
1

CS516 1

Implementing Subprograms &
Blocks

CS516 2

Semantics of Subprogram Calls
and Returns

CS516 3

Subprogram Calls

• Pass parameters using parameter passing
methods.

• Allocate storage space for local variables.
• Arrange to access nonlocal variables.
• Save the execution status of the caller.
• Save the return address.
• Transfer control to the callee.

CS516 4

Subprogram Returns

• Copy back using parameter passing methods if
needed.

• Deallocate the storage used for locals.
• Restore the execution status of the caller.
• Return control to the caller.

CS516 5

Info Needed for Subprogram Calls
and Returns

• Certain information must be available:
– The code for the subprogram
– The state while the body of the subprogram is

executing.
• Instruction part

– A pointer to the instruction to be executed after the subprogram
returns (Return address)

• Environment part
– The values of locals, nonlocals and parameters.

CS516 6

Info Needed for Subprogram Calls
and Returns

• The code for the subprogram
– Fixed

• The state while the body of the subprogram is
executing.
– Changing
– Different calls to the same subprogram will have

different states!

2

CS516 7

Activation Record (AR)

• The state info need for a subprogram call and
return is stored in an activation record (AR).

• In an activation record:
– Instruction part

• A pointer to the instruction to be executed after the
subprogram return (Return address)

– Environment part
• The values of locals, nonlocals and parameters.

CS516 8

Subprogram, Call, Activation &
Activation Record

• A subprogram
• A call to the subprogram
• An activation of the call
• An activation record for the activation

CS516 9

Storage for Activation Records

• Where do we allocate storage for the activation
records?
– It depends! Static

Stack

Heap

allocate

deallocate

lifetime

CS516 10

Two Types of Languages

• FORTRAN-like languages
– No recursive subprograms
– Static local variables
– No nonlocal variables (Flat block structure)

• Algol-like languages
– Recursive subprograms
– Stack-dynamic local variables
– Nonlocal variables (Nested block structure)

CS516 11

Storage for Activation Records

• FORTRAN-like languages
– From static storage

• Algol-like languages
– From stack storage

CS516 12

Implementing Subprogram Calls
and Returns

• It depends on the type of the language!

3

CS516 13

Two Types of Languages

• FORTRAN-like languages
– No recursive subprograms
– Static local variables
– No nonlocal variables (Flat block structure)

• Algol-like languages
– Recursive subprograms
– Stack-dynamic local variables
– Nonlocal variables (Nested block structure)

CS516 14

Implementing Subprogram Calls
and Returns

• FORTRAN-like languages
– Relatively simple!

• Algol-like languages
– More difficult!

CS516 15

1. Implementing FORTRAN77-
like Subprograms

CS516 16

Call Semantics

1. Save the execution status of the caller.
2. Carry out the parameter-passing process.
3. Pass the return address.
4. Transfer control to the callee.

CS516 17

Return Semantics

1. If pass-by-value-result parameters are used,
move the current values of those parameters
to their corresponding actual parameters.

2. If it is a function, move the functional value to
a place the caller can get it.

3. Restore the execution status of the caller.
4. Transfer control back to the caller.

CS516 18

Required Storage

• Status information of the caller
• Parameters
• Return address
• Functional value (if it is a function)
• Local variables
• The subprogram code

4

CS516 19

Activation Record

• The format or layout of the noncode part is
called an activation record.

Local variables
Parameters

Return Address

Functional Value

CS516 20

Activation Record Instance

• An activation record instance is
– A concrete example of an activation record.
– The collection of data for a particular subprogram

activation (call).

A subprogram call An activation record instance

CS516 21

Static Allocation for Activation
Record

• A FORTRAN 77 subprogram can have only
one activation record instance at any given
time!

• Why?
– No recursive subprogram!

CS516 22

Static Allocation for Activation
Record

• Statically allocate storage for Activation
Record.

• Use it for each activation record instance.

Local variables
Parameters

Return Address

Functional Value

Static Storage

CS516 23

Example: Implementing A
FORTRAN 77 Subprogram

• A main program MAIN
• Three subprograms A, B & C
• The code and activation records:

– See Figure 10.2 (p. 400)

CS516 24

2. Implementing ALGOL-like
Subprograms

• This is more complicated than implementing
FORTRAN 77-like subprograms.

