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Abstract

We consider two models of Markov chains with unbounded jumps. In the first model the
chain evolves in a quadrant with boundaries having internal structure; when the chain is in
the interior of the quadrant, it moves as a standard Markov chain without drift. When it
touches the boundary, it can spend some random time in internal — invisible — degrees of
freedom of the boundary before it emerges again in the quadrant. The second model deals
with a Markov chain — again without drift — evolving in two adjacent quadrants with
excitable boundaries and interface with some invisible degrees of freedom. We give, for
both models, conditions for transience, recurrence, ergodicity, existence and non existence
of moments of passage times that are expressed in terms of simple geometrical properties
of the wedge, the covariance matrix of the chain and its average drifts on the boundaries,
by using martingale estimates coming from Lyapunov functions.

1 Introduction

1.1 Motivation

Random or ballistic motion in wedges with reflecting boundaries has been thoroughly
studied lately [9, 7, 2, 4, 5, 6] both for its intrinsic mathematical interest and for its use in
modelling storage systems or queueing networks. In [2], the Lyapunov function method,
developped in [4], was used to study the recurrence properties and L? integrability of
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recurrence times for Markov chains in a quadrant with reflecting boundaries.

Here, two similar problems with boundaries that can be internally excited are studied
along the same lines. The first problem studies the behaviour of a Markov chain in a
quadrant with excitable boundaries. The second problem deals with a Markov chain
evolving into two adjacent quadrants communicating through a permeable and excitable
interface and having excitable boundaries. These Markov chains allow for a more faithful
modelling of storage or queuing systems but may also be of some interest in the problem
of optimal shielding of nuclear reactors.

We are interested in the eritical régime for these chains, that is to say in the régime
where the mean drift is zero on the whole space but the boundaries.

In order not to excessively burden this introductory section, only the first model is
introduced here and the corresponding results presented. The presentation of the second
model and its results are postponed in section 5 after terminology and results for the first
model are established. The first model is a genaralisation of the model studied in [2].
Its exposition is reproduced here first because it is actually interesting to show that the
internal degrees of freedom can be “forgotten” provided some embedding is performed and
second because it allows to introduce the terminology, establish the intermediate technical
results and render the second model more understandable.

Both models can also be formulated in continuous space and time generalising thus
the results of [6]. This continuous time formulation is not considered here however.

1.2 Notations and definitions

Le X be the set of pairs of positive integers, i.e. integers in the quadrant
X={x=(21,22) €Z*: 2, > 0,2, > 0} = (ZT)?,
that will be called the space in the sequel. We define
hX ={x=(2,0);2, € Z*} CX
and
05X = {x = (0,29); 79 € Z*} C X.
The set 0X = 0, X U 0,X will be called the boundaries and sog = X\ 9X the interior of the

space. By abuse of notation, we use the same symbol, X, to denote the quadrant (R*)?
when we refer to functions defined on the space because we are interested eventually only
on the values these functions take on the points of the integer lattice. Thus, f € C*(X,R),
for instance, will mean a twice continuously differentiable real function f on (R¥)2.

For some strictly positive integer L > 0 and every x € X, denote by

[ {0 Ly if xedx
7] {0} if xeX.



A state of the system will be parametrised by u = (x; @) = (21, 22; o) where x = (x1, 22) €
X and, for this particular x, the coordinate o € Ax. The set of all these states,

U:{'u:(X;Oé)ZXEX;OZEAX}v

will be called the configuration space; that is to say U is a trivial fibre bundle with base
X and fibre Ay over each x € X. A more intuitive way of seeing this construction is to
say that on the boundaries 0X there is some internal degrees of freedom which are absent

from the interior, X, of the space; we may think of these degrees of freedom as colours.

Definition 1.1 For v = (x1,22;a) € U, we call canonical projections X and A, the
mappings

X:U—=X and A:U—A

defined by
u— X(u) = (21,22) € X and um— A(u) =a € A

We denote as usual X;(u) = x; and X3(u) = 22 the horizontal and vertical components
of the spatial projection.

1.3 Definition and properties of the Markov chain

We consider a discrete-time, time-homogeneous, irreducible, aperiodic, U-valued Markov
chain, £ = (&,)nen, defined by the stochastic transition matrix

P = (Pu,u’)u,u'EUa

with
Pu,u’ = P(arl,a:g;oz),(arl,zé;oz’) = ]I-D(fn-}-l = ('r/17x/27 O/)|§n = ($17I2;Oé)).

1

Remark: It is evident that equivalently to our fibre bundle description, we can extend
the configuration space into X x A, where A = {0,---, L}, by requiring

P(m,zz;a),(z'l,x;;a/) =0 if (,1}/17"5/2) € X and o 7& 0.
The transition probabilities of the Markov chain have various properties.

Definition 1.2 [Lower boundedness of jumps (LBJ)] We say the chain has the
LBJ property if



1. For jumps starting in the interior of the space, x € X, the transition probability
vanishes for westbound or southbound jumps of length more than 1 and for entering
the boundary through colours different from 0, i.e.

0 if (zq>1,29>1) and 2] — a1 < —1
Ploy epia), (2 chial) = 0 if (zq>1,29>1) and ) — a3 < —1
0 if (;q=1L2,=0,20#0,0"#0) or (z2=1,2,=0,2; #0,0 #0).

2. For jumps starting on the boundaries, westbound (horizontal) or southbound (ver-
tical) jumps are uniformly bounded, i.e. there exists Kppy > 0 such that

P($170;a)7($117$é;a1) =0 if .1?/1 - < —[{YLBJ,fOI’ X € 81X,$1 > [(LBJ,
and
P(07$2;a)7($117$é;a1) =0 if .17/2 — T2 < —[XYLBJ,fOI’ X € 82X,1:2 > Kigj.

Remark: Notice that the condition of westbound or southbound jumps bounded by 1 in
the internal space is important and cannot be relaxed in our approach.

Definition 1.3 [Partial spatial homogeneity (PSH)] The Markov chain has the
PSH property if for a,o’ € A, there exist functions p,o @ Z —[0,1], ¢uar @ Z —[0,1],
rg, : LT X7 —[0,1], rg, : ZxZt —[0,1], and rog : Z x Z —[0, 1] such that the stochastic

matrix P,,s can be decomposed into

paa/(xll — $1) if X,X/ < 81X,:c1 > KiRJ
q@a'(l’/g — 302) if X,X/ € BQX, x9 > Kipj
P r&lo)(r’l —zy,zh— ) if xe XX eX, o/ =0
(@1,22500) (e w550) = T&ZO)(T/’/l —x,xh—xz) if x€ X, X eX,a'=0
roo(®] — x1, 2y —xg) if x€X
0 otherwise.

Remark: The existence of function rgg(+, ) means complete spatial homogeneity in the
interior of the quadrant, the existence of functions paus(+) and gaq(-) means partial hori-
zontal (resp. vertical) homogeneity on the boundary 0,X (resp. ,X) far from the origin
(i.e. for ||z|| > Kigy.)

