



Approval body for construction products and types of construction

#### **Bautechnisches Prüfamt**

An institution established by the Federal and Laender Governments



# European Technical Assessment

# ETA-19/0670 of 29 October 2019

English translation prepared by DIBt - Original version in German language

#### **General Part**

Technical Assessment Body issuing the Deutsches Institut für Bautechnik European Technical Assessment: Trade name of the construction product Wedge anchor SMART S-BZ and SMART S-BZ IG Product family Mechanical fastener for use in concrete to which the construction product belongs Manufacturer pgb - Polska Sp. z o.o. ul. Fryderyka Wilhelma Redena 3 41-807 ZABRZE POLEN Manufacturing plant pgb-Polska plant 4 This European Technical Assessment 36 pages including 3 annexes which form an integral part contains of this assessment EAD 330232-00-0601 This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of



European Technical Assessment ETA-19/0670 English translation prepared by DIBt

Page 2 of 36 | 29 October 2019

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.



Page 3 of 36 | 29 October 2019

#### Specific Part

#### 1 Technical description of the product

The Wedge Anchor SMART S-BZ and SMART S-BZ IG is an fastener made of zinc plated steel, stainless steel or high corrosion resistant steel which is placed into a drilled hole and anchored by torque-controlled expansion. The following fastener types are covered:

- Fastener type Wedge Anchor SMART S-BZ with external thread, washer and hexagon nut, sizes M8 to M27,
- Fastener type Wedge Anchor SMART S-BZ IG S with internal thread, hexagon head nut and washer S-IG, sizes M6 to M12,
- Fastener type Wedge Anchor SMART S-BZ IG SK with internal thread, countersunk head screw and countersunk washer SK-IG, sizes M6 to M12,
- Fastener type Wedge Anchor SMART S-BZ IG B with internal thread, hexagon nut and washer MU-IG, sizes M6 to M12.

The product description is given in Annex A.

# 2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

#### 3 Performance of the product and references to the methods used for its assessment

#### 3.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                                                                 | Performance                                                         |
|------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Characteristic resistance to tension load (static and quasi-static loading)              | SMART S-BZ see Annex C1 to C4<br>SMART S-BZ IG see Annex C11 to C12 |
| Characteristic resistance to shear load (static and quasi-static loading)                | SMART S-BZ see Annex C5<br>SMART S-BZ IG see Annex C13              |
| Displacements (static and quasi-static loading)                                          | SMART S-BZ see Annex C9 to C10<br>SMART S-BZ IG see Annex C15       |
| Characteristic resistance and displacements for seismic performance categories C1 and C2 | SMART S-BZ see Annex C6, C9 and C10                                 |
| Durability                                                                               | See Annex B1                                                        |



#### **European Technical Assessment** ETA-19/0670

#### Page 4 of 36 | 29 October 2019

English translation prepared by DIBt

#### Safety in case of fire (BWR 2) 3.2

| Essential characteristic | Performance                                                  |
|--------------------------|--------------------------------------------------------------|
| Reaction to fire         | Class A1                                                     |
| Resistance to fire       | SMART S-BZ see Annex C7 to C8<br>SMART S-BZ IG see Annex C14 |

#### 4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-00-0601 the applicable European legal act is: [96/582/EC].

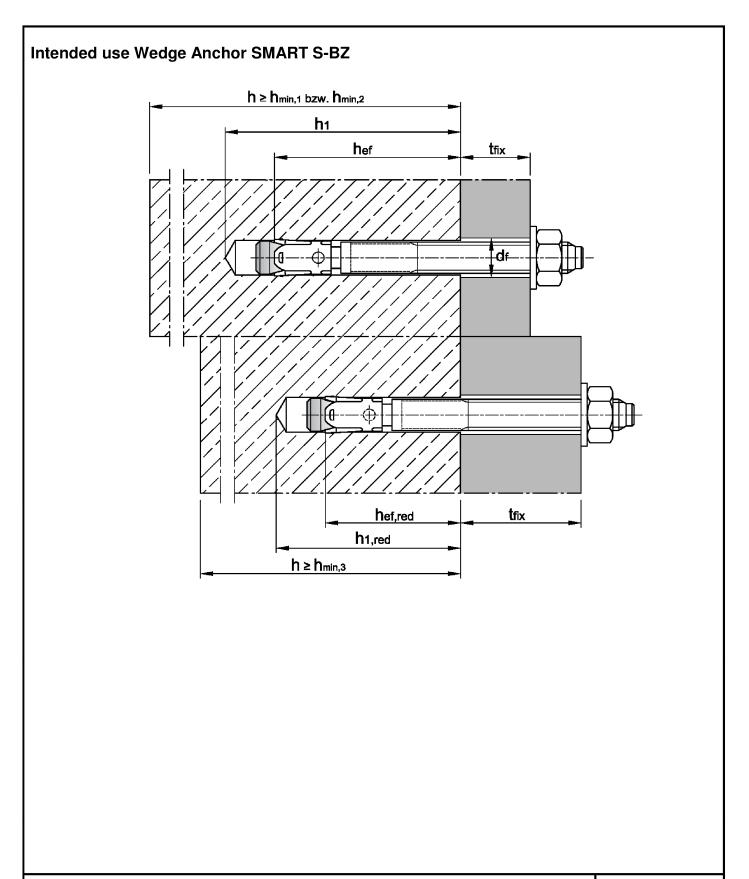
The system to be applied is: 1

#### 5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 29 October 2019 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department


beglaubigt: G. Lange

#### Page 5 of European Technical Assessment ETA-19/0670 of 29 October 2019



| Fastener version       | Product description             | Intended use                                    | Pe         | erformance                              |
|------------------------|---------------------------------|-------------------------------------------------|------------|-----------------------------------------|
| SMART S-BZ             | Annex A1 - Annex A4             | Annex B1 – Annex B7                             | Annex      | C1 – Annex C10                          |
| SMART S-BZ IG          | Annex A1<br>Annex A5 – Annex A7 | Anhang B1 – Anhang B2<br>Anhang B8 – Anhang B10 | Anhang (   | C11 – Anhang C15                        |
| Vedge Anchor SN        | IART S-BZ                       |                                                 |            |                                         |
| Conical bolt           | Expansion sleeve                | WasherH                                         | exagon nut |                                         |
|                        | <br>                            |                                                 | <u> </u>   | /18 to M20                              |
|                        |                                 |                                                 | <b></b> N  | //8 to M20                              |
| Vedge anchor SM        | ART S-BZ IG M6 to M12           | 2                                               | /∏ (       | //24 to M27<br>M27 zinc plated<br>only) |
| astener system         |                                 |                                                 |            |                                         |
| SMART<br>S-BZ IG S     |                                 | Washer                                          |            | Hexagon<br>head screw                   |
| SMART<br>S-BZ IG<br>SK | onical bolt                     | Countersunk washer                              |            | Countersunk<br>head screw               |
| SMART<br>S-BZ IG<br>B  | Expansion sleeve                | Washer Hexagon nut                              |            | nmerical<br>dard rod                    |
| Wedge Anchor SM        | ART S-BZ and SMART S-           | BZIG                                            |            |                                         |
| Theage Anchor SM       | ALL O'DE ANG SWALL S            |                                                 |            | Annex A1                                |





# Wedge Anchor SMART S-BZ

**Product description** Installation situation SMART S-BZ Annex A2

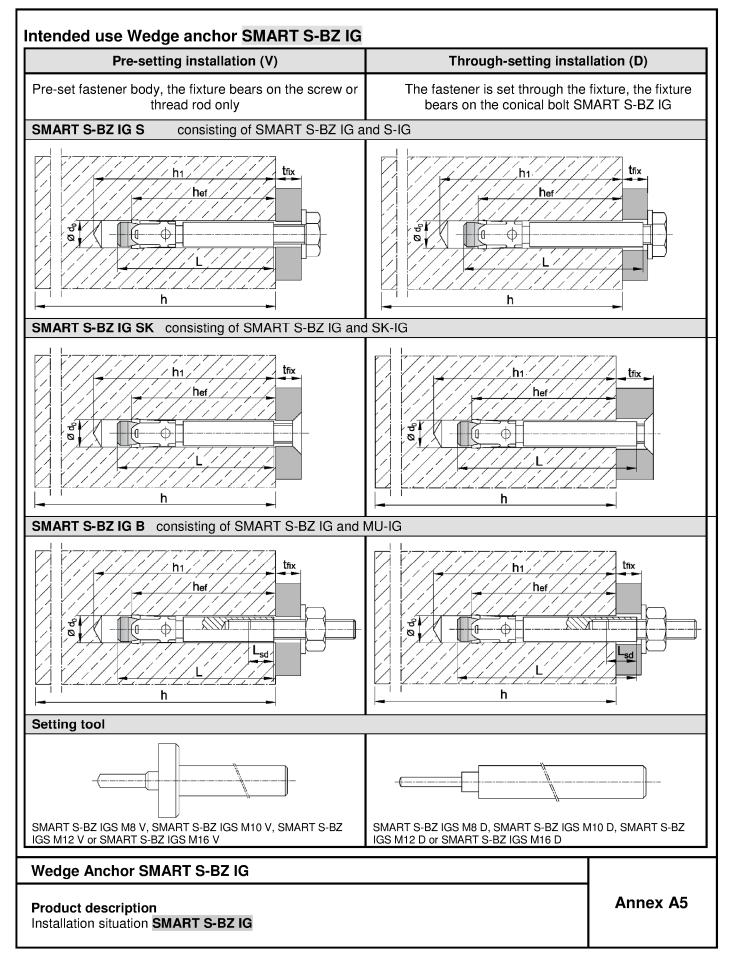


| Fastener size SMART S-                                                         | BZ M8      | to M20:  |            |                     |                   |                   |         |                                             |                                                                                                                    |                                                                       |            |                                                |
|--------------------------------------------------------------------------------|------------|----------|------------|---------------------|-------------------|-------------------|---------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------|------------------------------------------------|
| Marking 1 e.g.: ◇BZ 15                                                         | /35        |          |            |                     |                   |                   |         | Mark                                        | ing 1 e.q                                                                                                          | g.: 🔿                                                                 | BZ 15/3    | 5                                              |
| 1 2<br>⇒<br>⇒<br>↓<br>↓<br>↓<br>↓<br>↓<br>↓<br>↓<br>↓<br>↓<br>↓<br>↓<br>↓<br>↓ |            | on<br>L  |            | 3                   | a 4               | Markir<br>of leng |         | BZ<br>15<br>35<br>M8<br><u>Additi</u><br>A4 | identifyin<br>plant<br>fastener<br>max. thic<br>max. thic<br>thread di<br><u>onal mar</u><br>stainless<br>high cor | identity<br>ckness o<br>kness o<br>ameter<br><u>king</u> :<br>s steel | of fixture | for h <sub>ef</sub><br>for h <sub>ef,red</sub> |
| Marking 2 e.g.: 		BZ 15                                                        | ; <u> </u> |          |            | - Marking<br>anchor | g of<br>age depth | 1                 |         | Markir                                      | 1 <b>g 2</b> e.g.                                                                                                  | .: 🔷 E                                                                | SZ 15      |                                                |
|                                                                                |            | ↓↓<br>�書 | <          |                     |                   |                   |         | ∼ r                                         | dentifying<br>blant<br>astener ic                                                                                  |                                                                       | f manufa   | acturing                                       |
| Cold forme                                                                     | ad versio  |          | <          |                     |                   |                   |         | 15 m                                        | naximum                                                                                                            | thickne                                                               | ss of fixt | ure for h <sub>ef</sub>                        |
|                                                                                |            |          |            | Г                   |                   |                   |         | Additic                                     | nread dia<br>onal mark                                                                                             | <u>king:</u>                                                          |            |                                                |
|                                                                                |            | - 0      | <u> </u>   |                     |                   |                   |         |                                             | stainless<br>nigh corre                                                                                            |                                                                       | sistant s  | teel                                           |
| Free cut v                                                                     | ersion     |          |            |                     |                   |                   |         |                                             |                                                                                                                    |                                                                       |            |                                                |
| The cut vi                                                                     | 5131011    |          |            |                     | -                 |                   |         |                                             |                                                                                                                    |                                                                       |            |                                                |
|                                                                                |            |          | 07.        |                     |                   |                   |         |                                             | ng3 e.g                                                                                                            | •                                                                     |            |                                                |
| Fastener size SMART S-                                                         | BZ M24     | and M    | 27:        |                     | <b>—</b> —        |                   |         | $\sim$                                      | dentifying<br>plant                                                                                                |                                                                       | or manuta  | acturing                                       |
|                                                                                |            |          | E          |                     |                   |                   |         |                                             | astener i<br>hread dia                                                                                             |                                                                       |            |                                                |
|                                                                                |            |          |            |                     |                   | - 🎽               |         | 30 r                                        | naximum                                                                                                            | 1 thickne                                                             | ess of fix | ture                                           |
|                                                                                |            |          |            |                     | =                 | _₽                |         |                                             | onal marł<br>stainless                                                                                             |                                                                       |            |                                                |
|                                                                                |            |          |            |                     |                   |                   |         | HCR                                         | high corr                                                                                                          | osion re                                                              | sistant s  | teel                                           |
| Marking of length                                                              | C (c)      | D (d)    | E (e)      | F (f)               | G (g)             | H (h)             | I (i)   | J (j)                                       | K (k)                                                                                                              | L (I)                                                                 | M (m)      | N (n)                                          |
| Length of fastener min ≥                                                       | 63,5       | 76,2     | 88,9       | 101,6               | 114,3             | 127,0             | 139,7   | 152,4                                       | 165,1                                                                                                              | 177,8                                                                 | 190,5      | 203,2                                          |
| Length of fastener max <                                                       | 76,2       | 88,9     | 101,6      | 114,3               | 127,0             | 139,7             | 152,4   | 165,1                                       | 177,8                                                                                                              | 190,5                                                                 | 203,2      | 215,9                                          |
| Marking of length                                                              | O (o)      | Р (р)    | Q (q)      | R (r)               | S (s)             | T (t)             | U (u)   | V (v)                                       | W (w)                                                                                                              | X (x)                                                                 | Y (y)      | Z (z)                                          |
| Length of fastener min ≥                                                       | 215,9      | 228,6    | 241,3      | 254,0               | 279,4             | 304,8             | 330,2   | 355,6                                       | 381,0                                                                                                              | 406,4                                                                 | 431,8      | 457,2                                          |
| Length of fastener max <                                                       | 228,6      | 241,3    | 254,0      | 279,4               | 304,8             | 330,2             | 355,6   | 381,0                                       | 406,4                                                                                                              | 431,8                                                                 | 457,2      | 483,0                                          |
| Filling washer and reduc                                                       | ing ada    | apter fo | or filling | g the ar            | nnular g          | gap bet           | ween fa | astene                                      | r and fix                                                                                                          | cture                                                                 |            |                                                |
| 0                                                                              |            |          |            |                     |                   |                   |         |                                             |                                                                                                                    |                                                                       |            |                                                |
|                                                                                |            |          |            |                     |                   |                   |         |                                             |                                                                                                                    |                                                                       |            |                                                |
| 3b                                                                             |            | <b>-</b> |            |                     |                   |                   |         | }                                           |                                                                                                                    |                                                                       |            |                                                |
|                                                                                |            |          |            |                     |                   |                   |         |                                             |                                                                                                                    |                                                                       |            |                                                |
| Wedge Anchor SMAF                                                              | RT S-B     | Z        |            |                     |                   |                   |         |                                             |                                                                                                                    |                                                                       |            |                                                |
| <b>.</b>                                                                       |            |          |            |                     |                   |                   |         |                                             |                                                                                                                    |                                                                       | Anne       | v A2                                           |
| <b>Product description</b><br>Fastener sizes and mark                          | ina        |          |            |                     |                   |                   |         |                                             |                                                                                                                    |                                                                       | Anne       | Y HO                                           |
|                                                                                |            |          |            |                     |                   |                   |         |                                             |                                                                                                                    |                                                                       |            |                                                |
|                                                                                |            |          |            |                     |                   |                   |         |                                             |                                                                                                                    |                                                                       |            |                                                |



