =~ m!/$!;

 unless ($file =~ /\.html?$/) {
 print redirect(path_info());

15 Feb 201446

3.2.4 Document Translation

 exit 0;
 }

 my $parser = new HTML::Parser::FixNaughty;
 print header();
 $parser->parse_file($file);

A cleaner way to do this is to make this into an Apache Handler running under mod_perl. Let’s look at
Apache::FixNaughty :

 file:Apache/FixNaughty.pm

 # predefine the HTML parser that we use afterward
 package HTML::Parser::FixNaughty;

 require HTML::Parser;
 @HTML::Parser::FixNaughty::ISA = ’HTML::Parser’;

 sub start {
 my ($self,$tag,$attr,$attrseq,$origtext) = @_;
 print $origtext;
 }
 sub end {
 my ($self,$tag) = @_;
 print "</$tag>";
 }
 sub text {
 my ($self,$text) = @_;
 $text =~ s/\b(\w)\w{2}(\w)\b/$1**$2/g;
 print $text;
 }

 # now for the mod_perl handler
 package Apache::FixNaughty;

 use Apache::Constants qw/:common/;
 use strict;
 use warnings;
 use CGI qw/header path_info redirect path_translated/;

 sub handler {
 my $r = shift;

 unless(-e $r->finfo) {
 $r->log_reason("Can’t be found", $r->filename);
 return NOT_FOUND;
 }

 unless ($r->content_type eq ’text/html’) {
 return DECLINED;

 }

 my $parser = new HTML::Parser::FixNaughty;

 $r->send_http_header(’text/html’);
 $parser->parse_file($file);

4715 Feb 2014

3.2.4 Document TranslationCute Tricks With Perl and Apache

 return OK;
 }

 1;
 __END__

You’ll configure this like so:

 Alias /naughty/ /path/to/doc/root/
 <Location /naughty>
 SetHandler perl-script
 PerlHandler Apache::FixNaughty
 </Location>

Now, all files being served below the /naughty URL will be the same as those served from your document
root, but will be processed and censured!

3.2.4.1 Smart Redirection

There’s no need even to create a document with CGI. You can simply redirect to the URL you want.
Script I.4.3 chooses a random picture from a directory somewhere and displays it. The directory to pick
from is specified as additional path information, as in:

 /cgi-bin/random_pict/banners/egregious_advertising

 Script I.4.3 random_pict.pl

 #!/usr/local/bin/perl
 # script: random_pict.pl

 use CGI qw/:standard/;
 my $PICTURE_PATH = path_translated();
 my $PICTURE_URL = path_info();
 chdir $PICTURE_PATH
 or die "Couldn’t chdir to pictures directory: $!";
 my @pictures = <*.{jpg,gif}>;
 my $lucky_one = $pictures[rand(@pictures)];
 die "Failed to pick a picture" unless $lucky_one;

 print redirect("$PICTURE_URL/$lucky_one");

Under mod_perl, you would do this (the bigger size is because we’re doing more checks here):

 file:Apache/RandPicture.pm

 package Apache::RandPicture;

 use strict;
 use Apache::Constants qw(:common REDIRECT);
 use DirHandle ();

 sub handler {
 my $r = shift;
 my $dir_uri = $r->dir_config(’PictureDir’);

15 Feb 201448

3.2.4 Document Translation

 unless ($dir_uri) {
 $r->log_reason("No PictureDir configured");
 return SERVER_ERROR;
 }
 $dir_uri .= "/" unless $dir_uri =~ m:/$:;

 my $subr = $r->lookup_uri($dir_uri);
 my $dir = $subr->filename;
 # Get list of images in the directory.
 my $dh = DirHandle->new($dir);
 unless ($dh) {
 $r->log_error("Can’t read directory $dir: $!");
 return SERVER_ERROR;
 }

 my @files;
 for my $entry ($dh->read) {
 # get the file’s MIME type
 my $rr = $subr->lookup_uri($entry);
 my $type = $rr->content_type;
 next unless $type =~ m:^image/:;
 push @files, $rr->uri;
 }
 $dh->close;
 unless (@files) {
 $r->log_error("No image files in directory");
 return SERVER_ERROR;
 }

 my $lucky_one = $files[rand @files];
 # internal redirect, so we don’t have to go back to the client
 $r->internal_redirect($lucky_one);
 return REDIRECT;
 }

 1;
 __END__

3.2.5 File Uploads

Everyone wants to do it. I don’t know why. Script I.5.1 shows a basic script that accepts a file to upload,
reads it, and prints out its length and MIME type. Windows users should read about binmode() before they
try this at home!

 Script I.5.1 upload.pl

 #!/usr/local/bin/perl
 #script: upload.pl

 use CGI qw/:standard/;

 print header,
 start_html(’file upload’),
 h1(’file upload’);
 print_form() unless param;

4915 Feb 2014

3.2.5 File UploadsCute Tricks With Perl and Apache

 print_results() if param;
 print end_html;

 sub print_form {
 print start_multipart_form(),
 filefield(-name=>’upload’,-size=>60),br,
 submit(-label=>’Upload File’),
 end_form;
 }

 sub print_results {
 my $length;
 my $file = param(’upload’);
 if (!$file) {
 print "No file uploaded.";
 return;
 }
 print h2(’File name’),$file;
 print h2(’File MIME type’),
 uploadInfo($file)->{’Content-Type’};
 while (<$file>) {
 $length += length($_);
 }
 print h2(’File length’),$length;
 }

3.3 Part II: Web Site Care and Feeding
These scripts are designed to make your life as a Webmaster easier, leaving you time for more exciting
things, like tango lessons.

3.3.1 Logs! Logs! Logs!

Left to their own devices, the log files will grow without limit, eventually filling up your server’s partition
and bringing things to a grinding halt. But wait! Don’t turn off logging or throw them away. Log files are
your friends.

3.3.1.1 Log rotation

Script II.1.1 shows the basic script for rotating log files. It renames the current "access_log" to
"access_log.0", "access_log.0" to "access_log.1", and so on. The oldest log gets deleted. Run it from a
cron job to keep your log files from taking over. The faster your log files grow, the more frequently you
should run the script.

 Script II.1.1: Basic Log File Rotation

 #!/usr/local/bin/perl
 $LOGPATH=’/usr/local/apache/logs’;
 @LOGNAMES=(’access_log’,’error_log’,’referer_log’,’agent_log’);
 $PIDFILE = ’httpd.pid’;
 $MAXCYCLE = 4;

15 Feb 201450

3.3 Part II: Web Site Care and Feeding

 chdir $LOGPATH; # Change to the log directory
 foreach $filename (@LOGNAMES) {
 for (my $s=$MAXCYCLE; $s >= 0; $s--) {
 $oldname = $s ? "$filename.$s" : $filename;
 $newname = join(".",$filename,$s+1);
 rename $oldname,$newname if -e $oldname;
 }
 }
 kill ’HUP’,‘cat $PIDFILE‘;

3.3.1.2 Log rotation and archiving

But some people don’t want to delete the old logs. Wow, maybe some day you could sell them for a lot of
money to a marketing and merchandising company! Script II.1.2 appends the oldest to a gzip archive. Log
files compress extremely well and make great bedtime reading.

 Script II.1.2: Log File Rotation and Archiving
 --
 #!/usr/local/bin/perl
 $LOGPATH = ’/usr/local/apache/logs’;
 $PIDFILE = ’httpd.pid’;
 $MAXCYCLE = 4;
 $GZIP = ’/bin/gzip’;

 @LOGNAMES=(’access_log’,’error_log’,’referer_log’,’agent_log’);
 %ARCHIVE=(’access_log’=>1,’error_log’=>1);

 chdir $LOGPATH; # Change to the log directory
 foreach $filename (@LOGNAMES) {
 system "$GZIP -c $filename.$MAXCYCLE >> $filename.gz"
 if -e "$filename.$MAXCYCLE" and $ARCHIVE{$filename};
 for (my $s=$MAXCYCLE; $s >= 0; $s--) {
 $oldname = $s ? "$filename.$s" : $filename;
 $newname = join(".",$filename,$s+1);
 rename $oldname,$newname if -e $oldname;
 }
 }
 kill ’HUP’,‘cat $PIDFILE‘;

3.3.1.3 Log rotation, compression and archiving

What’s that? Someone broke into your computer, stole your log files and now he’s selling it to a Web
marketing and merchandising company? Shame on them. And on you for letting it happen. Script II.1.3
uses idea (part of the SSLEay package) to encrypt the log before compressing it. You need GNU tar to run
this one. The log files are individually compressed and encrypted, and stamped with the current date.

 Script II.1.3: Log File Rotation and Encryption

 #!/usr/local/bin/perl
 use POSIX ’strftime’;

 $LOGPATH = ’/home/www/logs’;
 $PIDFILE = ’httpd.pid’;
 $MAXCYCLE = 4;

5115 Feb 2014

3.3.1 Logs! Logs! Logs!Cute Tricks With Perl and Apache

 $IDEA = ’/usr/local/ssl/bin/idea’;
 $GZIP = ’/bin/gzip’;
 $TAR = ’/bin/tar’;
 $PASSWDFILE = ’/home/www/logs/secret.passwd’;

 @LOGNAMES=(’access_log’,’error_log’,’referer_log’,’agent_log’);
 %ARCHIVE=(’access_log’=>1,’error_log’=>1);

 chdir $LOGPATH; # Change to the log directory
 foreach $filename (@LOGNAMES) {
 my $oldest = "$filename.$MAXCYCLE";
 archive($oldest) if -e $oldest and $ARCHIVE{$filename};
 for (my $s=$MAXCYCLE; $s >= 0; $s--) {
 $oldname = $s ? "$filename.$s" : $filename;
 $newname = join(".",$filename,$s+1);
 rename $oldname,$newname if -e $oldname;
 }
 }
 kill ’HUP’,‘cat $PIDFILE‘;

 sub archive {
 my $f = shift;
 my $base = $f;
 $base =~ s/\.\d+$//;
 my $fn = strftime("$base.%Y-%m-%d_%H:%M.gz.idea",localtime);
 system "$GZIP -9 -c $f | $IDEA -kfile $PASSWDFILE > $fn";
 system "$TAR rvf $base.tar --remove-files $fn";
 }

3.3.1.4 Log Parsing

There’s a lot you can learn from log files. Script II.1.4 does the basic access log regular expression match.
What you do with the split-out fields is limited by your imagination. Here’s a typical log entry so that you
can follow along (wrapped for readability):

 portio.cshl.org - - [03/Feb/1998:17:42:15 -0500]
 "GET /pictures/small_logo.gif HTTP/1.0" 200 2172

 Script II.1.4: Basic Log Parsing

 #!/usr/local/bin/perl

 $REGEX=/^(\S+) (\S+) (\S+) \[([^]]+)\] "(\w+) (\S+).*" (\d+) (\S+)/;
 while (<>) {
 ($host,$rfc931,$user,$date,$request,$URL,$status,$bytes) = m/$REGEX/o;
 &collect_some_statistics;
 }
 &print_some_statistics;

 sub collect_some_statistics {
 # for you to fill in
 }

 sub print_some_statistics {
 # for you to fill in
 }

15 Feb 201452

3.3.1 Logs! Logs! Logs!

Script II.1.5 scans the log for certain status codes and prints out the top URLs or hosts that triggered them.
It can be used to get quick-and-dirty usage statistics, to find broken links, or to detect certain types of
break in attempts. Use it like this:

 % find_status.pl -t10 200 ~www/logs/access_log

 TOP 10 URLS/HOSTS WITH STATUS CODE 200:

 REQUESTS URL/HOST
 -------- --------
 1845 /www/wilogo.gif
 1597 /cgi-bin/contig/sts_by_name?database=release
 1582 /WWW/faqs/www-security-faq.html
 1263 /icons/caution.xbm
 930 /
 886 /ftp/pub/software/WWW/cgi_docs.html
 773 /cgi-bin/contig/phys_map
 713 /icons/dna.gif
 686 /WWW/pics/small_awlogo.gif

 Script II.1.5: Find frequent status codes

 #!/usr/local/bin/perl
 # File: find_status.pl

 require "getopts.pl";
 &Getopts(’L:t:h’) || die <<USAGE;
 Usage: find_status.pl [-Lth] <code1> <code2> <code3> ...
 Scan Web server log files and list a summary
 of URLs whose requests had the one of the
 indicated status codes.
 Options:
 -L <domain> Ignore local hosts matching this domain
 -t <integer> Print top integer URLS/HOSTS [10]
 -h Sort by host rather than URL
 USAGE
 ;
 if ($opt_L) {
 $opt_L=~s/\./\\./g;
 $IGNORE = "(^[^.]+|$opt_L)\$";
 }
 $TOP=$opt_t || 10;

 while (@ARGV) {

 last unless $ARGV[0]=~/^\d+$/;
 $CODES{shift @ARGV}++;
 }

 while (<>) {
 ($host,$rfc931,$user,$date,$request,$URL,$status,$bytes) =
 /^(\S+) (\S+) (\S+) \[([^]]+)\] "(\w+) (\S+).*" (\d+) (\S+)/;
 next unless $CODES{$status};
 next if $IGNORE && $host=~/$IGNORE/io;
 $info = $opt_h ? $host : $URL;
 $found{$status}->{$info}++;

5315 Feb 2014

3.3.1 Logs! Logs! Logs!Cute Tricks With Perl and Apache

 }

 foreach $status (sort {$a<=>$b;} sort keys %CODES) {
 $info = $found{$status};
 $count = $TOP;
 foreach $i (sort {$info->{$b} <=> $info->{$a};} keys %{$info}) {
 write;
 last unless --$count;
 }
 $- = 0; # force a new top-of-report
 }

 format STDOUT_TOP=

 TOP @## URLS/HOSTS WITH STATUS CODE @##:
 $TOP, $status

 REQUESTS URL/HOST
 -------- --------
 .
 format STDOUT=
 @##### @<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $info->{$i},$i
 .

3.3.1.5 Offline Reverse DNS Resolution

Many sites turn off reverse name look-ups in order to improve server performance. The log files will
contain the IP addresses of remote hosts, but not their DNS names. Script II.1.6 will do the reverse name
resolution off-line. You can run it before the log rotation and archiving scripts, preferably on a machine
that isn’t busy serving Web requests at the same time.

This script maintains a cache of resolved names. Because performance is more important than complete-
ness, if an address doesn’t resolve after two seconds, it moves on to the next one and never tries that name
again.