Definition 1.4 [Moment boundedness (7-MB)] We say the Markov chain has the
v-MB property if there exist a ¥ > 2 and a constant Kyg = Kug(vy) > 0 such that, for
every u € U,

E([|X(&nt1) — X(&)["]6n = u) < Kwus,

where || - || denotes the Euclidean norm in R



Definition 1.5 [Zero drift property (ZD)] We say that the chain has zero drift in

the interior of the space if, for u = (z1,22;0) and (z1,22) € §O§,

]E(Xl (Sn-}—l) - Xl(fﬂ)”fn = u) = ]E(XZ (Sn-}—l) - X2(§ﬂ))|§n = u) = 0.

We define finally conditional second moments

A= ]E(Xl (fn-l—l) - Xl(fn))2|§n = u)

= roo(x] — @1, Ty — x2) (2] — I1)2 > 0;

Az = ]E(X2 (Sn-l-l) - XQ(SR))QEH = u)
= ?“00(13/1 — T, $/2 - $2)($/2 - 1’2)2 > 0;

(z1m5)€X

and

K = ]E(Xl (fn-l—l) - Xl(fn))(X2(§n+1) - X2(€ﬂ))|§n = u)

= Z roo(x] — @1, T — x2)(x] — x1)(2y — x2) € R.
(z1,w5)€X

Definition 1.6 [Positive definiteness of the covariance (PDC)] We say the Markov

chain has the PDC property if the matrix < )/: ; > is positive definite, i.e. A\j Ay — k% >
2

0.

1.4 Drifts and linear transformation of the lattice

In order to state our main results, two additional notions are needed. Consider U™ and
U® the two configuration spaces whose spatial components are respectively the upper
half plane X() = Z x Z% and the right half plane X(?) = Z+ x Z. The boundaries of these
spaces are respectively X)) = ;X)) = Z and 0X® = 9,X® = Z. Consider now two
modified Markov chains (57(3))neN and (57(12))7161\1 evolving respectively in UM and U® and
having complete, rather than just partial, homogeneity in the horizontal, respectively the
vertical, directions. Therefore, the transtion matrix for (&S”)neN is

paa’(:ﬁi - 371) if X,X/ € alx(l)
o (1)
(1) 7“&10)(37/1 —xy,ah —xy) if x€dXW x'eX  and o =0

(1)

o]
roo(z] — x1,2h —a2) if x€X and a=d =0
0 otherwise,



and similarly for the (57(12))7161\; chain

QOzoz’(xll - Il) if X,X/ € aQX(Q)
o (2)
(2) ) B —aa— ) if x€OXD X' eX  and o =0

(2)

(e1,210) (a4 o) = , , ' . /
roo(] —x,2h, —a2) if x€X and a=d =0

0 otherwise.

Definition 1.7 Use the symbol § to denote void or (1) or (2). For points x € dX* on
the boundaries of the spaces XF, we define the effective jump matrices Q° = (Qi@,)ma’e&

between internal states by
b i
Qhar = D Plray sty

x'eX

Obviously, QF are stochastic matrices over the finite internal space A, inheriting ir-
reducibility and aperiodicity properties of the initial transition matrix P*. Hence they
admit unique invariant probabilities 7% over A, all of them being ergodic.

Definition 1.8 For the previously defined chains (£,)nen, (553))%% and (57(12))7161\17 col-
lectively denoted (€% ),cn, and every u € U¥, define the drift of the chains by

Remark: It is worth noticing that for v = (x,«), with x € §°§ﬁ, the drift mf(u) = 0
vanishes due to the zero drift assumptions valid in the interior of the space. Hence the
only interesting values of the drifts are on the boundaries. For u = (x, ), with x € 9X?),
due to the vertical homogeneity of the chain £(?), the drift depends only on a, 1.e.

m®(0, z,;0) = m?(a).

Similarly, m®)(z;,0; a) = m®*)(a). Therefore, the drifts on each boundary are functions
only of the colour.

Definition 1.9 Let 7° be the stationary probability of Q’, for b = 1,2. Define the
average drift on the boundaries by

m' =Y a'(a)m’(a).

ach

The vectors m’ play a crucial réle in determining the asymptotic behaviour of the
chain in the quadrant. For f € C*(X;R), we define the time evolution generator L as the
differential operator given by

_ 9 9 (M & E]
L_(a;vl 8:1:2)<f€ )\2><8

Q

Oy
—

8
W



For quadratic functions f : X —+R, we have obviously

E(f(X(En41)) = F(X(£)))X(En) = %) = (L) (%).

We shall see later that for a suitable class of functions, this is valid up to a remainder
term which is negligible for large ||x|| for all the functions of the class. We are seeking for
a linear transformation ® : (R)? —(R™)? such that L(fo®) = Vf o ® for every function
f € C*X). Now, ® is a 2 x 2 matrix contravariantly transforming x € X vectors into
y € Y vectors, t.e. ( zl ) = ( il > Consequently, the derivatives are transformed
Y2 2

cove‘Lriantly (8% 8%)@)‘ = (8%‘ %) Hence the operator equation L(fo®) =V fo® is
equivalent to the matrix equation

Mok O\ 1 Ay —K
TaH _ 1 _ 2
(I)(I)_<ff )\2> _)\1)\2—.%2(—53 )\1>'

This matrix equation has an one dimensional manifold of solutions (4 unknown matrix
elements of @, 3 equations). A possible choice is:

1 Vs — 7%
\/)\1)\2—l€2 0 1,‘)\1—H— ’

but this choice is made only to depict the example of figure 1 below. The relevant

o =

quantities v and ©" are defined intrinsically in terms of invariant quantities of the matrix
® such as its determinant, etc.

Of course, the state space before transformation was the lattice
X={xec (R :x=uze +ayey, with (z1,2,) € (Z7)*} ~(Z")"
After transformation, it remains a lattice, namely
Y={ye (R+)2 1y = afy + aofy, with (24, 22) € (Z+)2} ~ (Z+)2,

where f; = ®e; and f;, = ®e;. We shall abusively use the same symbol Y to denote the
whole wedge when refering to functions defined on that space, as we did for X.

Obviously this linear transformation is not orthogonal; the fundamental cell of the
lattice is not the unit square but the parallelogram defined by the vectors f; and f,. Hence
the quadrant X with a right angle at its summit, will be squeezed after transformation
into a wedge Y with an angle b = arccos(—\//\"l—&) € [0, 7] at its summit. Moreover, the

tranformation ® has determinant ———— so that the volume of the unit cell is squeezed

Al 2—K
by that factor.

The drifts T° form angles ¢” with the normals to the boundaries 9X’, for b = 1,2, i.e.

gy [ —sing® SEPRI cos ()
w = g () e e (50 ).

