
1

CS216 1

Subprograms

CS216 2

Fundamental Characteristics of 
Subprograms

• A subprogram has a single entry point.
• The caller is suspended during execution of the 

called subprogram.
• Control always returns to the caller when the 

called subprogram’s execution terminates.

CS216 3

Parameters

• A formal parameter
– A dummy variable listed in the subprogram header 

and used in the subprogram.
• An actual parameter

– A value or address used in the subprogram call 
statement.

Actual 
Parameters

Formal 
Parameters

Caller CalleeAssociation

CS216 4

Subprograms: 
Procedures and Functions

• Two kinds of subprograms:
– Procedures & Functions

• Procedures provide user-defined statements.
– Abstraction over statements

• Functions provide user-defined operators.
– Abstraction over expressions

• Most imperative languages provide both.

CS216 5

Subprograms – Design Issues

• What parameter passing methods are 
provided?

• Are parameter types checked?
• Are local variables static or dynamic?
• What is the referencing environment of a 

passed subprogram?
• Are parameter types in a passed subprogram 

checked?
CS216 6

Parameter Passing Methods

Actual 
Parameters

Formal 
Parameters

Caller Callee
Data Transfer



2

CS216 7

PPM: Semantic Models

• In mode
– FPs can receive data from the corresponding APs.

• Out mode 
– FPs can transmit data to the corresponding APs.

• In-out mode
– FPs can receive/transmit data from/to the 

corresponding APs.

CS216 8

PPM: Transfer Model

• What transfer?
– An actual value is physically moved (transmitted).
– An access path to the value is moved (transmitted).

• When transfer:
– At the entry
– At the exit

CS216 9

Parameter Passing Methods

1. Pass-by-Value
2. Pass-by-Result
3. Pass-by-Value/Result
4. Pass-by-Reference
5. Pass-by-Name
6. Pass-by-Text

CS216 10

1. Pass-By-Value

• Copy-in the AP on entry. 
– in mode
– Either by physical move or access path
– Disadvantages of access path method:

• Must write-protect in the called subprogram
• Accesses cost more (indirect addressing)

– Disadvantages of physical move:
• Requires more storage
• Cost of the moves

CS216 11

2. Pass-By-Result

• Copy-out the FP on exit. 
– out mode
– Local’s value is passed back to the caller
– Physical move is usually used
– Disadvantages:

• If value is passed, time and space 
• In both cases, order dependence may be a  problem              

CS216 12

Pass-By-Result

• Problem:

sub(x, y) 
…

sub(p1, p1)



3

CS216 13

3. Pass-By-Value/Result

• Copy-in the AP on entry & Copy-out the FP 
on exit 
– inout mode
– Physical move, both ways
– Disadvantages:

• Those of pass-by-result
• Those of pass-by-value 

CS216 14

4. Pass-By-Reference

• Bind the reference of AP directly to FP. 
– inout mode
– Pass an access path
– Also called pass-by-sharing
– Advantage: 

• Passing process is efficient
– Disadvantages:

• Slower accesses
• Can allow aliasing

CS216 15

Pass-By-Reference

• Problem:
– Aliasing
– The called  subprogram is provided wider access to        

nonlocals than is necessary.

CS216 16

Pass-By-Reference vs Pass-By-
Value/Result

• Pass-by-value-result does not allow these 
aliases (but has other problems!)

CS216 17

5. Pass-By-Name

• Substitute the expression of AP to FP. 
– Inout mode
– By textual substitution of AP with FP
– The AP is not evaluated until its use in the 

subprogram.
– The AP will be evaluated in the 

environment of the caller.

CS216 18

Pass-By-Name

procedure p(x);
begin

x := x + 1;
end;
…

p(a[i])

a[i] := a[i] + 1;



4

CS216 19

Example: Pass-By-Name
program PPM;

var i: integer;
function p(y: integer);
var j: integer;
begin
j := 1;
return (y);
end;
procedure q;
var j: integer;
begin
i := 2;
j := 2;
writeln (p(i+j));
end;

begin
q;
end.

Static Scoping &
Pass-by-name:

4

CS216 20

Pass-By-Name

function sum (a, index, lower, upper: int): int;
var temp: int;
begin
temp := 0;
for index := lower to upper do

temp := temp + a;
sum := temp;

end;
…
var x: array[1..10] of int;

i, xtotal: int;
…
xtotal := sum (x[i], i, 1, 10);

CS216 21

Pass-By-Name

function sum (a, index, lower, upper: int): int;
var temp: int;
begin
temp := 0;
for index := lower to upper do

temp := temp + a;
sum := temp;

end;
…
var i, xtotal: int;
…
xtotal := sum (3*i*i–5*i+2, i, 1, 10);

CS216 22

Pass-By-Name

• Purpose: 
– Flexibility of late binding

• Disadvantages:
– Very inefficient references
– Too tricky; hard to read and understand 

CS216 23

6. Pass-By-Text

• Substitute the expression of AP to FP. 
– Inout mode
– By textual substitution of AP with FP
– The AP is not evaluated until its use in the 

subprogram.
– The AP will be evaluated in the 

environment of the callee.