 Script II.1.6: Reverse DNS Resolution

 #!/usr/local/bin/perl

 use constant TIMEOUT => 2;
 $SIG{ALRM} = sub {die "timeout"};

 while (<>) {
 s/^(\S+)/lookup($1)/e;
 } continue {
 print;
 }

 sub lookup {
 my $ip = shift;
 return $ip unless $ip=~/\d+\.\d+\.\d+\.\d+/;
 return $CACHE{$ip} if exists $CACHE{$ip};
 my @h = eval <<’END’;
 alarm(TIMEOUT);

15 Feb 201454

3.3.1 Logs! Logs! Logs!

 my @i = gethostbyaddr(pack(’C4’,split(’\.’,$ip)),2);
 alarm(0);
 @i;
 END
 $CACHE{$ip} = $h[0];
 return $CACHE{$ip} || $ip;
 }

3.3.1.6 Detecting Robots

I was very upset a few months ago when I did some log analysis and discovered that 90% of my hits were
coming from 10% of users, and that those 10% were all robots! Script II.1.7 is the script I used to crunch
the log and perform the analysis. The script works like this:

1. we assume that anyone coming from the same IP address with the same user agent within 30 minutes
is the same person/robot (not quite right, but close enough).

2. anything that fetches /robots.txt is probably a robot, and a "polite" one, to boot.

3. we count the total number of accesses a user agent makes.

4. we average the interval between successive fetches.

5. we calculate an "index" which is the number of hits over the interval. Robots have higher indexes
than people.

6. we print everything out in a big tab-delimited table for graphing.

By comparing the distribution of "polite" robots to the total distribution, we can make a good guess as to
who the impolite robots are.

 Script II.1.7: Robo-Cop

 #!/usr/local/bin/perl

 use Time::ParseDate;
 use strict ’vars’;

 # after 30 minutes, we consider this a new session
 use constant MAX_INTERVAL => 60*30;
 my (%HITS,%INT_NUMERATOR,%INT_DENOMINATOR,%POLITE,%LAST,$HITS);

 # This uses a non-standard agent log with lines formatted like this:
 # [08/Feb/1998:12:28:35 -0500] phila249-pri.voicenet.com "Mozilla/3.01 (Win95; U)" /cgi-bin/fortune

 my $file = shift;
 open (IN,$file=~/\.gz$/ ? "zcat $file |" : $file) || die "Can’t open file/pipe: $!";

 while (<IN>) {
 my ($date,$host,$agent,$URL) = /^\[(.+)\] (\S+) "(.*)" (\S+)$/;
 next unless $URL=~/\.(html|htm|txt)$/;

 $HITS++;
 $host = "$host:$agent"; # concatenate host and agent
 $HITS{$host}++;
 my $seconds = parsedate($date);
 if ($LAST{$host}) {

5515 Feb 2014

3.3.1 Logs! Logs! Logs!Cute Tricks With Perl and Apache

 my $interval = $seconds - $LAST{$host};
 if ($interval < MAX_INTERVAL) {
 $INT_NUMERATOR{$host} += $interval;
 $INT_DENOMINATOR{$host}++;
 }
 }
 $LAST{$host} = $seconds;
 $POLITE{$host}++ if $URL eq ’/robots.txt’;
 print STDERR $HITS,"\n" if ($HITS % 1000) == 0;
 }

 # print out, sorted by hits
 print join("\t",qw/Client Robot Hits Interval Hit_Percent Index/),"\n";
 foreach (sort {$HITS{$b}<=>$HITS{$a}} keys %HITS) {

 next unless $HITS{$_} >= 5; # not enough total hits to mean much
 next unless $INT_DENOMINATOR{$_} >= 5; # not enough consecutive hits to mean much

 my $mean_interval = $INT_NUMERATOR{$_}/$INT_DENOMINATOR{$_};
 my $percent_hits = 100*($HITS{$_}/$HITS);
 my $index = $percent_hits/$mean_interval;

 print join("\t",
 $_,
 $POLITE{$_} ? ’yes’ : ’no’,
 $HITS{$_},
 $mean_interval,
 $percent_hits,
 $index
),"\n";
 }

3.3.1.7 Logging to syslog

If you run a large site with many independent servers, you might be annoyed that they all log into their
own file systems rather than into a central location. Apache offers a little-known feature that allows it to
send its log entries to a process rather than a file. The process (a Perl script, natch) can do whatever it likes
with the logs. For instance, using Tom Christiansen’s Syslog module to send the info to a remote syslog
daemon.

Here’s what you add to the Apache httpd.conf file:

 <VirtualHost www.company1.com>
 CustomLog "| /usr/local/apache/bin/logger company1" common
 # blah blah
 </VirtualHost>

 <VirtualHost www.company2.com>
 CustomLog "| /usr/local/apache/bin/logger company2" common
 # blah blah
 </VirtualHost>

Do the same for each server on the local network.

15 Feb 201456

3.3.1 Logs! Logs! Logs!

Here’s what you add to each Web server’s syslog.conf (this assumes that the central logging host has the
alias hostname "loghost":

 local0.info @loghost

Here’s what you add to the central log host’s syslog.conf:

 local0.info /var/log/web/access_log

Script II.1.8 shows the code for the "logger" program:

 Script II.1.8 "logger"

 #!/usr/local/bin/perl
 # script: logger

 use Sys::Syslog;

 $SERVER_NAME = shift || ’www’;
 $FACILITY = ’local0’;
 $PRIORITY = ’info’;

 Sys::Syslog::setlogsock(’unix’);
 openlog ($SERVER_NAME,’ndelay’,$FACILITY);
 while (<>) {
 chomp;
 syslog($PRIORITY,$_);
 }
 closelog;

3.3.1.8 Logging to a relational database

One of the selling points of the big commercial Web servers is that they can log to relational databases via
ODBC. Big whoop. With a little help from Perl, Apache can do that too. Once you’ve got the log in a rela-
tional database, you can data mine to your heart’s content.

This example uses the freeware mySQL DBMS. To prepare, create an appropriate database containing a
table named "access_log". It should have a structure like this one. Add whatever indexes you think you
need. Also notice that we truncate URLs at 255 characters. You might want to use TEXT columns instead.

 CREATE TABLE access_log (
 when datetime not null,
 host varchar(255) not null,
 method char(4) not null,
 url varchar(255) not null,
 auth varchar(50),
 browser varchar(50),
 referer varchar(255),
 status smallint(3) not null,
 bytes int(8) default 0
);

5715 Feb 2014

3.3.1 Logs! Logs! Logs!Cute Tricks With Perl and Apache

Now create the following entries in httpd.conf:

 LogFormat "\"%{%Y-%m-%d %H:%M:%S}t\" %h \"%r\" %u \"%{User-agent}i\" %{Referer}i %s %b" mysql
 CustomLog "| /usr/local/apache/bin/mysqllog" mysql

Script II.1.9 is the source code for mysqllog.

 Script II.1.9 "mysqllog"

 #!/usr/local/bin/perl
 # script: mysqllog
 use DBI;

 use constant DSN => ’dbi:mysql:www’;
 use constant DB_TABLE => ’access_log’;
 use constant DB_USER => ’nobody’;
 use constant DB_PASSWD => ’’;

 $PATTERN = ’"([^"]+)" (\S+) "(\S+) (\S+) [^"]+" (\S+) "([^"]+)" (\S+) (\d+) (\S+)’;

 $db = DBI->connect(DSN,DB_USER,DB_PASSWD) || die DBI->errstr;
 $sth = $db->prepare("INSERT INTO ${\DB_TABLE} VALUES(?,?,?,?,?,?,?,?,?)")
 || die $db->errstr;
 while (<>) {
 chomp;
 my ($date,$host,$method,$url,$user,$browser,$referer,$status,$bytes) = /$PATTERN/o;
 $user = undef if $user eq ’-’;
 $referer = undef if $referer eq ’-’;
 $browser = undef if $browser eq ’-’;
 $bytes = undef if $bytes eq ’-’;
 $sth->execute($date,$host,$method,$url,$user,$browser,$referer,$status,$bytes);
 }
 $sth->finish;
 $db->disconnect;

NOTE: Your database will grow very quickly. Make sure that you have a plan for truncating or archiving
the oldest entries. Or have a lot of storage space handy! Also be aware that this will cause a lot of traffic
on your LAN. Better start shopping around for 100BT hubs.

3.3.2 My server fell down and it can’t get up!

Web servers are very stable and will stay up for long periods of time if you don’t mess with them.
However, human error can bring them down, particularly if you have a lot of developers and authors
involved in running the site. The scripts in this section watch the server and send you an email message
when there’s a problem.

3.3.2.1 Monitoring a local server

The simplest script just tries to signal the Web server process. If the process has gone away, it sends out an
S.O.S. See script II.2.1 shows the technique. Notice that the script has to run as root in order to success-
fully signal the server.

15 Feb 201458

3.3.2 My server fell down and it can’t get up!

 Script II.2.1 "localSOS"

 #!/usr/local/bin/perl
 # script: localSOS

 use constant PIDFILE => ’/usr/local/apache/var/run/httpd.pid’;
 $MAIL = ’/usr/sbin/sendmail’;
 $MAIL_FLAGS = ’-t -oi’;
 $WEBMASTER = ’webmaster’;

 open (PID,PIDFILE) || die PIDFILE,": $!\n";
 $pid = <PID>; close PID;
 kill 0,$pid || sos();

 sub sos {
 open (MAIL,"| $MAIL $MAIL_FLAGS") || die "mail: $!";
 my $date = localtime();
 print MAIL <<END;
 To: $WEBMASTER
 From: The Watchful Web Server Monitor <nobody>
 Subject: Web server is down

 I tried to call the Web server at $date but there was
 no answer.

 Respectfully yours,

 The Watchful Web Server Monitor
 END
 close MAIL;
 }

3.3.2.2 Monitoring a remote server

Local monitoring won’t catch problems with remote machines, and they’ll miss subtle problems that can
happen when the Web server hangs but doesn’t actually crash. A functional test is better. Script II.2.2 uses
the LWP library to send a HEAD request to a bunch of servers. If any of them fails to respond, it sends out
an SOS. This script does not have to run as a privileged user.

 Script II.2.2 "remoteSOS"

 #!/usr/local/bin/perl
 # script: remoteSOS

 use LWP::Simple;
 %SERVERS = (
 "Fred’s server" => ’http://www.fred.com’,
 "Martha’s server" => ’http://www.stewart-living.com’,
 "Bill’s server" => ’http://www.whitehouse.gov’
);
 $MAIL = ’/usr/sbin/sendmail’;
 $MAIL_FLAGS = ’-t -oi’;
 $WEBMASTER = ’webmaster’;

 foreach (sort keys %SERVERS) {
 sos($_) unless head($SERVERS{$_});

5915 Feb 2014

3.3.2 My server fell down and it can’t get up!Cute Tricks With Perl and Apache

 }

 sub sos {
 my $server = shift;
 open (MAIL,"| $MAIL $MAIL_FLAGS") || die "mail: $!";
 my $date = localtime();
 print MAIL <<END;
 To: $WEBMASTER
 From: The Watchful Web Server Monitor <nobody>
 Subject: $server is down

 I tried to call $server at $date but there was
 no one at home.

 Respectfully yours,

 The Watchful Web Server Monitor
 END
 close MAIL;
 }

3.3.2.3 Resurrecting Dead Servers

So it’s not enough to get e-mail that the server’s down, you want to relaunch it as well? Script II.2.3 is a
hybrid of localSOS and remoteSOS that tries to relaunch the local server after sending out the SOS. It has
to be run as root, unless you’ve made apachectl suid to root.

 Script II.2.2 "webLazarus"

 #!/usr/local/bin/perl
 # script: webLazarus

 use LWP::Simple;
 use constant URL => ’http://presto.capricorn.com/’;
 use constant APACHECTL => ’/usr/local/apache/bin/apachectl’;
 $MAIL = ’/usr/sbin/sendmail’;
 $MAIL_FLAGS = ’-t -oi’;
 $WEBMASTER = ’lstein@prego.capricorn.com’;

 head(URL) || resurrect();

 sub resurrect {
 open (STDOUT,"| $MAIL $MAIL_FLAGS") || die "mail: $!";
 select STDOUT; $| = 1;
 open (STDERR,">&STDOUT");

 my $date = localtime();
 print <<END;
 To: $WEBMASTER
 From: The Watchful Web Server Monitor <nobody>
 Subject: Web server is down

 I tried to call the Web server at $date but there was
 no answer. I am going to try to resurrect it now:

 Mumble, mumble, mumble, shazzzzammmm!

15 Feb 201460

3.3.2 My server fell down and it can’t get up!

 END
 ;

 system APACHECTL,’restart’;

 print <<END;

 That’s the best I could do. Hope it helped.

 Worshipfully yours,

 The Web Monitor
 END
 close STDERR;
 close STDOUT;
 }

Here’s the message you get when the script is successful:

 Date: Sat, 4 Jul 1998 14:55:38 -0400
 To: lstein@prego.capricorn.com
 Subject: Web server is down

 I tried to call the Web server at Sat Jul 4 14:55:37 1998 but there was
 no answer. I am going to try to resurrect it now:

 Mumble, mumble, mumble, shazzzzammmm!

 /usr/local/apache/bin/apachectl restart: httpd not running, trying to start
 [Sat Jul 4 14:55:38 1998] [debug] mod_so.c(258): loaded module setenvif_module
 [Sat Jul 4 14:55:38 1998] [debug] mod_so.c(258): loaded module unique_id_module
 /usr/local/apache/bin/apachectl restart: httpd started

 That’s the best I could do. Hope it helped.

 Worshipfully yours,

 The Web Monitor

3.3.3 Site Replication and Mirroring

Often you will want to mirror a page or set of pages from another server, for example, to distribute the
load amongst several replicate servers, or to keep a set of reference pages handy. The LWP library makes
this easy.

3.3.3.1 Mirroring Single Pages

 % ./MirrorOne.pl
 cats.html: Not Modified
 dogs.html: OK
 gillie_fish.html: Not Modified

 Script II.3.1 mirrorOne.pl

6115 Feb 2014

3.3.3 Site Replication and MirroringCute Tricks With Perl and Apache

 #!/usr/local/bin/perl
 # mirrorOne.pl

 use LWP::Simple;
 use HTTP::Status;

 use constant DIRECTORY => ’/local/web/price_lists’;
 %DOCUMENTS = (
 ’dogs.html’ => ’http://www.pets.com/dogs/price_list.html’,
 ’cats.html’ => ’http://www.pets.com/cats/price_list.html’,
 ’gillie_fish.html’ => ’http://aquaria.com/prices.html’
);
 chdir DIRECTORY;
 foreach (sort keys %DOCUMENTS) {
 my $status = mirror($DOCUMENTS{$_},$_);
 warn "$_: ",status_message($status),"\n";
 }

3.3.3.2 Mirroring a Document Tree

With a little more work, you can recursively mirror an entire set of linked pages. Script II.3.2 mirrors the
requested document and all subdocuments, using the LWP HTML::LinkExtor module to extract all the
HTML links.