7



0, X

/51
>

X

Figure 1: The transformation of the geometry by ®, calculated for the example values \; = 4,
Ay =9, and kK = —3. In that case, ¢V = 7/3 and the Y-lattice points read y = mf; 4 nf,, for
(m,n) € (Z*)?, with f; = (1/1/3,0) and f, = (2/3V/3,1/6). The angles formed by the m(!)
and m® with the normals to the boundaries 9,X and 9,X respectively are depicted. In the
example shown both these angles are positive. In order not to excessively burden the figure,
the angles (1) and 1(?) are not shown on this figure. They are defined again as the angles
formed by the vetors ") and T® with the normals to the boundaries ;Y and 9,Y. They
are positive if the vectors point towards the vertex of the wedge and negative otherwise.

After application of the transformation ®. the transformed vectors m* = ®m’ form angles
" with the normals to the boundaries " given by

v = arccos siny ;
\/1 + :\\—f tan? ¢(1)
v? = arccos siny .
\/1 + i—; tan? ¢(2)

In figure 1 we display the action of ® on the wedges, their boundaries, and to the
lattice points. We denote abusively V = ®(U) the configuration space for the Markov
chain with ®-transformed spatial component.

1.5 Statement of the main results

We can now state our main theorems. For all these results we assume that the chain
(&n)nen verifies the following assumptions:

Y



A1l The chain is irreducible.

A2 The chain is aperiodic.

A3 The chain verifies the conditions LBJ, v-MB for some v > 2, PSH, and PDC.
A4 The chain has zero drift in the interior of the wedge.

A5 The chain starts deterministically at £, = (x,0) with ||x|| > K for some K > 0.

Denote
T = inf{n > 0: | X(&,)] < K},
and
M) (2
77[) Y
where (1) and ?) are the angles of the average drifts with the normals to the bound-
aries after the linear transformation ®. Although the results concern primarily the chain

(&n)nen, they are more easily formulated in terms of the geometric characteristics in the
setting transformed by ®.

Theorem 1.10 Let (&,)nen be a Markov chain verifying A1-A5. If x < 0 then the chain
is transtent. If x > 0 then the chain is recurrent.

Remark: The case y = 0 is also interesting but it is quite tricky as it was shown for
a related model studied in [3]. This case necessitates considering Lyapunov fucntions in
log log form and will be not studied here.

Theorem 1.11 Let (&,)nen be a Markov chain verifying A1-A5. Let py €]0, min(x,v)/2[.
Then for every p < po, there exists a constant C' > 0 such that

E[rk] < Cllx||*°.
If moreover, min(x,~) > 2 then

E[ri] < Clx|*.

Theorem 1.12 Let (&,)nen be a Markov chain verifying A1-A5. If x < ~, then for
every p > 5, Ery = oco.

Remark: We study here phenomena that are profoundly due to some martingale proper-
ties and should persist even when v = oo (existence of arbitrary moments of the jumps).
However, our methods do not allow to prove divergence of moments of passage times if

X =7



The proofs are quite technical and go through various steps as explained in subsequent
Sections. We describe briefly the main steps of the proof here. First, we show in Section
2, that the average drifts on the boundaries have a very intuitive interpretation in terms
of induced drifts for embedded chains, i.e. chains observed only on the moments when
they evolve in space but for which the evolution in internal space is “forgotten”.

After these preliminary steps, the problem is finally led to a form that completely
fits the case studied in [2]. In Section 3, we obtain some preliminary results concerning
smooth functions f in the wedge; we show that for smooth functions it is possible to reduce
the study of the asymptotic behaviour of the conditional expectation of the increment
E(f(Ens1) — f(&)|én = (x5 0)), for x € §O§, into the study of its linear approximation, the
remainder being negligible for large ||x||.

In the Section 4 finally, we show explicitly that it is possible to construct a Lyapunov
function all over the wedge and its boundaries transforming the chain into a supermartin-
gale. Using then the results of [2], we can conclude. A closely related model of chains
evolving in two adjacent wedges is introduced and studied in Section 5.

2 Embedding

The scope of this Section is to show that the model with internal degrees of freedom can
be regarded as a model without internal degrees provided the time spent in the internal
space is “erased”.

2.1 Sequence of entrance-exit times and embedded chains

For every possible value of the symbol §, i.e. void or (1) or (2), we define the embedded
chain, ((!)nen, for the original chain (£%),cn as the random process coinciding with ¢
when the original chain has internal degree o = 0 and whose instants of evolution are
erased when &F evolves in the internal space A\ {0}. More specifically, for every value of

f choose fg such that X(fg) € §O§ and define the sequence of entrance-exit random times
(the dependence on § is not indicated on the random times) by

To = 0
oy = inf{n > : X(&) € X%}
n = inf{n >0y : A() = 0}

o = inf{n>7_: X(fﬁ) € aXﬁ}
7 = inf{n >0y : A(E) = 0}

10



Notice that since westbound or southbound jumps are only of magnitude —1, the above
sequence is well defined. Erase now time instants between |o;, 7], for ¢ = 1,2,..., and
relabel time so that at moment 74, the new time reads (o1 —79)+ (02 —71)+. . .+ (0, —Th—1).
Define now a process ¢* = ((*),en with configuration space X by

o= (=€ for i=0,...,0,
C(ﬁal_7'0)+(02_71)+~~~+(Uk_7k—1)+1+i = SE'k-l-i’ for k=1,2,3,... and i:()""7(ak+1_7-k)’

and transition matrix

]5}:7){, =P(¢,, =% =x), for x,x' € X.

2.2 Drifts

Definition 2.1 We define the induced drift for the embedded chain (¢f),cxn by
m(x) = Z };ﬁx’x/(x’ —x), for x e X,
x'eXH

where the symbol § stands for void or (1) or (2).

Due to the fact that for x € §O§, the southbound or westbound jumps are bounded by
—1, we have equality between drifts and induced drifts, i.e.

mf(x) = mi(x;a=0) =0 for x € X.

Hence the only points where the determination of m* is not trivial are boundary points.
Now homogeneity properties of the chains ¢ are inherited by embedded chains (*. Hence,
for x € 0X® it happens that m®(x) = m@(zy, z,) = m@(0,z,) is in fact independent
of 2, due to the vertical homogeneity of the chain ((?); therefore,

m@(x) = m®, vx € 9X@,

and similarly

rh(l)(x) = rh(l),‘v’x c ox®,
We need some additional definitions.

Definition 2.2 Let u = (x; ) be a state of the boundary. For § taking one of the values
void, (1), or (2), define the exit time from the boundary, the random time (its dependence
on f# is omitted)

T, =inf{n >1: A(&) = 0; € = u}.

11



Now it is intuitevely clear that for x with ||x|| very large, the chains ¢ or £2) differ
very little from the initial chain £. This property is expected to be inherited from the
embedded chains.

Definition 2.3 For u = (x;a) with x € 9X’ a state of the boundary and S C A an
arbitrary subset of {0,---, L}, define the restricted drift by

ZZP ,,X—X)

x!' a'eS
Obviously, m¥(u; S) + m¥(u; S¢) = m*(u).

Proposition 2.4 Let Q" = (Qbaa,) be the stochastic matriz of effective jumps within the
internal space given in definition 1.7, ©° be its unique stationary probability, and m° the

corresponding induced drifts. Then the induced drift and the average drift on the boundary
coincide, i.e.

