
10D21

Paper

Compensation of the Non-Sinusoidal Electromotive Force with
Multiple-Frequency Resonant Controller for a PMLSM

Remy Ghislain∗ Non-member

Degobert Philippe∗ Non-member

Barre Pierre-Jean∗ Non-member

Hautier Jean-Paul∗ Non-member

Zeng Jia∗ Non-member

This paper presents how to compensate for the non-sinusoidal electromotive force (EMF) of the permanent magnet
linear synchronous motor (PMLSM) with a multiple-frequency resonant controller. After the modeling of the non-
sinusoidal EMF in a PMLSM, the multiple-frequency resonant controller is proposed to control the PMLSM in order
to compensate for the negative influence of such EMF. After explaining the discrete resonant controller theory, the
effectiveness of the suggested method is verified on a test bench equipped with a Rexroth LSP120C linear motor and a
dSPACE DS1005 real-time controller board.
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1. Introduction

Nowadays, with its attractive characteristics, the Perma-
nent Magnet Linear Synchronous Motor (PMLSM) is widely
used in high speed and high precision drive systems (1). Gen-
erally, the field-oriented control with PI controllers in the
(d − q) synchronous reference frame is used to control such
systems (2). Yet this method is not capable of compensating
for the negative influence of non-sinusoidal EMF, which will
bring on undesired thrust ripples (3).

For a PMLSM with non-sinusoidal back-EMF, the excita-
tion currents should comprise appropriate harmonics in or-
der to suppress the thrust ripple components (4) (5). Direct
Torque Control (DTC) and the Multiple Reference Frame
(MRF) theory have been applied to resolve this problem (6) (7).
However, each method has its troublesome drawbacks: large
torque ripple at low speeds, variable switching frequency (8)

for DTC; complex control structure and large computation
time requirement for the MRF (9). Secondly, the switching
frequency varies according to the motor speed as well as to
the hysteresis bands of thrust and flux (10). Although some
methods have been proposed to fix this frequency, too many
switchings are not necessary and they don’t contribute to re-
ducing the control errors (11). Finally, although various tech-
niques of thrust estimation and flux observation have been
proposed to generate the necessary feedback signals, the dif-
ficulties in accurate estimation of instantaneous thrust make
it impossible to fully cast off the negative influence from mo-
tor parameter variations (12).

In this paper, we will propose to use the multiple-frequency
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resonant controller to compensate for the influence of the
non-sinusoidal EMF. By associating an arbitrary number of
resonant elements with each other, this type of controller can
eliminate the steady-state control errors of the fundamental
component as well as the harmonics components at the same
resonant frequencies (13).

After the modeling of the PMLSM with non-sinusoidal
back EMF, optimal current waveforms are suggested to re-
duce the thrust ripple caused by the harmonics of the back-
EMF. By using multi-frequency resonant controllers, the load
currents in the PMLSM can follow the reference currents per-
fectly, and thereby, significantly reduce the thrust ripple of
the PMLSM.

2. Influence of Non-sinusoidal EMF on Thrust

In this section, the model of a permanent magnet linear
synchronous motor is presented. We make the following as-
sumptions:

- Three-phase motors are without saturation and cogging
effects, Y-connected, with inaccessible neutral wire;

- Non-sinusoidal back electromotive force are considered;
- The waveforms of EMF and the magnetostatic flux of

Fig. 1. Principle schematic of PMLSM
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magnets are half-wave symmetrical (no even harmon-
ics);

- The resistances and inductances in three phases are con-
stant and identical.

Fig. 1 depicts the simplified schematic of a short primary
PMLSM. To adapt the proposed control structure, this model
is established in the Concordia reference frame, called the
(α-β) diphase stationary reference frame (14).

When the back-EMF wavefoms are half-wave symmetri-
cal, they have no even harmonics and can be expressed by:

[e0(t)] = −v · φ̂ f ·
∞∑

n=1

λ2n−1

⎡⎢⎢⎢⎢⎢⎢⎢⎣
sin[(2n − 1)Npx]
sin[(2n − 1)(Npx − 2π/3)]
sin[(2n − 1)(Npx − 4π/3)]

⎤⎥⎥⎥⎥⎥⎥⎥⎦
· · · · · · · · · · · · · · · · · · · · (1)

Wherein φ̂ f denotes the maximum value of magnetic exci-
tation flux per phase in the (abc) stationary reference frame.
The coefficients λ2n−1 represent the relative magnitudes of
the (2n − 1)th back-EMF harmonic. Np = π/τp is the electri-
cal position constant of the PMLSM (τp: step between two
consecutive magnetic poles of the secondary) (15). Finally, ν
denotes the linear speed of the mobile part.