| Faste  | ener size      |                               |                                                               |                                                      | M8                                                            | M10                                              | М                       | 12                                                                                                                                     | M16                                          | M20                                                          | ) M24                                                 | ŀ                 | M27                                                              |  |           |
|--------|----------------|-------------------------------|---------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------|-------------------|------------------------------------------------------------------|--|-----------|
| Conic  | al bolt        |                               |                                                               | Thread                                               | M8                                                            | M10                                              | М                       | 12                                                                                                                                     | M16                                          | M20                                                          | ) M24                                                 | ŀ                 | M27                                                              |  |           |
|        |                |                               |                                                               | Ø d <sub>k</sub> =                                   | 7,9                                                           | 9,8                                              | 12                      | 2,0                                                                                                                                    | 15,7                                         | 19,7                                                         | ' 24                                                  |                   | 28                                                               |  |           |
|        |                | Steel, zinc p                 | olated                                                        | L                                                    | 65 + t <sub>fix</sub>                                         | 80 + t <sub>fix</sub>                            | 96,                     | 5+t <sub>fix</sub>                                                                                                                     | 118+t <sub>fix</sub>                         | 137+1                                                        | t <sub>fix</sub> 161+                                 | lfix              | 178+t <sub>fi</sub>                                              |  |           |
| Lengt  |                | A4, HCR                       |                                                               | L                                                    | 65 + t <sub>fix</sub>                                         | 80 + t <sub>fix</sub>                            | 96,                     | 5+t <sub>fix</sub>                                                                                                                     | 118+t <sub>fix</sub>                         | 137+1                                                        | t <sub>fix</sub> 168+                                 | lfix              | -                                                                |  |           |
| faster | her")          | reduced<br>anchorage          | depth                                                         | L <sub>hef,red</sub>                                 | 54 + t <sub>fix</sub>                                         | 60 + t <sub>fix</sub>                            | 76,                     | 5+t <sub>fix</sub>                                                                                                                     | 98+t <sub>fix</sub>                          | -                                                            | -                                                     |                   | _                                                                |  |           |
| Hexa   | gon nut        |                               |                                                               | SW                                                   | 13                                                            | 17                                               | 1                       | 9                                                                                                                                      | 24                                           | 30                                                           | 36                                                    |                   | 41                                                               |  |           |
|        |                | use of filling w<br>Materials |                                                               | he usable thick                                      | ness of fix                                                   | ture will rec                                    | luce 5                  | imm                                                                                                                                    |                                              |                                                              | Dim                                                   | ens               | ions in m                                                        |  |           |
|        |                |                               |                                                               | SMA                                                  | RT S-BZ                                                       |                                                  |                         | SM                                                                                                                                     | ART S-B                                      | Z A4                                                         | SMART                                                 | S-I               | BZ HCF                                                           |  |           |
| No.    | o. Part Steel, |                               | Steel, z                                                      | inc plate                                            | ed                                                            |                                                  | St                      | ainless s                                                                                                                              | teel                                         | High corrosion<br>resistant steel                            |                                                       |                   |                                                                  |  |           |
|        |                |                               | galvar                                                        | ni <b>zed</b> ≥ 5µm                                  | sherar                                                        | dized $\geq$ 40                                  | )µm                     |                                                                                                                                        | <b>A</b> 4                                   |                                                              |                                                       |                   |                                                                  |  |           |
| 1      | Conical        | bolt                          | <u>M8 to M</u><br>Cold for<br>machine<br>galvaniz<br>cone pla | med or<br>ed steel,                                  | <u>M8 to M</u><br>Cold for<br>machine<br>sherardi<br>cone pla | med or<br>ed steel,                              | d                       | Stainless steel         I           (e.g. 1.4401, 1.4404, 1.4578, 1.4571)         1.4578, 1.4571)           EN 10088:2014, I         I |                                              | 1.4529 or 1.4565,<br>EN 10088:2014,                          |                                                       | el<br>565,<br>14, |                                                                  |  |           |
|        | Threade        | d bolt                        | M24 and                                                       | 4 and M27: <u>M24 and M27:</u> steel, sherardized    |                                                               |                                                  | M24:<br>Stainless steel |                                                                                                                                        |                                              | M24:<br>High corrosion                                       |                                                       |                   |                                                                  |  |           |
|        | Threade        | d cone                        |                                                               | alvanized                                            | <u>M24 and</u><br>Steel, ga                                   | <u>d M27:</u><br>alvanized                       |                         | (e.g. 1.4401,<br>1.4404)<br>EN 10088:2014                                                                                              |                                              |                                                              | resistant steel 1.4529<br>or 1.4565,<br>EN 10088:2014 |                   |                                                                  |  |           |
| 2      | Expansi        | on sleeve                     | 1.4401)                                                       | .g. 1.4301 or<br>38:2014,<br><u>d M27</u> :<br>c. to | 1.4401)                                                       | .g. 1.4301<br>38:2014,<br><u>1 M27:</u><br>c. to | or                      | (e.g.<br>1.45                                                                                                                          | iless steel<br>1.4401, 1<br>71)<br>0088:2014 | .4404,                                                       | Stainless<br>(e.g. 1.44<br>1.4571)<br>EN 10088        | 01,               | 1.4404,                                                          |  |           |
| 3a     | Washer         |                               | Steel, g                                                      | alvanized                                            | Steel, zinc plated                                            |                                                  |                         |                                                                                                                                        | lless steel<br>1.4401,                       |                                                              | High corrosion<br>resistant steel 1.45                |                   |                                                                  |  |           |
| 3b     | Filling w      | asher                         |                                                               |                                                      |                                                               | ·                                                |                         | 1.45 <sup>-</sup><br>EN 1                                                                                                              | /1)<br>0088:2014                             | 4                                                            | or 1.4565<br>EN 10088                                 |                   | 14                                                               |  |           |
| 4      | Hexagor        | n nut                         | Steel, ga<br>coated                                           | alvanized,                                           | Steel, zi                                                     | , zinc plated                                    |                         | nc plated                                                                                                                              |                                              | Stainless steel<br>(e.g. 1.4401,<br>1.4571)<br>EN 10088:2014 |                                                       |                   | High corrosion<br>resistant steel<br>or 1.4565,<br>EN 10088:2014 |  | el 1.4529 |

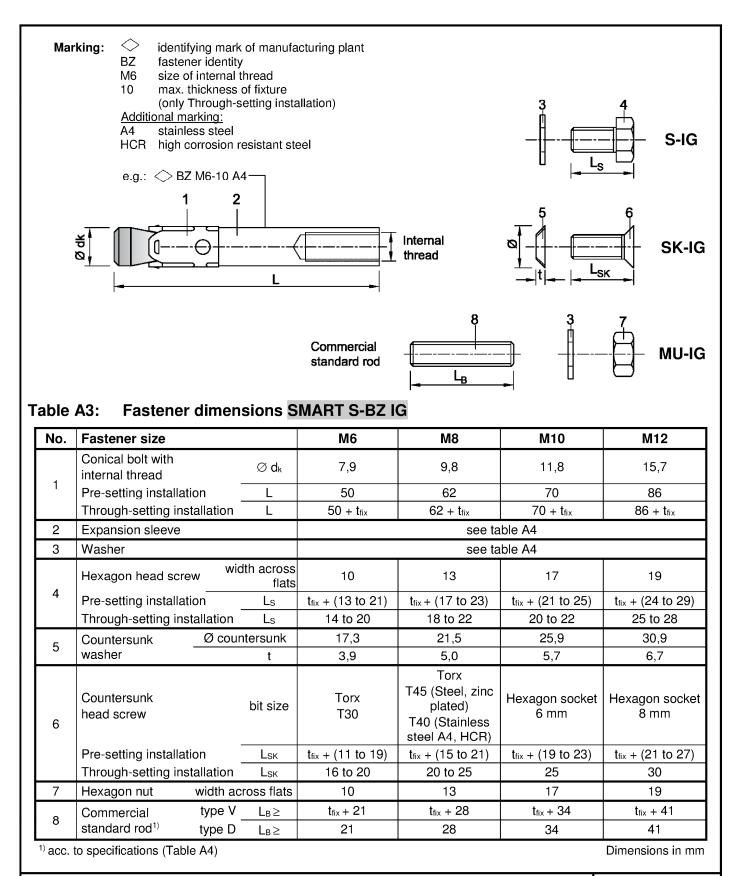
coated


# Table A1: Fastener dimensions SMART S-BZ

Wedge Anchor SMART S-BZ

**Product description** Dimensions and materials Annex A4

coated






#### Page 10 of European Technical Assessment ETA-19/0670 of 29 October 2019

English translation prepared by DIBt





Wedge Anchor SMART S-BZ IG

Product description

Fastener parts, marking and dimensions SMART S-BZ IG

Annex A6



|     |                                                       | SMART S-BZ IG                                                   | SMART S-BZ IG A4                                                                                     | SMART S-BZ IG HCR                                                                                                |  |
|-----|-------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|
| No. | Part                                                  | Steel, galvanized<br>≥ 5 µm acc. to<br>EN ISO 4042:1999         | Stainless steel A4                                                                                   | High corrosion resistant steel HCR                                                                               |  |
| 1   | Conical bolt SMART S-BZ<br>IG<br>with internal thread | Machined steel,<br>Cone plastic coated                          | Stainless steel<br>(e.g. 1.4401, 1.4404,<br>1.4571, 1.4362)<br>EN 10088:2014,<br>Cone plastic coated | High corrosion resistant<br>steel, 1.4529, 1.4565,<br>EN 10088:2014,<br>Cone plastic coated                      |  |
| 2   | Expansion sleeve SMART<br>S-BZ IG                     | Stainless steel<br>(e.g. 1.4301, 1.4401)<br>EN 10088:2014       | Stainless steel<br>(e.g. 1.4401, 1.4571)<br>EN 10088:2014                                            | Stainless steel<br>(e.g. 1.4401, 1.4571)<br>EN 10088:2014                                                        |  |
| 3   | Washer S-IG / MU-IG                                   | Steel, galvanized                                               | Stainless steel<br>(e.g. 1.4401, 1.4571)<br>EN 10088:2014                                            | High corrosion resistant<br>steel,<br>1.4529, 1.4565,<br>EN 10088:2014                                           |  |
| 4   | Hexagon head screw<br>S-IG                            | Steel, galvanized, coated                                       | Stainless steel<br>(e.g. 1.4401, 1.4571)<br>EN 10088:2014,<br>coated                                 | High corrosion resistant<br>steel,<br>1.4529, 1.4565,<br>EN 10088:2014,<br>coated                                |  |
| 5   | Countersunk washer<br>SK-IG                           | Steel, galvanized                                               | Stainless steel<br>(e.g. 1.4401, 1.4404,<br>1.4571)<br>EN 10088:2014,<br>zinc plated, coated         | High corrosion resistan<br>steel,<br>1.4529, 1.4565,<br>EN 10088:2014,<br>zinc plated, coated                    |  |
| 6   | Countersunk head screw<br>SK-IG                       | Steel, galvanized coated                                        | Stainless steel<br>(e.g. 1.4401, 1.4571)<br>EN 10088:2014,<br>coated                                 | High corrosion resistan<br>steel,<br>1.4529, 1.4565,<br>EN 10088:2014,<br>coated                                 |  |
| 7   | Hexagon nut<br>MU-IG                                  | Steel, galvanized coated                                        | Stainless steel<br>(e.g. 1.4401, 1.4571)<br>EN 10088:2014,<br>coated                                 | High corrosion resistan<br>steel,<br>1.4529, 1.4565,<br>EN 10088:2014,<br>coated                                 |  |
| 8   | Commercial standard rod                               | Property class 8.8,<br>EN ISO 898-1:2013<br>$A_5 > 8$ % ductile | Stainless steel<br>(e.g. 1.4401, 1.4571)<br>EN 10088:2014,<br>property class 70,<br>EN ISO 3506:2009 | High corrosion resistan<br>steel,<br>1.4529, 1.4565,<br>EN 10088:2014,<br>property class 70,<br>EN ISO 3506:2009 |  |