 Script II.3.2 mirrorTree.pl

 #!/usr/local/bin/perl

 # File: mirrorTree.pl

 use LWP::UserAgent;
 use HTML::LinkExtor;
 use URI::URL;
 use File::Path;
 use File::Basename;
 %DONE = ();

 my $URL = shift;

 $UA = new LWP::UserAgent;
 $PARSER = HTML::LinkExtor->new();
 $TOP = $UA->request(HTTP::Request->new(HEAD => $URL));
 $BASE = $TOP->base;

 mirror(URI::URL->new($TOP->request->url));

 sub mirror {
 my $url = shift;

 # get rid of query string "?" and fragments "#"
 my $path = $url->path;
 my $fixed_url = URI::URL->new ($url->scheme . ’://’ . $url->netloc . $path);

 # make the URL relative
 my $rel = $fixed_url->rel($BASE);

15 Feb 201462

3.3.3 Site Replication and Mirroring

 $rel .= ’index.html’ if $rel=~m!/$! || length($rel) == 0;

 # skip it if we’ve already done it
 return if $DONE{$rel}++;

 # create the directory if it doesn’t exist already
 my $dir = dirname($rel);
 mkpath([$dir]) unless -d $dir;

 # mirror the document
 my $doc = $UA->mirror($fixed_url,$rel);
 print STDERR "$rel: ",$doc->message,"\n";
 return if $doc->is_error;

 # Follow HTML documents
 return unless $rel=~/\.html?$/i;
 my $base = $doc->base;

 # pull out the links and call us recursively
 my @links = $PARSER->parse_file("$rel")->links;
 my @hrefs = map { url($_->[2],$base)->abs } @links;

 foreach (@hrefs) {
 next unless is_child($BASE,$_);
 mirror($_);
 }

 }

 sub is_child {
 my ($base,$url) = @_;
 my $rel = $url->rel($base);
 return ($rel ne $url) && ($rel !~ m!^[/.]!);
 }

3.3.3.3 Checking for Bad Links

A slight modification of this last script allows you to check an entire document hierarchy (your own or
someone else’s) for bad links. The script shown in II.3.3 traverses a document, and checks each of the
http:, ftp: and gopher: links to see if there’s a response at the other end. Links that point to sub-documents
are fetched and traversed as before, so you can check your whole site in this way.

 % find_bad_links http://prego/apache-1.2/
 checking http://prego/apache-1.2/...
 checking http://prego/apache-1.2/manual/...
 checking http://prego/apache-1.2/manual/misc/footer.html...
 checking http://prego/apache-1.2/manual/misc/header.html...
 checking http://prego/apache-1.2/manual/misc/nopgp.html...
 checking http://www.yahoo.com/Science/Mathematics/Security_and_Encryption/...
 checking http://www.eff.org/pub/EFF/Policy/Crypto/...
 checking http://www.quadralay.com/www/Crypt/Crypt.html...
 checking http://www.law.indiana.edu/law/iclu.html...
 checking http://bong.com/~brian...
 checking http://prego/apache-1.2/manual/cgi_path.html...
 checking http://www.ics.uci.edu/pub/ietf/http/...
 .

6315 Feb 2014

3.3.3 Site Replication and MirroringCute Tricks With Perl and Apache

 .
 .
 BAD LINKS:
 manual/misc/known_bugs.html : http://www.apache.org/dist/patches/apply_to_1.2b6/
 manual/misc/fin_wait_2.html : http://www.freebsd.org/
 manual/misc/fin_wait_2.html : http://www.ncr.com/
 manual/misc/compat_notes.html : http://www.eit.com/
 manual/misc/howto.html : http://www.zyzzyva.com/robots/alert/
 manual/misc/perf.html : http://www.software.hp.com/internet/perf/tuning.html
 manual/misc/perf.html : http://www.qosina.com/~awm/apache/linux-tcp.html
 manual/misc/perf.html : http://www.sun.com/sun-on-net/Sun.Internet.Solutions/performance/
 manual/misc/perf.html : http://www.sun.com/solaris/products/siss/
 manual/misc/nopgp.html : http://www.yahoo.com/Science/Mathematics/Security_and_Encryption/

 152 documents checked
 11 bad links

 Script II.3.2 find_bad_links.pl

 #!/usr/local/bin/perl

 # File: find_bad_links.pl

 use LWP::UserAgent;
 use HTML::LinkExtor;
 use URI::URL;

 use WWW::RobotRules;

 %CAN_HANDLE = (’http’=>1,
 ’gopher’=>1,
 # ’ftp’=>1, # timeout problems?
);
 %OUTCOME = ();
 $CHECKED = $BAD = 0;
 @BAD = ();

 my $URL = shift;

 $UA = new LWP::UserAgent;
 $PARSER = HTML::LinkExtor->new();
 $TOP = $UA->request(HTTP::Request->new(HEAD => $URL));
 $BASE = $TOP->base;

 # handle robot rules
 my $robots = URI::URL->new(’robots.txt’,$BASE->scheme.’://’.$BASE->netloc);
 my $robots_text = $UA->request(HTTP::Request->new(GET=>$robots))->content;
 $ROBOTRULES = WWW::RobotRules->new;
 $ROBOTRULES->parse($robots->abs,$robots_text);

 check_links(URI::URL->new($TOP->request->url));
 if (@BAD) {
 print "\nBAD LINKS:\n";
 print join("\n",@BAD),"\n\n";
 }
 print "$CHECKED documents checked\n",scalar(@BAD)," bad links\n";

 sub check_links {

15 Feb 201464

3.3.3 Site Replication and Mirroring

 my $url = shift;
 my $fixed_url = $url;
 $fixed_url =~ s/\#.+$//;

 return 1 unless $CAN_HANDLE{$url->scheme};

 # check cached outcomes
 return $OUTCOME{$fixed_url} if exists $OUTCOME{$fixed_url};

 print STDERR "checking $fixed_url...\n";
 $CHECKED++;

 my $rel = $url->rel($BASE) || ’index.html’;
 my $child = is_child($BASE,$url);
 $UA->timeout(5);
 my $doc = $d = $UA->request(HTTP::Request->new(($child ? ’GET’ : ’HEAD’)=>$url));
 $OUTCOME{$fixed_url} = $doc->is_success;

 return $OUTCOME{$fixed_url}
 unless $ROBOTRULES->allowed($fixed_url)
 && $child && $doc->header(’Content-type’) eq ’text/html’;

 # Follow HTML documents
 my $base = $doc->base;

 # pull out the links and call us recursively
 my @links = $PARSER->parse($doc->content)->links;
 my @hrefs = map { url($_->[2],$base)->abs } @links;

 foreach (@hrefs) {
 next if check_links($_);
 push (@BAD,"$rel : $_");
 }
 1;
 }

 sub is_child {
 my ($base,$url) = @_;
 my $rel = $url->rel($base);
 return ($rel ne $url) && ($rel !~ m!^[/.]!);
 }

3.3.4 Load balancing

You’ve hit the big time, and your site is getting more hits than you ever dreamed of. Millions, zillions of
hits. What’s that? System load just passed 50 and response time is getting kinda’ s-l-o-w-w-w?

Perl to the rescue. Set up several replica Web servers with different hostnames and IP addresses. Run this
script on the "main" site and watch it round-robin the requests to the replica servers. It uses IO::Socket
to listen for incoming requests on port 80. It then changes its privileges to run as nobody.nogroup, just like
a real Web server. Next it preforks itself a few times (and you always thought preforking was something
fancy, didn’t you?), and goes into an accept() loop. Each time an incoming session comes in, it forks
off another child to handle the request. The child reads the HTTP request and issues the an HTTP redirec-
tion to send the browser to a randomly selected server.

6515 Feb 2014

3.3.4 Load balancingCute Tricks With Perl and Apache

NOTE: Another way to do this is to have multiple "A" records defined for your server’s hostname and let
DNS caching distribute the load.

 Script II.4.1: A Load Balancing "Web Server"
 --
 #!/usr/local/bin/perl

 # list of hosts to balance between
 @HOSTS = qw/www1.web.org www2.web.org www3.web.org www4.web.org/;

 use IO::Socket;
 $SIG{CHLD} = sub { wait() };
 $ENV{’PATH’}=’/bin:/usr/bin’;
 chomp($hostname = ‘/bin/hostname‘);

 # Listen on port 80
 $sock = IO::Socket::INET->new(Listen => 5,
 LocalPort => 80,
 LocalAddr => $hostname,
 Reuse => 1,
 Proto => ’tcp’);

 # become "nobody"
 $nobody = (getpwnam(’nobody’))[2] || die "nobody is nobody";
 $nogroup = (getgrnam(’nogroup’))[2] || die "can’t grok nogroup";
 ($<,$() = ($>,$)) = ($nobody,$nogroup); # get rid of root privileges!
 ($\,$/) = ("\r\n","\r\n\r\n"); # CR/LF on output/input

 # Go into server mode
 close STDIN; close STDOUT; close STDERR;

 # prefork -- gee is that all there is to it?
 fork() && fork() && fork() && fork() && exit 0;

 # start accepting connections
 while (my $s = $sock->accept()) {
 do { $s->close; next; } if fork();
 my $request = <$s>;
 redirect($1,$s) if $request=~/(?:GET|POST|HEAD|PUT)\s+(\S+)/;
 $s->flush;
 undef $s;
 exit 0;
 }

 sub redirect {
 my ($url,$s) = @_;
 my $host = $HOSTS[rand(@HOSTS)];
 print $s "HTTP/1.0 301 Moved Temporarily";
 print $s "Server: Lincoln’s Redirector/1.0";
 print $s "Location: http://${host}${url}";
 print $s "";
 }

15 Feb 201466

3.3.4 Load balancing

3.3.5 Torture Testing a Server

Any server written in C suffers the risk of static buffer overflow bugs. In the past, these bugs have led to
security compromises and Web server breakins. Script II.2.3 torture tests servers and CGI scripts by
sending large amounts of random date to them. If the server crashes, it probably contains a buffer overflow
bug.

Here’s what you see when a server crashes:

 % torture.pl -t 1000 -l 5000 http://www.capricorn.com
 torture.pl version 1.0 starting
 Base URL: http://www.capricorn.com/cgi-bin/search
 Max random data length: 5000
 Repetitions: 1000
 Post: 0
 Append to path: 0
 Escape URLs: 0

 200 OK
 200 OK
 200 OK
 200 OK
 200 OK
 500 Internal Server Error
 500 Could not connect to www.capricorn.com:80
 500 Could not connect to www.capricorn.com:80
 500 Could not connect to www.capricorn.com:80

 Script II.5.1: torture tester

 #!/usr/local/bin/perl

 # file: torture.pl
 # Torture test Web servers and scripts by sending them large arbitrary URLs
 # and record the outcome.

 use LWP::UserAgent;
 use URI::Escape ’uri_escape’;
 require "getopts.pl";

 $USAGE = <<USAGE;
 Usage: $0 -[options] URL
 Torture-test Web servers and CGI scripts

 Options:
 -l <integer> Max length of random URL to send [1024 bytes]
 -t <integer> Number of times to run the test [1]
 -P Use POST method rather than GET method
 -p Attach random data to path rather than query string

 -e Escape the query string before sending it
 USAGE

 $VERSION = ’1.0’;

6715 Feb 2014

3.3.5 Torture Testing a ServerCute Tricks With Perl and Apache

 # process command line
 &Getopts(’l:t:Ppe’) || die $USAGE;

 # get parameters
 $URL = shift || die $USAGE;
 $MAXLEN = $opt_l ne ’’ ? $opt_l : 1024;
 $TIMES = $opt_t || 1;
 $POST = $opt_P || 0;
 $PATH = $opt_p || 0;
 $ESCAPE = $opt_e || 0;

 # cannot do both a post and a path at the same time
 $POST = 0 if $PATH;

 # create an LWP agent
 my $agent = new LWP::UserAgent;

 print <<EOF;
 torture.pl version $VERSION starting
 Base URL: $URL
 Max random data length: $MAXLEN
 Repetitions: $TIMES
 Post: $POST
 Append to path: $PATH
 Escape URLs: $ESCAPE

 EOF

 # Do the test $TIMES times
 while ($TIMES) {
 # create a string of random stuff
 my $garbage = random_string(rand($MAXLEN));
 $garbage = uri_escape($garbage) if $ESCAPE;
 my $url = $URL;

 my $request;

 if (length($garbage) == 0) { # if no garbage to add, just fetch URL
 $request = new HTTP::Request (’GET’,$url);
 }

 elsif ($POST) { # handle POST request
 my $header = new HTTP::Headers (
 Content_Type => ’application/x-www-form-urlencoded’,
 Content_Length => length($garbage)
);
 # garbage becomes the POST content
 $request = new HTTP::Request (’POST’,$url,$header,$garbage);

 } else { # handle GET request

 if ($PATH) { # append garbage to the base URL
 chop($url) if substr($url,-1,1) eq ’/’;
 $url .= "/$garbage";
 } else { # append garbage to the query string
 $url .= "?$garbage";
 }

15 Feb 201468

3.3.5 Torture Testing a Server

 $request = new HTTP::Request (’GET’,$url);
 }

 # do the request and fetch the response
 my $response = $agent->request($request);

 # print the numeric response code and the message
 print $response->code,’ ’,$response->message,"\n";

 } continue { $TIMES-- }

 # return some random data of the requested length
 sub random_string {
 my $length = shift;
 return undef unless $length >= 1;
 return join(’’,map chr(rand(255)),0..$length-1);
 }

For other load testing tools, have a look at our Benchmarking section.

3.4 Part III: mod_perl -- Faster Than a Speeding Bullet
mod_perl is Doug MacEachern’s embedded Perl for Apache. With a mod_perl-enabled server, there’s no
tedious waiting around while the Perl interpreter fires up, reads and compiles your script. It’s right there,
ready and waiting. What’s more, once compiled your script remains in memory, all charged and raring to
go. Suddenly those sluggish Perl CGI scripts race along at compiled C speeds...or so it seems.

Most CGI scripts will run unmodified under mod_perl using the Apache::Registry x CGI compatibil-
ity layer. But that’s not the whole story. The exciting part is that mod_perl gives you access to the Apache
API, letting you get at the innards of the Apache server and change its behavior in powerful and interest-
ing ways. This section will give you a feel for the many things that you can do with mod_perl.

3.4.1 Creating Dynamic Pages

This is a ho-hum because you can do it with CGI and with Apache::Registry . Still, it’s worth seeing
a simple script written using the strict mod_perl API so you see what it looks like. Script III.1.1 prints out
a little hello world message.