• Why?
– Local variables are often dynamically allocated.
– Recursion must be supported.
– Static scoping must be supported.
– More parameter passing methods

5

CS516 25

Activation Record

• A typical activation record for an ALGOL-
like language:

Dynamic Links
Static Links

Return Address

Local variables
Parameters

CS516 26

Activation Record

• The activation record format is static, but its
size may be dynamic.

• An activation record instance must be created
dynamically when a subprogram is called.

CS516 27

Dynamic and Static Links

• The dynamic link (DL)
– points to the top of an instance of the activation

record of the caller.
• The static link (SL)

– points to the bottom of the activation record
instance of an activation of the static parent (to be
used for access to nonlocal variables).

CS516 28

Activation Record

• An Algol-like subprogram can have more than
one activation record instance at any given
time!

• Why?
– Recursive subprogram!

CS516 29

Dynamic Allocation for Activation
Record

• Dynamically allocate storage for Activation
Record.

Dynamic Links
Static Links

Return Address

Local variables
Parameters

Stack Storage

SP (Stack Pointer)

FP (Frame Pointer)
CS516 30

Example: Activation Record

procedure sub(var total: real; part: integer);
var list: array[1..2] of integer;

sum: real;
begin
…
end

6

CS516 31

Example: Activation Record

DL
SL
RA

Local

Parameter
Parameter

Local
Local
Localsum

list[3]

list[2]

list[1]

part

total

CS516 32

(1) Without Recursion and
Nonlocal References

CS516 33

Example

void fun1(int x) {
int y;

... <----------------------------2
fun3(y);

...
}
void fun2(float r) {

int s, t;
... <--------------------------1
fun1(s);
...

}
void fun3(int q) {

... <--------------------------3

...
}

Void main() {
float p;
fun2(p);

}

Call sequence:
main calls fun2
fun2 calls fun1
fun1 calls fun3

Stack contents:

See FIGURE 10.5 (p. 405)

CS516 34

Dynamic Chain

• A dynamic link is a pointer to the AR of the
caller.
– Why?

• A dynamic chain is a sequence of dynamic
links.

• The dynamic chain is a list of all AR’s on the
stack, i.e., all active subprograms.

CS516 35

Local Variables

• Local variables can be accessed by their offset
from the beginning of the activation record.
– This offset is called the local_offset.

• The local_offset of a local variable can be
determined at compile time by the compiler.

CS516 36

(2) With Recursion

7

CS516 37

Example: Recursive Functions

int factorial(int n) {
<-----------------------------1

if (n <= 1)
return 1;

else return (n * factorial(n - 1));
<-----------------------------2

}
void main() {

int value;
value = factorial(3);
<-----------------------------3

}

Stack contents:

See FIGUREs 10.7 and 10.8 (p. 407 and p. 408) CS516 38

(3) With Nonlocal References

CS516 39

Rules for Nonlocal References

1. Static scoping rule
2. Dynamic scoping rule

CS516 40

The Scope Rule

• The scope rule of a programming language
determines
– How a particular occurrence of a name (variable) is

associated with a variable.
• Given an applied (use, reference) occurrence of

a variable x, what is the binding (defining,
declaration) occurrence of the variable x?

CS516 41

The Static Scoping Rule

• Based on program text.
• Just by examining the program text, we can

determine which binding occurrence
correspond to a given applied occurrence.

• The binding between applied occurrences and
binding occurrences is FIXED, not changing
throughout the program’s execution.

CS516 42

The Static Scoping Rule

• Search declarations, first locally, then in
increasingly larger enclosing scopes, until one
is found for the given name.

• Find the innermost enclosing block containing
the applied occurrence and a binding
occurrence.

8

CS516 43

Static-Scoped Languages

• A subprogram is callable only when all of its
static ancestor program units are active!

• In a given subprogram, only variables declared
in the static ancestor scopes are visible and can
be accessed.

• Activation record instances of all of the static
ancestors are guaranteed to exist on the stack.

CS516 44

Nonlocal References with Static
Scoping Rule

• Observation:
– All variables that can be nonlocally accessed

reside in some activation record instance in the
stack.