Then, the voltage equations of the PMLSM in the Concor-
dia reference frame can be expressed as:

[Vαβ] =

(
[R] +

d[Lαβ]

dt

)
· [Iαβ] + [Lαβ] · d[Iαβ]

dt

+

√
3
2

Npvφ̂ f ·
∞∑

n=1

λ2n−1

[
K2n−1
α · sin[(2n − 1)θ]

K2n−1
β · cos[(2n − 1)θ]

]

· · · · · · · · · · · · · · · · · · · · (2)

R represents the stator resistances; Vαβ and Iαβ denote the
voltage and current vectors, respectively. The coefficients
K2n−1
α and K2n−1

β are triply periodic functions.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

K2n−1
α = −2

3

[
1 + cos

(
2n − 1

3
· π

)]

K2n−1
β =

2√
3

sin

(
2n − 1

3
· π

) · · · · · · · · · · · · · · (3)

Table 1 gives their values based on the independent periods
n:

The inductance matrix is given by:

Table 1. Value of two periodic functions

Table 2. Coefficients of Electromotive Force harmonics

[Lαβ] =

[
Ls − Ms 0

0 Ls − Ms

]
· · · · · · · · · · · · · · · · · · · · (4)

The electromagnetic thrust generated by the PMLSM can
be derived by using co-energy techniques (16), which are cre-
ated by the mutual coupling between the winding currents
and the permanent magnetic field. The thrust Te may be ex-
pressed as:

Te =

√
3
2
· Npφ̂ f ·

[
iα iβ

]
·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
∞∑

n=0

λ6n+1 sin[(6n + 1)θ] −
∞∑

n=1

λ6n−1 sin[(6n − 1)θ]

∞∑
n=0

λ6n+1 cos[(6n + 1)θ] −
∞∑

n=1

λ6n−1 cos[(6n − 1)θ]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
· · · · · · · · · · · · · · · · · · · · · (5)

If we neglect the effects of EMF harmonics, the waveforms
of currents iα and iβ should be sinusoidal. By substituting
these coefficients into (5), we can notice that thrust ripples
will be introduced by a non-sinusoidal EMF.

The studied PMLSM is a Rexroth LSP120C linear motor.
The coefficients of EMF harmonics are experimentally iden-
tified (17) and are listed in Table 2:

We can notice in Table 2 that the thrust ripple caused by
the 5th emf harmonic could reach 2.67%, which is the domi-
nant ripple source. However, those caused by the 7th and 11th

harmonics are so slight (0.1% in total) that their influence can
be neglected.

3. Thrust Control Scheme

3.1 Design of the Control Structure In this section,
we establish the PMLSM digital thrust control scheme in the
Concordia reference frame, as in Fig. 2:

Wherein T ∗e represents the reference thrust. The reference
excitation currents (i∗α and i∗β) are generated according to the
mover position x and to the reference thrust T ∗e , which are
given by (6) and implemented in the “Excitation Currents
Generator” block.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i∗α =
T ∗e · [− sin(θ) + λ5 · sin(5θ)]√

3
2
· Np · φ̂ f ·

(
1 − λ2

5

)

i∗β =
T ∗e · [cos(θ) + λ5 · cos(5θ)]√

3
2
· Np · φ̂ f ·

(
1 − λ2

5

)
· · · · · · · · · · · · · · · (6)

The three-phase load currents are measured, tranformed
and regulated by two multiple-frequency resonant controllers

Fig. 2. PMLSM digital thrust control scheme using
multiple-frequency resonant controllers
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Fig. 3. Discrete model of an AC current control system
using a multiple-frequency resonant controller

in the Concordia reference frame. The mover position is de-
tected and fed into the “Excitation Currents Generator” block
to generate instantaneous reference thrust. The angular speed
ω is estimated and fed into the multiple-frequency resonant
controllers so that they can adapt to the reference currents
with time-varying frequency.