# Wedge Anchor SMART SMART S-BZ IG

Product description Materials SMART S-BZ IG Annex A7

# Page 12 of European Technical Assessment ETA-19/0670 of 29 October 2019

English translation prepared by DIBt



| Specifications of intended use                               |    |     |                       |     |     |     |     |
|--------------------------------------------------------------|----|-----|-----------------------|-----|-----|-----|-----|
| Wedge Anchor SMART S-BZ                                      |    |     |                       |     |     |     |     |
| Standard anchorage depth                                     | M8 | M10 | M12                   | M16 | M20 | M24 | M27 |
| Steel, galvanized                                            |    | ·   | ·                     | ~   | ·   | •   |     |
| Steel, sherardized                                           |    |     |                       | √   |     |     |     |
| Stainless steel A4 and<br>high corrosion resistant steel HCR |    |     | ١                     | /   |     |     | -   |
| Static or quasi-static action                                |    |     |                       | ✓   |     |     |     |
| Fire exposure                                                |    |     |                       | ✓   |     |     |     |
| Seismic action (C1 and C2) <sup>1)</sup>                     |    |     | ✓                     |     |     | -   | -   |
| Reduced anchorage depth 1)                                   | M8 | M10 | M12                   | M16 |     |     |     |
| Steel, galvanized                                            |    |     | ✓                     |     |     |     |     |
| Steel, sherardized                                           |    |     | ✓                     |     |     |     |     |
| Stainless steel A4 and<br>high corrosion resistant steel HCR |    |     | ✓                     |     |     |     |     |
| Static or quasi-static action                                |    |     | ✓                     |     |     |     |     |
| Fire exposure                                                |    |     | ✓                     |     |     |     |     |
| Seismic action (C1 and C2)                                   |    |     | -                     |     |     |     |     |
| <sup>)</sup> only cold formed anchors acc. to Annex A3       |    |     |                       |     | -   |     |     |
| Wedge Anchor SMART S-BZ IG                                   | M6 | M8  | M10                   | M12 |     |     |     |
| Steel, galvanized                                            |    |     | <ul> <li>✓</li> </ul> |     |     |     |     |
| Stainless steel A4 and<br>high corrosion resistant steel HCR |    |     | ✓                     |     |     |     |     |
| Static or quasi-static action                                |    |     | ✓                     |     |     |     |     |
| Fire exposure                                                |    |     | ✓                     |     |     |     |     |
| Seismic action (C1 and C2)                                   |    |     | -                     |     |     |     |     |

#### **Base materials:**

- Compacted, reinforced or unreinforced normal weight concrete (without fibers) according to EN 206:2013
- Strength classes C20/25 to C50/60 according to EN 206:2013
- · Cracked or uncracked concrete

#### Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (steel zinc plated, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure including industrial and marine environment or exposure to
  permanently damp internal condition, if no particular aggressive conditions exist
  (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions (high corrosion resistant steel)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used.)

## Wedge Anchor SMART S-BZ and SMART S-BZ IG

Intended use Specifications Annex B1

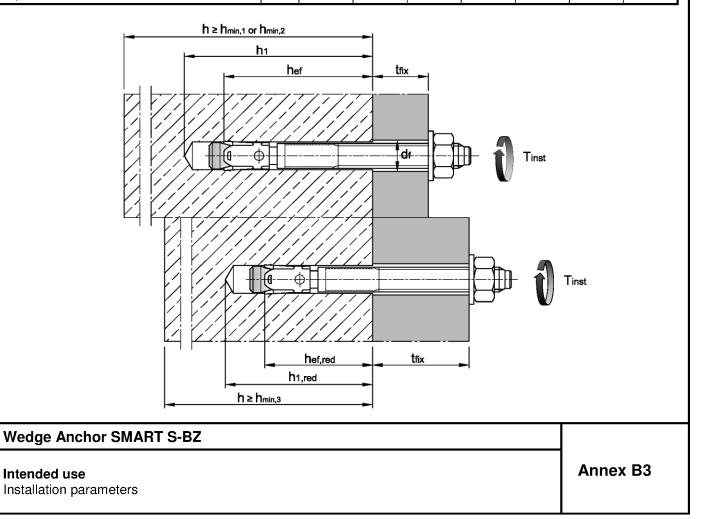


## Specifications of intended use

#### Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the fastener is indicated on the design drawings (e.g. position of the fastener relative to reinforcement or to supports, etc.).
- Dimensioning of fasteners under static or quasi-static action, seismic action or fire exposure according to EN 1992-4: 2018 in conjunction with TR 055

#### Installation:


- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Hole drilling by hammer drill bit or vacuum drill bit
- Use of the fastener only as supplied by the manufacturer without exchanging the components of the fastener
- Optionally, the annular gap between fixture and stud of the SMART S-BZ can be filled to reduce the hole. For this purpose, the filling washer (3b) must be used in addition to the supplied washer (3a). For filling use high-strength mortar with compressive strength ≥ 50N/mm<sup>2</sup>.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application

#### Wedge Anchor SMART S-BZ and SMART S-BZ IG

Intended use Specifications Annex B2



| Table B1:                        | Installation par           | ameter                  | s, SM | ART S- | BZ    |      |      |       |       |       |
|----------------------------------|----------------------------|-------------------------|-------|--------|-------|------|------|-------|-------|-------|
| Fastener siz                     | e                          |                         |       | M8     | M10   | M12  | M16  | M20   | M24   | M27   |
| Nominal drill I                  | nole diameter              | $d_0$                   | [mm]  | 8      | 10    | 12   | 16   | 20    | 24    | 28    |
| Cutting diame                    | eter of drill bit          | $d_{\text{cut}} \leq$   | [mm]  | 8,45   | 10,45 | 12,5 | 16,5 | 20,55 | 24,55 | 28,55 |
|                                  | Steel, galvanized          | T <sub>inst</sub>       | [Nm]  | 20     | 25    | 45   | 90   | 160   | 200   | 300   |
| Installation torque              | Steel, sherardized         | T <sub>inst</sub>       | [Nm]  | 16     | 22    | 40   | 90   | 160   | 260   | 300   |
| loique                           | Stainless steel A4, HCR    | T <sub>inst</sub>       | [Nm]  | 20     | 35    | 50   | 110  | 200   | 290   | -     |
| Diameter of c<br>hole in the fix |                            | $d_{\rm f} \leq$        | [mm]  | 9      | 12    | 14   | 18   | 22    | 26    | 30    |
| Standard and                     | chorage depth              |                         |       |        |       | -    |      |       |       |       |
| Depth of                         | Steel, zinc plated         | $h_1 \geq$              | [mm]  | 60     | 75    | 90   | 110  | 125   | 145   | 160   |
| drill hole                       | Stainless steel A4,<br>HCR | $h_1 \geq$              | [mm]  | 60     | 75    | 90   | 110  | 125   | 155   | -     |
| Effective                        | Steel, zinc plated         | h <sub>ef</sub>         | [mm]  | 46     | 60    | 70   | 85   | 100   | 115   | 125   |
| anchorage<br>depth               | Stainless steel A4,<br>HCR | h <sub>ef</sub>         | [mm]  | 46     | 60    | 70   | 85   | 100   | 125   | -     |
| Reduced and                      | chorage depth              |                         |       |        |       |      |      |       |       |       |
| Depth of drill                   | hole                       | $h_{1,\text{red}} \geq$ | [mm]  | 49     | 55    | 70   | 90   |       |       |       |
| Reduced effe depth               | ctive anchorage            | h <sub>ef,red</sub>     | [mm]  | 35     | 40    | 50   | 65   | -     | -     | -     |

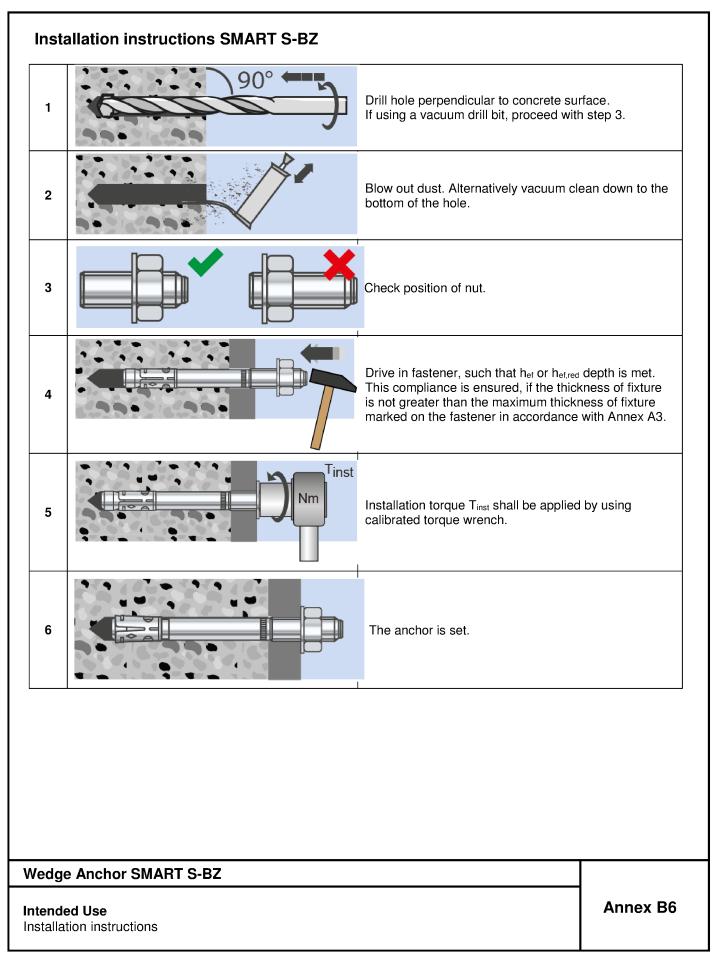




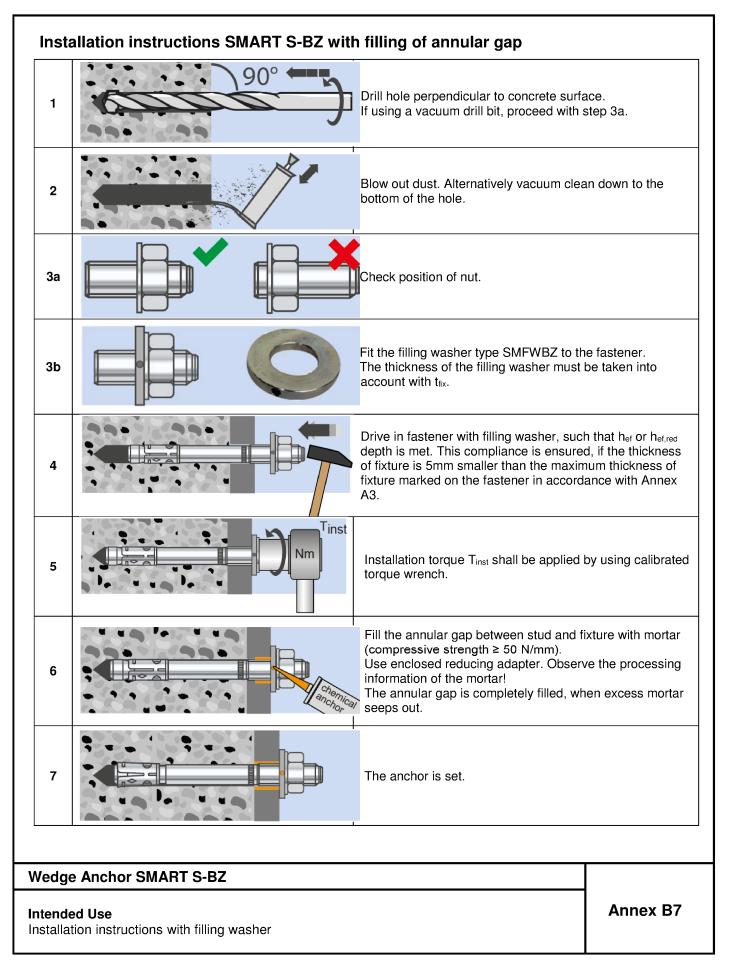
| Fastener size                         |                                         |              | M8  | M10      | M12      | M16       | M20        | M24     | M27 |
|---------------------------------------|-----------------------------------------|--------------|-----|----------|----------|-----------|------------|---------|-----|
| Standard thickness of concrete        | e member                                |              |     | -        |          |           |            | -       | -   |
| Steel zinc plated                     |                                         |              |     |          |          |           |            |         |     |
| Standard thickness of member          | h <sub>min,1</sub>                      | [mm]         | 100 | 120      | 140      | 170       | 200        | 230     | 250 |
| Cracked concrete                      |                                         |              |     | 1        |          |           | I          | 1       | 1   |
| Minimum spacing                       | Smin                                    | [mm]         | 40  | 45       | 60       | 60        | 95         | 100     | 125 |
|                                       | für c ≥                                 | [mm]         | 70  | 70       | 100      | 100       | 150        | 180     | 300 |
| Vinimum edge distance                 | Cmin                                    | [mm]         | 40  | 45       | 60       | 60        | 95         | 100     | 180 |
|                                       | für s ≥                                 | [mm]         | 80  | 90       | 140      | 180       | 200        | 220     | 540 |
| Jncracked concrete                    | <b>C</b> .                              | [mm]         | 40  | 45       | 60       | 65        | 90         | 100     | 125 |
| Vinimum spacing                       | s <sub>min</sub><br>für c ≥             | [mm]<br>[mm] | 80  | 70       | 120      | 120       | 180        | 180     | 300 |
|                                       | Cmin                                    | [mm]         | 50  | 50       | 75       | 80        | 130        | 100     | 180 |
| Vinimum edge distance                 | für s ≥                                 | [mm]         | 100 | 100      | 150      | 150       | 240        | 220     | 540 |
| Stainless steel A4, HCR               |                                         | []           |     | 100      | 100      |           | 2.0        | 0       | 0.0 |
| Standard thickness of member          | h <sub>min,1</sub>                      | [mm]         | 100 | 120      | 140      | 160       | 200        | 250     | -   |
| Cracked concrete                      | • • • • • • • • • • • • • • • • • • • • | L]           |     | 3        |          |           |            |         | 1   |
|                                       | Smin                                    | [mm]         | 40  | 50       | 60       | 60        | 95         | 125     |     |
| Minimum spacing                       | für c ≥                                 | [mm]         | 70  | 75       | 100      | 100       | 150        | 125     |     |
|                                       | Cmin                                    | [mm]         | 40  | 55       | 60       | 60        | 95         | 125     | 1 - |
| Minimum edge distance                 | für s ≥                                 | [mm]         | 80  | 90       | 140      | 180       | 200        | 125     |     |
| Uncracked concrete                    |                                         |              |     |          |          |           |            |         |     |
| Minimum spacing                       | Smin                                    | [mm]         | 40  | 50       | 60       | 65        | 90         | 125     |     |
| winning spacing                       | für c ≥                                 | [mm]         | 80  | 75       | 120      | 120       | 180        | 125     |     |
| Minimum edge distance                 | Cmin                                    | [mm]         | 50  | 60       | 75       | 80        | 130        | 125     | _   |
| Minimum edge distance                 | für s ≥                                 | [mm]         | 100 | 120      | 150      | 150       | 240        | 125     |     |
| Minimum thickness of concret          | e member                                |              |     |          |          |           |            |         |     |
| Steel zinc plated, stainless ste      | el A4, HC                               | R            |     |          |          |           |            |         |     |
| Minimum thickness of member           | h <sub>min,2</sub>                      | [mm]         | 80  | 100      | 120      | 140       | -          | -       | -   |
| Cracked concrete                      |                                         |              |     | 1        |          |           | I          | 1       |     |
| Minimum spacing                       | Smin                                    | [mm]         | 40  | 45       | 60       | 70        |            |         |     |
| g                                     | für c ≥                                 | [mm]         | 70  | 90       | 100      | 160       | -          | -       | -   |
| Minimum edge distance                 | Cmin                                    | [mm]         | 40  | 50       | 60       | 80        |            |         |     |
| -                                     | für s ≥                                 | [mm]         | 80  | 115      | 140      | 180       |            |         |     |
| Uncracked concrete                    | -                                       | [mama]       | 40  | <u> </u> | <u> </u> | 00        |            | 1       | 1   |
| Minimum spacing                       | Smin                                    | [mm]         | 40  | 60       | 60       | 80        |            |         |     |
|                                       | für c ≥                                 | [mm]         | 80  | 140      | 120      | 180       | -          | -       | -   |
| Minimum edge distance                 | Cmin                                    | [mm]         | 50  | 90       | 75       | 90        |            |         |     |
| -                                     | für s ≥                                 | [mm]         | 100 | 140      | 150      | 200       |            |         |     |
| Fire exposure from one side           |                                         |              | -   |          | -        |           |            |         |     |
| Minimum spacing                       | Smin,fi                                 | [mm]         |     |          |          |           | ient tempe |         |     |
| Minimum edge distance                 | Cmin,fi                                 | [mm]         |     | -        | See no   | ormal amb | ient tempe | erature |     |
| Fire exposure from more than          | one side                                |              |     |          |          |           |            |         |     |
| Minimum spacing                       | Smin,fi                                 | [mm]         |     |          | See no   |           | ient tempe | erature |     |
| Minimum edge distance                 | Cmin,fi                                 | [mm]         |     |          |          | ≥ 300     | mm         |         |     |
| termediate values by linear interpola | ation.                                  |              |     |          |          |           |            |         |     |
| Wedge Anchor SMART S-I                | BZ                                      |              |     |          |          |           |            |         |     |
|                                       |                                         |              |     |          |          |           |            |         |     |