Install it by adding a section like this one to one of the configuration files:

 <Location /hello/world>
 SetHandler perl-script
 PerlHandler Apache::Hello
 </Location>

 Script III.1.1 Apache::Hello

 package Apache::Hello;
 # file: Apache/Hello.pm

 use strict vars;
 use Apache::Constants ’:common’;

6915 Feb 2014

3.4 Part III: mod_perl -- Faster Than a Speeding BulletCute Tricks With Perl and Apache

 sub handler {
 my $r = shift;
 $r->content_type(’text/html’);
 $r->send_http_header;
 my $host = $r->get_remote_host;
 $r->print(<<END);
 <html>
 <head>
 <title>Hello There</title>
 </head>
 <body>
 <h1>Hello $host</h1>
 Hello to all the nice people at the Perl conference. Lincoln is
 trying really hard. Be kind.
 </body>
 </html>
 END
 return OK;
 }
 1;

You can do all the standard CGI stuff, such as reading the query string, creating fill-out forms, and so on.
In fact, CGI.pm works with mod_perl, giving you the benefit of sticky forms, cookie handling, and
elegant HTML generation.

3.4.2 File Filters

This is where the going gets fun. With mod_perl, you can install a content handler that works a lot like a
four-letter word starrer-outer, but a lot faster.

3.4.2.1 Adding a Canned Footer to Every Page

Script III.2.1 adds a canned footer to every HTML file. The footer contains a copyright statement, plus the
modification date of the file. You could easily extend this to add other information, such as a page hit
counter, or the username of the page’s owner.

This can be installed as the default handler for all files in a particular subdirectory like this:

 <Location /footer>
 SetHandler perl-script
 PerlHandler Apache::Footer
 </Location>

Or you can declare a new ".footer" extension and arrange for all files with this extension to be passed
through the footer module:

 AddType text/html .footer
 <Files ~ "\.footer$">
 SetHandler perl-script
 PerlHandler Apache::Footer
 </Files>

15 Feb 201470

3.4.2 File Filters

 Script III.2.1 Apache::Footer

 package Apache::Footer;
 # file Apache::Footer.pm

 use strict vars;
 use Apache::Constants ’:common’;
 use IO::File;

 sub handler {
 my $r = shift;
 return DECLINED unless $r->content_type() eq ’text/html’;
 my $file = $r->filename;
 return DECLINED unless $fh=IO::File->new($file);
 my $modtime = localtime((stat($file))[9]);
 my $footer=<<END;
 <hr>
 © 1998 O\’Reilly & Associates

 Last Modified: $modtime
 END

 $r->send_http_header;

 while (<$fh>) {
 s!(</BODY>)!$footer$1!oi;
 } continue {
 $r->print($_);
 }

 return OK;
 }

 1;

For more customized footer/header handling, you might want to look at the Apache::Sandwich
module on CPAN.

3.4.2.2 Dynamic Navigation Bar

Sick of hand-coding navigation bars in every HTML page? Less than enthused by the Java & JavaScript
hacks? Here’s a dynamic navigation bar implemented as a server side include.

First create a global configuration file for your site. The first column is the top of each major section. The
second column is the label to print in the navigation bar

 # Configuration file for the navigation bar
 /index.html Home
 /new/ What’s New
 /tech/ Tech Support
 /download/ Download
 /dev/zero Customer support
 /dev/null Complaints

7115 Feb 2014

3.4.2 File FiltersCute Tricks With Perl and Apache

Then, at the top (or bottom) of each HTML page that you want the navigation bar to appear on, add this
comment:

 <!--#NAVBAR-->

Now add Apache::NavBar to your system (Script III.2.2). This module parses the configuration file to
create a "navigation bar object". We then call the navigation bar object’s to_html() method in order to
generate the HTML for the navigation bar to display on the current page (it will be different for each page,
depending on what major section the page is in).

The next section does some checking to avoid transmitting the page again if it is already cached on the
browser. The effective last modified time for the page is either the modification time of its HTML source
code, or the navbar’s configuration file modification date, whichever is more recent.

The remainder is just looping through the file a section at a time, searching for the <!--NAVBAR-->
comment, and substituting the navigation bar HTML.

 Script III.2.2 Apache::NavBar

 package Apache::NavBar;
 # file Apache/NavBar.pm

 use strict;
 use Apache::Constants qw(:common);
 use Apache::File ();

 my %BARS = ();
 my $TABLEATTS = ’WIDTH="100%" BORDER=1’;
 my $TABLECOLOR = ’#C8FFFF’;
 my $ACTIVECOLOR = ’#FF0000’;

 sub handler {
 my $r = shift;

 my $bar = read_configuration($r) || return DECLINED;
 $r->content_type eq ’text/html’ || return DECLINED;
 my $fh = Apache::File->new($r->filename) || return DECLINED;
 my $navbar = $bar->to_html($r->uri);

 $r->update_mtime($bar->modified);
 $r->set_last_modified;
 my $rc = $r->meets_conditions;
 return $rc unless $rc == OK;

 $r->send_http_header;
 return OK if $r->header_only;

 local $/ = "";
 while (<$fh>) {
 s:<!--NAVBAR-->:$navbar:oi;
 } continue {
 $r->print($_);

15 Feb 201472

3.4.2 File Filters

 }

 return OK;
 }

 # read the navigation bar configuration file and return it as a
 # hash.
 sub read_configuration {
 my $r = shift;
 my $conf_file;
 return unless $conf_file = $r->dir_config(’NavConf’);
 return unless -e ($conf_file = $r->server_root_relative($conf_file));
 my $mod_time = (stat _)[9];
 return $BARS{$conf_file} if $BARS{$conf_file}
 && $BARS{$conf_file}->modified >= $mod_time;
 return $BARS{$conf_file} = NavBar->new($conf_file);
 }

 package NavBar;

 # create a new NavBar object
 sub new {
 my ($class,$conf_file) = @_;
 my (@c,%c);
 my $fh = Apache::File->new($conf_file) || return;
 while (<$fh>) {
 chomp;
 s/^\s+//; s/\s+$//; #fold leading and trailing whitespace
 next if /^#/ || /^$/; # skip comments and empty lines
 next unless my ($url, $label) = /^(\S+)\s+(.+)/;
 push @c, $url; # keep the url in an ordered array
 $c{$url} = $label; # keep its label in a hash
 }
 return bless {’urls’ => \@c,
 ’labels’ => \%c,
 ’modified’ => (stat $conf_file)[9]}, $class;
 }

 # return ordered list of all the URIs in the navigation bar
 sub urls { return @{shift->{’urls’}}; }

 # return the label for a particular URI in the navigation bar
 sub label { return $_[0]->{’labels’}->{$_[1]} || $_[1]; }

 # return the modification date of the configuration file
 sub modified { return $_[0]->{’modified’}; }

 sub to_html {
 my $self = shift;
 my $current_url = shift;
 my @cells;
 for my $url ($self->urls) {
 my $label = $self->label($url);
 my $is_current = $current_url =~ /^$url/;
 my $cell = $is_current ?
 qq($label)

7315 Feb 2014

3.4.2 File FiltersCute Tricks With Perl and Apache

 : qq($label);
 push @cells,
 qq(<TD CLASS="navbar" ALIGN=CENTER BGCOLOR="$TABLECOLOR">$cell</TD>\n);
 }
 return qq(<TABLE $TABLEATTS><TR>@cells</TR></TABLE>\n);
 }

 1;
 __END__

 <Location />
 SetHandler perl-script
 PerlHandler Apache::NavBar
 PerlSetVar NavConf etc/navigation.conf
 </Location>

Apache::NavBar is available on the CPAN, with further improvements.

3.4.2.3 On-the-Fly Compression

WU-FTP has a great feature that automatically gzips a file if you fetch it by name with a .gz extension
added. Why can’t Web servers do that trick? With Apache and mod_perl, you can.

Script III.2.4 is a content filter that automatically gzips everything retrieved from a particular directory and
adds the "gzip" Content-Encoding header to it. Unix versions of Netscape Navigator will automati-
cally recognize this encoding type and decompress the file on the fly. Windows and Mac versions don’t.
You’ll have to save to disk and decompress, or install the WinZip plug-in. Bummer.

The code uses the Compress::Zlib module, and has to do a little fancy footwork (but not too much) to
create the correct gzip header. You can extend this idea to do on-the-fly encryption, or whatever you like.

Here’s the configuration entry you’ll need. Everything in the /compressed directory will be compressed
automagically.

 <Location /compressed>
 SetHandler perl-script
 PerlHandler Apache::GZip
 </Location>

 Script III.2.3: Apache::GZip

 package Apache::GZip;
 #File: Apache::GZip.pm

 use strict vars;
 use Apache::Constants ’:common’;
 use Compress::Zlib;
 use IO::File;
 use constant GZIP_MAGIC => 0x1f8b;
 use constant OS_MAGIC => 0x03;

 sub handler {
 my $r = shift;

15 Feb 201474

3.4.2 File Filters

 my ($fh,$gz);
 my $file = $r->filename;
 return DECLINED unless $fh=IO::File->new($file);
 $r->header_out(’Content-Encoding’=>’gzip’);
 $r->send_http_header;
 return OK if $r->header_only;

 tie *STDOUT,’Apache::GZip’,$r;
 print($_) while <$fh>;
 untie *STDOUT;
 return OK;
 }

 sub TIEHANDLE {
 my ($class,$r) = @_;
 # initialize a deflation stream
 my $d = deflateInit(-WindowBits=>-MAX_WBITS()) || return undef;

 # gzip header -- don’t ask how I found out
 $r->print(pack("nccVcc",GZIP_MAGIC,Z_DEFLATED,0,time(),0,OS_MAGIC));

 return bless { r => $r,
 crc => crc32(undef),
 d => $d,
 l => 0
 },$class;
 }

 sub PRINT {
 my $self = shift;
 foreach (@_) {
 # deflate the data
 my $data = $self->{d}->deflate($_);
 $self->{r}->print($data);
 # keep track of its length and crc
 $self->{l} += length($_);
 $self->{crc} = crc32($_,$self->{crc});
 }
 }

 sub DESTROY {
 my $self = shift;

 # flush the output buffers
 my $data = $self->{d}->flush;
 $self->{r}->print($data);

 # print the CRC and the total length (uncompressed)
 $self->{r}->print(pack("LL",@{$self}{qw/crc l/}));
 }

 1;

For some alternatives that are being maintained, you might want to look at the Apache::Compress and
Apache::GzipChain modules on CPAN, which can handle the output of any handler in a chain.

7515 Feb 2014

3.4.2 File FiltersCute Tricks With Perl and Apache

By adding a URI translation handler, you can set things up so that a remote user can append a .gz to the
end of any URL and the file we be delivered in compressed form. Script III.2.4 shows the translation
handler you need. It is called during the initial phases of the request to make any modifications to the URL
that it wishes. In this case, it removes the .gz ending from the filename and arranges for Apache:GZip
to be called as the content handler. The lookup_uri() call is used to exclude anything that has a
special handler already defined (such as CGI scripts), and actual gzip files. The module replaces the infor-
mation in the request object with information about the real file (without the .gz), and arranges for
Apache::GZip to be the content handler for this file.

You just need this one directive to activate handling for all URLs at your site:

 PerlTransHandler Apache::AutoGZip

 Script III.2.4: Apache::AutoGZip

 package Apache::AutoGZip;

 use strict ’vars’;
 use Apache::Constants qw/:common/;

 sub handler {
 my $r = shift;

 # don’t allow ourselves to be called recursively
 return DECLINED unless $r->is_initial_req;

 # don’t do anything for files not ending with .gz
 my $uri = $r->uri;
 return DECLINED unless $uri=~/\.gz$/;
 my $basename = $‘;

 # don’t do anything special if the file actually exists
 return DECLINED if -e $r->lookup_uri($uri)->filename;

 # look up information about the file
 my $subr = $r->lookup_uri($basename);
 $r->uri($basename);
 $r->path_info($subr->path_info);
 $r->filename($subr->filename);

 # fix the handler to point to Apache::GZip;
 my $handler = $subr->handler;
 unless ($handler) {
 $r->handler(’perl-script’);
 $r->push_handlers(’PerlHandler’,’Apache::GZip’);
 } else {
 $r->handler($handler);
 }
 return OK;
 }

 1;

15 Feb 201476

3.4.2 File Filters

3.4.3 Access Control

Access control, as opposed to authentication and authorization, is based on something the user "is" rather
than something he "knows". The "is" is usually something about his browser, such as its IP address, host-
name, or user agent. Script III.3.1 blocks access to the Web server for certain User Agents (you might use
this to block impolite robots).

Apache::BlockAgent reads its blocking information from a "bad agents" file, which contains a series
of pattern matches. Most of the complexity of the code comes from watching this file and recompiling it
when it changes. If the file doesn’t change, it’s is only read once and its patterns compiled in memory,
making this module fast.

Here’s an example bad agents file:

 ^teleport pro\/1\.28
 ^nicerspro
 ^mozilla\/3\.0 \(http engine\)
 ^netattache
 ^crescent internet toolpak http ole control v\.1\.0
 ^go-ahead-got-it
 ^wget
 ^devsoft’s http component v1\.0
 ^www\.pl
 ^digout4uagent

A configuration entry to activate this blocker looks like this. In this case we’re blocking access to the
entire site. You could also block access to a portion of the site, or have different bad agents files associated
with different portions of the document tree.