3.2 Discrete Resonant Controller Theory The gen-
eral transfer function of a discrete multiple-frequency reso-
nant controller is given by (13):

F(z) =

2n∑
k=0

akzk

n∏
i=1

[
z2 − 2 cos(ωiTs)z + 1

] · · · · · · · · · · · · · · (7)

{i, n ∈ N; k ∈ Z; ak, ωi ∈ R}
Wherein k denotes the number of associated resonant el-

ements and ωi corresponds to each concerned resonant fre-
quency. Ts is the system sample time.

Fig. 3 depicts the discrete model of an AC current con-
trol system, in which the inductive load is controlled by a
multiple-frequency resonant controller.

3.3 Resonant Controller Tuning Principle In many
cases, the control system is required to track current com-
mand with time-varying frequency. For example, in the ad-
justable speed motor control applications, the frequency of
phase currents varies with the rotor speed. To resolve this
problem, the resonant controller is reconfigured by adjust-
ing its coefficients according to the input frequency during
its operation. This type of controller is called a self-tuning
resonant controller (18).

Our technique for the self-tuning controller design requires
to:

- Choose the number of frequencies to compensate.
- Identify the closed-loop characteristic polynomial using

the control system described in Fig. 3:
- Define a pole placement technique and a stability mar-

gin.
- Calculate the coefficients of the resonant controllers in

order to adapt the closed-loop characteristic polynomial
to a criterion polynomial, which describes the desired
closed-loop poles.

- Verifiy the system stability in the Bode diagrams of the
open-loop and closed-loop systems.

Some researchers have suggested implicit pole assignment
algorithms for the self-tuning controller design, in which the
controller coefficients are estimated directly without the need
for polynomial identification (19). However, if the closed-loop
poles are not properly selected, the computational savings us-
ing implicit algorithms are often offset by slow convergence

Fig. 4. Pole locations of the closed-loop system de-
signed by Generalized Stability Margin

phase systems.
Whenever the system varies, the changed characteristic

polynomial should be renewably identified by this criterion
polynomial so as to adjust the controller coefficients.

The closed-loop characteristic polynomial is obtained us-
ing the impulsed response transform (18):

P (z) = R
(
z − e−Ts·R/L) n∏

i=1

[
z2 − 2 cos(ωiTs)z + 1

]

+
(
1 − e−Ts·R/L) 2n∑

k=0

akzk · · · · · · · · · · · · · · · · · · (8)

Nowadays, it is well-known that the performance specifi-
cations of a control system (e.g. settling times, overshoot and
damping) depend on the pole locations (19). Root locus, Bode
and Nyquist diagrams are classical methods using a graphi-
cal representation of the effects of controller gains on system
response (20).

Another technique is to determine the controller coeffi-
cients by assigning the same stability margin to all closed-
loop system poles. To achieve robust pole assignment for
the time-variant control systems, the design criteria should be
appropriately selected so that the closed-loop poles are con-
strained within desired regions, regardless of the variations
in system parameters and/or in dimension (14). For a control
system using n-frequency resonant controllers, the criterion
defined by this method is expressed by:

Pref (z) = λ(z − rd)
n∏

i=1

[
z2 − 2rd cos(θi)z + r2

d

]
· · · · · (9)

{λ, r, rd, θi ∈ R; i, n ∈ N}
All closed-loop poles identified by this polynomial will

be settled on a circle in the z-plane Pole-Zero Map (21), as in
Fig. 4.

The principle of self-tuning pole assignment design then
consists in solving equation (8) with the a priori knowledge
of polynomial Pref (s) to obtain the controller coefficients ak.
In our case, they will be expressed as a function of the current
frequencies ωi.

P(z) = Pref (z) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·(10)

The solution is unique if the following condition is ful-
filled:
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order(Pref ) = m, with m ≤ 2n + 1 · · · · · · · · · · · · · ·(11)

The complexity of this solution depends on the order m of
the criterion polynomial. In general, m is chosen as equal
to 2n + 1 so that all closed-loop poles are completely con-
trollable, which gives a lot of freedom in the controller de-
sign. The fundamental methodological problem then lies in
determining the locations of closed-loop poles through this
polynomial in order to deal with the trade-off between per-
formances and robustness. The radius of this circle is defined
by rd, which determines the stability margin as well as the
dynamic response of the control system. A similar technique
can be used for the continuous model: The closed-loop poles
are placed on a vertical line with a stability margin defined
by r in the s-plane Pole-Zero Map (22) with rd = e−rTs.