# Table B3:Minimum spacings and edge distances, reduced anchorage depth,SMART S-BZ


| Fastener size                         |                    |      | M8  | M10            | M12             | M16 |
|---------------------------------------|--------------------|------|-----|----------------|-----------------|-----|
| Minimum thickness of concrete member  | h <sub>min,3</sub> | [mm] | 80  | 80             | 100             | 140 |
| Cracked concrete                      |                    |      |     |                |                 |     |
| Minimum anaging                       | Smin               | [mm] | 50  | 50             | 50              | 65  |
| Minimum spacing                       | für c ≥            | [mm] | 60  | 100            | 160             | 170 |
| Minimum odgo distonoo                 | Cmin               | [mm] | 40  | 65             | 65              | 100 |
| Minimum edge distance                 | für s ≥            | [mm] | 185 | 180            | 250             | 250 |
| Uncracked concrete                    |                    |      |     |                |                 |     |
| Minimum angoing                       | Smin               | [mm] | 50  | 50             | 50              | 65  |
| Minimum spacing                       | für c ≥            | [mm] | 60  | 100            | 160             | 170 |
| Minimum odgo diotopoo                 | Cmin               | [mm] | 40  | 65             | 100             | 170 |
| Minimum edge distance                 | für s ≥            | [mm] | 185 | 180            | 185             | 65  |
| Fire exposure from one side           |                    |      |     |                | -               |     |
| Minimum spacing                       | Smin,fi            | [mm] | :   | See normal amb | ient temperatur | e   |
| Minimum edge distance                 | Cmin,fi            | [mm] |     | See normal amb | ient temperatur | e   |
| Fire exposure from more than one side | •                  |      |     |                |                 |     |
| Minimum spacing                       | Smin,fi            | [mm] |     | See normal amb | ient temperatur | e   |
| Minimum edge distance                 | Cmin,fi            | [mm] |     | ≥ 300          | ) mm            |     |

Intermediate values by linear interpolation.


## Wedge Anchor SMART S-BZ

Intended use Minimum spacings and edge distances for reduced anchorage depth Annex B5











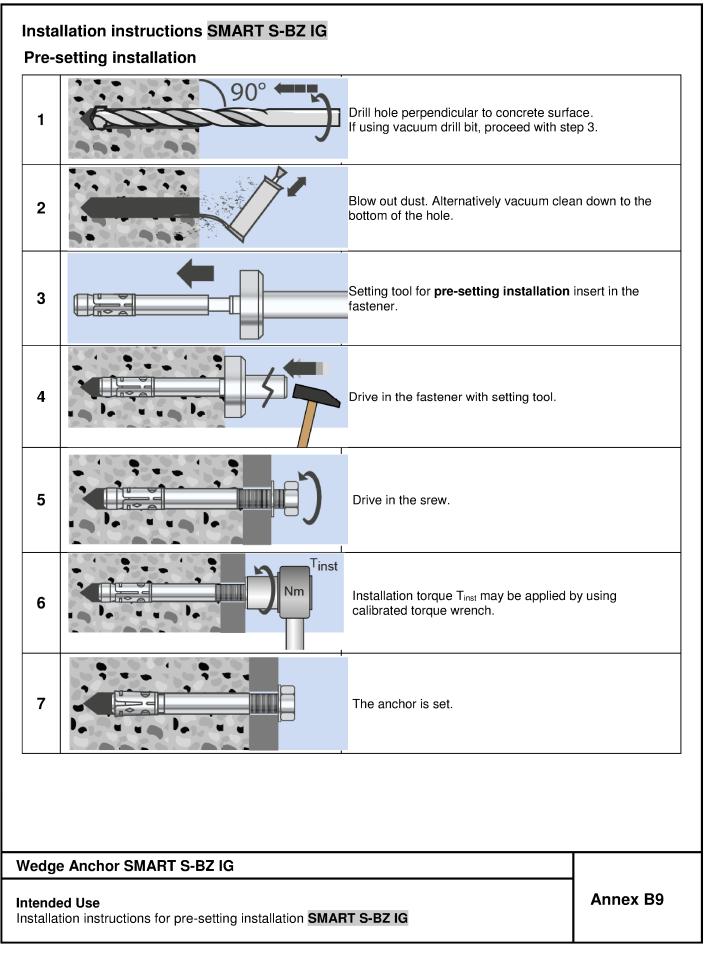
| able B4: Installation parameter                 | ers 51             | MART S                      | -BZ IC | 4    |       |      |      |
|-------------------------------------------------|--------------------|-----------------------------|--------|------|-------|------|------|
| Fastener size                                   |                    |                             |        | M6   | M8    | M10  | M12  |
| Effective anchorage depth                       |                    | h <sub>ef</sub>             | [mm]   | 45   | 58    | 65   | 80   |
| Drill hole diameter                             |                    | $d_0$                       | [mm]   | 8    | 10    | 12   | 16   |
| Cutting diameter of drill bit                   |                    | $d_{\text{cut}} \leq$       | [mm]   | 8,45 | 10,45 | 12,5 | 16,5 |
| Depth of drill hole                             |                    | $h_1 \geq$                  | [mm]   | 60   | 75    | 90   | 105  |
| Screwing depth of threaded rod                  |                    | $L_{\text{sd}}{}^{2)} \geq$ | [mm]   | 9    | 12    | 15   | 18   |
|                                                 |                    | S                           | [Nm]   | 10   | 30    | 30   | 55   |
| Installation torque,<br>steel zinc plated       | T <sub>inst</sub>  | SK                          | [Nm]   | 10   | 25    | 40   | 50   |
|                                                 |                    | В                           | [Nm]   | 8    | 25    | 30   | 45   |
|                                                 |                    | S                           | [Nm]   | 15   | 40    | 50   | 100  |
| Installation torque,<br>stainless steel A4, HCR | Tinst              | SK                          | [Nm]   | 12   | 25    | 45   | 60   |
| Stamless steel A4, HOR                          |                    | В                           | [Nm]   | 8    | 25    | 40   | 80   |
| Pre-setting installation                        |                    |                             |        |      |       |      |      |
| Diameter of clearance hole in the fixture       |                    | $d_{\rm f} \leq$            | [mm]   | 7    | 9     | 12   | 14   |
|                                                 |                    | S                           | [mm]   | 1    | 1     | 1    | 1    |
| Minimum thickness of fixture                    | t <sub>fix</sub> ≥ | SK                          | [mm]   | 5    | 7     | 8    | 9    |
|                                                 |                    | В                           | [mm]   | 1    | 1     | 1    | 1    |
| Through-setting installation                    |                    |                             |        |      |       |      |      |
| Diameter of clearance hole in the fixture       |                    | $d_{\rm f} \leq$            | [mm]   | 9    | 12    | 14   | 18   |
|                                                 |                    | S                           | [mm    | 5    | 7     | 8    | 9    |
| Minimum thickness of fixture 1)                 | t <sub>fix</sub> ≥ | SK                          | [mm]   | 9    | 12    | 14   | 16   |
|                                                 |                    | В                           | [mm]   | 5    | 7     | 8    | 9    |

<sup>1)</sup> The minimum thickness of fixture can be reduced to the value of Pre-setting installation, if the shear load at steel failure is designed with lever arm.

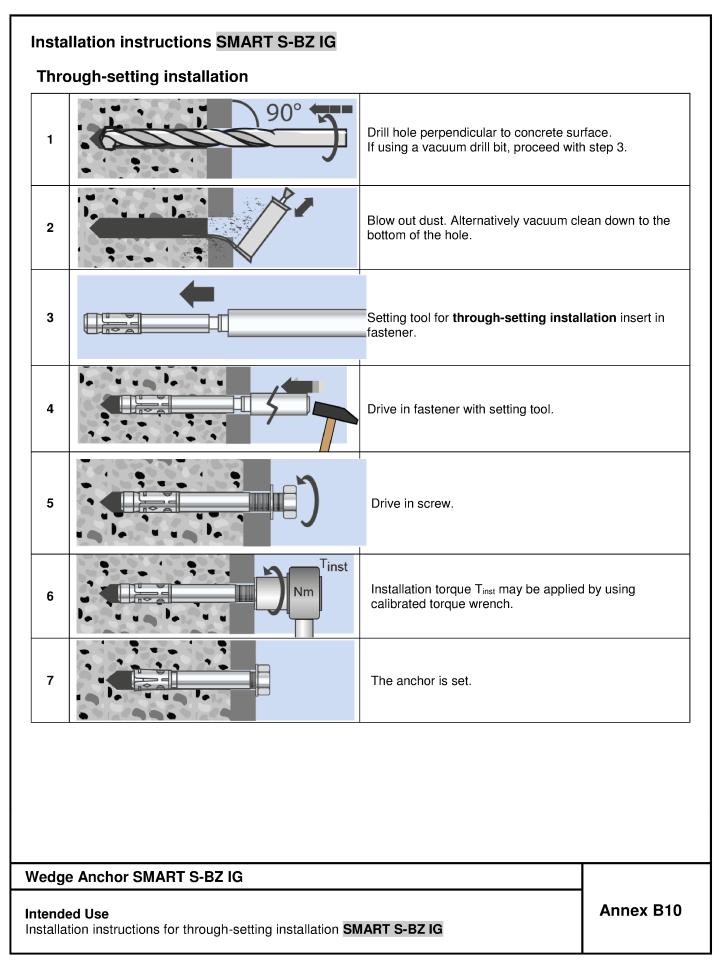
<sup>2)</sup> see Annex A5

# Table B5: Minimum spacings and edge distances SMART S-BZ IG

| Fastener size                         |                  |      | M6  | M8         | M10         | M12 |
|---------------------------------------|------------------|------|-----|------------|-------------|-----|
| Minimum thickness of concrete member  | h <sub>min</sub> | [mm] | 100 | 120        | 130         | 160 |
| Cracked concrete                      |                  |      |     |            |             |     |
| Minimum angoing                       | Smin             | [mm] | 50  | 60         | 70          | 80  |
| Minimum spacing                       | für c ≥          | [mm] | 60  | 80         | 100         | 120 |
| Minimum odgo distance                 | Cmin             | [mm] | 50  | 60         | 70          | 80  |
| Minimum edge distance                 | für s ≥          | [mm] | 75  | 100        | 100         | 120 |
| Uncracked concrete                    |                  |      |     |            |             |     |
| Minimum opening                       | Smin             | [mm] | 50  | 60         | 65          | 80  |
| Minimum spacing                       | für c ≥          | [mm] | 80  | 100        | 120         | 160 |
| Minimum edge distance                 | Cmin             | [mm] | 50  | 60         | 70          | 100 |
| Minimum edge distance                 | für s ≥          | [mm] | 115 | 155        | 170         | 210 |
| Fire exposure from one side           |                  |      |     |            |             |     |
| Minimum spacing                       | Smin,fi          | [mm] |     | See normal | temperature |     |
| Minimum edge distance                 | Cmin,fi          | [mm] |     | See normal | temperature |     |
| Fire exposure from more than one side |                  |      |     |            |             |     |
| Minimum spacing                       | Smin,fi          | [mm] |     | See normal | temperature |     |
| Minimum edge distance                 | Cmin,fi          | [mm] |     | ≥ 300      | ) mm        |     |