~(0)n’ =m' =Y 7’(a)m’(a) for b=1,2.

ach

Proof: For an arbitrary u = (x; ) with x € 9X’, we have
=Y B %) = S - 0B, (6, = (2 0))
x'eX x'eX

Conditioning on the first move, decompose

P, (€7, = (¢}, 250)) = P (&, = (21,25;0); Ty = 1) + P, (&, = (], 2%;0); T, > 1)
= P(bO,z‘g;oz),(lfi,zg;O) + Z P(bO,lfg;O) (0,z;0") U” (f;u” = (I/h :E/27 0)) .

XII€8Xb7aII;£O

Now,

m = ) (X %) Pxay o)

x'eX

Y Y X+ (K = X PLPur (&, = (50)

XI/€8Xb7OAII¢O X’EXb

= m’(a,{A=0})
Y K P Y P (&, = (<50))
X”E@Xb,a”io X’EXb
+ Y Py P <5'>Tu” — (x; 0)) (x' — x")
X”E@Xb,a”#o X'EXb
= 1411+ 1IL

12



Since the internal space A is finite and the chain ¢ is irreducible and aperiodic,

> P (&, = (x50)) = 1,

X’EXb

so that the term II in the sum above yields m’(a,{A # 0}). To handle the term III,
specify for the moment b = 2. The case b = 1 is treated analogously. Denoting e; and e,
the unit vectors of Z?, this term reads

Il = Z Z [Illel + (”6/2 o I/Q/)QZ]P(bOva )s(z) 255a’) X P(OJ'J?O‘”) <§Tu” = (17/1, I/Z; 0)) '

" " ! !
zy,a''#£0 z7 x5

Change the dummy summation variable 2}, € Z into z, — z} and use the vertical homo-
geneity of the £ chain to write this term as

I = Y P Ozua”ZPOM ( ) ,,):(x’;()))x’

/I ”#0

— Z Q%a”ﬁq(?)
all#0

- m® _ Qa,Oﬁl(Q)-

In general, we get
Il =’ — Q, e’
Hence,
m’ = m’(a; {4 = 0}) + m’(a; {A # 0}) + 1" — Q o1’
or in other words

Qba,orhb = mb(a)-
Multiplying both sides by 7°(a), summing over «, and using the fact that 7’ is a stationary
measure for Q°, we get

m' =Y 7'(a)m’(a) =7'(0)m".

ach

Using ergodicity, we can affirm that m’ can vanish if, and only if, /@’ vanishes. O

Remark: The meaning of this proposition is that the model with internal degrees of
freedom a € {0,..., L} behaves as a model without internal degrees of freedom, provided
that the boundary drifts depending on the colour are replaced by a weighted average, the
weight of each colour being the probability that the system is on that colour. The proof
of the main theorems can also be formulated in terms of embedded quantities m; however
such proofs should be less formal and therefore more difficult to check since they lie on
intuitive ideas.

13



3 Harmonic functions in the wedge

3.1 Controlling jumps of smooth functions

Let (&,)nen be the previously defined Markov chain in U and (1, ),en be its image under
the linear transformation ® : X — Y. Denote by 6,11 = Y(7u41) — Y(1,), where Y(+)
is the canonical projection Y : V=Y for the transformed chain, the increment of the
tranformed chain at time n. It is obvious that (,)ney is V-valued and has normalised
covariance matrix. We shall study the conditional expectation of the increment for some
smooth function f, namely

ECS (Y (Mn41)) = FY )Y (1) = y) = E(f(y + Onga) = f(Y)IY (1) = )
by using Taylor expansion

fy+8) = )+ (V.0/(v) + R(f:y,0)
= )+ (V.0)(3) + (V.01 1(v) + alf;¥.0).

_|_

The purpose of this section is to show that for sufficiently smooth functions f €
C3*(Y;R) and having some homogeneous growth properties, we can prove that the con-
ditional expectations of the remainder terms are negligible with respect to the previous
terms. More precisely we have the following

Proposition 3.1 Let f € C*(Y;R) be such that for k = 0,1,2,3, every l € {0,...,k},
and for sufficiently large ||y||, there exist positive constants Dy > 0 and a real constant
p € R such that the following bound holds:

ak
‘ f(Y) < DkHpr_k-

Ayl oy;™!

If p €] — 00, 7], there exist positive constants ay,az,ay, and ay such that

L E((V, 0041) f(V)Y () = ) S anly |17,

2 E((V, 0 ) F (Y)Y (1) = ¥)| < aally]|”~,

3. [E(BL(f3 Y, 0010)[Y (n) = )| S @llyll”~*, and
4 |E(

[E(Rs (f3y,0n4)[Y (1) = y)| <@y |"™

Proof: 1t follows from lemma 5 of [2]. O

14



3.2 Controlling jumps of harmonic functions

2

887%> h(y1,y2) = 0 in the transformed wedge Y for

a function A : Y =R is equivalent in writing A as a linear combination of elementary

. . a2
The harmonic requirement (dd? +
1

harmonic functions of order 3,
(4} + 43)°/? cos(Barctan °* — )

(251
= cos(fBw — B1),
for 8,01 € R, where (r,w) are the polar coordinates of the point y = (y1,y2). Negative
values of (# give rise to ill-defined functions near the summit of the wedge but this diffi-

ha(yr,y2)

culty is irrelevant for us since we are interested only in the large ||y|| behaviour of such
functions. Harmonic functions of order § < 5 verify the smoothness and homogeneous
growth requirements of the previous proposition 3.1, with p = (3, so that we have for the
conditional expectation of the increments can be estimated as

E (hs(Y (1241)) = ha(Y (10))l10 = (y,0)) = (Vhs(¥), B0 [0 = (v, 0)) + O(ly[”7)
= (Vhs(y), E((Vhs(y), nn = (v, @)
1 _
+ 5 (Vs (¥), (Vhs(¥)) e = (v, 0)) + Oy |7,
where, denoting (r,w) the polar coordinates of y,
_ 5_a [ Y1 cos(Barctan = — B1) + y2 sin(F arctan = — B1)
Vhs(y) = Blyll < Yo cos(f arctan Z—? — 1) — y1 sin(f arctan z—? —p) )
G e B}
—sin((8 — Dw — B1)
Obviously, || Vhs(y)| = O(|ly]|’~!), hence the dominant part in the conditional expecta-
tion of the increments is due to the gradient part. It is therefore a matter of straightfor-
ward estimates ot show the following

Lemma 3.2 Let g(y) = hs(y)+ahs-1(y), with hs(y) = (yi+y3)"/* cos(B arctan 2 — ;)
and hs_1(y) = (y? + y2)F=Y/2 cos((3 — 1) arctan z—? — 41), where 31 and &y are arbitrary.
Then, f(y) = g(y)®, for sB < =, satisfies the conditions of the proposition 3.1 with
p=sf.