Here, the stability margin is fixed using rd = 0.9, in or-
der to maintain the system stability for a range of ωi from 0
to 1000 rad/s (18). The angles θi are generally assigned by the
resonant frequencies as θi = ωiTs. In variable frequency ap-
plications, the tuning of θi according to the current frequency
ωi in real time requires too much computation. However, if
appropriate values are assigned to θi, satisfying performances
can be achieved for a wide range of current frequencies. The
maximum values of current frequencies are designed accord-
ing to θi = max(ωi)Ts.

3.4 Resonant Controller Application The number
and frequencies of associated resonant elements depend on
the references and/or the characteristics of each decoupled
subsystem.

In this way, the tracking of the reference currents and the
rejection of disturbances from non-sinusoidal back-EMF can
be simultaneously realised.

In our case, the two controllers have identical structures

Fig. 5. Verification in the open-loop Bode diagram

Fig. 6. Verification in the closed-loop Bode diagram

with two resonant frequencies—the fundamental and the 5th

harmonic. Fig. 5 illustrates the Bode diagrams of the open-
loop transfer function of the control system using a two-
frequency resonant controller. We can note that infinite gains
are produced at the concerned frequencies (ω0, 5ω0), regard-
less of the variation in ω0. This ensures that the steady-state
error at these frequencies can be completely eliminated.

In the meantime, they have almost identical crossover fre-
quency and high-frequency characteristics, which guarantees
that the control system possesses the same dynamic response
for any current frequency.

The Bode diagram of the closed-loop transfer function
(Fig. 6) presents a characteristic of unity gains (0 dB) and
zero phases at the selected frequencies, further confirming
that the control system can perform zero steady-state error at
these frequencies.

4. Experimental Results

The proposed approach is experimentally verified on a lab-
oratory test system equipped with a Rexroth LSP120C linear
motor (Fig. 7).

The control scheme depicted in Fig. 2 is implemented in
a dSPACE DS1005 real-time digital control card to drive the
PMLSM through an IGBT inverter. We have used a Heinden-
hain exposed linear encoder with a grating period of 20 µm,
which is a high precision incremental encoder, to detect the
mover position.

Table 3 lists the specifications of the test bench parameters:
Fig. 8 and Fig. 9 present the experimental references, mea-

surements and estimations of currents and thrust. Fig. 8
shows the results from an AC current control system using
one-frequency resonant controllers. Fig. 9 shows the results
from an AC current control system using two-frequency res-
onant controllers. In both cases, the load currents are very
close to their references. The maximal delay of the load cur-
rents stays under 0.5 ms, even if brutal changes occur in cur-
rent references. When the non-sinsuoidal emf is not compen-
sated (Fig. 8), we notice a ripple of 5% on thrust estimation.
After the compensation using two-frequency resonant con-
trollers, the ripple is reduced to 1% of the estimated thrust.
Nevertheless, the load current in the second case is noisier
(by over 300%), because we need to inject the measure of the
5th harmonic of the currents.

Fig. 7. Linear Motor Rexroth LSP120C
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Table 3. Specifications of test bench parameters

Fig. 8. AC current control system using one-frequency
resonant controllers

5. Conclusion

In this paper, we have first analysed the influence of
non-sinusoidal back-EMF on the thrust generated by this
PMLSM. Based on the proposed optimal excitation current
waveforms, a thrust control scheme has been established in
the Concordia reference frame. The multiple-frequency reso-
nant controllers have been used to regulate the load currents,

Fig. 9. AC current control system using teo-frequency
resonant controllers

and morever, they compensate for the negative influence of
back-EMF harmonics. Thanks to this type of controller, the
load currents can perfectly track their respective references,
and the thrust ripple caused by the back-EMF harmonics can
be significantly reduced. The experimental results obtained
from a laboratory test system verify the effectiveness of the
suggested approach.

The next paper will be focused on the implementation is-
sue of resonant controllers inside industrial CNC. Especially
to respect short sample period (usually below 25 µs) required
to achieve good control performances (23).

(Manuscript received Jan. 16, 2006,
revised July 7, 2006)
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