# Wedge Anchor SMART S-BZ IG

#### Intended use


Installation parameters, minimum spacings and edge distances SMART S-BZ IG

Annex B8











| Fastener size                                           |                     |      | M8               | M10 | M12 | M16                                    | M20 | M24 | M27 |
|---------------------------------------------------------|---------------------|------|------------------|-----|-----|----------------------------------------|-----|-----|-----|
| Installation factor                                     | γinst               | [-]  |                  |     |     | 1,0                                    |     | ^   |     |
| Steel failure                                           |                     |      |                  |     |     |                                        |     |     |     |
| Characteristic resistance                               | N <sub>Rk,s</sub>   | [kN] | 16               | 27  | 40  | 60                                     | 86  | 126 | 196 |
| Partial factor                                          | γMs                 | [-]  | 1,               | 53  | 1   | ,5                                     | 1,6 | 1   | ,5  |
| Pull-out                                                |                     |      |                  | -   |     | -                                      |     | -   |     |
| Standard anchorage depth                                |                     |      |                  |     |     |                                        |     |     |     |
| Characteristic resistance in<br>cracked concrete C20/25 | N <sub>Rk,p</sub>   | [kN] | 5                | 9   | 16  | 25                                     | 1)  | 1)  | 1)  |
| Reduced anchorage depth                                 |                     |      |                  |     |     |                                        | •   |     |     |
| Characteristic resistance in<br>cracked concrete C20/25 | N <sub>Rk,p</sub>   | [kN] | 5                | 7,5 | 1)  | 1)                                     | -   | -   | -   |
| Increasing factor for $N_{Rk,p}$                        | ψс                  | [-]  |                  |     |     | $\left(\frac{f_{ck}}{20}\right)^{0,5}$ |     |     |     |
| Concrete cone failure                                   |                     |      |                  |     |     |                                        |     |     |     |
| Effective anchorage depth                               | h <sub>ef</sub>     | [mm] | 46               | 60  | 70  | 85                                     | 100 | 115 | 125 |
| Reduced anchorage depth                                 | $h_{\text{ef,red}}$ | [mm] | 35 <sup>2)</sup> | 40  | 50  | 65                                     | -   | -   | -   |
| Factor for cracked concrete                             | $k_1 = k_{cr,N}$    | [-]  |                  |     |     | 7,7                                    | -   |     | -   |

<sup>1)</sup> Pull-out is not decisive

<sup>2)</sup> Use restricted to anchoring of structural components which are statically indeterminate and subject to internal exposure conditions only

# Wedge Anchor SMART S-BZ

#### Performance

Characteristic values for tension loads, SMART S-BZ zinc plated, cracked concrete, static and quasi-static action



#### Table C2: Characteristic values for tension loads, SMART S-BZ A4 / HCR, cracked concrete, static and quasi-static action Μ8 M10 M12 M16 M20 M24 **Fastener size** 1,0 Installation factor [-] γinst Steel failure $N_{\mathsf{Rk},\mathsf{s}}$ Characteristic resistance [kN] 16 27 40 64 108 110 Partial factor [-] 1,5 1,68 1,5 γMs Pull-out Standard anchorage depth Characteristic resistance in 1) $N_{\mathsf{Rk},\mathsf{p}}$ [kN] 5 9 16 25 40 cracked concrete C20/25 **Reduced anchorage depth** Characteristic resistance in 1) 1) $\mathbf{N}_{\mathsf{Rk},\mathsf{p}}$ [kN] 5 7,5 cracked concrete C20/25 0,5 $\left(\frac{f_{ck}}{20}\right)$ Increasing factor for NRK,p ψc [-] Concrete cone failure Effective anchorage depth h<sub>ef</sub> [mm] 46 60 70 85 100 125 35 <sup>2)</sup> 40 50 65 Reduced anchorage depth $h_{\text{ef,red}}$ [mm] \_ \_ Factor for cracked concrete 7,7 $k_1 = k_{cr,N}$ [-]

1) Pull-out is not decisive

<sup>2)</sup> Use restricted to anchoring of structural components which are statically indeterminate and subject to internal exposure conditions only

## Wedge Anchor SMART S-BZ

#### Performance

Characteristic values for tension loads, SMART S-BZ A4 / HCR, cracked concrete, static and quasi-static action



| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fastener size                                                                                                                           |                      |             | M8                  | M10          | M12             | M16                                    | M20                 | M24                 | M27   |   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------|---------------------|--------------|-----------------|----------------------------------------|---------------------|---------------------|-------|---|
| Steel failure         Characteristic resistance $N_{BK,0}$ [KN]       16       27       40       60       86       126       19         Partial factor $\gamma_{ME}$ []       1,53       1,5       1,6       1,5         Standard anchorage depth         Characteristic resistance in uncracked concrete C20/25 $N_{BK,p}$ [KN]       7,5       9       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       1')       Characteristic resistance in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Installation factor                                                                                                                     | γinst                | [-]         |                     |              |                 | 1,0                                    |                     | 1                   |       |   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Steel failure                                                                                                                           |                      |             |                     |              |                 |                                        |                     |                     |       |   |
| Pull-outStandard anchorage depthCharacteristic resistance in<br>uncracked concrete C20/25 $N_{Rk,p}$ $[kN]$ 12162535101111Reduced anchorage depthCharacteristic resistance in<br>uncracked concrete C20/25 $N_{Rk,p}$ $[kN]$ 7,591111SplittingStandard anchorage depthSandard thickness of concrete member (The higher resistance of case 1 and case 2 may be applied;<br>cover may be intervity interplotted for the member thickness $h_{min,2} < h_{min,1}$ (Case 2); $\psi_{hoge} = 1.0$ ).Standard thickness of concrete member (The higher resistance of case 1 and case 2 may be applied;<br>cover may be intervity interplotted for the member thickness $h_{min,2} < h_{min,1}$ (Case 2); $\psi_{hoge} = 1.0$ )Standard anchorage depthCharacteristic resistance in<br>uncracked concrete C20/25 $N^0_{Rk,gp}$ $[kN]$ 91220304062,350Carso [mm]2 her2,2 her1,5 her2,5Splitting for minimum thickness of concrete memberMinimum thickness of concrete memberMinimum thickness of concrete $h_{min,2 < [mm]$ 80100120140Characteristic resistance<br>in uncracked concrete C20/25 $N^0_{Rk,gp}$ $[kN]$ 12162535Splitting for minimum thickness of concrete $h_{min,2 < [mm]$ 80 <t< td=""><td>Characteristic resistance</td><td>N<sub>Rk,s</sub></td><td>[kN]</td><td>16</td><td>27</td><td>40</td><td>60</td><td>86</td><td>126</td><td>196</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Characteristic resistance                                                                                                               | N <sub>Rk,s</sub>    | [kN]        | 16                  | 27           | 40              | 60                                     | 86                  | 126                 | 196   |   |
| Standard anchorage depthCharacteristic resistance in<br>uncracked concrete C20/25 $N_{Bk,p}$ $[KN]$ 121625351)1)1)Reduced anchorage depthCharacteristic resistance in<br>uncracked concrete C20/25 $N_{Bk,p}$ $[KN]$ 7,591)1)Standard anchorage depthStandard thickness of concrete member (The higher resistance of case 1 and case 2 may be applied;<br>tar,g may be linearly interpolated for the member thickness heat, 2 <h (case="" 1="" 2);="" <="" <math="" here,="">\psi_{h,s,p}= 1,0))Standard thickness of concrete hem.1 2(Inm)10012014017020023025Case 1Characteristic resistance in<br/>uncracked concrete C20/25<math>N^0_{Bk,sp}</math><math>[KN]</math>91220304062,350Edge distance<br/>car.sp<math>C_{ar.sp}</math><math>[mm]</math>1,5 herCharacteristic resistance<br/>in uncracked concrete C20/25<math>N^0_{Bk,sp}</math><math>[KN]</math>1216253550,562,370,Characteristic resistance<br/>in uncracked concrete C20/25<math>N^0_{Bk,sp}</math><math>[KN]</math>1216253550,562,370,Characteristic resistance<br/>in uncracked concrete C20/25<math>N^0_{Bk,sp}</math><math>[KN]</math>12162535Characteristic resistance<br/>in uncracked concrete C20/25</h>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Partial factor                                                                                                                          | γMs                  | [-]         | 1,                  | ,53          | 1               | ,5                                     | 1,6                 | 1                   | ,5    |   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pull-out                                                                                                                                |                      |             |                     |              |                 |                                        |                     | l                   |       |   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Standard anchorage depth                                                                                                                |                      |             |                     |              |                 |                                        |                     |                     |       |   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                         | $N_{Rk,p}$           | [kN]        | 12                  | 16           | 25              | 35                                     | 1)                  | 1)                  | 1)    |   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                         |                      |             |                     |              |                 |                                        |                     |                     |       |   |
| Standard anchorage depthSplitting for standard thickness of concrete member(The higher resistance of case 1 and case 2 may be applied;<br>$c_{arson}$ may be linearly interpolated for the member thickness $h_{min,2} < h < h_{min,1}$ (Case 2); $\psi_{hap} = 1.0$ ))Standard thickness of concrete $h_{min,1} \ge [mm]$ 100 120 140 170 200 230 250Case 1Characteristic resistance in<br>uncracked concrete C20/25 $N^0_{Rk,sp}$ [kN]91220304062,350Characteristic resistance<br>corsep $mm$ ]100120140170200230250Characteristic resistance<br>in uncracked concrete C20/25 $N^0_{Rk,sp}$ [kN]91220304062,350Characteristic resistance<br>in uncracked concrete C20/25 $N^0_{Rk,sp}$ [kN]1216253550,562,370,Edge distanceC <sub>cr.sp</sub> [mm]80100120140140Characteristic resistance<br>in uncracked concrete M <sub>min,2</sub> ≥ [mm]80100120140Characteristic resistance<br>in uncracked concrete C20/25 $N^0_{Rk,sp}$ [kN]12162535Splitting for minimum thickness of concrete<br>hmin,2 ≥ [mm]80100120140140Characteristic resistance<br>in uncracked concrete C20/25 $N^0_{Rk,sp}$ [kN]12162535 <th colsp<="" td=""><td></td><td><math>N_{Rk,p}</math></td><td>[kN]</td><td>7,5</td><td>9</td><td>1)</td><td>1)</td><td>-</td><td>-</td><td>-</td></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <td></td> <td><math>N_{Rk,p}</math></td> <td>[kN]</td> <td>7,5</td> <td>9</td> <td>1)</td> <td>1)</td> <td>-</td> <td>-</td> <td>-</td> |                      | $N_{Rk,p}$  | [kN]                | 7,5          | 9               | 1)                                     | 1)                  | -                   | -     | - |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Splitting                                                                                                                               |                      |             |                     |              |                 |                                        |                     |                     |       |   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                         |                      |             |                     |              |                 |                                        |                     |                     |       |   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Splitting for standard thickness of                                                                                                     | of concrete          | membe       | er (The hi          | gher resista | ance of cas     | e 1 and ca                             | se 2 may b          | e applied;          |       |   |
| Case 1         Characteristic resistance in uncracked concrete C20/25 $\mathbb{N}^{0}_{PlK,SP}$ $[KN]$ 9       12       20       30       40       62,3       50         Edge distance $\mathbb{C}_{\text{ors}P}$ $[mm]$ 1,5 her          50         Characteristic resistance in uncracked concrete C20/25 $\mathbb{N}^{0}_{Rl,SP}$ $[kN]$ 12       16       25       35       50,5       62,3       70,         Characteristic resistance cor.rsp $[mm]$ 2 her       2,2 her       1,5 her       2,5         Splitting for minimum thickness of concrete $mmn_2 \ge$ $[mm]$ 80       100       120       140       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>200</td><td>230</td><td>250</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                         |                      |             |                     |              |                 |                                        | 200                 | 230                 | 250   |   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                         |                      | [[[11111]]] | 100                 | 120          | 140             | 170                                    | 200                 | 230                 | 230   |   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                         | 0                    |             |                     |              |                 |                                        |                     |                     |       |   |
| Case 2         Characteristic resistance<br>in uncracked concrete C20/25 $\mathbb{N}^{0}_{Rk,sp}$ [kN]       12       16       25       35       50,5       62,3       70,         Edge distance $C_{cr,sp}$ [mm]       2       hef       2,2       hef       1,5       hef       2,5         Splitting for minimum thickness of concrete       mmm,2 ≥       [mm]       80       100       120       140         Characteristic resistance $N^{0}_{Rk,sp}$ [kN]       12       16       25       35       -       -       -         Edge distance $Cor,\mathsf{rsp}$ [mm]       80       100       120       140       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                         | $N^0_{Rk,sp}$        | [kN]        | 9                   | 12           | 20              | 30                                     | 40                  | 62,3                | 50    |   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Edge distance                                                                                                                           | C <sub>cr,sp</sub>   | [mm]        | 1,5 h <sub>ef</sub> |              |                 |                                        |                     |                     |       |   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Case 2                                                                                                                                  |                      |             |                     |              |                 |                                        | -                   |                     | _     |   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | in uncracked concrete C20/25                                                                                                            | $N^{0}_{Rk,sp}$      | [kN]        | 12                  | _            |                 | 35                                     | 50,5                | 62,3                | 70,6  |   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>                                                                                                                                |                      |             |                     | 2            | h <sub>ef</sub> |                                        | 2,2 h <sub>ef</sub> | 1,5 h <sub>ef</sub> | 2,5 h |   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                         | of concrete          | memb        | er                  | 1            |                 |                                        |                     |                     |       |   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                         | h <sub>min,2</sub> ≥ | [mm]        | 80                  | 100          | 120             | 140                                    |                     |                     |       |   |
| Reduced anchorage depthMinimum thickness of concrete $h_{min,3} \ge [mm]$ 8080100140Characteristic resistance<br>n uncracked concrete C20/25 $N^0_{Rk,sp}$ $[kN]$ 7,5917,926,5Edge distance $c_{cr,sp}$ $[mm]$ 100100125150Edge distance $c_{cr,sp}$ $[mm]$ 100100125150Increasing factor<br>for N <sub>Rk,p</sub> and N <sup>0</sup> <sub>Rk,sp</sub> $\psi_c$ $[-]$ $\left(\frac{f_{ck}}{20}\right)^{0,5}$ Concrete cone failureEffective anchorage depthhef[mm]4660708510011512Reduced anchorage depthhef_f,red[mm]35 <sup>2</sup> 405065                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | in uncracked concrete C20/25                                                                                                            |                      |             | 12                  |              |                 | 35                                     | -                   | -                   | -     |   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>                                                                                                                                | Ccr,sp               | [mm]        |                     | 2,5          | h <sub>ef</sub> |                                        |                     |                     |       |   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                         |                      |             |                     | 1            | 1               |                                        | 1                   |                     | 1     |   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                         | h <sub>min,3</sub> ≥ | [mm]        | 80                  | 80           | 100             | 140                                    | -                   |                     |       |   |
| Edge distance $c_{cr,sp}$ [mm]       100       100       125       150       Image: constraint of the second sec |                                                                                                                                         | $N^0_{Rk,sp}$        | [kN]        | 7,5                 | 9            | 17,9            | 26,5                                   | -                   | -                   | -     |   |
| $\begin{array}{c c} \psi_{c} & \left[-\right] & \left(\frac{1_{ck}}{20}\right) \end{array}$ Concrete cone failure Effective anchorage depth hef [mm] 46 60 70 85 100 115 122 Reduced anchorage depth hef,red [mm] 35 <sup>2</sup> 40 50 65 -  -  -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                         | C <sub>cr,sp</sub>   | [mm]        | 100                 | 100          | 125             | 150                                    | -                   |                     |       |   |
| Concrete cone failure           Effective anchorage depth         hef         [mm]         46         60         70         85         100         115         124           Reduced anchorage depth         hef,red         [mm]         35 <sup>2</sup> )         40         50         65         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                         | ψс                   | [-]         |                     | •            | •               | $\left(\frac{f_{ck}}{20}\right)^{0.5}$ |                     | L                   | 1     |   |
| Reduced anchorage depth h <sub>ef,red</sub> [mm] 35 <sup>2)</sup> 40 50 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                         |                      |             |                     |              |                 |                                        |                     |                     |       |   |
| Reduced anchorage depth h <sub>ef,red</sub> [mm] 35 <sup>2)</sup> 40 50 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Effective anchorage depth                                                                                                               | h <sub>ef</sub>      | [mm]        | 46                  | 60           | 70              | 85                                     | 100                 | 115                 | 125   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                         |                      |             | 35 <sup>2)</sup>    | 40           | 50              | 65                                     | -                   | -                   | -     |   |
| -actor for uncracked concrete $K_1 = K_{ucr,N} [-]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Factor for uncracked concrete                                                                                                           | $k_1 = k_{ucr,N}$    | [-]         |                     | 1            |                 | 11,0                                   |                     |                     |       |   |

