MATH 611 (Spring 2009) Homework #11 Due May 12th

(1) Prove that T is normal on H if and only if $||T^*f|| = ||Tf||$ for all $f \in H$.

(2) Suppose that T is invertible. Prove that $\sigma(T^{-1}) = \{\lambda^{-1} : \lambda \in \sigma(T)\}.$

(3) Suppose that T is normal. Prove that $||T^n|| = ||T||^n$ for all positive integers, n. [Hint: First show that $||T^k||^2 \le ||T^{k+1}|| ||T^{k-1}||$ and then use this result to prove that $||T||^n \le ||T^n||$ using an induction argument.]

(4) Let $\{\lambda_n\}$ be a sequence of non-zero real numbers that converges to zero. Prove that if H is an infinite-dimensional separable Hilbert space then there exists a self-adjoint (i.e. $T^* = T$), compact operator T on H whose set of non-zero eigenvalues is the set $\{\lambda_n\}$. [Hint: Use Hwk 9.5.]

(5) Let T(x) = (x, y)z be the rank-one operator in Hwk 9.1 (and Hwk 8.5).

(a) Show that $T^2 = (z, y)T$.

(b) Let S be an operator so that $S^2 = \lambda S$. Show that, if $\lambda \neq 1$, then I - S is invertible and calculate $(I - S)^{-1}$.

(c) Use (a), (b) to show that if H has dimension greater than 1, then $\sigma(T) = \{0, (z, y)\}$. [Hint: Apply (b) to $S = \frac{1}{\mu}T$.]

Additional Questions (Not to be handed in)

(6) Show that the Spectral Theorem for compact, normal operators on the Hilbert space $H = \mathbb{C}^n$ with the standard inner product is equivalent to the well known result that a normal matrix can be diagonalized a unitary matrix.

(7) Show that if some positive power of a compact self-adjoint operator T is zero, then T itself must be zero.

(8) Let T be a bounded linear operator on a Banach space. By considering the identity

$$(\lambda I - T)(\lambda I + T) = \lambda^2 I - T^2,$$

show that $\sigma(T^2) = \{\lambda^2 : \lambda \in \sigma(T)\}$. Deduce that for any $\lambda \in \sigma(T)$, we have $|\lambda| \leq ||T^2||^{1/2}$.

(9) Let $T \in \mathcal{B}(H)$ be self-adjoint on a Hilbert space H.

(a) Prove that $\sigma(T) \subset [0, \infty)$ iff $(Tx, x) \geq 0$ for all $x \in H$. A self-adjoint operator that satisfies this condition is called *positive*.

(b) Prove that for any $T \in \mathcal{B}(H)$, the operator T^*T is self-adjoint and positive.

(c) Suppose that T is compact, self-adjoint and positive. Use the Spectral Theorem to construct a compact, self-adjoint, positive operator R so that $R^2 = T$.

(d) Let $T \in \mathcal{B}(H)$ be compact. Let λ_n be the non-zero eigenvalues of the positive operator T^*T and let $\{u_n\}$ be the corresponding orthonormal set of eigenvectors. Let $\mu_n = +\sqrt{\lambda_n}$. Show that there exists an orthonormal set $\{v_n\}$ in H so that $Tu_n = \mu_n v_n$, $T^*v_n = \mu_n u_n$ and

$$Tx = \sum \mu_n(x, u_n)v_n, \qquad x \in H.$$
(1)

The real numbers μ_n are called the singular values of T and (1) is the singular value decomposition of T. Prove that if T is self-adjoint then the non-zero singular values of T are the absolute values of the eigenvalues of T.

(10) Let $T \in \mathcal{B}(H)$ be self-adjoint. Prove that $r_{\sigma}(T) = ||T||$ starting as follows. Let $\tau = ||T||$. Show that

$$\|(\tau^2 - T^2)x\|^2 = \tau^4 \|x\|^2 - 2\tau^2 \|Tx\|^2 + \|T^2x\|^2.$$

Choose x_n so that $||x_n|| = 1$ and $||Tx_n|| \to ||T||$ and deduce that $\tau^2 \in \sigma(T^2)$.

(11) Let $T: \ell^1 \to \ell^1$ be defined by the infinite matrix

$\left(0 \right)$	0	0	0	0)
1	0	0	0	0	
0	$\frac{1}{2}$	0	0	0	
0	Õ	$\frac{1}{3}$	0	0	
0	0	$\overset{3}{0}$	$\frac{1}{4}$	0	
			4		
()
1					/

Recall that the norm of T is the supremum of the ℓ^1 norms of the column vectors in its matrix representation. Calculate that $||T^n|| = \frac{1}{n!}$. Hence show that $||T^n||^{1/n} \to 0$ and $\sigma(T) = \{0\}$.

(12) Let ω be positive and not an integer multiple of π . Find the Green's function for the boundary value problem $f'' + \omega^2 f = g$, with f'(0) = 0 = f'(1).

(13) Find the Green's function for f'' = g, f(0) = 0, f(1) + f'(1) = 0.

(14) Apply Sturm-Liouville theory to the system $f'' + \lambda f = 0$, $f(0) = 0 = f'(\pi)$ to show that for any $g \in L^2(0,\pi)$,

$$g(x) = \sum_{j=1}^{\infty} C_j \sin(j - \frac{1}{2})x$$

in $L^2(0,\pi)$ where

$$C_{j} = \frac{2}{\pi} \int_{0}^{\pi} g(x) \sin(j - \frac{1}{2}) x \, dx$$