• The process of locating a nonlocal reference:
1. Find the correct activation record instance in

which the variable is allocated.
2. Use the local offset within that activation

record instance to access it.

CS516 45

How to Find the Correct
Activation Record Instance?

• Find the innermost enclosing block containing
the applied occurrence and a binding
occurrence.

CS516 46

Implementing Nonlocal References
with Static Scoping Rule

• Using static chains
• Using display

CS516 47

1. Static Chain

• The static link in an activation record instance
for a subprogram S points to an activation
record instances of S's static parent (enclosing
subprogram).
– The most recent ARI of the static parent!

CS516 48

Static Chain

• A static chain is a chain of static links.
• The static chain from an activation record

instance for a subprogram S links all the static
ancestors of S.

9

CS516 49

How to Find the Correct Activation
Record Instance Using Static Chain?

• To find the declaration for a reference to a
nonlocal variable?
– Search the static chain until the activation record

instance that contains the variable (as a local
variable) is found!

• How many static links to be followed?
– Can be determined at compile time!

CS516 50

Static Depth of A Subprogram

• Given a subprogram S,
• The static_depth of S is an integer associated

with the subprogram:
– How deeply it is nested in the outmost program!
– 0 (the outmost), 1, 2, …
– Also called SNL (Static Nesting Level)

CS516 51

Example: Static Depth

A ----- static_depth = 0

B ----- static_depth = 1

C ----- static_depth = 2

program A;
var x: int;

procedure B;
procedure C;
…
x:=x+1;
…

end;{C}
…
x:=x+1;
…

end;{B}
…
x:=x+1;
…

end;{A} CS516 52

Nesting Depth of A Nonlocal
Reference

• Given a nonlocal reference to a variable X,
• The nesting_depth or chain_offset of the

nonlocal reference is
(The static_depth of the the subprogram containing
the reference to X)
MINUS

(The static_depth of the the subprogram containing
the declaration for X)

– Also called SD (Static Distance)

CS516 53

Example: Nesting Depth

A ----- static_depth = 0
B ----- static_depth = 1
C ----- static_depth = 2

program A;
var x: int;

procedure B;
procedure C;
…
x:=x+1;
…

end;{C}
…
x:=x+1;
…

end;{B}
…
x:=x+1;
…

end;{A}

SD Nesting depth of X in C: 2

SD Nesting depth of X in B: 1

SD Nesting depth of X in A: 0

CS516 54

How to Access Nonlocal Variables
Using Static Chain?

• A reference to a nonlocal variable X can be
represented by the pair (chain_offset,
local_offset) where
– chain_offset = The number of static links to the

correct ARI.
– local_offset = The offset from the beginning of the

AR of the subprogram containing the declaration
for X.

10

CS516 55

Example: Nonlocal Variable
Access Using Static Chain

A ----- static_depth = 0
B ----- static_depth = 1
C ----- static_depth = 2

program A;
var x: int;

procedure B;
procedure C;
…
x:=x+1;
…

end;{C}
…
x:=x+1;
…

end;{B}
…
x:=x+1;
…

end;{A}

Nesting depth of X in C: 2
Nesting depth of X in B: 1
Nesting depth of X in A: 0

Reference to X in C: (2, local-offset)

Reference to X in B: (1, local-offset)

Reference to X in A: (0, local-offset)

CS516 56

Example
program MAIN_2;
var X : integer;
procedure BIGSUB;

var A, B, C : integer;
procedure SUB1;

var A, D : integer;
begin { SUB1 }
A := B + C; <-----------------------1
end; { SUB1 }

procedure SUB2(X : integer);
var B, E : integer;
procedure SUB3;

var C, E : integer;
begin { SUB3 }
SUB1;
E := B + A: <--------------------2
end; { SUB3 }

begin { SUB2 }
SUB3;
A := D + E; <-----------------------3
end; { SUB2 }

begin { BIGSUB }
SUB2(7);
end; { BIGSUB }

begin
BIGSUB;
end. { MAIN_2 }

Call sequence:

MAIN_2 calls BIGSUB
BIGSUB calls SUB2
SUB2 calls SUB3
SUB3 calls SUB1

CS516 57

Example

Stack contents
at position 1:

See FIGURE 10.9 (p. 414)

program MAIN_2;
var X : integer;
procedure BIGSUB;

var A, B, C : integer;
procedure SUB1;

var A, D : integer;
begin { SUB1 }
A := B + C; <-----------------------1
end; { SUB1 }

procedure SUB2(X : integer);
var B, E : integer;
procedure SUB3;

var C, E : integer;
begin { SUB3 }
SUB1;
E := B + A: <--------------------2
end; { SUB3 }

begin { SUB2 }
SUB3;
A := D + E; <-----------------------3
end; { SUB2 }

begin { BIGSUB }
SUB2(7);
end; { BIGSUB }

begin
BIGSUB;
end. { MAIN_2 }

CS516 58

Example

Nonlocal references:

At position 1 in SUB1:
A - (0, 3)
B - (1, 4)
C - (1, 5)

At position 2 in SUB3:
E - (0, 4)
B - (1, 4)
A - (2, 3)

At position 3 in SUB2:
A - (1, 3)
D - an error
E - (0, 5)

program MAIN_2;
var X : integer;
procedure BIGSUB;

var A, B, C : integer;
procedure SUB1;

var A, D : integer;
begin { SUB1 }
A := B + C; <-----------------------1
end; { SUB1 }

procedure SUB2(X : integer);
var B, E : integer;
procedure SUB3;

var C, E : integer;
begin { SUB3 }
SUB1;
E := B + A: <--------------------2
end; { SUB3 }

begin { SUB2 }
SUB3;
A := D + E; <-----------------------3
end; { SUB2 }

begin { BIGSUB }
SUB2(7);
end; { BIGSUB }

begin
BIGSUB;
end. { MAIN_2 }

CS516 59

QUIZ: Static Chain

Stack contents?
(1) At position 2
(2) At position 3

program MAIN_2;
var X : integer;
procedure BIGSUB;

var A, B, C : integer;
procedure SUB1;

var A, D : integer;
begin { SUB1 }
A := B + C; <-----------------------1
end; { SUB1 }

procedure SUB2(X : integer);
var B, E : integer;
procedure SUB3;

var C, E : integer;
begin { SUB3 }
SUB1;
E := B + A: <--------------------2
end; { SUB3 }

begin { SUB2 }
SUB3;
A := D + E; <-----------------------3
end; { SUB2 }

begin { BIGSUB }
SUB2(7);
end; { BIGSUB }

begin
BIGSUB;
end. { MAIN_2 }

CS516 60

How to Maintain the Static Chain?

• During program execution!
• At a subprogram call:

– The static link (SL) must point to the most
recent ARI of the static parent.

11

CS516 61

Static Chain - Maintenance

• Method 1:
– Search the dynamic chain until the first ARI for the

static parent is found.
– Easy, but slow.

CS516 62

Static Chain - Maintenance

• Method 2:
– Treat subprogram declarations and calls like

variable declarations and references.

CS516 63

Static Chain - Maintenance

• Given a subprogram call to S:
– Have the compiler compute the nesting depth

between the caller and the subprogram that declared
S.

– Store this nesting depth and send it with the call.
– The SL of the S’ ARI is determined by moving

down the static chain of the caller the number of
static links equal to the nesting depth.

CS516 64

Example: Static Chain -
Maintenance

• At the call to SUB1
in SUB3, this
nesting-depth is 2,
which is sent to
SUB1 with the call.

• The static link in
the new ARI for
SUB1 is set to point
to the ARI that is
pointed to by the
second static link in
the static chain
from the ARI for
SUB3.

program MAIN_2;
var X : integer;
procedure BIGSUB;

var A, B, C : integer;
procedure SUB1;

var A, D : integer;
begin { SUB1 }
A := B + C; <-----------------------1
end; { SUB1 }

procedure SUB2(X : integer);
var B, E : integer;
procedure SUB3;

var C, E : integer;
begin { SUB3 }
SUB1;
E := B + A: <--------------------2
end; { SUB3 }

begin { SUB2 }
SUB3;
A := D + E; <-----------------------3
end; { SUB2 }

begin { BIGSUB }
SUB2(7);
end; { BIGSUB }

begin
BIGSUB;
end. { MAIN_2 }

CS516 65

Static Chain - Evaluation

• A nonlocal reference is slow.
– (Nesting-Depth or SD + 1) memory references!