#### Performance

Characteristic values for tension loads, SMART S-BZ zinc plated, uncracked concrete, static and quasi-static action



| Fastener size                                                                |                      |             | M8               | M10          | M12                              | M16               | M20           | M24    |
|------------------------------------------------------------------------------|----------------------|-------------|------------------|--------------|----------------------------------|-------------------|---------------|--------|
| nstallation factor                                                           | γinst                | [-]         |                  | I            | 1,                               | ,0                | 1             |        |
| Steel failure                                                                |                      |             |                  |              |                                  |                   |               |        |
| Characteristic resistance                                                    | N <sub>Rk,s</sub>    | [kN]        | 16               | 27           | 40                               | 64                | 108           | 110    |
| Partial factor                                                               | γMs                  | [-]         |                  | 1            | ,5                               |                   | 1,68          | 1,5    |
| Pull-out                                                                     |                      |             |                  |              | -                                |                   |               |        |
| Standard anchorage depth                                                     |                      |             |                  |              |                                  |                   |               |        |
| Characteristic resistance in                                                 | NI                   |             | 12               | 16           | 25                               | 35                | 1)            | 1)     |
| Incracked concrete C20/25                                                    | N <sub>Rk,p</sub>    | [kN]        | 12               | 10           | 25                               | 35                | -,            | .,     |
| Reduced anchorage depth                                                      |                      |             |                  |              |                                  |                   |               |        |
| Characteristic resistance in<br>Incracked concrete C20/25                    | N <sub>Rk,p</sub>    | [kN]        | 7,5              | 9            | 1)                               | 1)                | -             | -      |
| Splitting                                                                    |                      |             |                  |              |                                  |                   |               |        |
| Standard anchorage depth                                                     |                      |             |                  |              |                                  |                   |               |        |
| Splitting for standard thickness of                                          | concrete mer         | nber (T     | he higher re     | esistance of | case 1 and                       | case 2 may        | be applied.   |        |
| c <sub>cr,sp</sub> may be linearly interpolated for the                      |                      |             |                  |              |                                  | oabo z may        | be applied,   |        |
| Standard thickness of concrete                                               | h <sub>min,1</sub> ≥ | [mm]        | 100              | 120          | 140                              | 160               | 200           | 250    |
| Case 1                                                                       |                      | •           |                  |              |                                  |                   |               |        |
| Characteristic resistance in<br>Incracked concrete C20/25                    | $N^0_{Rk,sp}$        | [kN]        | 9                | 12           | 20                               | 30                | 40            | -      |
| Edge distance                                                                | Ccr,sp               | [mm]        |                  |              | 1,5                              | h <sub>ef</sub>   |               |        |
| Case 2                                                                       |                      |             |                  |              |                                  |                   |               |        |
| Characteristic resistance in<br>uncracked concrete C20/25                    | $N^0_{Rk,sp}$        | [kN]        | 12               | 16           | 25                               | 35                | 50,5          | 70,6   |
| Edge distance                                                                | Ccr,sp               | [mm]        | 115              | 125          | 140                              | 200               | 220           | 250    |
| Splitting for <b>minimum thickness of</b>                                    | concrete me          | <u>mber</u> |                  |              |                                  |                   |               |        |
| Minimum thickness of concrete                                                | h <sub>min,2</sub> ≥ | [mm]        | 80               | 100          | 120                              | 140               |               |        |
| Characteristic resistance in<br>uncracked concrete C20/25                    | $N^0_{Rk,sp}$        | [kN]        | 12               | 16           | 25                               | 35                | -             | -      |
| Edge distance                                                                | C <sub>cr,sp</sub>   | [mm]        |                  | 2,5          | h <sub>ef</sub>                  |                   |               |        |
| Reduced anchorage depth                                                      |                      |             |                  |              |                                  |                   |               |        |
| Vinimum thickness of concrete                                                | h <sub>min,3</sub> ≥ | [mm]        | 80               | 80           | 100                              | 140               |               |        |
| Characteristic resistance in<br>uncracked concrete C20/25                    | $N^0_{Rk,sp}$        | [kN]        | 7,5              | 9            | 17,9                             | 26,5              | -             | -      |
| Edge distance                                                                | Ccr,sp               | [mm]        | 100              | 100          | 125                              | 150               |               |        |
| ncreasing factor<br>or N <sub>Rk,p</sub> and N <sup>0</sup> <sub>Rk,sp</sub> | ψc                   | [-]         |                  |              | $\left(\frac{f_{ck}}{20}\right)$ | -) <sup>0,5</sup> |               |        |
| Concrete cone failure                                                        |                      |             |                  |              | (10                              | ,                 |               |        |
| Effective anchorage depth                                                    | h <sub>ef</sub>      | [mm]        | 46               | 60           | 70                               | 85                | 100           | 125    |
| Reduced anchorage depth                                                      | h <sub>ef,red</sub>  | [mm]        | 35 <sup>2)</sup> | 40           | 50                               | 65                | -             | -      |
| Factor for uncracked concrete                                                | $k_1 = k_{ucr,N}$    | [-]         |                  | I            | 11                               |                   | I             |        |
| Pull-out is not decisive<br>Use restricted to anchoring of structural c      |                      |             | ically indete    | rminate and  |                                  |                   | ure condition | s only |

Characteristic values for tension loads, SMART S-BZ A4 / HCR, uncracked concrete, static and quasi-static action



| Installation factor                      |                            |                 |          | M8               | M10  | M12 | M16 | M20  | M24   | M27    |
|------------------------------------------|----------------------------|-----------------|----------|------------------|------|-----|-----|------|-------|--------|
| moralialion lacion                       |                            | γinst           | [-]      |                  |      |     | 1,0 |      |       | 1      |
| Steel failure withou                     | it lever arm, Steel :      | zinc pla        | ted      |                  |      |     |     |      |       |        |
| Characteristic resista                   | ance                       | $V^0_{Rk,s}$    | [kN]     | 12,2             | 20,1 | 30  | 55  | 69   | 114   | 169,4  |
| Ductility factor                         |                            | <b>k</b> 7      | [-]      |                  |      |     | 1,0 |      |       |        |
| Partial factor                           |                            | γMs             | [-]      |                  | 1,   | 25  |     | 1,33 | 1,25  | 1,25   |
| Steel failure withou                     | ıt lever arm, Stainl       | ess ste         | el A4, H | ICR              |      |     |     |      |       |        |
| Characteristic resista                   | ance                       | $V^0_{Rk,s}$    | [kN]     | 13               | 20   | 30  | 55  | 86   | 123,6 |        |
| Ductility factor                         |                            | <b>k</b> 7      | [-]      |                  |      |     | 1,0 |      |       | -      |
| Partial factor                           |                            | γMs             | [-]      |                  | 1,   | 25  |     | 1,4  | 1,25  |        |
| Steel failure with le                    | ver arm, Steel zind        | c plated        |          |                  |      |     |     |      |       |        |
| Characteristic bendir                    | ng resistance              | $M^0_{Rk,s}$    | [Nm]     | 23               | 47   | 82  | 216 | 363  | 898   | 1331,5 |
| Partial factor                           |                            | γMs             | [-]      |                  | 1,   | 25  |     | 1,33 | 1,25  | 1,25   |
| Steel failure with le                    | ver arm, Stainless         | steel A         | 4, HCR   |                  |      |     |     |      |       |        |
| Characteristic bendir                    | ng resistance              | $M^0_{Rk,s}$    | [Nm]     | 26               | 52   | 92  | 200 | 454  | 785,4 | _      |
| Partial factor                           |                            | γMs             | [-]      |                  | 1,   | 25  |     | 1,4  | 1,25  |        |
| Concrete pry-out fa                      | ailure                     |                 |          |                  |      |     |     |      |       |        |
| Pry-out factor                           |                            | k <sub>8</sub>  | [-]      |                  | 2,   | 4   |     |      | 2,8   |        |
| Concrete edge failu                      | Jre                        |                 |          |                  |      |     |     |      | 1     |        |
| Effective length of<br>fastener in shear | Steel zinc plated          | lf              | [mm]     | 46               | 60   | 70  | 85  | 100  | 115   | 125    |
| loading with hef                         | Stainless steel<br>A4, HCR | lf              | [mm]     | 46               | 60   | 70  | 85  | 100  | 125   | -      |
| Effective length of fastener in shear    | Steel zinc plated          | $I_{f,red}$     | [mm]     | 35 <sup>1)</sup> | 40   | 50  | 65  |      |       | _      |
| loading with hef,red                     | Stainless steel<br>A4, HCR | $I_{\rm f,red}$ | [mm]     | 35 <sup>1)</sup> | 40   | 50  | 65  | -    | _     |        |
| Outside diameter of                      | fastener                   | $d_{nom}$       | [mm]     | 8                | 10   | 12  | 16  | 20   | 24    | 27     |

# Wedge Anchor SMART S-BZ

#### Performance

Characteristic values for shear loads, SMART S-BZ, cracked and uncracked concrete, static or quasi static action



| Fastener siz     | е                                    |                         |         | M8         | M10      | M12  | M16  | M20  |  |  |
|------------------|--------------------------------------|-------------------------|---------|------------|----------|------|------|------|--|--|
| Tension load     | S                                    |                         |         |            | -        | -    | -    | -    |  |  |
| Installation fac | ctor                                 | γinst                   | [-]     |            |          | 1,0  |      |      |  |  |
| Steel failure,   | Steel zinc plate                     | d                       |         |            |          |      |      |      |  |  |
| Characteristic   | resistance C1                        | N <sub>Rk,s,eq,C1</sub> | [kN]    | 16         | 27       | 40   | 60   | 86   |  |  |
| Characteristic   | resistance C2                        | N <sub>Rk,s,eq,C2</sub> | [kN]    | 16         | 27       | 40   | 60   | 86   |  |  |
| Partial factor   |                                      | γMs                     | [-]     | 1          | 1,53 1,5 |      |      |      |  |  |
| Steel failure,   | Stainless steel                      | A4, HCR                 |         |            |          |      |      |      |  |  |
| Characteristic   | resistance C1                        | $N_{Rk,s,eq,C1}$        | [kN]    | 16         | 27       | 40   | 64   | 108  |  |  |
| Characteristic   | resistance C2                        | N <sub>Rk,s,eq,C2</sub> | [kN]    | 16         | 27       | 40   | 64   | 108  |  |  |
| Partial factor   |                                      | γMs                     | [-]     |            | 1        | ,5   |      | 1,68 |  |  |
| Pull-out (stee   | el zinc plated, sta                  | inless steel            | A4 an   | d HCR)     |          |      |      |      |  |  |
| Characteristic   | resistance C1                        | N <sub>Rk,p,eq,C1</sub> | [kN]    | 5          | 9        | 16   | 25   | 36   |  |  |
| Characteristic   | resistance C2                        | $N_{Rk,p,eq,C2}$        | [kN]    | 2,3        | 3,6      | 10,2 | 13,8 | 24,4 |  |  |
| Shear loads      |                                      |                         |         |            |          |      | -    | -    |  |  |
| Steel failure    | without lever ar                     | m, Steel zi             | nc pla  | ted        |          |      |      |      |  |  |
| Characteristic   | resistance C1                        | $V_{Rk,s,eq,C1}$        | [kN]    | 9,3        | 20       | 27   | 44   | 69   |  |  |
| Characteristic   | resistance C2                        | $V_{Rk,s,eq,C2}$        | [kN]    | 6,7        | 14       | 16,2 | 35,7 | 55,2 |  |  |
| Partial factor   |                                      | γMs                     | [-]     |            | 1        | , 25 |      | 1,33 |  |  |
| Steel failure    | without lever ar                     | m, Stainles             | ss stee | el A4, HCR |          |      |      |      |  |  |
| Characteristic   | resistance C1                        | $V_{Rk,s,eq,C1}$        | [kN]    | 9,3        | 20       | 27   | 44   | 69   |  |  |
| Characteristic   | resistance C2                        | $V_{Rk,s,eq,C2}$        | [kN]    | 6,7        | 14       | 16,2 | 35,7 | 55,2 |  |  |
| Partial factor   |                                      | γMs                     | [-]     |            | 1        | , 25 |      | 1,4  |  |  |
| Factor for       | without<br>filling of<br>annular gap | $lpha_{	ext{gap}}$      | [-]     | 0,5        |          |      |      |      |  |  |
| annular gap      | with<br>filling of<br>annular gap    | αgap                    | [-]     |            |          | 1,0  |      |      |  |  |