4 Lyapunov functions and proof of the main results

4.1 Criteria based on the Lyapunov function method

In order to study the asymptotic behaviour and the recurrence properties of Markov
chains, the Lyapunov function method proves very useful [4, 2]. Let us remind the main
results of this method.
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4.1.1 Criteria for recurrence/transience

Proposition 4.1 The Markov chain (&, )nen, taking values in some space U is recurrent
if, and only if, there exists a function f: U —R" and a finite set A C U such that

1 OE(f(buer) — F(€)|Ew = u) <0 forall u g A,
2. the set U, = {u e U: f(u) <r} is finite.

Proposition 4.2 The Markov chain (&,)nen, taking values in some space U is transient
if, and only if, there exists a function f:U —R™* and a set A C U such that

1 E(f(€r1) — F(E)|En = ) <O for all u & A,
2. there exists v € K such that f(v) < inf,ea f(u).

These propositions can be found in [1, 4, 8].

4.1.2 Criterion for ergodicity

Theorem 4.3 (Foster) A Markov chain (&,)nen on U is ergodic if, and only if, there
exists a function f: U —R*, an ¢ > 0, and a finite set A C U such that

1. the transformed sequence has finite conditional expectation
E(f(€n+1)|§n = u) < 0o, fOT’ u € A,

2. the sequence (f(&,))nen s a strong supermartingale outside A, i.e.

E(f(énp1) — fl&)|én =u) < —€ for u g A.

4.1.3 Sufficient condition for the existence of moments of the passage time

Theorem 4.4 (Aspandiiarov, Iasnogorodski, Menshikov) Let (2, F,(F,),P) be a
filtred probability space, (X,,), a real-valued adapted process such that Xo = x, with x > K
for some positive K. Let 7 = inf{n > 0: X,, < K}, Assume that there exist positive
constants XA > 0 and py > 0 such that, for all n, we have E| X, |*** < oo and

E(XZZ—)I—OI - sz0)|Fn) S _)\XZiol_Q on {7‘]{ > n}

Then, for all p < po, there exists a constant ¢ = c(A, p,po) such that, for all initial
conditions x (with P(Xo = x) = 1) verifying > K, we have

Er. < cx?ro.
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4.1.4 Sufficient condition for non-existence of moments of the passage time

Theorem 4.5 (Aspandiiarov, Iasnogorodski, Menshikov) Suppose (X, )nen and (Yy,)nen

are adapted processes to some filtration (F,)nen and take values in an unbounded subset
of RT. Let K be some large constant and define o = inf{n > 1 : X, < K} and
i = inf{n > 1:Y, < K}. Suppose that Yo = y > K and that there exist positive
constants ¢y, ¢z, and B, such that

1. KB < Xy =2 < By,

2. for all n, X, < BY,,

3. E(Yn2+1 — Y23 F.) > —ci on {1k > n}, and

4. for somer > 1, E(Y,2, = Y| F,) < ;Y,” 7% on {7 > n}.

If for some positive pg, the process (XZ]/D\%KB)n is a submartingale, then for all p > po, the
p-th moment does not exist, i.e. Er. = oo.

4.2 Construction of Lyapunov function for the wedge problem

We are seeking for a function f : V—R™* such that f(n,) is a supermartingale. Let
hg: Y —R™ be a positive harmonic function over Y of order 3.

Since every harmonic function of order # can be written as

haltn ) = (57 + ) con(Farctan 2 — ),
1

the positivity condition implies certain limits on the range of parametres # and ;. In
order to specify both these parametres we note hg g (y1,y2) for the previous function in
the sequel.

Theorem 4.6 Letv = (y,a) € V, wherey € ,Y is a boundary point. Suppose that for
some € > ()

(Vhﬁﬁl(Y)aﬁb) < —6,f07“ b= L,2.
Then, there exists a function f:V—R with f € C*(V,R") and a constant K > 0 such

that for ||y|| sufficiently large,
1. the sequence (f(nn))n s a strong supermartingale near the boundary i.e.

D(v) = E(f(n41) = f(ma)lna = v) < =Kelly||”™, for y € Y,
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2. the sequence (f(nn))n is almost a martingale, in the interior space i.e. forv = (y,0),
with y € \?{,
E(f(n0r1) — f(na) 1 = v) = O(ly[I°~?).

To prove this theorem, we need a lemma from elementary linear algebra.

Lemma 4.7 Let (Qq.qr) be the stochastic matriz of an ergodic Markov chain on the finite
space A and (74)q its invariant probability. Let (v4)a be a given vector on A. Then the
set of linear inequalities for the variables (¢q)q

Vo — Co + Z QanCar < —€, a €A,

a’ehA

defines a non-void subset of R* if, and only if, Y nes Tala < —€.

Proof of theorem 4.6: Define a function f: V —R by

hpp (¥) + cohp15(y) if v=(y,0),yeY
F0) =9 hap(y) + achs_rs(y) if v=(y,a),y €Y
b (¥) + cahp15(y) if v=_(y,a),y € dY.

Then for v = (y,a) with y € 0,Y, we compute the conditional increment D(v) =
E(f(nnt1) — f(9a)|nn = v). For definiteness, we consider the case y € 0;Y. The compu-
tation for the case y € 0,Y is carried out along the same lines.

D(v) = P, yrolhs(y’) + cohp-1(y') — hs(y) — cahp-1(y)]
+ Y Puralhs(y) + carhgoa(y) = ha(y) — cahsor(y)].

y'€9:Y;a

Use now the smoothness of harmonic functions hg_; g, and hgg, to write

D(v) = (Vhss(y),n® (@) + Y Quarlea = ca)hgrs(y) + 11

with [[Vhgs, (¥) = O(ly 177, lhs-1s,(y)l = O(lly 7). and |ri| = O([ly[|*~?). Hence,

we can write

D(v) _ <Vhﬁ751(3’)7n(2)(a)> £ Quarlew — ca) + Oy 7).

G—1 G—1
vl Iyl

But now, for very large fixed ||y||, we are in the situation of the previous lemma; we can

always choose constants (c,)q so that HyD”% < —e for every a provided that

(Vhﬁ,ﬁl(}’) ﬁ(2)) < e

ly[1=
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In a completely analogous way, we determine constants (a,), so that ”yD”% < —e for
every « provided that
(Vhﬁ,ﬁl(}’) ﬁ(1)> < ¢
p-1 '
Il

It remains to show that (f(7,)), is an almost martingale in the interior of the space Y
when compared with the boundary terms. For that it is enough to see that n(y,0) = 0 for

y €Y, thanks to the zero drift property in the interior of the space. Hence the dominant
part of the conditional increment is just O(]|y||’~2). O

Remark: Notice that the part due to the contribution of the function hg_; 5, is subdomi-
nent and need not be positive. It is only the function f(v) that is required to be positive
for large ||y||. This allows to choose the parametre d; totally freely.

Remark: The condition (vﬁyﬁ“%l_(f'),ﬁb) < —e¢ has a very simple geometric meaning. It

states that if the vector I’ points in the interior of the level set of the function f near the
0,Y boundary, then (f(n,)), is a strong supermartingale for large ||y||.