• It is difficult to estimate the costs of nonlocal
references for time-critical (real-time)
programs.

CS516 66

2. Display

• The idea:
– Put the static links in an array called a display.
– Rather than being stored in the activation records.

12

CS516 67

Display

• The display contains a list of pointers to ARIs
in the stack.
– One for each active static depth (static nesting

level)!
– Display[i] = The most recent ARI of a subprogram

with static depth (SNL) i
• There are k+1 entries in the display where k is the static

depth of the currently executing subprogram units.
• k=0 is for the main program unit.

CS516 68

Example: Displayprogram MAIN_3;
procedure BIGSUB;

procedure SUB1;
…

end; {SUB1}
procedure SUB2;

procedure SUB3;
…

end; {SUB3}
…

end; {SUB2}
SUB2;

end; {BIGSUB}
BIGSUB;
end. {MAIN_3}

ARI for SUB2

ARI for BIGSUB 2
1

ARI for MAIN_3 0

Stack Display

CS516 69

How to Access Nonlocal Variables
Using Display

• A reference to a nonlocal variable X can be
represented by the pair (display_offset,
local_offset) where
– display_offset = The same as chain_offset.
– local_offset = The offset from the beginning of the

AR of the subprogram containing the declaration
for X.

CS516 70

How to Access Nonlocal Variables
Using Display

• Use the display_offset to get the pointer to the
correct ARI with the variable.
– Display[display-offset]

• Use the local_offset to get to the variable
within the ARI.
– Two memory references for any nonlocal

reference!

CS516 71

How to Maintain the Display?

• During program execution!
• At a subprogram call:

– Maintain the display condition:
– Display[i] = The most recent ARI of a subprogram

with static depth (SNL) i
• At a subprogram return:

– Maintain the display condition:
– Display[i] = The most recent ARI of a subprogram

with static depth (SNL) i
CS516 72

Example: Displayprogram MAIN_3;
procedure BIGSUB;

procedure SUB1;
…

end; {SUB1}
procedure SUB2;

procedure SUB3;
…

end; {SUB3}
SUB1;

end; {SUB2}
SUB2;

end; {BIGSUB}
BIGSUB;
end. {MAIN_3}

ARI for SUB2

ARI for BIGSUB 2
1

ARI for MAIN_3 0

Stack Display

MAIN3 calls BIGSUB calls SUB2

Calls SUB1?

13

CS516 73

Example: Displayprogram MAIN_3;
procedure BIGSUB;

procedure SUB1;
…

end; {SUB1}
procedure SUB2;

procedure SUB3;
…

end; {SUB3}
SUB1;

end; {SUB2}
SUB2;

end; {BIGSUB}
BIGSUB;
end. {MAIN_3}

ARI for SUB1

ARI for SUB2

ARI for BIGSUB 2
1

ARI for MAIN_3 0

Stack Display

MAIN3 calls BIGSUB calls SUB2
calls SUB1

CS516 74

Example: Displayprogram MAIN_3;
procedure BIGSUB;

procedure SUB1;
…

end; {SUB1}
procedure SUB2;

procedure SUB3;
…

end; {SUB3}
SUB1;

end; {SUB2}
SUB2;

end; {BIGSUB}
BIGSUB;
end. {MAIN_3}

ARI for SUB1

ARI for SUB2

ARI for BIGSUB 2
1

ARI for MAIN_3 0

Stack Display

MAIN3 calls BIGSUB calls SUB2
calls SUB1

Returns from SUB1?

CS516 75

Display - Maintenance

• At a call to subprogram P with static_depth k:
– Save in the new ARI for P a copy of the pointer

stored at position k in the display.
– Put the link to the ARI for P at position k in the

display.
• At an exit:

– Move the saved display pointer from the ARI for P
back into the display at position k.