# Wedge Anchor SMART S-BZ

#### Performance Characteristic resistance for seismic loading, SMART S-BZ, standard anchorage depth, performance category C1 and C2



|                   | standard a   | anchora                  | ige aep | otn, crac | ked and | uncrac | ked cond | crete C2 | 0/25 to 0 | -50/60 |
|-------------------|--------------|--------------------------|---------|-----------|---------|--------|----------|----------|-----------|--------|
| Fastener size     |              |                          |         | M8        | M10     | M12    | M16      | M20      | M24       | M27    |
| Tension load      |              |                          |         |           | -       | -      | -        | -        |           |        |
| Steel failure     |              |                          |         |           |         |        |          |          |           |        |
| Steel, zinc plate | ed           |                          |         |           |         |        |          |          |           |        |
|                   | R30          |                          |         | 1,5       | 2,6     | 4,1    | 7,7      | 9,4      | 13,6      | 17,6   |
| Characteristic    | R60          |                          | [kN]    | 1,1       | 1,9     | 3,0    | 5,6      | 8,2      | 11,8      | 15,3   |
| resistance        | R90          | – N <sub>Rk,s,fi</sub>   |         | 0,8       | 1,4     | 2,4    | 4,4      | 6,9      | 10,0      | 13,0   |
|                   | R120         |                          |         | 0,7       | 1,2     | 2,2    | 4,0      | 6,3      | 9,1       | 11,8   |
| Stainless steel   | A4, HCR      |                          |         |           |         |        |          |          |           |        |
|                   | R30          |                          |         | 3,8       | 6,9     | 12,7   | 23,7     | 33,5     | 48,2      |        |
| Characteristic    | R60          |                          |         | 2,9       | 5,3     | 9,4    | 17,6     | 25,0     | 35,9      |        |
| resistance        | R90          | – N <sub>Rk,s,fi</sub>   | [kN]    | 2,0       | 3,6     | 6,1    | 11,5     | 16,4     | 23,6      | -      |
|                   | R120         | _                        |         | 1,6       | 2,8     | 4,5    | 8,4      | 12,1     | 17,4      |        |
| Shear load        | -            |                          |         |           | 2       | -      | -        | 2        | -         | -      |
| Steel failure wit | hout lever a | rm                       |         |           |         |        |          |          |           |        |
| Steel, zinc plate | ed           |                          |         |           |         |        |          |          |           |        |
|                   | R30          |                          |         | 1,6       | 2,6     | 4,1    | 7,7      | 11       | 16        | 20,6   |
| Characteristic    | R60          | -                        |         | 1,5       | 2,5     | 3,6    | 6,8      | 11       | 15        | 19,8   |
| resistance        | R90          | – V <sub>Rk,s,fi</sub>   | [kN]    | 1,2       | 2,1     | 3,5    | 6,5      | 10       | 15        | 19,0   |
|                   | R120         | -                        |         | 1,0       | 2,0     | 3,4    | 6,4      | 10       | 14        | 18,6   |
| Stainless steel   | A4, HCR      |                          |         |           |         |        |          |          |           |        |
|                   | R30          |                          |         | 3,8       | 6,9     | 12,7   | 23,7     | 33,5     | 48,2      |        |
| Characteristic    | R60          | -                        |         | 2,9       | 5,3     | 9,4    | 17,6     | 25,0     | 35,9      |        |
| resistance        | R90          | – V <sub>Rk,s,fi</sub>   | [kN]    | 2,0       | 3,6     | 6,1    | 11,5     | 16,4     | 23,6      | -      |
|                   | R120         | -                        |         | 1,6       | 2,8     | 4,5    | 8,4      | 12,1     | 17,4      |        |
| Steel failure wit | h lever arm  | I                        | I       |           |         | 1      | 1        |          | 1         |        |
| Steel, zinc plate | ed           |                          |         |           |         |        |          |          |           |        |
| · ·               | R30          |                          |         | 1,7       | 3,3     | 6,4    | 16,3     | 29       | 50        | 75     |
| Characteristic    | R60          | -                        |         | 1,6       | 3,2     | 5,6    | 14       | 28       | 48        | 72     |
| resistance        | R90          | − M <sup>0</sup> Rk,s,fi | [Nm]    | 1,2       | 2,7     | 5,4    | 14       | 27       | 47        | 69     |
|                   | R120         | -                        |         | 1,1       | 2,5     | 5,3    | 13       | 26       | 46        | 68     |
| Stainless steel   |              |                          |         | -         | 1       | . ,    | I        | L        | I         |        |
|                   | R30          |                          |         | 3,8       | 9,0     | 19,7   | 50,1     | 88,8     | 153,5     |        |
| Characteristic    | R60          | -                        |         | 2,9       | 6,8     | 14,6   | 37,2     | 66,1     | 114,3     |        |
| resistance        | R90          | − M <sup>0</sup> Rk,s,fi | [Nm]    | 2,1       | 4,7     | 9,5    | 24,2     | 43,4     | 75,1      | -      |
|                   | R120         | -                        | .   _   | 1,6       | 3,6     | 7,0    | 17,8     | 32,1     | 55,5      |        |

# Wedge Anchor SMART S-BZ

Performance

Characteristic values for tension and shear load under fire exposure, SMART S-BZ, standard anchorage depth, cracked and uncracked concrete C20/25 to C50/60



| Table C8:           | Characteristic val <b>SMART S-BZ</b> , |                          |            |            |              | •           |          |
|---------------------|----------------------------------------|--------------------------|------------|------------|--------------|-------------|----------|
|                     | reduced anchora                        | age depth, o             | cracked ar | nd uncrack | ed concrete  | e C20/25 to | C50/60   |
| Fastener size       | 9                                      |                          |            | M8         | M10          | M12         | M16      |
| <b>Fension load</b> |                                        |                          |            |            |              |             |          |
| Steel failure       |                                        |                          |            |            |              |             |          |
| Steel, zinc pla     | ated                                   |                          |            |            |              |             |          |
|                     | R30                                    |                          |            | 1,5        | 2,6          | 4,1         | 7,7      |
| Characteristic      | R60                                    | <br>NI                   | TLAND      | 1,1        | 1,9          | 3,0         | 5,6      |
| resistance          | R90                                    |                          | [kN]       | 0,8        | 1,3          | 1,9         | 3,5      |
|                     | R120                                   |                          |            | 0,6        | 1,0          | 1,3         | 2,5      |
| Stainless stee      | el A4, HCR                             |                          |            |            | •            | •           |          |
|                     | R30                                    |                          |            | 3,2        | 6,9          | 12,7        | 23,7     |
| Characteristic      | R60                                    | —                        |            | 2,5        | 5,3          | 9,4         | 17,6     |
| resistance          | R90                                    | — N <sub>Rk,s,fi</sub>   | [kN]       | 1,9        | 3,6          | 6,1         | 11,5     |
|                     | R120                                   |                          | -          | 1,6        | 2,8          | 4,5         | 8,4      |
| Shear load          | -                                      | -                        |            |            | L            | <u>L</u>    | <u>L</u> |
| Steel failure v     | vithout lever arm                      |                          |            |            |              |             |          |
| Steel, zinc pla     | ated                                   |                          |            |            |              |             |          |
| -                   | R30                                    |                          |            | 1,5        | 2,6          | 4,1         | 7,7      |
| Characteristic      | R60                                    | — V <sub>Rk,s,fi</sub>   |            | 1,1        | 1,9          | 3,0         | 5,6      |
| resistance          | R90                                    |                          | [kN]       | 0,8        | 1,3          | 1,9         | 3,5      |
|                     | R120                                   |                          | -          | 0,6        | 1,0          | 1,3         | 2,5      |
| Stainless stee      | el A4, HCR                             |                          |            |            |              |             |          |
|                     | R30                                    |                          |            | 3,2        | 6,9          | 12,7        | 23,7     |
| Characteristic      | R60                                    |                          |            | 2,5        | 5,3          | 9,4         | 17,6     |
| resistance          | R90                                    |                          | [kN]       | 1,9        | 3,6          | 6,1         | 11,5     |
|                     | R120                                   |                          | -          | 1,6        | 2,8          | 4,5         | 8,4      |
| Steel failure v     | vith lever arm                         |                          |            | ,          | ,            | ,           | ,        |
| Steel, zinc pla     |                                        |                          |            |            |              |             |          |
| , p                 | R30                                    |                          |            | 1,5        | 3,3          | 6,4         | 16,3     |
| Characteristic      | R60                                    |                          |            | 1,2        | 2,5          | 4,7         | 11,9     |
| resistance          | R90                                    | — M <sup>0</sup> Rk,s,fi | [Nm]       | 0,8        | 1,7          | 3,0         | 7,5      |
|                     | R120                                   |                          |            | 0,6        | 1,2          | 2,1         | 5,3      |
| Stainless stee      |                                        |                          |            | -,-        | · , <b>_</b> | ,.          | . 0,0    |
|                     | R30                                    |                          |            | 3,2        | 8,9          | 19,7        | 50,1     |
| Characteristic      | R60                                    |                          |            | 2,6        | 6,8          | 14,6        | 37,2     |
| resistance          | R90                                    | — M <sup>0</sup> Rk,s,fi | [Nm]       | 2,0        | 4,7          | 9,5         | 24,2     |
|                     | R120                                   |                          |            | 1,6        | 3,6          | 7,0         | 17,8     |

# Wedge Anchor SMART S-BZ

Performance

Characteristic values for tension and shear load under fire exposure, SMART S-BZ, reduced anchorage depth, cracked and uncracked concrete C20/25 to C50/60



| Fastener size                          |                                           |      | M8       | M10  | M12      | M16      | M20  | M24      | M27 |
|----------------------------------------|-------------------------------------------|------|----------|------|----------|----------|------|----------|-----|
| Standard anchorage depth               |                                           | -    | <u>_</u> | _    | <u> </u> | <u>.</u> | -    |          | _   |
| Steel zinc plated                      |                                           |      |          |      | _        | _        | _    |          |     |
| Tension load in cracked concrete       | N                                         | [kN] | 2,4      | 4,3  | 7,6      | 11,9     | 17,1 | 21,1     | 24  |
| Displacement                           | δΝΟ                                       | [mm] | 0,6      | 1,0  | 0,4      | 1,0      | 0,9  | 0,7      | 0,9 |
| Displacement                           | δ <sub>N∞</sub>                           | [mm] | 1,4      | 1,2  | 1,4      | 1,3      | 1,0  | 1,2      | 1,4 |
| Tension load in uncracked concrete     | Ν                                         | [kN] | 5,7      | 7,6  | 11,9     | 16,7     | 23,8 | 29,6     | 34  |
| Displacement                           | δνο                                       | [mm] | 0,4      | 0,5  | 0,7      | 0,3      | 0,4  | 0,5      | 0,3 |
| Displacement                           | δ <sub>N∞</sub>                           | [mm] | 0,       | 8    | 1,4      |          | 0,8  |          | 1,4 |
| Displacements under seismic tension lo | ads C2                                    |      |          |      |          |          |      |          |     |
| Displacements for DLS                  | $\delta_{\text{N,eq,(DLS)}}$              | [mm] | 2,3      | 4,1  | 4,9      | 3,6      | 5,1  |          |     |
| Displacements for ULS                  | $\delta_{N,eq(ULS)}$                      | [mm] | 8,2      | 13,8 | 15,7     | 9,5      | 15,2 | -        | -   |
| Stainless steel A4, HCR                |                                           |      |          |      |          |          |      |          |     |
| Tension load in cracked concrete       | Ν                                         | [kN] | 2,4      | 4,3  | 7,6      | 11,9     | 17,1 | 19,0     |     |
| <b>5</b> 1 1 1                         | δ <sub>N0</sub>                           | [mm] | 0,7      | 1,8  | 0,4      | 0,7      | 0,9  | 0,5      | -   |
| Displacement                           | δ <sub>N∞</sub>                           | [mm] | 1,2      | 1,4  | 1,4      | 1,4      | 1,0  | 1,8      |     |
| Tension load in uncracked concrete     | N                                         | [kN] | 5,8      | 7,6  | 11,9     | 16,7     | 23,8 | 33,5     |     |
|                                        | δησ                                       | [mm] | 0,6      | 0,5  | 0,7      | 0,2      | 0,4  | 0,5      | -   |
| Displacement                           | δ <sub>N∞</sub>                           | [mm] | 1,2      | 1,0  | 1,4      | 0,4      | 0,8  | 1,1      |     |
| Displacements under seismic tension lo | ads C2                                    |      |          |      |          | 1        |      | I        |     |
| Displacements for DLS                  | $\delta_{\text{N,eq}(\text{DLS})}$        | [mm] | 2,3      | 4,1  | 4,9      | 3,6      | 5,1  |          |     |
| Displacements for ULS                  | $\delta_{\text{N},\text{eq}(\text{ULS})}$ | [mm] | 8,2      | 13,8 | 15,7     | 9,5      | 15,2 | -        | -   |
| Reduced anchorage depth                |                                           |      | L        |      | <u>1</u> | 4        |      | <u> </u> | -   |
| Steel zinc plated, stainless steel A4, | HCR                                       |      |          |      |          |          |      |          |     |
| Tension load in cracked concrete       | N                                         | [kN] | 2,4      | 3,6  | 6,1      | 9,0      |      |          |     |
|                                        | δησ                                       | [mm] | 0,8      | 0,7  | 0,5      | 1,0      | -    | -        | -   |
| Displacement                           | δ <sub>N∞</sub>                           | [mm] | 1,2      | 1,0  | 0,8      | 1,1      | 1    |          |     |
| Tension load in uncracked concrete     | N                                         | [kN] | 3,7      | 4,3  | 8,5      | 12,6     |      |          |     |
|                                        | δ <sub>N0</sub>                           | [mm] | 0,1      | 0,2  | 0,2      | 0,2      |      | -        | _   |
| Displacement                           | δ <sub>N∞</sub>                           | [mm] | 0,7      | 0,7  | 0,7      | 0,7      | 1    |          |     |