4.3 Recurrence and ergodic properties of the chain

We are now able to prove the main results of this paper.

Proof of the theorem 1.10: First examine the case where y = %—W > (. Choose (1 < iy

and 33 < 1, so that 0 < 8 = ﬁlzﬁz <X = 1/”#’2 Choose some py with 0 < pg < w

and consider the functions

hgp (y) + cohp1p(y) if yEY
F0)=Q hop(y) + cahprp(y) if y€dY
hpp (y)+ aahs 15 (y) if yeaY

and g(v) = f2p°/ﬁ('v).

Near the boundary, it is enough to consider the first order Taylor expansion of the
conditional increment. In the interior of the space, we need to continue up to the second
order. In fact, near the boundary,

2po 2o _q
B

Now, the choice 3; < ¥ and 33 < 1y guarantees that (||VfE g|l,[E(0n+1|77n =v)) < —Ck,

for y large near 9,Y so that D(v) < 0. In the interior of the space,

D(v) = (0)(VF(0), E(Opi]nn = v) + E(RL(f7/%;y, 0,11)).

2pg
B
+E(Ry (f%%y,0,11).

2P0 B () (V£ (), BB [ = 0)) + 22 (22— 1) B RV S (1), B Pl = )

D(v) 253
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Now the first order term in the Taylor expansion vanishes due to the zero drift condition
in the interior of the space while the expectation of the square of the scalar product in
the second order term is positive and of the order O(||y||***~%). Moreover, the numerical
factor (2% — 1) is negative so that the (¢(n,)), is a supermartingale in the whole space.
Finaly the set Vg = {v € V: g(v) < K} is finite and use of the theorem ?? allows the

completion of the proof of recurrence for the case of positive pg.

For the case of x < 0, choose (3; and f3; so that wljp'—w =y < % =3 < 0py <0 with

Ipo| < % Consider again the same functions f(v) and g(v) = f?*/#(v). Therefore
the conditional increments near the boundaries and in the interior are given by the same
formula. Now the fact that 3 < 0 makes the gradient V f point towards the summit of the
wedge. Therefore the choice 1! < 8, and ¥? < 3, guarantees that near the boundary the
scalar product (%,E(0n+l|nn = v)) < —C'e and since 2py /3 is always positive, the
conditional increment D(v) < 0. In the interior of the space, again the first term of the
Taylor expansion vanishes due to the zero drift condition and the second term is negative
because 0 < 2% < 1. On the other hand for large y g(v) = O(]|y||**°) with py < 0, hence

g is bounded. Therefore the transience is proved. a

Proof of theorem 1.11: The proof follows exactly the lines of [2]. It is enough to show
that f*(v), with s > 0 and

hos(y) + cohgrs(y) if v=(y.0),y €Y
FW) =19 hap(y)+ anhs_r5(y) if v=(y,a),y €Y
hgp (¥) + cahp15(y) if v=_(y,a),y € dY.

!
!
still fits the conditions of applicability of lemma 4.6, so that

ELf* (ng1) = 2 () 1mn] < =My () [I°7 on {rx > n}.

Choose 31 < 1 and (33 < 1, = ﬁlwﬂ and pg < (3/2. Then the Lyapunov function f
above, is such that f*, with s = 1/, satisfies the conditions of proposition 3.1. Following

the lines of the proof of theorem 6 of [2] it is then possible to show that the process
X, = fY8(n,) verifies
E[XZET-(H — X0 F,] < —AX7% on {rx > n}.

This remark allows to conclude. O

Corollary 4.8 If vy and ¥y belong to | — w/2,7/2[ and wlz—% > 2, the chain is ergodic.

Proof of theorem 1.12: We use the criterion of non-existence 4.5. Let y = 1&11-;_1#2 be
determined by the geometry and choose parametres 31 > 1, B2 > 1y, 3 = % > X.

/ﬁ(

Consider functions gs 5, = hss, +chs_1,5, and processes X,, = gé nn) and y, = g;/fl(nn).
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Observe that both processes X,, and Y,, satisfy conditions of applicability of the criterion
4.5, namely that

E(Y, s — Y| F) = (VAY), E(0n41|Fn)) + 7103 y),

with f = gi{jfl. But f satisfies properties of proposition 3.1 with p = 2y/x = 2. Hence,
ri(f;y) = O(lyll’~?) and although ||V f(y)| = O(||ly]|”~!), the dominant part of the
scalar product is in fact strictly zero since we have chosen the parametres of the harmonic
function in such a way as to give a gradient at the boundaries exactly perpendicular to
the mean drifts. Hence, E(Y,2 | — ¥;?|F,) = O(1) which means that it can be bounded

from below by some constant.

Similarly, for r > 1 and f = girﬁ

E(Y, ) — Y1 F) = (V(Y) B0 1] F0)) + 11(f5y)-

Again the function f satisfies the conditions of proposition 3.1 with p = 2ry/y = 2r and
the dominant part of the scalar product vanishes. To conclude, it is enough to prove that
X?P0 is a submartingale for py = x/2. But X2 = f(n,) with f = g;?gl/ﬁ that satisfies
conditions of proposition 3.1 with p = 2py3/5 = 2po.

On the boundaries, it is easily established that X is a submartingale. In fact,

E(X2E — X2\ F,) = (VI(y), B0 ,41]F.)) + ri(f3 ),

1 —] —
and Vf = 2957 But (Vgss.7) > ¢ and [VA(y)| = O(Jy[#). Hence the
first term dominates the subleading remainder r;. For y being in the interior space, it is
enough to pursue the Taylor expansion up to second order because the drift vanishes in
the interior. This yields

2po 2p 02 0gs, 0955,
B(f () = Flm)ln = (,0) = 2 = Dy, 175 2 + =522
2}?0 2%_1 8295751
g 98,61 [( ay%

2po

829 1 B
SO 4 ra(g,7 5 Y)-

9
* dy3

)+

2po

Now, rg(gﬁgl;y). = O(|ly||**°=") while the other terms are of order O(||y||***~*). Hence

the process is a submartingale provided that the numerical coefficient 2% — 1 > 0 what

happens for 2pg > 3. This remark ends the proof of the theorem. O

5 The model of a Markov chain in two adjacent wedges
with permeable interface and excitable boundaries

5.1 Introduction of the model

In this section, the space X will be composed by two adjacent quadrants, i.e. X = ZxZ* =
X-UXT with X-=Z xZT, Xt =Z* x Z*, X =Z"UZ™", and 0,X~ = 0,Xt = Z"*.
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The internal space will be

{0,...,L} if z€dX
Ac={ {0} if zeX*+\0X
(L} if =X\ 0X.

