MATH 611 (Spring 2009) Homework \#11 Due May 12th

(1) Prove that T is normal on H if and only if $\left\|T^{*} f\right\|=\|T f\|$ for all $f \in H$.
(2) Suppose that T is invertible. Prove that $\sigma\left(T^{-1}\right)=\left\{\lambda^{-1}: \lambda \in \sigma(T)\right\}$.
(3) Suppose that T is normal. Prove that $\left\|T^{n}\right\|=\|T\|^{n}$ for all positive integers, n. [Hint: First show that $\left\|T^{k}\right\|^{2} \leq\left\|T^{k+1}\right\|\left\|T^{k-1}\right\|$ and then use this result to prove that $\|T\|^{n} \leq\left\|T^{n}\right\|$ using an induction argument.]
(4) Let $\left\{\lambda_{n}\right\}$ be a sequence of non-zero real numbers that converges to zero. Prove that if H is an infinite-dimensional separable Hilbert space then there exists a self-adjoint (i.e. $T^{*}=T$), compact operator T on H whose set of non-zero eigenvalues is the set $\left\{\lambda_{n}\right\}$. [Hint: Use Hwk 9.5.]
(5) Let $T(x)=(x, y) z$ be the rank-one operator in Hwk 9.1 (and Hwk 8.5).
(a) Show that $T^{2}=(z, y) T$.
(b) Let S be an operator so that $S^{2}=\lambda S$. Show that, if $\lambda \neq 1$, then $I-S$ is invertible and calculate $(I-S)^{-1}$.
(c) Use (a), (b) to show that if H has dimension greater than 1 , then $\sigma(T)=\{0,(z, y)\}$. [Hint: Apply (b) to $S=\frac{1}{\mu} T$.]

Additional Questions (Not to be handed in)

(6) Show that the Spectral Theorem for compact, normal operators on the Hilbert space $H=\mathbb{C}^{n}$ with the standard inner product is equivalent to the well known result that a normal matrix can be diagonalized a unitary matrix.
(7) Show that if some positive power of a compact self-adjoint operator T is zero, then T itself must be zero.
(8) Let T be a bounded linear operator on a Banach space. By considering the identity

$$
(\lambda I-T)(\lambda I+T)=\lambda^{2} I-T^{2}
$$

show that $\sigma\left(T^{2}\right)=\left\{\lambda^{2}: \lambda \in \sigma(T)\right\}$. Deduce that for any $\lambda \in \sigma(T)$, we have $|\lambda| \leq\left\|T^{2}\right\|^{1 / 2}$.
(9) Let $T \in \mathcal{B}(H)$ be self-adjoint on a Hilbert space H.
(a) Prove that $\sigma(T) \subset[0, \infty)$ iff $(T x, x) \geq 0$ for all $x \in H$. A self-adjoint operator that satisfies this condition is called positive.
(b) Prove that for any $T \in \mathcal{B}(H)$, the operator $T^{*} T$ is self-adjoint and positive.
(c) Suppose that T is compact, self-adjoint and positive. Use the Spectral Theorem to construct a compact, self-adjoint, positive operator R so that $R^{2}=T$.
(d) Let $T \in \mathcal{B}(H)$ be compact. Let λ_{n} be the non-zero eigenvalues of the positive operator $T^{*} T$ and let $\left\{u_{n}\right\}$ be the corresponding orthonormal set of eigenvectors. Let $\mu_{n}=+\sqrt{\lambda_{n}}$. Show that there exists an orthonormal set $\left\{v_{n}\right\}$ in H so that $T u_{n}=\mu_{n} v_{n}, T^{*} v_{n}=\mu_{n} u_{n}$ and

$$
\begin{equation*}
T x=\sum \mu_{n}\left(x, u_{n}\right) v_{n}, \quad x \in H . \tag{1}
\end{equation*}
$$

The real numbers μ_{n} are called the singular values of T and (1) is the singular value decomposition of T. Prove that if T is self-adjoint then the non-zero singular values of T are the absolute values of the eigenvalues of T.
(10) Let $T \in \mathcal{B}(H)$ be self-adjoint. Prove that $r_{\sigma}(T)=\|T\|$ starting as follows. Let $\tau=\|T\|$. Show that

$$
\left\|\left(\tau^{2}-T^{2}\right) x\right\|^{2}=\tau^{4}\|x\|^{2}-2 \tau^{2}\|T x\|^{2}+\left\|T^{2} x\right\|^{2}
$$

Choose x_{n} so that $\left\|x_{n}\right\|=1$ and $\left\|T x_{n}\right\| \rightarrow\|T\|$ and deduce that $\tau^{2} \in \sigma\left(T^{2}\right)$.
(11) Let $T: \ell^{1} \rightarrow \ell^{1}$ be defined by the infinite matrix

$$
\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & \cdots \\
1 & 0 & 0 & 0 & 0 & \\
0 & \frac{1}{2} & 0 & 0 & 0 & \\
0 & 0 & \frac{1}{3} & 0 & 0 & \\
0 & 0 & 0 & \frac{1}{4} & 0 & \\
. & & & & & \\
\cdot & & & & & \\
. & & & & &
\end{array}\right)
$$

Recall that the norm of T is the supremum of the ℓ^{1} norms of the column vectors in its matrix representation. Calculate that $\left\|T^{n}\right\|=\frac{1}{n!}$. Hence show that $\left\|T^{n}\right\|^{1 / n} \rightarrow 0$ and $\sigma(T)=\{0\}$.
(12) Let ω be positive and not an integer multiple of π. Find the Green's function for the boundary value problem $f^{\prime \prime}+\omega^{2} f=g$, with $f^{\prime}(0)=0=f^{\prime}(1)$.
(13) Find the Green's function for $f^{\prime \prime}=g, f(0)=0, f(1)+f^{\prime}(1)=0$.
(14) Apply Sturm-Liouville theory to the system $f^{\prime \prime}+\lambda f=0, f(0)=0=f^{\prime}(\pi)$ to show that for any $g \in L^{2}(0, \pi)$,

$$
g(x)=\sum_{j=1}^{\infty} C_{j} \sin \left(j-\frac{1}{2}\right) x
$$

in $L^{2}(0, \pi)$ where

$$
C_{j}=\frac{2}{\pi} \int_{0}^{\pi} g(x) \sin \left(j-\frac{1}{2}\right) x d x
$$