 <Location />
 PerlAccessHandler Apache::BlockAgent
 PerlSetVar BlockAgentFile /home/www/conf/bad_agents.txt
 </Location>

 Script III.3.1: Apache::BlockAgent

 package Apache::BlockAgent;
 # block browsers that we don’t like

 use strict ’vars’;
 use Apache::Constants ’:common’;
 use IO::File;
 my %MATCH_CACHE;
 my $DEBUG = 0;

 sub handler {
 my $r = shift;

 return DECLINED unless my $patfile = $r->dir_config(’BlockAgentFile’);
 return FORBIDDEN unless my $agent = $r->header_in(’User-Agent’);
 return SERVER_ERROR unless my $sub = get_match_sub($r,$patfile);
 return OK if $sub->($agent);
 $r->log_reason("Access forbidden to agent $agent",$r->filename);

7715 Feb 2014

3.4.3 Access ControlCute Tricks With Perl and Apache

 return FORBIDDEN;
 }

 # This routine creates a pattern matching subroutine from a
 # list of pattern matches stored in a file.
 sub get_match_sub {
 my ($r,$filename) = @_;
 my $mtime = -M $filename;

 # try to return the sub from cache
 return $MATCH_CACHE{$filename}->{’sub’} if
 $MATCH_CACHE{$filename} &&
 $MATCH_CACHE{$filename}->{’mod’} <= $mtime;

 # if we get here, then we need to create the sub
 return undef unless my $fh = new IO::File($filename);

 chomp(my @pats = <$fh>); # get the patterns into an array
 my $code = "sub { \$_ = shift;\n";
 foreach (@pats) {
 next if /^#/
 $code .= "return undef if /$_/i;\n";
 }
 $code .= "1; }\n";
 warn $code if $DEBUG;

 # create the sub, cache and return it
 my $sub = eval $code;
 unless ($sub) {
 $r->log_error($r->uri,": ",$@);
 return undef;
 }
 @{$MATCH_CACHE{$filename}}{’sub’,’mod’}=($sub,$modtime);
 return $MATCH_CACHE{$filename}->{’sub’};
 }

 1;

3.4.4 Authentication and Authorization

Thought you were stuck with authentication using text, DBI and DBM files? mod_perl opens the authenti-
cation/authorization API wide. The two phases are authentication, in which the user has to prove who he
or she is (usually by providing a username and password), and authorization, in which the system decides
whether this user has sufficient privileges to view the requested URL. A scheme can incorporate authenti-
cation and authorization either together or singly.

3.4.4.1 Authentication with NIS

If you keep Unix system passwords in /etc/passwd or distribute them by NIS (not NIS+) you can authenti-
cate Web users against the system password database. (It’s not a good idea to do this if the system is
connected to the Internet because passwords travel in the clear, but it’s OK for trusted intranets.)

15 Feb 201478

3.4.4 Authentication and Authorization

Script III.4.1 shows how the Apache::AuthSystem module fetches the user’s name and password,
compares it to the system password, and takes appropriate action. The getpwnam() function operates
either on local files or on the NIS database, depending on how the server host is configured. WARNING:
the module will fail if you use a shadow password system, since the Web server doesn’t have root privi-
leges.

In order to activate this system, put a configuration directive like this one in access.conf:

 <Location /protected>
 AuthName Test
 AuthType Basic
 PerlAuthenHandler Apache::AuthSystem
 require valid-user
 </Location>

 Script III.4.1: Apache::AuthSystem

 package Apache::AuthSystem;
 # authenticate users on system password database

 use strict;
 use Apache::Constants ’:common’;

 sub handler {
 my $r = shift;

 my ($res, $sent_pwd) = $r->get_basic_auth_pw;
 return $res if $res != OK;

 my $user = $r->connection->user;
 my $reason = "";

 my ($name,$passwd) = getpwnam($user);
 if (!$name) {
 $reason = "user does not have an account on this system";
 } else {
 $reason = "user did not provide correct password"
 unless $passwd eq crypt($sent_pwd,$passwd);
 }

 if($reason) {
 $r->note_basic_auth_failure;
 $r->log_reason($reason,$r->filename);
 return AUTH_REQUIRED;
 }

 return OK;
 }

 1;

There are modules doing equivalent things on CPAN: Apache::AuthenPasswd and
Apache::AuthxPasswd .

7915 Feb 2014

3.4.4 Authentication and AuthorizationCute Tricks With Perl and Apache

3.4.4.2 Anonymous Authentication

Here’s a system that authenticates users the way anonymous FTP does. They have to enter a name like
"Anonymous" (configurable) and a password that looks like a valid e-mail address. The system rejects the
username and password unless they are formatted correctly.

In a real application, you’d probably want to log the password somewhere for posterity. Script III.4.2
shows the code for Apache::AuthAnon . To activate it, create a httpd.conf section like this one:

 <Location /protected>
 AuthName Anonymous
 AuthType Basic
 PerlAuthenHandler Apache::AuthAnon
 require valid-user

 PerlSetVar Anonymous anonymous|anybody
 </Location>

 Script III.4.2: Anonymous Authentication
 --
 package Apache::AuthAnon;

 use strict;
 use Apache::Constants ’:common’;

 my $email_pat = ’\w+\@\w+\.\w+’;
 my $anon_id = "anonymous";

 sub handler {
 my $r = shift;

 my ($res, $sent_pwd) = $r->get_basic_auth_pw;
 return $res if $res != OK;

 my $user = lc $r->connection->user;
 my $reason = "";

 my $check_id = $r->dir_config("Anonymous") || $anon_id;

 unless($user =~ /^$check_id$/i) {
 $reason = "user did not enter a valid anonymous username";
 }

 unless($sent_pwd =~ /$email_pat/o) {
 $reason = "user did not enter an email address password";
 }

 if($reason) {
 $r->note_basic_auth_failure;

15 Feb 201480

3.4.4 Authentication and Authorization

 $r->log_reason($reason,$r->filename);
 return AUTH_REQUIRED;
 }

 $r->notes(AuthAnonPassword => $sent_pwd);

 return OK;
 }

 1;

3.4.4.3 Gender-Based Authorization

After authenticating, you can authorize. The most familiar type of authorization checks a group database
to see if the user belongs to one or more privileged groups. But authorization can be anything you dream
up.

Script III.4.3 shows how you can authorize users by their gender (or at least their apparent gender, by
checking their names with Jon Orwant’s Text::GenderFromName module. This must be used in
conjunction with an authentication module, such as one of the standard Apache modules or a custom one.

This configuration restricts access to users with feminine names, except for the users "Webmaster" and
"Jeff", who are allowed access.

 <Location /ladies_only>
 AuthName "Ladies Only"
 AuthType Basic
 AuthUserFile /home/www/conf/users.passwd
 PerlAuthzHandler Apache::AuthzGender
 require gender F # allow females
 require user Webmaster Jeff # allow Webmaster or Jeff
 </Location>

The script uses a custom error response to explain why the user was denied admittance. This is better than
the standard "Authorization Failed" message.

 Script III.4.3: Apache::AuthzGender

 package Apache::AuthzGender;

 use strict;
 use Text::GenderFromName;
 use Apache::Constants ":common";

 my %G=(’M’=>"male",’F’=>"female");

 sub handler {
 my $r = shift;

 return DECLINED unless my $requires = $r->requires;
 my $user = lc($r->connection->user);
 substr($user,0,1)=~tr/a-z/A-Z/;
 my $guessed_gender = uc(gender($user)) || ’M’;

8115 Feb 2014

3.4.4 Authentication and AuthorizationCute Tricks With Perl and Apache

 my $explanation = <<END;
 <html><head><title>Unauthorized</title></head><body>
 <h1>You Are Not Authorized to Access This Page</h1>
 Access to this page is limited to:

 END

 foreach (@$requires) {
 my ($requirement,@rest) = split(/\s+/,$_->{requirement});
 if (lc $requirement eq ’user’) {
 foreach (@rest) { return OK if $user eq $_; }
 $explanation .= "Users @rest.\n";
 } elsif (lc $requirement eq ’gender’) {
 foreach (@rest) { return OK if $guessed_gender eq uc $_; }
 $explanation .= "People of the @G{@rest} persuasion.\n";
 } elsif (lc $requirement eq ’valid-user’) {
 return OK;
 }
 }

 $explanation .= "</BODY></HTML>";

 $r->custom_response(AUTH_REQUIRED,$explanation);
 $r->note_basic_auth_failure;
 $r->log_reason("user $user: not authorized",$r->filename);
 return AUTH_REQUIRED;
 }

 1;

Apache::AuthzGender is available from the CPAN.

3.4.5 Proxy Services

mod_perl gives you access to Apache’s ability to act as a Web proxy. You can intervene at any step in the
proxy transaction to modify the outgoing request (for example, stripping off headers in order to create an
anonymizing proxy) or to modify the returned page.

3.4.5.1 A Banner Ad Blocker

Script III.5.1 shows the code for a banner-ad blocker written by Doug MacEachern. It intercepts all proxy
requests, substituting its own content handler for the default. The content handler uses the LWP library to
fetch the requested document. If the retrieved document is an image, and its URL matches the pattern
(ads?|advertisement|banner), then the content of the image is replaced with a dynamically-generated GIF
that reads "Blocked Ad". The generated image is exactly the same size as the original, preserving the page
layout. Notice how the outgoing headers from the Apache request object are copied to the LWP request,
and how the incoming LWP response headers are copied back to Apache. This makes the transaction
nearly transparent to Apache and to the remote server.

In addition to LWP you’ll need GD.pm and Image::Size to run this module. To activate it, add the
following line to the configuration file:

15 Feb 201482

3.4.5 Proxy Services

 PerlTransHandler Apache::AdBlocker

Then configure your browser to use the server to proxy all its HTTP requests. Works like a charm! With a
little more work, and some help from the ImageMagick module, you could adapt this module to
quiet-down animated GIFs by stripping them of all but the very first frame.

 Script III.5.1: Apache::AdBlocker

 package Apache::AdBlocker;

 use strict;
 use vars qw(@ISA $VERSION);
 use Apache::Constants qw(:common);
 use GD ();
 use Image::Size qw(imgsize);
 use LWP::UserAgent ();

 @ISA = qw(LWP::UserAgent);
 $VERSION = ’1.00’;

 my $UA = __PACKAGE__->new;
 $UA->agent(join "/", __PACKAGE__, $VERSION);

 my $Ad = join "|", qw{ads? advertisement banner};

 sub handler {
 my ($r) = @_;
 return DECLINED unless $r->proxyreq;
 $r->handler("perl-script"); #ok, let’s do it
 $r->push_handlers(PerlHandler => \&proxy_handler);
 return OK;
 }

 sub proxy_handler {
 my ($r) = @_;

 my $request = HTTP::Request->new($r->method, $r->uri);

 $r->headers_in->do(sub {
 $request->header(@_);
 });

 # copy POST data, if any
 if($r->method eq ’POST’) {
 my $len = $r->header_in(’Content-length’);

 my $buf;
 $r->read($buf, $len);
 $request->content($buf);
 $request->content_type($r->content_type);
 }

 my $response = $UA->request($request);
 $r->content_type($response->header(’Content-type’));

8315 Feb 2014

3.4.5 Proxy ServicesCute Tricks With Perl and Apache

 #feed response back into our request_rec*
 $r->status($response->code);
 $r->status_line(join " ", $response->code, $response->message);
 $response->scan(sub {
 $r->header_out(@_);
 });

 if ($r->header_only) {
 $r->send_http_header();
 return OK;
 }

 my $content = \$response->content;
 if($r->content_type =~ /^image/ and $r->uri =~ /\b($Ad)\b/i) {
 block_ad($content);
 $r->content_type("image/gif");
 }

 $r->content_type(’text/html’) unless $$content;
 $r->send_http_header;
 $r->print($$content || $response->error_as_HTML);

 return OK;
 }

 sub block_ad {
 my $data = shift;
 my ($x, $y) = imgsize($data);

 my $im = GD::Image->new($x,$y);

 my $white = $im->colorAllocate(255,255,255);
 my $black = $im->colorAllocate(0,0,0);
 my $red = $im->colorAllocate(255,0,0);

 $im->transparent($white);
 $im->string(GD::gdLargeFont(),5,5,"Blocked Ad",$red);
 $im->rectangle(0,0,$x-1,$y-1,$black);

 $$data = $im->gif;
 }

 1;

Another way of doing this module would be to scan all proxied HTML files for tags containing
one of the verboten URLs, then replacing the src attribute with a transparent GIF of our own. However,
unless the tag contained width and height attributes, we wouldn’t be able to return a GIF of
the correct size -- unless we were to go hunting for the GIF with LWP, in which case we might as well do
it this way.

15 Feb 201484

3.4.5 Proxy Services

3.4.6 Customized Logging

After Apache handles a transaction, it passes all the information about the transaction to the log handler.
The default log handler writes out lines to the log file. With mod_perl, you can install your own log
handler to do customized logging.

3.4.6.1 Send E-Mail When a Particular Page Gets Hit

Script III.6.1 installs a log handler which watches over a page or set of pages. When someone fetches a
watched page, the log handler sends off an e-mail to notify someone (probably the owner of the page) that
the page has been read.

To activate the module, just attach a PerlLogHandler to the <Location> or <Files> you wish to
watch. For example:

 <Location /~lstein>
 PerlLogHandler Apache::LogMail
 PerlSetVar mailto lstein@cshl.org
 </Location>

The "mailto" directive specifies the name of the recipient(s) to notify.

 Script III.6.1: Apache::LogMail

 package Apache::LogMail;
 use Apache::Constants ’:common’;

 sub handler {
 my $r = shift;
 my $mailto = $r->dir_config(’mailto’);
 return DECLINED unless $mailto
 my $request = $r->the_request;
 my $uri = $r->uri;
 my $agent = $r->header_in("User-agent");
 my $bytes = $r->bytes_sent;
 my $remote = $r->get_remote_host;
 my $status = $r->status_line;
 my $date = localtime;
 unless (open (MAIL,"|/usr/lib/sendmail -oi -t")) {
 $r->log_error("Couldn’t open mail: $!");
 return DECLINED;
 }
 print MAIL <<END;
 To: $mailto
 From: Mod Perl <webmaster>
 Subject: Somebody looked at $uri

 At $date, a user at $remote looked at
 $uri using the $agent browser.

 The request was $request,
 which resulted returned a code of $status.

 $bytes bytes were transferred.

8515 Feb 2014

3.4.6 Customized LoggingCute Tricks With Perl and Apache

 END
 close MAIL;
 return OK;
 }
 1;

3.4.6.2 Writing Log Information Into a Relational Database

Coming full circle, Script III.6.2 shows a module that writes log information into a DBI database. The idea
is similar to Script I.1.9, but there’s now no need to open a pipe to an external process. It’s also a little
more efficient, because the log data fields can be recovered directly from the Apache request object, rather
than parsed out of a line of text. Another improvement is that we can set up the Apache configuration files
so that only accesses to certain directories are logged in this way.