The configuration space U is constructed as the trivial fibre bundle with base X and
fibre over x € X given by A, and decomposes into U = U~ U Ut with U* being the
configuration space over the quadrant X* respectively. The major modification concerns
the transition probabilities that verify now the modified LBJ conditions, namely

if ;>0 and 2} — 2 < —1

if 2 —xy<—1

if ;<0 and 2] — 2y > 1

if zy=1,21=0,20>0 and o #0

if zy=-1,21=0,2.<0 and & # L

if zo=12=0,29 >0, #0 or z9=1,2,=0,29 <0,a" # L.

el ol =
Pl'l 7732707731 77327041

OO OO OO

Similarly the PSH condition reads in the present case:

Thus, in the present case, the entrance from the right quadrant into the interface can
be only through o = 0 state, conversely the entrance from the left quadrant into the
interface can occur only through the o = L state. Obvious changes are introduced in the
other properties of the transition probabilities. In particular, we impose

E(X(£ns1) — X(6)[6n = (x,0) =0 if x € Xt\IX or x € X™\ X

and the conditional covariance matrices in the left/right space are positive definite, i.e.

the matrices - -
1 K 1 R
< K~ )\; ) and ( kT )\;' )

are positive definite. Now left /right quadrants are transformed by linear transformations
¢~ and @7 to get normalised covariance matrices. As we did in section 1.4, we denote
V= =0 (U") and V* = ¢+ (U™) the transformed sectors. These transformations change
the two quadrants U™ and Ut with right angles at their summits into two wedges V~ and
V* with angles 1)~ = arccos(——~= and ¥t = arccos(— at their summits. We

pn
ATAS
can again fix the parametres of the transformations ®~ and ®* so that one of the axes
of each wedge V™ and V7 has a given direction. For instance, we can choose ®* so that
01 YT remains parallel to the original axis 9, X*. This choice automatically places the axis

0, YT at angle o)™ from the previous. A natural choice for the axis 3,Y~ is at angle ™
from 0;X*. This choice fixes 9, Y~ at angle ¢~ 4+ ¢t from 9;X*.

Notice however that there is an additionnal difficulty here. For general values of the

parametres A, \;, &~ and A, M\ &t a lattice point of the form z = (0,n) € 3X is
mapped to two different points ®~(z) and ®*(z) because the squeezing factors of the two
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quadrants are not the same in the left and right sectors. To be able to compare physical
quantities, we decide to dilate the left sector by a global factor

- a1
A=Y - A
P
2 ’\II-

so that lattice points on the interface have the same coordinates in the left and right
sectors. Notice however that this dilation prevents the covariance matrix of the jumps of
being the unit matrix on the left sector; it still remains diagonal but has the form A%ll
instead. It is thus impossible to normalise simultaneously the covariance matrices on the
left and right sectors keeping the coordinate systems commensurate with each other on
the interface. The net effect of the A-dilation is to multiply all vectors of the left sector
by an overall A factor. Notice that this keeps their direction unchanged.

We introduce, as we did in Section 1.4, transformed chains that are small perturbations

of the chain ¢ when observed far from the origin. These chains are (¢2)),, (57(11,—)%7 and
(&)

n; they correspond to models with complete vertical homogeneity or complete
horizontal homogeneity in the left or right quadrants. Therefore, the symbol § takes now
four values, namely void, or (2), or (1,—), or (1,+). Chains £ have transition matrices
P*. For x € 9X*, we introduce the induced transition matrix in the internal space

f _ f
Qa,a' - Z P(x,oz);(x’,a’)'
x'ext

Irreducibility and aperiodicity conditions of matrix P* are inherited by matrix Q¥ and
since it is a stochastic matrix on a finite space, it admits an ergodic invariant probability
7. We extend also the notion of the restricted drift introduced in definition 2.3 to

m(u, ) = Y Pl (X(u) = X(u)),
u'e€S
valid for every subset S C UF. We shall be interested into two particular restricted drifts
(2) — (2) r
m(a, >) = Z Py anaial ayon (X = X);
z)>0,zh,0’

and

2
rn(?)(a7 <) = Z P((ml)m’a);(z,l%’a,)(X/ —x),

z)<0,zh,a’'=L

together with the standard drifts m™~)(a) and m(+)(a).

Definition 5.1 Let 7’ be the stationary probability for the matrix Q° for b € {(2), (1, —), (1,4)}.
Define the average drifts on the boundaries by

m = Zﬂ'imb(a),

ach
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Figure 2: The transformation of the geometry by ®~ and ®* calculated for the example
values A\T =4/3, \; =3, k™ =1, )\f’ =4, )\5" =9, and kT = —3v2 gives rise to the wedges
depicted above that remain incomensurate at the interface. Applying a global dilation of the

left sector by A, that reads 1/4/4 + V2 ~ 0.42977 in this example, allows the gluing of the

two coordinate systems.
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and the average restricted drifts
and

We are now able to describe the geometric settings of the problem.

Define, for every # € R, the vectors

cos((B — 1) — 2,
g-(8) = sgn() ( - sir(li(ﬂ - i)z/)— - '@bz) )

cos((B — 1)1 — o
g+(8) = sgn(f) ( — Sir(li(/\? - i)'lvb-l- - '¢3J) > .

and

Denote ¢(8) = %

Definition 5.2 For every 3 € R, define

D(B3) = Ae(B)(g-(3), 0 (<)) + (g+(8), 0 (>)).

This quantity is called the mean gain on the interface.

Remark: Notice that D((3) is a purely geometrical quantity that can be computed in an
elementary way out of the transition probabilities of the Markov chain.

Denote fmin = max( W/Q—WO _W/j—l'm) and Bmax = min( W/f;% W/i—wL) Then Buin <
0 < Bmax and for all physmeﬁ ch01ces of the angles vy, ¥p, ¥4, and ¥_, strict inequalities
hold.

Theorem 5.3 Choose a By € (Bmin, Bmax) such that D(Bo) = 0, with D(3;) < 0 and
D(B5) >0

1. Such a By always exists.

2. If B < 0 then the Markov chain is transient.

3. If Bo > 0 then the Markov chain is recurrent.

4. If By > 0, let po = w Then for every p < po we have

Erj. < Clx|™.
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5. Let py = W If po < v/2 then for every p > po,

Erf = .
Corollary 5.4 If 21, —tg > 7/2 or 2b_ — )y, > w/2, then the chain cannot be ergodic.

Proof: 1f one of these conditions is verified, then Bh.x < 2. Hence pg < 52—0 < 1. Assertion
5 of the previous theorem establishes that Erx = oo preventing thus the chain from being
ergodic. d

The proof of the theorem is based on the following proposition.

Proposition 5.5 Let h,s(y) = (y? + y2)"/? cos(parctan 2 — §). For v = (y;a), let
f3: V=R be defined by

B e (¥) + aahp—1,u,(y if yeonyY"t
_l_

(¥) )

g o (¥) + aohs—1.5,(¥) if yey
() = ¢ hpu(¥) + balig—1,40(¥) if yeav
c(B)hsw (¥) +cré(B)hp1y,(y) if YEY
(B (¥) + cal(B)hp-1,4.(y) if y€ORY.