CS516 76

QUIZ: Display?

program A;
procedure B;

procedure C;
B;

end; {C}
C;
end; {B}
B;
end. {A}

ARI for C

ARI for B 2
1

ARI for A 0

Stack Display

A calls B calls C

CS516 77

QUIZ: Display?

program A;
procedure B;

procedure C;
B;

end; {C}
C;
end; {B}
B;
end. {A}

A calls B calls C calls B

ARI for B

ARI for C

ARI for B 2
1

ARI for A 0

Stack Display
CS516 78

QUIZ: Display?

program A;
procedure B;

procedure C;
B;

end; {C}
C;
end; {B}
B;
end. {A}

A calls B calls C calls B

Returns from B?

ARI for C

ARI for B 2
1

ARI for A 0

Stack Display

14

CS516 79

Display

• The display can also be kept in registers if there
are enough.
– It speeds up access and maintenance.

CS516 80

Static Chain vs Display Methods

• References to locals
– Not much difference

• References to nonlocals
– If it is one level away, they are equal.
– If it is farther away, the display is faster.
– Display is better for time-critical code, because all

nonlocal references cost the same.

CS516 81

Static Chain vs Display Methods

• Procedure calls
– For one or two levels of depth, static chain is faster.
– Otherwise, the display is faster.

• Procedure returns
– Both have fixed time, but the static chain is slightly

faster.

CS516 82

Static Chain vs Display Methods

• Static chain is better:
– If …

• Display is better:
– If …

CS516 83

QUIZ: Static Chain vs Display
program MAIN_2;
var X : integer;
procedure BIGSUB;

var A, B, C : integer;
procedure SUB1;

var A, D : integer;
begin { SUB1 }
A := B + C; <-----------------------1
end; { SUB1 }

procedure SUB2(X : integer);
var B, E : integer;
procedure SUB3;

var C, E : integer;
begin { SUB3 }
SUB1;
E := B + A:
end; { SUB3 }

begin { SUB2 }
SUB3;
A := D + E;
end; { SUB2 }

begin { BIGSUB }
SUB2(7);
end; { BIGSUB }

begin
BIGSUB;
end. { MAIN_2 }

Call sequence:

MAIN_2 calls BIGSUB
BIGSUB calls SUB2
SUB2 calls SUB3
SUB3 calls SUB1

(1) Static chain?
(2) Display?

CS516 84

Implementing Dynamic Scoping

15

CS516 85

The Dynamic Scoping Rule

• Based on calling sequences of program units.
(The program’s dynamic flow of control)

• Not based on their textual layout (temporal
versus spatial).

CS516 86

The Dynamic Scoping Rule

• References to variables are connected to
declarations by searching back through the
chain of subprogram calls that forced execution
to this point.

• Find the most recently active block containing
the applied occurrence and a binding
occurrence.

CS516 87

Implementing Dynamic Scoping

1. Using Deep Access
2. Using Shallow Access

CS516 88

Deep Access

• Follow the dynamic chain!
– No need to maintain static links.

• Nonlocal references are found by searching all
the activation record instances on the stack
using the dynamic chain.

CS516 89

Deep Access vs Static Chain

• The deep access method:
– The length of chain cannot be statically

determined.
– Every activation record instance must store the

names of variables.

CS516 90

2. Shallow Access

• Put locals in a central place
• Method:

– One stack for each variable name.
– See Figure 10.12 (p. 422).

16

CS516 91

Deep Access vs Shallow Access

• Deep access:
– Slow access
– Fast calls and returns

• Shallow access:
– Fast access
– Slow calls and returns

CS516 92

Implementing Blocks

CS516 93

Blocks

• Blocks are entered and exited in strictly textual
order.
– No calls to blocks!

• Blocks can be treated as parameterless
subprograms that are always called from the
same place in the program.

CS516 94

Implementing Blocks

1. Treat blocks as parameterless subprograms
– Use activation records and static chains or display.

2. Allocate locals on top of the ARI of the
subprogram that contains the block.

– Must use a different method to access locals.
– A little more work for the compiler writer.

CS516 95

Example: Blocks

main() {
int x, y, z;
while (…) {

int a, b, c;
…
while (…) {

int d, e;
…

}
}
while (…) {
int f, g;
…
}

…
}

ARI for main

x

y
z

a & f
b & g

d
e