To activate, add something like this to your configuration file:

 PerlLogHandler Apache::LogDBI

Or, to restrict special logging to accesses of files in below the URL "/lincoln_logs" add this:

 <Location /lincoln_logs>
 PerlLogHandler Apache::LogDBI
 </Location>

 Script III.6.2: Apache::LogDBI

 package Apache::LogDBI;
 use Apache::Constants ’:common’;

 use strict ’vars’;
 use vars qw($DB $STH);
 use DBI;
 use POSIX ’strftime’;

 use constant DSN => ’dbi:mysql:www’;
 use constant DB_TABLE => ’access_log’;
 use constant DB_USER => ’nobody’;
 use constant DB_PASSWD => ’’;

 $DB = DBI->connect(DSN,DB_USER,DB_PASSWD) || die DBI->errstr;
 $STH = $DB->prepare("INSERT INTO ${\DB_TABLE} VALUES(?,?,?,?,?,?,?,?,?)")
 || die $DB->errstr;

 sub handler {
 my $r = shift;
 my $date = strftime(’%Y-%m-%d %H:%M:%S’,localtime);
 my $host = $r->get_remote_host;
 my $method = $r->method;
 my $url = $r->uri;
 my $user = $r->connection->user;
 my $referer = $r->header_in(’Referer’);
 my $browser = $r->header_in("User-agent");
 my $status = $r->status;
 my $bytes = $r->bytes_sent;
 $STH->execute($date,$host,$method,$url,$user,

15 Feb 201486

3.4.6 Customized Logging

 $browser,$referer,$status,$bytes);
 return OK;
 }

 1;

There are other alternatives which are more actively maintained available from the CPAN:
Apache::DBILogger and Apache::DBILogConfig .

3.5 Conclusion
These tricks illustrate the true power of mod_perl; not only were Perl and Apache good friends from the
start, thanks to Perl’s excellent text-handling capacity, but when mod_perl is used, your complete access to
the Apache API gives you unprecedented power in dynamic web serving.

To find more tips and tricks, look for modules on the CPAN, look through the mod_perl documentation,
and also in the following books by Lincoln Stein:

"How to Set Up and Maintain a Web Site"

General introduction to Web site care and feeding, with an emphasis on Apache. Addison-Wesley
1997.

Companion Web site at http://www.genome.wi.mit.edu/WWW/

"Web Security, a Step-by-Step Reference Guide"

How to keep your Web site free from thieves, vandals, hooligans and other yahoos. Addison-Wesley
1998.

Companion Web site at http://www.w3.org/Security/Faq/

"The Official Guide to Programming with CGI.pm"

Everything I know about CGI.pm (and some things I don’t!). John Wiley & Sons, 1998.

Companion Web site at http://www.wiley.com/legacy/compbooks/stein/

"Writing Apache Modules in Perl and C"

Co-authored with Doug MacEachern. O’Reilly & Associates.

Companion Web site at http://www.modperl.com/

WebTechniques Columns

I write a monthly column for WebTechniques magazine (now New Architect). You can find
back-issues and reprints at http://www.webtechniques.com/

8715 Feb 2014

3.5 ConclusionCute Tricks With Perl and Apache

http://www.genome.wi.mit.edu/WWW/
http://www.w3.org/Security/Faq/
http://www.wiley.com/legacy/compbooks/stein/
http://www.modperl.com/
http://www.webtechniques.com/

The Perl Journal Columns

I write a quarterly column for TPJ. Source code listings are available at http://www.tpj.com/

3.6 Maintainers
The maintainer is the person(s) you should contact with updates, corrections and patches.

Per Einar Ellefsen <per.einar (at) skynet.be>

3.7 Authors
Lincoln Stein <lstein (at) cshl.org>

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 201488

3.6 Maintainers

http://www.tpj.com/

4 Workarounds for some known bugs in browsers.

8915 Feb 2014

4 Workarounds for some known bugs in browsers.Workarounds for some known bugs in browsers.

4.1 Description
Unfortunately for web programmers, browser bugs are not uncommon, and sometimes we have to deal
with them; refer to this chapter for some known bugs and how you can work around them.

4.2 Same Browser Requests Serialization
The following feature/bug mostly affects developers.

Certain browsers will serialize requests to the same URL if accessed from different windows. For example
if you have a CGI script that does:

 for (1..100) {
 print "$$: $_\n";
 warn "$$: $_\n";
 sleep 1;
 }

And two concurrent requests are issued from different windows of the same browser (for those browsers
that have this bug/feature), the browser will actually issue only one request and won’t run the second
request till the first one is finished. The debug printing to the error_log file helps to understand the serial-
ization issue.

Solution? Find a UA that doesn’t have this feature, especially if a command line UA will do (LWP comes
to mind). As of this writing, opera 6, mozilla 1.0 on linux have this problem, whereas konqueror 3 and
lynx don’t.

4.3 Preventing QUERY_STRING from getting corrupted
because of &entity key names
In a URL which contains a query string, if the string has multiple parts separated by ampersands and it
contains a key named "reg", for example
http://example.com/foo.pl?foo=bar®=foobar , then some browsers will interpret ®
as an SGML entity and encode it as ® . This will result in a corrupted QUERY_STRING.

The behavior is actually correct, and the problem is that you have not correctly encoded your ampersands
into entities in your HTML. What you should have in the source of your HTML is
http://example.com/foo.pl?foo=bar&reg=foobar .

A much better, and recommended solution is to separate parameter pairs with ; instead of &. CGI.pm ,
Apache::Request and $r->args() support a semicolon instead of an ampersand as a separator. So
your URI should look like this: http://example.com/foo.pl?foo=bar;reg=foobar . Note
that this is only an issue within HTML documents when you are building your own URLs with query
strings. It is not a problem when the URL is the result of submitting a form because the browsers have to
get that right. It is also not a problem when typing URLs directly into the address bar of the browser.

15 Feb 201490

4.1 Description

http://example.com/foo.pl?foo=bar&reg=foobar
http://example.com/foo.pl?foo=bar&amp;reg=foobar
http://example.com/foo.pl?foo=bar;reg=foobar

Reference: http://www.w3.org/TR/1999/REC-html401-19991224/appendix/notes.html#h-B.2.2

4.4 IE 4.x does not re-post data to a non-port-80 URL
One problem with publishing 8080 port numbers (or so I have been told) is that IE 4.x has a bug when
re-posting data to a non-port-80 URL. It drops the port designator and uses port 80 anyway.

See Publishing Port Numbers other than 80.

4.5 Internet Explorer disregards your ErrorDocuments
Many users stumble upon a common problem related to MS Internet Explorer: if your error response, such
as when using ErrorDocument 500 or $r->custom_response , is too short (which might often
be the case because you aren’t very inspired when writing error messages), Internet Explorer completely
disregards it and replaces it with its own standard error page, even though everything has been sent
correctly by the server and received by the browser.

The solution to this is quite simple: your content needs to be at least 512 bytes. Microsoft describes some
solutions to this problem here: http://support.microsoft.com/support/kb/articles/Q294/8/07.ASP . The
easiest solution under Perl is to do something like this:

 # write your HTML headers
 print "<!-- ", "_" x 513, " -->";
 # write out the rest of your HTML

Effectively, your content will be long enough, but the user won’t notice any additional content. If you’re
doing this with static pages, just insert a long enough comment inside your file to make it large enough,
which will have the same effect.

4.6 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman [http://stason.org/]

4.7 Authors
Stas Bekman [http://stason.org/]

Only the major authors are listed above. For contributors see the Changes file.

9115 Feb 2014

4.4 IE 4.x does not re-post data to a non-port-80 URLWorkarounds for some known bugs in browsers.

http://www.w3.org/TR/1999/REC-html401-19991224/appendix/notes.html#h-B.2.2
http://support.microsoft.com/support/kb/articles/Q294/8/07.ASP
http://stason.org/
http://stason.org/

5 Web Content Compression FAQ

15 Feb 201492

5 Web Content Compression FAQ

5.1 Description
Everything you wanted to know about web content compression

5.2 Basics of Content Compression
Compression of outbound Web server traffic provides benefits both for Web clients who see shorter
response times, as well as for content providers, who experience lower consumption of bandwidth.

Most recently, content compression for web servers has been provided mainly through use of the gzip
encoding. Other (non perl) modules are available that provide so-called deflate compression. Both
approaches are very similar recently and use the LZ77 algorithm combined with Huffman coding. Luckily
for us, to make use of them, there is no real need for most of us to understand all the details of the obscure
underlying mathematics of these techniques. Apache handlers available from CPAN can usually do the
dirty work. Apache addresses content compression through handlers configured in its configuration file.

Compression is, by its nature, a content filter: It always takes its input as plain ASCII data that it converts
to another binary form, and outputs the result to some destination. That is why every content compres-
sion handler usually belongs to a particular chain of handlers within the content generation phase of the
request-processing flow.

A chain of handlers is one more common term that is good to know about when you plan to
compress data. There are two of them recently developed for Apache 1.3: Apache::OutputChain and
Apache::Filter . We have to keep in mind that the compression handler developed for one chain
usually fails inside another.

Another important point deals with the order of execution of handlers in a particular chain. It’s pretty
straightforward in Apache::Filter . For example, when you configure...

 PerlModule Apache::Filter
 <Files ~ "*\.blah">
 SetHandler perl-script
 PerlSetVar Filter On
 PerlHandler Filter1 Filter2 Filter3
 </Files>

...the content will go through Filter1 first, then the result will be filtered by Filter2 , and finally
Filter3 will be invoked to make the final changes in outbound data.

However, when you configure Apache::OutputChain like...

 PerlModule Apache::OutputChain
 PerlModule Apache::GzipChain
 PerlModule Apache::SSIChain
 PerlModule Apache::PassHtml
 <Files *.html>
 SetHandler perl-script
 PerlHandler Apache::OutputChain Apache::GzipChain Apache::SSIChain Apache::PassHtml
 </Files>

9315 Feb 2014

5.1 DescriptionWeb Content Compression FAQ

...execution begins with Apache::PassHtml . Then the content will be processed with
Apache::SSIChain and finally with Apache::GzipChain . Apache::OutputChain will not
be involved in content processing at all. It is there only for the purpose of joining other handlers within the
chain.

It is important to remember that the content compression handler should always be the last executable
handler in any chain.

Another important problem of practical implementation of web content compression deals with the fact
that some buggy Web clients declare the ability to receive and decompress gzipped data in their HTTP
requests, but fail to keep their promises when an actual compressed response arrives. This problem is
addressed through the implementation of the Apache::CompressClientFixup handler. This
handler serves the fixup phase of the request-processing flow. It is compatible with all known compres-
sion handlers and is available from CPAN.

5.3 Why it is important to compress Web content?

5.3.1 Reduced equipment costs and the competitive advantage of
dramatically faster page loads.

Web content compression noticeably increases delivery speed to clients and may allow providers to serve
higher content volumes without increasing hardware expenditures. It visibly reduces actual content down-
load time, a benefit most apparent to users of dialup and high-traffic connections.

Industry leaders like Yahoo and Google are widely using content compression in their businesses.

5.4 How much improvement can I expect?

5.4.1 Effective compression can achieve increases in transmission effi-
ciency from 3 to 20 times.

The compression ratio is highly content-dependent. For example, if the compression algorithm is able to
detect repeated patterns of characters, compression will be greater than if no such patterns exist. You can
usually expect to realize an improvement between of 3 to 20 times on regular HTML, JavaScript, and
other ASCII content. I have seen peak HTML file compression improvements in excess of more than 200
times, but such occurrences are infrequent. On the other hand I have never seen ratios of less than 2.5
times on text/HTML files. Image files normally employ their own compression techniques that reduce the
advantage of further compression.

On May 21, 2002 Peter J. Cranstone wrote to the mod_gzip@lists.over.net mailing list:

"...With 98% of the world on a dial up modem, all they care about is how long it takes to download a
page. It doesn’t matter if it consumes a few more CPU cycles if the customer is happy. It’s cheaper to
buy a newer faster box, than it is to acquire new customers."

15 Feb 201494

5.3 Why it is important to compress Web content?

5.5 How hard is it to implement content compression on an
existing site?

5.5.1 Implementing content compression on an existing site typically
involves no more than installing and configuring an appropriate
Apache handler on the Web server.

This approach works in most of the cases I have seen. In some special cases you will need to take extra
care with respect to the global architecture of your Web application, but such cases may generally be
readily addressed through various techniques. To date I have found no fundamental barriers to practical
implementation of Web content compression.

5.6 Does compression work with standard Web browsers?

5.6.1 Yes. No client side changes or settings are required.

All modern browser makers claim to be able to handle compressed content and are able to decompress it
on the fly, transparent to the user. There are some known bugs in some old browsers, but these can be
taken into account through appropriate configuration of the Web server.

I strongly recommend use of the Apache::CompressClientFixup handler in your server configu-
ration in order to prevent compression for known buggy clients.

5.7 Is it possible to combine the content compression with
data encryption?

5.7.1 Yes. Compressed content can be encrypted and securely transmit-
ted over SSL.

On the client side, the browser transparently unencrypts and uncompresses the content for the user. It is
important to maintain the correct order of operations on server side to keep the transaction secure. You
must compress the content first and then apply an encryption mechanism. This is the only order of opera-
tions current browsers support.

5.8 What software is required on the server side for content
compression?

9515 Feb 2014

5.5 How hard is it to implement content compression on an existing site?Web Content Compression FAQ

5.8.1 There are four known mod_perl modules/packages for Web
content compression available to date for Apache 1.3 (in alphabetical
order):

Apache::Compress

a mod_perl handler developed by Ken Williams (U.S.), Apache::Compress , can generate gzip
output through the Apache::Filter . This module accumulates all incoming data and compresses
the entire content body as a unit.

Apache::Dynagzip

a mod_perl handler developed by Slava Bizyayev, Apache::Dynagzip uses the gzip format to
compress output dynamically through the Apache::Filter or through the internal Unix pipe.

Apache::Dynagzip is most useful when one needs to compress dynamic outbound Web content
(generated on the fly from databases, XML, etc.) when content length is not known at the time of the
request.

Apache::Dynagzip ’s features include:

Support for both HTTP/1.0 and HTTP/1.1.
Control over the chunk size on HTTP/1.1 for on-the-fly content compression.
Support for Perl, Java, or C/C++ CGI applications.
Advanced control over the proxy cache with the configurable Vary HTTP header.
Optional control over content lifetime in the client’s local cache with the configurable
Expires HTTP header.
Optional support for server-side caching of the dynamically generated (and compressed)
content.
Optional extra-light compression

removal of leading blank spaces and/or blank lines, which works for all browsers, including
older ones that cannot uncompress gzip format.

Apache::Gzip

an example of the mod_perl filter developed by Lincoln Stein and Doug MacEachern for their book
Writing Apache Modules with Perl and C (U.S.), which like Apache::Compress works through
Apache::Filter . Apache::Gzip is not available from CPAN. The source code may be found
on the book’s companion Web site at http://www.modperl.com/

Apache::GzipChain

a mod_perl handler developed by Andreas Koenig (Germany), which compresses output through
Apache::OutputChain using the gzip format.

15 Feb 201496

5.8.1 There are four known mod_perl modules/packages for Web content compression available to date for Apache 1.3 (in alphabetical order):

http://www.modperl.com/

Apache::GzipChain currently provides in-memory compression only. Use of this module under
perl-5.8 or higher is appropriate for Unicode data. UTF-8 data passed to
Compress::Zlib::memGzip() are converted to raw UTF-8 before compression takes place.
Other data are simply passed through.