If D(B3) < —¢, then it is always possible to choose the parametres (a,), (ba), (ca), ¢(B),
and ¢(f3) in such a manner that D(v) = E(f(nut1) — f(9a)|nn = v), for large ||y||,

e is a strong supermartingale near the boundaries, i.e.

D(v) < —Ke|ly||”™,

e is an “almost martingale” (with respect to its values near the boundaries) i.e. for

y € §{_ U \?( s
|D(v)] = O(|lyI°~?).

Proof: The proof follows the same lines as the proof of theorem 4.6 in the first model.
Let us check the supermartingale condition only on 0,Y. The other cases are treated
in a completely identical manner. We remark first that we can always choose the set of
parametres so that ag = by and by, = ¢, since the vectors (a,), (ba), and (¢, ) are defined
only modulo a global multiplicative factor.

For v € 3,V® and ||y|| large enough, compute

D) = Y PE(f() - f(v))

v/ eV(2)

= Y PRU)-fon+ Y PR - f(v)
aly'eY(2+) a'=L,y'eY(2-)

= D1—|—D2.
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Now

Di = > P(hgu(y) + barhgoru(y)

al7yI€Y(2,+)
—hg,50(¥) + balig-1,44(¥))
= Z Pgi’)[(Vhﬁﬂbo (Y)a y, - Y) + Rl(hﬁ71l/07Y7 yl - Y)

a',y’EY(27+)
00 (Vhs—1,50(¥), ¥y —¥) + bar Ri(hp-1,00. ¥, — ¥)
+(bar — ba)hp—1,40(¥)];

where Ri(f,-,-) is the first order remainder of the Taylor expansion of f that can be
shown to be subleading along the same lines as for the one wedge problem. Similarly,

Dy = 3 PENeB) g () + bré(B)hs 1, (¥)

a'=L,y'€Y(2-)
—hp o (¥) + bahs—1,4,(¥)]
= 3 PO (hpwn (¥) — hpun ()

a'=L,y'eY(2-)
+e(B) g0, (Y) = P (¥))
+b1.8(B8)(hig-1,9,(¥") = ho-1,4,(¥))
+00E(B) (hp-1,0,(¥) — hs—1,00(¥)
+(br, = ba)hg—1,40(¥)]
= Y POB(Vhow,(v),¥ = ¥) + (B Rilhsu,, v,y —¥)
a'=L,y'e€Y(2-)
+e(B)hgu (¥) = oo (Y)
+0r.8(B)(Vhp-1,4,(¥), ¥ —y) + &B)Ri(hp-1,0,, Y, —¥)
+b1(e(B)hs-1,0.(¥) = hp-1,4,(¥))
+(br, = ba)hg—1,4,(¥)]-

Now choose ¢(3) = % for y € 0;Y. Hence, ¢(3) = % This choice guar-
b cos _—

antees that the second line in the last expression for Dy vanishes. Similarly, we choose
§B) = Lmtwe® _ cosl(0-1)ds—vo)
hg—1,up, (¥) cos((B—1)——21)

Therefore, D, reads, in leading order O(||y]||®~1),

Dy= Y POLB)(Vhpu(y),¥ —¥) + (b = ba) g1, (¥)] + Oy 772

a'=L,y'cY(2-)

that guarantees vanshing of the penultimate line.

Recollecting terms, we get
D(U) = D1 + D2
= (Vhsu(y),nP(a; 2)) + ¢(B)(Vhgu, (y), AnP(a; <))
tho-100(¥) D Quihilber —ba) + O(ly[I*2).

a’eA
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Now we can determine parametres (b,) so that D(v) < —Ke||y||°~* for every a, provided
that the compatibility condition holds, i.e.

Ac(8)(g-(8), 1 (<)) + (g+(8), 0P (2)) < —¢,

: hg—
since |”Vﬁh;’5§”| = O(1).

The behaviour on the other boundaries is treated in exactly the same lines as for the
one wedge case. As for the “almost martingale” property, it is enough to remark that
both hg_y 5 and hgs are harmonic functions. O

Proof of theorem 5.3:

1. The existence of such a [y is obtained by the continuity of D(B3) and by explicit
estimates of D(3) near the edges of the interval (Bmin, Bmax)-

2. If By < 0, then for every B; with Onim < 81 < (o, we can construct a supermartin-
gale on the whole space. Moreover, since 3y < 0, the leading contribution of the
Lyapunov’s function is in ||y||” that remains bounded outside a finite set near the
origin. We conclude therefore transience.

3. If By > 0, then for every 3; with 0 < (3; < 3y, we can construct a supermartingale for
large ||y||. On the other hand, the leading contribution to the Lyapunov’s function
is in ||y||”. Therefore, its level sets are compact and we conclude recurrence.

4. If By > 0, then for every p with 0 < p < pg = min(f’”,

supermartingale, as in the one wedge problem, verifying condition

E(X,5, — X2|F) < —eXjr™?

we can construct a strict

which proves finiteness of the p-th moment of passage time.

5. Finally, for p > po, if pg < /2, we can construct processes X,, and Y,, as in the one
wedge problem, verifying the criterion of the non-existence of moments.

6 Conclusion and open problems

We have established that the ergodic properties of the chains are determined by simple
geometrical characteristics that are derived form the Lyapunov’s function method and
this in spite of the complication steming from the internal degrees of freedom.

The results of the second model can be extended with only computational complica-
tions to wedges with an arbitrary number of sectors provided that the gluing of sectors
does not result to a problem without external boundaries. The treatment for geometries
without external boundaries remains open for the moment.

28



References

1]
2]

3]

F. Asmussen, Applied probability in queues, Wiley, Chichester (1987).

S. Aspandiiarov, R. lasnogorodski, M. Menshikov, Passage-time moments for non-
negative stochastic processes and an application to reflected random walks in a quad-

rant, Ann. Prob. 24:932-960 (1996).

[. M. Asymont, G. Fayolle, M. Menshikov, Random walks in a quarter plane with
zero drifts: transience and recurrence, J. Appl. Prob., 32:941-955 (1995).

G. Fayolle, V. Malyshev, M. Menshikov, Topics in the constructive theory of countable
Markov chains, Cambridge University Press, Cambridge (1994).

M. Menshikov, S. Popov, Exact power estimates for countable Markov chains, Markov

Proc. Rel. Fields, 1:57-78 (1995).

M. Menshikov, R. Williams, Passage-time moments for continuous non-negative
stochastic processes and applications, Adv. Appl. Prob., 28:747-762 (1996).

M. Peigné, Marches aléatoires sur le semi-groupe des contractions de R?. Cas de la
marche aléatoire & pas markoviens sur (R*)? avec chocs élastiques sur les axes, Ann.

Inst. Henri Poincaré, 28:63-94 (1992).

S.P. Meyn, R.L. Tweedie, Markov chains and stochastic stability, Springer-Verlag,
Berlin (1993).

S.R.S. Varadhan, R. Williams, Brownian motion in a wedge with oblique reflection,

Commun. Pure Appl. Math., 38:405-443 (1985).

29