CS216 24

Example: Pass-By-Text
program PPM;

var i: integer;
function p(y: integer);
var j: integer;
begin
j := 1;
return(y);
end;
procedure q;
var j: integer;
begin
i := 2;
j := 2;
writeln (p(i+j));
end;

begin
q;
end.

Static Scoping &
Pass-by-text:

3



5

CS216 25

Example 1: PPM under Static Scoping
program PPM;

var i: integer;
a: array[1..2] of integer;

…
procedure f ( x: integer);

begin
a[1] := 6;
i := 2;
x := x + 3;

end;
begin

a[1] := 1;
a[2] := 2;
i := 1;
f(a[i]);
write( a[1], a[2], i);

end.

Pass-by-value:

6 2 2

Pass-by-result:

error

CS216 26

Example 1: PPM under Static Scoping
program PPM;

var i: integer;
a: array[1..2] of integer;

…
procedure f ( x: integer);

begin
a[1] := 6;
i := 2;
x := x + 3;

end;
begin

a[1] := 1;
a[2] := 2;
i := 1;
f(a[i]);
write( a[1], a[2], i);

end.

Pass-by-value/result:

4 2 2

Pass-by-reference:

9 2 2

CS216 27

Example 1: PPM under Static Scoping
program PPM;

var i: integer;
a: array[1..2] of integer;

…
procedure f ( x: integer);

begin
a[1] := 6;
i := 2;
x := x + 3;

end;
begin

a[1] := 1;
a[2] := 2;
i := 1;
f(a[i]);
write( a[1], a[2], i);

end.

Pass-by-text:

6 5 2

Pass-by-name:

6 5 2

CS216 28

Example 2: PPM under Static Scoping
program PPM;

var i: integer;
a: array[1..2] of integer;

…
procedure f ( x: integer);

begin
a[1] := 6;
i := 2;
x := x + 3;

end;
begin

a[1] := 1;
a[2] := 2;
i := 1;
f(a[i]);
write( a[1], a[2], i);

end.

Pass-by-value/result

4 2 2 What PPM?

CS216 29

Example 2: PPM under Static Scoping
program PPM;

var i: integer;
a: array[1..2] of integer;

…
procedure f ( x: integer);

begin
a[1] := 6;
i := 2;
x := x + 3;

end;
begin

a[1] := 1;
a[2] := 2;
i := 1;
f(a[i]);
write( a[1], a[2], i);

end.

Pass-by-name

6 5 2 What PPM?

CS216 30

Example 3: PPM under Static Scoping

procedure swap ( x, y: integer);
procedure f()
var z: integer;
begin
z := x;
x := y;
return z;

end;
begin
y := f();
End;
…
swap(i, a[i]);
…

No

Pass-by-value:

No

Pass-by-result:



6

CS216 31

Example 3: PPM under Static Scoping

procedure swap ( x, y: integer);
procedure f()
var z: integer;
begin
z := x;
x := y;
return z;

end;
begin
y := f();
End;
…
swap(i, a[i]);
…

Yes

Pass-by-value/result:

Yes

Pass-by-reference:

CS216 32

Example 3: PPM under Static Scoping

procedure swap ( x, y: integer);
procedure f()
var z: integer;
begin
z := x;
x := y;
return z;

end;
begin
y := f();
End;
…
swap(i, a[i]);
…

Yes

Pass-by-name:

Yes

Pass-by-text:

CS216 33

Example 4: PPM under Static Scoping

int i = 3;

void fun(int a, int b) {
i = b;

}

void main() {
int list[10];
list[i] = 5;
fun(i, list[i]);

i?????
}

5

Pass-by-reference:

3

Pass-by-value/result:

CS216 34

Subprogram Names as Parameters

• What is the correct referencing environment for 
a  subprogram that was sent as a parameter? 

CS216 35

Example: Subprogram Names as 
Parameters

procedure SUB1;
var x: integer;
procedure SUB2;
begin

write( ‘x=‘, x)
end;
procedure SUB3;
var x: integer;
x := 3;
SUB4 (SUB2);

end;
procedure SUB4 (SUBX);
var x: integer;
begin

x := 4;
SUBX;

end;
begin
x := 1;
SUB3;

end;

?

CS216 36

Subprogram Names as Parameters

• What is the correct referencing environment for 
a  subprogram that was sent as a parameter?
– It is that of the subprogram that enacted it.

• Shallow binding
– It is that of the subprogram that declared it.

• Deep binding
– It is that of the subprogram that passed it.

• Ad hoc binding



7

CS216 37

Example: Subprogram Names as 
Parameters

procedure SUB1;
var x: integer;
procedure SUB2;
begin

write( ‘x=‘, x)
end;
procedure SUB3;
var x: integer;
x := 3;
SUB4 (SUB2);

end;
procedure SUB4 (SUBX);
var x: integer;
begin

x := 4;
SUBX;

end;
begin
x := 1;
SUB3;

end;

Shallow binding:

X = 4

Deep binding:

X = 1

Ad-hoc binding:

X = 3

CS216 38

Subprogram Names as Parameters

• For static-scoped languages, 
– Deep binding is most natural.

• For dynamic-scoped languages, 
– Shallow binding is most natural.