5.9 What is the typical overhead in terms of CPU use for the
content compression?

5.9.1 Typical CPU overhead that originates from content compression
is insignificant.

In my observations of data compression of files of up to 200K it takes less then 60 ms CPU on a P4 3 GHz
processor. I could not measure the lower boundary reliably for dynamic compression, because there are no
really measurable latency. From the perspective of global architecture and scalability planning, I would
suggest allowing some 10 ms per request on regular Web pages in order to roughly estimate/predict the
performance of the application server.

Estimation of connection times is an even less exact matter for of a variety of possible network-related
reasons. The worst-case scenario is pretty impressive: a slow dialup connection through an ISP with no
proxy/buffering holds the provider’s socket for a time interval proportionate to the size of the requested
file. At present, gzip reduces this connection time by a factor of approximately 3-20. If the ISP buffers its
traffic, however, the content provider might not feel a dramatic impact -- apart of the fact that they are
paying their telecom providers for the transmission of considerable unnecessary data.

5.10 Is it possible to compress the output from
Apache::Registry with Apache::Dynagzip?

5.10.1 Yes. This should be fairly easy to accomplish, as follows:

If your page/application is initially configured like this:

 <Directory /path/to/subdirectory>
 SetHandler perl-script
 PerlHandler Apache::Registry
 PerlSendHeader On
 Options +ExecCGI
 </Directory>

you might replace it with the following:

 PerlModule Apache::Filter
 PerlModule Apache::Dynagzip
 PerlModule Apache::CompressClientFixup
 <Directory /path/to/subdirectory>
 SetHandler perl-script
 PerlHandler Apache::RegistryFilter Apache::Dynagzip

9715 Feb 2014

5.9 What is the typical overhead in terms of CPU use for the content compression?Web Content Compression FAQ

 PerlSendHeader On
 Options +ExecCGI
 PerlSetVar Filter On
 PerlFixupHandler Apache::CompressClientFixup
 PerlSetVar LightCompression On
 </Directory>

You should usually be all set after that.

In more common cases, you will need to replace the line:

 PerlHandler Apache::Registry

in your initial configuration file with the following lines:

 PerlHandler Apache::RegistryFilter Apache::Dynagzip
 PerlSetVar Filter On
 PerlFixupHandler Apache::CompressClientFixup

Optionally, you might add:

 PerlSetVar LightCompression On

to reduce the size of the stream for clients unable to speak gzip (like Microsoft Internet Explorer over
HTTP/1.0).

Finally, make sure you have somewhere declared

 PerlModule Apache::Filter
 PerlModule Apache::Dynagzip
 PerlModule Apache::CompressClientFixup

This basic configuration uses many defaults. See Apache::Dynagzip POD for further fine tuning if
required.

Note, however, that Apache::RegistryFilter is not yet another Apache::Registry . You may
need to adjust your script in accordance with requirements of Apache::Filer first, especially when the
script generates any CGI/1.1-specific HTTP headers. You can test your compatibility with the
Apache::Filter chain using a temporary configuration like:

 PerlModule Apache::Filter
 <Directory /path/to/subdirectory>
 SetHandler perl-script
 PerlHandler Apache::RegistryFilter
 PerlSendHeader On
 Options +ExecCGI
 PerlSetVar Filter On
 </Directory>

with no Apache::Dynagzip involved. See Apache::Filter documentation if you have any prob-
lems.

15 Feb 201498

5.10.1 Yes. This should be fairly easy to accomplish, as follows:

5.11 Is it possible to compress output from a Mason-driven
application with Apache::Dynagzip?

5.11.1 Yes. HTML::Mason::ApacheHandler is compatible with
the Apache::Filter chain.

If your application is initially configured like:

 PerlModule HTML::Mason::ApacheHandler
 <Directory /path/to/subdirectory>
 <FilesMatch "\.html$">
 SetHandler perl-script
 PerlHandler HTML::Mason::ApacheHandler
 </FilesMatch>
 </Directory>

you may wish to replace it with the following:

 PerlModule HTML::Mason::ApacheHandler
 PerlModule Apache::Dynagzip
 PerlModule Apache::CompressClientFixup
 <Directory /path/to/subdirectory>
 <FilesMatch "\.html$">
 SetHandler perl-script
 PerlHandler HTML::Mason::ApacheHandler Apache::Dynagzip
 PerlSetVar Filter On
 PerlFixupHandler Apache::CompressClientFixup
 PerlSetVar LightCompression On
 </FilesMatch>
 </Directory>

You should be all set safely after that.

In more common cases, you will need to replace the line:

 PerlHandler HTML::Mason::ApacheHandler

in your initial configuration file with the following lines:

 PerlHandler HTML::Mason::ApacheHandler Apache::Dynagzip
 PerlSetVar Filter On
 PerlFixupHandler Apache::CompressClientFixup

Optionally, you might add:

 PerlSetVar LightCompression On

to reduce the size of the stream for clients unable to speak gzip (like Microsoft Internet Explorer over
HTTP/1.0).

9915 Feb 2014

5.11 Is it possible to compress output from a Mason-driven application with Apache::Dynagzip?Web Content Compression FAQ

Finally, make sure you have somewhere declared

 PerlModule Apache::Dynagzip
 PerlModule Apache::CompressClientFixup

This basic configuration uses many defaults. See Apache::Dynagzip POD for further fine tuning.

5.12 Is commercial support available for
Apache::Dynagzip?

5.12.1 Yes. Slav Company, Ltd. provides commercial support for
Apache::Dynagzip worldwide.

Since the author of Apache::Dynagzip is employed by Slav Company, service is effective and consis-
tent.

5.13 Why is it important to maintain a control over the
chunk size?

5.13.1 It helps to reduce response latency.

Apache::Dynagzip is the only handler to date that begins transmission of compressed data as soon as
the initial uncompressed pieces of data arrive from their source, at a time when the source process may not
even have completed generating the full document it is sending. Transmission can therefore take place
concurrently with creation of later document content.

This feature is mainly beneficial for HTTP/1.1 requests, because HTTP/1.0 does not support chunks.

I would also mention that the internal buffer in Apache::Dynagzip always prevents Apache from the
creating too short chunks over HTTP/1.1, or from transmitting too short pieces of data over HTTP/1.0.

5.14 Is it worthwhile to strip leading blank spaces prior to
gzip compression?

5.14.1 Yes. It is usually worthwhile to do this.

The benefits of blank space stripping are mostly significant for non-gzipped data transmissions. One can
expect some 5-20% reduction in stream size on regular ’structured’ HTML, JavaScript, CSS, XML, etc.,
in this case at negligible cost in terms of CPU overhead and response delay.

15 Feb 2014100

5.12 Is commercial support available for Apache::Dynagzip?

After applying gzip compression, the benefits of previously applied blank space stripping are usually
reduced to some 0.5-1.0% of the resulting size, because gzip compresses blank spaces very effectively. It
is still worthwhile, however, to perform blank space stripping because:

chances are that your handler will ultimately have to send an uncompressed response back to a
known buggy client;
it really costs next-to-nothing, and every little bit helps to reduce the cost of data transmission,
especially considering the cumulative effect of frequent repetitions.

5.15 Are there any content compression solutions for vanilla
Apache 1.3?

5.15.1 Yes. There are two compression modules written in C that are
available for vanilla Apache 1.3:

mod_deflate

an Apache handler written in C by Igor Sysoev (Russia).

mod_gzip

an Apache handler written in C, originally by Kevin Kiley, Remote Communications, Inc. (U.S.)

See their respective documentation for further details.

5.16 Can I compress the output of my site at the application
level?

5.16.1 Yes, if your Web server is CGI/1.1 compatible and allows you to
create specific HTTP headers from your application, or when you use
an application framework that carries its own handler capable of
compressing outbound data.

For example, vanilla Apache 1.3 is CGI/1.1 compatible. It allows development of CGI scripts/programs
that can generate compressed outgoing streams accomplished with specific HTTP headers.

Alternatively, on mod_perl enabled Apache, some application environments carry their own compression
code that can be activated through appropriate configuration:

Apache::ASP does this with the CompressGzip setting;

10115 Feb 2014

5.15 Are there any content compression solutions for vanilla Apache 1.3?Web Content Compression FAQ

Apache::AxKit uses the AxGzipOutput setting to do this.

See the documentation for the particular packages for details.

5.17 Are there any content compression solutions for
Apache-2?

5.17.1 Yes. A core compression module written in C, mod_deflate,
is available for Apache-2.

mod_deflate for Apache-2 was written by Ian Holsman (USA).

Despite its name, mod_deflate for Apache-2 provides gzip -encoded content. In accordance with the
concept of output filters that was introduced in Apache-2, mod_deflate is capable of gzipping
outbound traffic from any content generator, including CGI, Java, mod_perl, etc.

This module supports flushing.
It is output filter-compatible.
It has its own set of configuration options to maintain control over buggy clients.

5.18 When is Apache::Dynagzip supposed to be ported
to Apache-2?

5.18.1 There are no current plans to port Apache::Dynagzip to
Apache-2:

mod_deflate for Apache-2 is capable of providing all basic functionality required for effective
dynamic content compression. The rest can be easily addressed through implementation of the accompa-
nying specific, tiny filters. For instance, Apache::Clean , which is already ported to Apache-2, can be
used to strip unnecessary blank spaces from outbound streams.

5.19 Where can I read the original descriptions of the gzip
and deflate formats?

5.19.1 gzip format is published as rfc1952, and deflate format is
published as rfc1951.

You can find many mirrors of RFC archives on the Internet. Try, for instance, my favorite at
http://www.ietf.org/rfc.html

15 Feb 2014102

5.17 Are there any content compression solutions for Apache-2?

http://www.ietf.org/rfc.html

5.20 Are there any known compression problems with
specific browsers?

5.20.1 Yes. Netscape 4 has problems with compressed cascading style
sheets and JavaScript files.

You can use Apache::CompressClientFixup to disable compression for these files dynamically
on Apache-1.3. Apache::Dynagzip is capable of providing so-called light compression for
these files.

On Apache-2, mod_deflate can be configured to disable compression for these files dynamically, and
the Apache::Clean filter can be used to strip unnecessary blank spaces.

5.21 Where can I find more information about the compres-
sion features of modern browsers?

5.21.1 Michael Schroepl maintains a highly valuable site

See it at http://www.schroepl.net/projekte/mod_gzip/browser.htm

5.22 Acknowledgments
During this work, I received a great deal of real help from Kevin Kiley, Igor Sysoev, Michel Schroepl, and
Henrik Nordstrom. I’m thankful to all subscribers of mod_perl users mailing list, mod_gzip mailing list,
and squid users mailing list for the questions and discussions regarding the content compression. I’m espe-
cially thankful to Stas Bekman for the initiative to publish this FAQ on mod_perl Web site. I highly value
patient efforts of Dan Hansen in making this text better English...

5.23 Maintainers
The maintainer is the person you should contact with updates, corrections and patches.

Slava Bizyayev <slava (at) cpan.org>

5.24 Authors
Slava Bizyayev <slava (at) cpan.org>

Only the major authors are listed above. For contributors see the Changes file.

10315 Feb 2014

5.20 Are there any known compression problems with specific browsers?Web Content Compression FAQ

http://www.schroepl.net/projekte/mod_gzip/browser.htm

Table of Contents:
.................... 1Tutorials
...... 3Building a Large-Scale E-commerce site with Apache and mod_perl
...... 31 Building a Large-Scale E-commerce site with Apache and mod_perl
.................. 41.1 Description
................. 41.2 Common Myths
.................. 41.3 Perl Saves
........... 41.3.1 Roll Your Own Application Server
............... 51.4 Case Study: eToys.com
............ 51.4.1 Apache::PerlRun to the Rescue
............ 61.4.2 Planning the New Architecture
.............. 61.5 Surviving Christmas 2000
................ 61.5.1 The Architecture
................ 71.5.2 Proxy Servers
............... 71.5.3 Application Servers
................ 71.5.4 Search servers
.............. 81.6 Load Balancing and Failover
................. 91.7 Code Structure
.................. 91.8 Caching
................ 101.9 Session Tracking
.................. 101.10 Security
................ 111.11 Exception Handling
.................. 111.12 Templates
................ 121.13 Controller Example
............... 141.14 Performance Tuning
.............. 141.15 Trap: Nested Exceptions
................. 151.16 Berkeley DB
................. 161.17 Valuable Tools
............... 161.18 Do Try This at Home
............. 171.19 An Open Source Success Story
................. 171.20 Maintainers
.................. 171.21 Authors
............... 18Choosing a Templating System
.............. 182 Choosing a Templating System
.................. 192.1 Description
.................. 192.2 Introduction
............... 192.2.1 On A Personal Note
............... 192.3 Why Use Templates?
............. 192.3.1 Consistency of Appearance
................. 202.3.2 Reusability
............. 202.3.3 Better Isolation from Changes
............... 202.3.4 Division of Labor
.............. 202.4 What Are the Differences?
............... 202.4.1 Execution Models
................. 212.4.2 Languages

i15 Feb 2014

Table of Contents:Web Content Compression FAQ

................ 232.4.3 Parsers and Caching

........... 242.4.4 Application Frameworks vs. Just Templates

................ 242.4.4.1 URL Mapping

................ 242.4.4.2 Session Tracking

................ 242.4.4.3 Output Caching

................ 242.4.4.4 Form Handling

................. 242.4.4.5 Debugging

.................. 252.5 The Contenders

.................... 252.5.1 SSI

................. 252.5.2 HTML::Mason

................. 262.5.3 HTML::Embperl

.................. 272.5.4 Apache::ASP

................. 282.5.5 Text::Template

................. 292.5.6 Template Toolkit

................. 302.5.7 HTML::Template

................... 312.5.8 AxKit2

.................. 312.5.9 HTML_Tree

............... 312.5.10 Petal and Template::TAL

................... 322.5.11 ePerl

................ 322.5.12 CGI::FastTemplate

................... 322.6 Performance

............... 332.6.1 CGI Performance Concerns

.................... 332.7 Updates

................... 332.8 Maintainers

.................... 332.9 Authors

............... 35Cute Tricks With Perl and Apache

............... 353 Cute Tricks With Perl and Apache

................... 363.1 Description

................ 363.2 Part I: Tricks with CGI.pm

................ 363.2.1 Dynamic Documents

............. 363.2.1.1 Making HTML look beautiful

.............. 373.2.1.2 Making HTML concise

.............. 383.2.1.3 Making Interactive Forms

................ 383.2.2 Making Stateful Forms

............. 403.2.2.1 Keeping State with Cookies

.............. 423.2.3 Creating Non-HTML Types

................ 453.2.4 Document Translation

................ 483.2.4.1 Smart Redirection

.................. 493.2.5 File Uploads

.............. 503.3 Part II: Web Site Care and Feeding

................. 503.3.1 Logs! Logs! Logs!

................. 503.3.1.1 Log rotation

.............. 513.3.1.2 Log rotation and archiving

........... 513.3.1.3 Log rotation, compression and archiving

................. 523.3.1.4 Log Parsing

............ 543.3.1.5 Offline Reverse DNS Resolution

................ 553.3.1.6 Detecting Robots

15 Feb 2014ii

Table of Contents:

................ 563.3.1.7 Logging to syslog

............. 573.3.1.8 Logging to a relational database

............ 583.3.2 My server fell down and it can’t get up!

.............. 583.3.2.1 Monitoring a local server

.............. 593.3.2.2 Monitoring a remote server

.............. 603.3.2.3 Resurrecting Dead Servers

.............. 613.3.3 Site Replication and Mirroring

............... 613.3.3.1 Mirroring Single Pages

.............. 623.3.3.2 Mirroring a Document Tree

.............. 633.3.3.3 Checking for Bad Links

................. 653.3.4 Load balancing

............... 673.3.5 Torture Testing a Server

.......... 693.4 Part III: mod_perl -- Faster Than a Speeding Bullet

............... 693.4.1 Creating Dynamic Pages

.................. 703.4.2 File Filters

........... 703.4.2.1 Adding a Canned Footer to Every Page

.............. 713.4.2.2 Dynamic Navigation Bar

.............. 743.4.2.3 On-the-Fly Compression

................. 773.4.3 Access Control

............. 783.4.4 Authentication and Authorization

.............. 783.4.4.1 Authentication with NIS

.............. 803.4.4.2 Anonymous Authentication

............. 813.4.4.3 Gender-Based Authorization

................. 823.4.5 Proxy Services

............... 823.4.5.1 A Banner Ad Blocker

................ 853.4.6 Customized Logging

.......... 853.4.6.1 Send E-Mail When a Particular Page Gets Hit

........ 863.4.6.2 Writing Log Information Into a Relational Database

................... 873.5 Conclusion

................... 883.6 Maintainers

.................... 883.7 Authors

............ 89Workarounds for some known bugs in browsers.

............ 894 Workarounds for some known bugs in browsers.

................... 904.1 Description

............. 904.2 Same Browser Requests Serialization

... 904.3 Preventing QUERY_STRING from getting corrupted because of &entity key names

........... 914.4 IE 4.x does not re-post data to a non-port-80 URL

.......... 914.5 Internet Explorer disregards your ErrorDocuments

................... 914.6 Maintainers

.................... 914.7 Authors

................ 92Web Content Compression FAQ

............... 925 Web Content Compression FAQ

................... 935.1 Description

............... 935.2 Basics of Content Compression

........... 945.3 Why it is important to compress Web content?

.945.3.1 Reduced equipment costs and the competitive advantage of dramatically faster page loads.

............. 945.4 How much improvement can I expect?

iii15 Feb 2014

Table of Contents:Web Content Compression FAQ

.945.4.1 Effective compression can achieve increases in transmission efficiency from 3 to 20 times.

...... 955.5 How hard is it to implement content compression on an existing site?
5.5.1 Implementing content compression on an existing site typically involves no more than

..... 95installing and configuring an appropriate Apache handler on the Web server.

.......... 955.6 Does compression work with standard Web browsers?

......... 955.6.1 Yes. No client side changes or settings are required.

...... 955.7 Is it possible to combine the content compression with data encryption?

... 955.7.1 Yes. Compressed content can be encrypted and securely transmitted over SSL.

...... 955.8 What software is required on the server side for content compression?
5.8.1 There are four known mod_perl modules/packages for Web content compression available to

............ 96date for Apache 1.3 (in alphabetical order):

.... 975.9 What is the typical overhead in terms of CPU use for the content compression?

... 975.9.1 Typical CPU overhead that originates from content compression is insignificant.
5.10 Is it possible to compress the output from Apache::Registry with

................. 97Apache::Dynagzip ?

........ 975.10.1 Yes. This should be fairly easy to accomplish, as follows:
5.11 Is it possible to compress output from a Mason-driven application with

................. 99Apache::Dynagzip ?
5.11.1 Yes. HTML::Mason::ApacheHandler is compatible with the Apache::Filter

..................... 99chain.

........ 1005.12 Is commercial support available for Apache::Dynagzip ?
5.12.1 Yes. Slav Company, Ltd. provides commercial support for Apache::Dynagzip world-

..................... 100wide.

........ 1005.13 Why is it important to maintain a control over the chunk size?

............. 1005.13.1 It helps to reduce response latency.

..... 1005.14 Is it worthwhile to strip leading blank spaces prior to gzip compression?

............ 1005.14.1 Yes. It is usually worthwhile to do this.

...... 1015.15 Are there any content compression solutions for vanilla Apache 1.3?
5.15.1 Yes. There are two compression modules written in C that are available for vanilla Apache

..................... 1011.3:

........ 1015.16 Can I compress the output of my site at the application level?
5.16.1 Yes, if your Web server is CGI/1.1 compatible and allows you to create specific HTTP
headers from your application, or when you use an application framework that carries its own

............ 101handler capable of compressing outbound data.

........ 1025.17 Are there any content compression solutions for Apache-2?
1025.17.1 Yes. A core compression module written in C, mod_deflate , is available for Apache-2.

...... 1025.18 When is Apache::Dynagzip supposed to be ported to Apache-2?

.... 1025.18.1 There are no current plans to port Apache::Dynagzip to Apache-2:

.... 1025.19 Where can I read the original descriptions of the gzip and deflate formats?

.. 1025.19.1 gzip format is published as rfc1952, and deflate format is published as rfc1951.

...... 1035.20 Are there any known compression problems with specific browsers?
1035.20.1 Yes. Netscape 4 has problems with compressed cascading style sheets and JavaScript files.

.. 1035.21 Where can I find more information about the compression features of modern browsers?

......... 1035.21.1 Michael Schroepl maintains a highly valuable site

................. 1035.22 Acknowledgments

................... 1035.23 Maintainers

.................... 1035.24 Authors

15 Feb 2014iv

Table of Contents:

	1€€Building a Large-Scale E-commerce site with Apache and mod_perl
	1.1€€Description
	1.2€€Common Myths
	1.3€€Perl Saves
	1.3.1€€Roll Your Own Application Server

	1.4€€Case Study: eToys.com
	1.4.1€€Apache::PerlRun to the Rescue
	1.4.2€€Planning the New Architecture

	1.5€€Surviving Christmas 2000
	1.5.1€€The Architecture
	1.5.2€€Proxy Servers
	1.5.3€€Application Servers
	1.5.4€€Search servers

	1.6€€Load Balancing and Failover
	1.7€€Code Structure
	1.8€€Caching
	1.9€€Session Tracking
	1.10€€Security
	1.11€€Exception Handling
	1.12€€Templates
	1.13€€Controller Example
	1.14€€Performance Tuning
	1.15€€Trap: Nested Exceptions
	1.16€€Berkeley DB
	1.17€€Valuable Tools
	1.18€€Do Try This at Home
	1.19€€An Open Source Success Story
	1.20€€Maintainers
	1.21€€Authors

	2€€Choosing a Templating System
	2.1€€Description
	2.2€€Introduction
	2.2.1€€On A Personal Note

	2.3€€Why Use Templates?
	2.3.1€€Consistency of Appearance
	2.3.2€€Reusability
	2.3.3€€Better Isolation from Changes
	2.3.4€€Division of Labor

	2.4€€What Are the Differences?
	2.4.1€€Execution Models
	2.4.2€€Languages
	2.4.3€€Parsers and Caching
	2.4.4€€Application Frameworks vs. Just Templates
	2.4.4.1€€URL Mapping
	2.4.4.2€€Session Tracking
	2.4.4.3€€Output Caching
	2.4.4.4€€Form Handling
	2.4.4.5€€Debugging

	2.5€€The Contenders
	2.5.1€€SSI
	2.5.2€€HTML::Mason
	2.5.3€€HTML::Embperl
	2.5.4€€Apache::ASP
	2.5.5€€Text::Template
	2.5.6€€Template Toolkit
	2.5.7€€HTML::Template
	2.5.8€€AxKit2
	2.5.9€€HTML_Tree
	2.5.10€€Petal and Template::TAL
	2.5.11€€ePerl
	2.5.12€€CGI::FastTemplate

	2.6€€Performance
	2.6.1€€CGI Performance Concerns

	2.7€€Updates
	2.8€€Maintainers
	2.9€€Authors

	3€€Cute Tricks With Perl and Apache
	3.1€€Description
	3.2€€Part I: Tricks with CGI.pm
	3.2.1€€Dynamic Documents
	3.2.1.1€€Making HTML look beautiful
	3.2.1.2€€Making HTML concise
	3.2.1.3€€Making Interactive Forms

	3.2.2€€Making Stateful Forms
	3.2.2.1€€Keeping State with Cookies

	3.2.3€€Creating Non-HTML Types
	3.2.4€€Document Translation
	3.2.4.1€€Smart Redirection

	3.2.5€€File Uploads

	3.3€€Part II: Web Site Care and Feeding
	3.3.1€€Logs! Logs! Logs!
	3.3.1.1€€Log rotation
	3.3.1.2€€Log rotation and archiving
	3.3.1.3€€Log rotation, compression and archiving
	3.3.1.4€€Log Parsing
	3.3.1.5€€Offline Reverse DNS Resolution
	3.3.1.6€€Detecting Robots
	3.3.1.7€€Logging to syslog
	3.3.1.8€€Logging to a relational database

	3.3.2€€My server fell down and it can't get up!
	3.3.2.1€€Monitoring a local server
	3.3.2.2€€Monitoring a remote server
	3.3.2.3€€Resurrecting Dead Servers

	3.3.3€€Site Replication and Mirroring
	3.3.3.1€€Mirroring Single Pages
	3.3.3.2€€Mirroring a Document Tree
	3.3.3.3€€Checking for Bad Links

	3.3.4€€Load balancing
	3.3.5€€Torture Testing a Server

	3.4€€Part III: mod_perl -- Faster Than a Speeding Bullet
	3.4.1€€Creating Dynamic Pages
	3.4.2€€File Filters
	3.4.2.1€€Adding a Canned Footer to Every Page
	3.4.2.2€€Dynamic Navigation Bar
	3.4.2.3€€On-the-Fly Compression

	3.4.3€€Access Control
	3.4.4€€Authentication and Authorization
	3.4.4.1€€Authentication with NIS
	3.4.4.2€€Anonymous Authentication
	3.4.4.3€€Gender-Based Authorization

	3.4.5€€Proxy Services
	3.4.5.1€€A Banner Ad Blocker

	3.4.6€€Customized Logging
	3.4.6.1€€Send E-Mail When a Particular Page Gets Hit
	3.4.6.2€€Writing Log Information Into a Relational Database

	3.5€€Conclusion
	3.6€€Maintainers
	3.7€€Authors

	4€€Workarounds for some known bugs in browsers.
	4.1€€Description
	4.2€€Same Browser Requests Serialization
	4.3€€Preventing QUERY_STRING from getting corrupted because of &entity key names
	4.4€€IE 4.x does not re-post data to a non-port-80 URL
	4.5€€Internet Explorer disregards your ErrorDocuments
	4.6€€Maintainers
	4.7€€Authors

	5€€Web Content Compression FAQ
	5.1€€Description
	5.2€€Basics of Content Compression
	5.3€€Why it is important to compress Web content?
	5.3.1€€Reduced equipment costs and the competitive advantage of dramatically faster page loads.

	5.4€€How much improvement can I expect?
	5.4.1€€Effective compression can achieve increases in transmission efficiency from 3 to 20 times.

	5.5€€How hard is it to implement content compression on an existing site?
	5.5.1€€Implementing content compression on an existing site typically involves no more than installing and configuring an appropriate Apache handler on the Web server.

	5.6€€Does compression work with standard Web browsers?
	5.6.1€€Yes. No client side changes or settings are required.

	5.7€€Is it possible to combine the content compression with data encryption?
	5.7.1€€Yes. Compressed content can be encrypted and securely transmitted over SSL.

	5.8€€What software is required on the server side for content compression?
	5.8.1€€There are four known mod_perl modules/packages for Web content compression available to date for Apache 1.3 (in alphabetical order):

	5.9€€What is the typical overhead in terms of CPU use for the content compression?
	5.9.1€€Typical CPU overhead that originates from content compression is insignificant.

	5.10€€Is it possible to compress the output from Apache::Registry with Apache::Dynagzip?
	5.10.1€€Yes. This should be fairly easy to accomplish, as follows:

	5.11€€Is it possible to compress output from a Mason-driven application with Apache::Dynagzip?
	5.11.1€€Yes. HTML::Mason::ApacheHandler is compatible with the Apache::Filter chain.

	5.12€€Is commercial support available for Apache::Dynagzip?
	5.12.1€€Yes. Slav Company, Ltd. provides commercial support for Apache::Dynagzip worldwide.

	5.13€€Why is it important to maintain a control over the chunk size?
	5.13.1€€It helps to reduce response latency.

	5.14€€Is it worthwhile to strip leading blank spaces prior to gzip compression?
	5.14.1€€Yes. It is usually worthwhile to do this.

	5.15€€Are there any content compression solutions for vanilla Apache 1.3?
	5.15.1€€Yes. There are two compression modules written in C that are available for vanilla Apache 1.3:

	5.16€€Can I compress the output of my site at the application level?
	5.16.1€€Yes, if your Web server is CGI/1.1 compatible and allows you to create specific HTTP headers from your application, or when you use an application framework that carries its own handler capabl...

	5.17€€Are there any content compression solutions for Apache-2?
	5.17.1€€Yes. A core compression module written in C, mod_deflate, is available for Apache-2.

	5.18€€When is Apache::Dynagzip supposed to be ported to Apache-2?
	5.18.1€€There are no current plans to port Apache::Dynagzip to Apache-2:

	5.19€€Where can I read the original descriptions of the gzip and deflate formats?
	5.19.1€€gzip format is published as rfc1952, and deflate format is published as rfc1951.

	5.20€€Are there any known compression problems with specific browsers?
	5.20.1€€Yes. Netscape 4 has problems with compressed cascading style sheets and JavaScript files.

	5.21€€Where can I find more information about the compression features of modern browsers?
	5.21.1€€Michael Schroepl maintains a highly valuable site

	5.22€€Acknowledgments
	5.23€€Maintainers
	5.24€€Authors