# Wedge Anchor SMART S-BZ

Performance Displacements under tension load



| Fastener size                                |                                    |               | M8  | M10  | M12  | M16  | M20  | M24  | M27  |
|----------------------------------------------|------------------------------------|---------------|-----|------|------|------|------|------|------|
| Standard anchorage depth                     | 1                                  |               | -   | -    | -    |      | -    | -    |      |
| Steel zinc plated                            |                                    |               |     |      |      |      |      |      |      |
| Shear load in cracked and uncracked concrete | V                                  | [kN]          | 6,9 | 11,4 | 17,1 | 31,4 | 36,8 | 64,9 | 96,8 |
| Displacement                                 | δνο                                | [mm]          | 2,0 | 3,2  | 3,6  | 3,5  | 1,8  | 3,5  | 3,6  |
| Displacement                                 | δv∞                                | [mm]          | 3,0 | 4,7  | 5,5  | 5,3  | 2,7  | 5,3  | 5,4  |
| Displacements under seismi                   | c shear loa                        | .ds <b>C2</b> |     |      |      |      |      |      |      |
| Displacements<br>for DLS                     | $\delta v_{\text{,eq(DLS)}}$       | [mm]          | 3,0 | 2,7  | 3,5  | 4,3  | 4,7  |      |      |
| Displacements<br>for ULS                     | $\delta_{\text{V,eq}(\text{ULS})}$ | [mm]          | 5,9 | 5,3  | 9,5  | 9,6  | 10,1 |      | -    |
| Stainless steel A4, HCR                      |                                    |               |     |      |      |      |      |      |      |
| Shear load in cracked and uncracked concrete | V                                  | [kN]          | 7,3 | 11,4 | 17,1 | 31,4 | 43,8 | 70,6 |      |
| Displacement                                 | δνο                                | [mm]          | 1,9 | 2,4  | 4,0  | 4,3  | 2,9  | 2,8  | -    |
|                                              | δv∞                                | [mm]          | 2,9 | 3,6  | 5,9  | 6,4  | 4,3  | 4,2  |      |
| Displacements under seismi                   | c shear loa                        | ds <b>C2</b>  |     |      |      |      |      |      |      |
| Displacements<br>for DLS                     | $\delta v_{\text{,eq(DLS)}}$       | [mm]          | 3,0 | 2,7  | 3,5  | 4,3  | 4,7  |      |      |
| Displacements<br>for ULS                     | $\delta_{V,eq(\text{ULS})}$        | [mm]          | 5,9 | 5,3  | 9,5  | 9,6  | 10,1 | _    | -    |
| Reduced anchorage depth                      |                                    |               |     |      |      |      |      |      |      |
| Steel zinc plated                            |                                    |               |     |      |      |      |      |      |      |
| Shear load in cracked and uncracked concrete | V                                  | [kN]          | 6,9 | 11,4 | 17,1 | 31,4 |      |      |      |
| Displacement                                 | δνο                                | [mm]          | 2,0 | 3,2  | 3,6  | 3,5  | -    | -    | -    |
|                                              | δν∞                                | [mm]          | 3,0 | 4,7  | 5,5  | 5,3  |      |      |      |
| Stainless steel A4, HCR                      |                                    |               |     |      |      |      |      |      |      |
| Shear load in cracked and uncracked concrete | V                                  | [kN]          | 7,3 | 11,4 | 17,1 | 31,4 |      |      |      |
| Displacement                                 | δνο                                | [mm]          | 1,9 | 2,4  | 4,0  | 4,3  | -    | -    | -    |
| Displacement                                 | δv∞                                | [mm]          | 2,9 | 3,6  | 5,9  | 6,4  |      |      |      |

# Wedge Anchor SMART S-BZ

Performance

Displacements under shear load



# Table C11:Characteristic values for tension loads, SMART S-BZ IG,<br/>cracked concrete, static and quasi-static action

| Fastener size                                           |                  |                                       | M6   | M8                               | M10           | M12  |
|---------------------------------------------------------|------------------|---------------------------------------|------|----------------------------------|---------------|------|
| Installation factor                                     | γinst            | [-]                                   |      | 1,                               | 2             |      |
| Steel failure                                           |                  | ·                                     |      |                                  |               |      |
| Characteristic resistance, steel zinc plated            | $N_{Rk,s}$       | [kN]                                  | 16,1 | 22,6                             | 26,0          | 56,6 |
| Partial factor                                          | γMs              | [-]                                   |      | 1                                | ,5            |      |
| Characteristic resistance, stainless steel A4, HCR      | $N_{Rk,s}$       | [kN]                                  | 14,1 | 25,6                             | 35,8          | 59,0 |
|                                                         | γMs              | [-]                                   |      | 1,                               | 87            |      |
| Pull-out failure                                        |                  |                                       |      |                                  |               |      |
| Characteristic resistance in<br>cracked concrete C20/25 | $N_{Rk,p}$       | [kN]                                  | 5    | 9                                | 12            | 20   |
| Increasing factor for $N_{Rk,p}$                        | ψс               | [-]                                   |      | $\left(\frac{f_{ck}}{20}\right)$ | $\frac{1}{1}$ |      |
| Concrete cone failure                                   |                  | · · · · · · · · · · · · · · · · · · · |      |                                  |               |      |
| Effective anchorage depth                               | h <sub>ef</sub>  | [mm]                                  | 45   | 58                               | 65            | 80   |
| Factor for cracked concrete                             | $k_1 = k_{cr,N}$ | [-]                                   |      | 7                                | ,7            |      |

# Wedge Anchor SMART S-BZ IG

#### Performance

Characteristic values for **tension loads**, **SMART S-BZ IG**, **cracked concrete**, static and quasi-static action



| able C12: Characteristic values<br>uncracked concrete                          |                    |              |      | •                                |                   |      |
|--------------------------------------------------------------------------------|--------------------|--------------|------|----------------------------------|-------------------|------|
| Fastener size                                                                  |                    |              | M6   | M8                               | M10               | M12  |
| Installation factor                                                            | γinst              | [-]          |      | 1,                               | 2                 | •    |
| Steel failure                                                                  |                    |              |      |                                  |                   |      |
| Characteristic resistance,<br><b>steel zinc plated</b>                         | $N_{Rk,s}$         | [kN]         | 16,1 | 22,6                             | 26,0              | 56,6 |
| Partial factor                                                                 | γMs                | [-]          |      | 1                                | ,5                | _    |
| Characteristic resistance,<br>stainless steel A4, HCR                          | $N_{Rk,s}$         | [kN]         | 14,1 | 25,6                             | 35,8              | 59,0 |
| Partial factor                                                                 | γMs                | [-]          |      | 1,                               | 87                |      |
| Pull-out                                                                       |                    |              |      |                                  |                   |      |
| Characteristic resistance in<br>uncracked concrete C20/25                      | N <sub>Rk,p</sub>  | [kN]         | 12   | 16                               | 20                | 30   |
| Splitting (the higher resistance of Case 1 and                                 | d Case 2 may       | y be applied | I)   |                                  |                   |      |
| Minimum thickness of concrete member                                           | h <sub>min</sub>   | [mm]         | 100  | 120                              | 130               | 160  |
| Case 1                                                                         |                    |              |      |                                  |                   |      |
| Characteristic resistance in<br>uncracked concrete C20/25                      | $N^0_{Rk,sp}$      | [kN]         | 9    | 12                               | 16                | 25   |
| Edge distance                                                                  | Ccr,sp             | [mm]         |      | 1,5                              | h <sub>ef</sub>   |      |
| Case 2                                                                         |                    |              |      |                                  |                   |      |
| Characteristic resistance in<br>uncracked concrete C20/25                      | $N^0_{Rk,sp}$      | [kN]         | 12   | 16                               | 20                | 30   |
| Edge distance                                                                  | C <sub>cr,sp</sub> | [mm]         |      | 2,5                              | h <sub>ef</sub>   |      |
| Increasing factor for $N_{\text{Rk},\text{p}}$ and $N^0_{\text{Rk},\text{sp}}$ | ψс                 | [-]          |      | $\left(\frac{f_{ck}}{20}\right)$ | -) <sup>0,5</sup> |      |
| Concrete cone failure                                                          |                    |              |      |                                  |                   |      |
| Effective anchorage depth                                                      | h <sub>ef</sub>    | [mm]         | 45   | 58                               | 65                | 80   |
| Factor for uncracked concrete                                                  | $k_1 = k_{ucr,N}$  | [-]          |      | 11                               | ,0                |      |

# Wedge Anchor SMART S-BZ IG

#### Performance

Characteristic values for **tension loads**, **SMART S-BZ IG**, **uncracked concrete**, static and quasi-static action



| Fastener size                                    |                |           | M6   | M8   | M10  | M12   |
|--------------------------------------------------|----------------|-----------|------|------|------|-------|
| Installation factor                              | γinst          | [-]       |      | 1    | ,0   |       |
| SMART S-BZ IG, steel zinc plated                 |                |           |      | -    |      | -     |
| Steel failure without lever arm, Pre-setting     | installati     | ion       |      |      |      |       |
| Characteristic resistance                        | $V^0_{Rk,s}$   | [kN]      | 5,8  | 6,9  | 10,4 | 25,8  |
| Steel failure without lever arm, Through-se      | etting ins     | tallation |      |      |      |       |
| Characteristic resistance                        | $V^0_{Rk,s}$   | [kN]      | 5,1  | 7,6  | 10,8 | 24,3  |
| Steel failure with lever arm, Pre-setting ins    | stallation     |           |      |      |      | •     |
| Characteristic bending resistance                | $M^0_{Rk,s}$   | [Nm]      | 12,2 | 30,0 | 59,8 | 104,6 |
| Steel failure with lever arm, Through-setting    | ng install     | ation     |      |      |      |       |
| Characteristic bending resistance                | $M^0_{Rk,s}$   | [Nm]      | 36,0 | 53,2 | 76,0 | 207   |
| Partial factor for $V_{Rk,s}$ and $M^0{}_{Rk,s}$ | γMs            | [-]       |      | 1,   | ,25  |       |
| Ductility factor                                 | <b>k</b> 7     | [-]       |      | 1    | ,0   |       |
| SMART S-BZ IG, stainless steel A4, HCR           |                |           |      |      |      |       |
| Steel failure without lever arm, Pre-setting     | installati     | ion       |      |      |      |       |
| Characteristic resistance                        | $V^0_{Rk,s}$   | [kN]      | 5,7  | 9,2  | 10,6 | 23,6  |
| Partial factor                                   | γMs            | [-]       |      | 1,   | ,25  |       |
| Steel failure without lever arm, Through-se      | etting ins     | tallation |      |      |      |       |
| Characteristic resistance                        | $V^0_{Rk,s}$   | [kN]      | 7,3  | 7,6  | 9,7  | 29,6  |
| Partial factor                                   | γMs            | [-]       |      | 1,   | ,25  |       |
| Steel failure with lever arm, Pre-setting ins    | stallation     |           |      |      |      |       |
| Characteristic bending resistance                | $M^0_{Rk,s}$   | [Nm]      | 10,7 | 26,2 | 52,3 | 91,6  |
| Partial factor                                   | γMs            | [-]       |      | 1,   | ,56  |       |
| Steel failure with lever arm, Through-setting    | ng installa    | ation     |      |      |      |       |
| Characteristic bending resistance                | $M^0_{Rk,s}$   | [Nm]      | 28,2 | 44,3 | 69,9 | 191,2 |
| Partial factor                                   | γMs            | [-]       |      | 1,   | ,25  |       |
| Ductility factor                                 | <b>k</b> 7     | [-]       |      | 1    | ,0   |       |
| Concrete pry-out failure                         |                |           |      |      |      |       |
| Pry-out factor                                   | k <sub>8</sub> | [-]       | 1,5  | 1,5  | 2,0  | 2,0   |
| Concrete edge failure                            |                |           |      |      |      |       |
| Effective length of fastener in shear loading    | lf             | [mm]      | 45   | 58   | 65   | 80    |
| Effective diameter of fastener                   | dnom           | [mm]      | 8    | 10   | 12   | 16    |

# Wedge Anchor SMART S-BZ IG

#### Performance

Characteristic values for **shear loads**, **SMART S-BZ IG**, **cracked and uncracked concrete**, static and quasi-static action



#### Table C14: Characteristic values for tension and shear load under fire exposure, SMART S-BZ IG, cracked and uncracked concrete C20/25 to C50/60 M6 **M8** M10 M12 **Fastener size Tension load** Steel failure Steel zinc plated R30 0.7 1,4 2,5 3,7 R60 0,6 1,2 2,0 2,9 Characteristic N<sub>Rk,s,fi</sub> [kN] resistance R90 0,5 0,9 2,2 1,5 1,8 R120 0,4 0,8 1,3 Stainless steel A4, HCR 12,6 R30 2,9 5,4 8,7 R60 1,9 3,8 6,3 9,2 Characteristic [kN] N<sub>Rk,s,fi</sub> resistance R90 1.0 2.1 3.9 5.7 R120 0,5 1,3 2.7 4,0 Shear load Steel failure without lever arm Steel zinc plated R30 0.7 1,4 2,5 3.7 R60 0,6 1,2 2,0 2,9 Characteristic V<sub>Rk.s.fi</sub> [kN] resistance R90 0,5 0,9 1,5 2,2 R120 0.8 1,3 1,8 0.4 Stainless steel A4, HCR R30 12,6 2,9 5,4 8,7 9,2 R60 1,9 3,8 6,3 Characteristic [kN] V<sub>Rk,s,fi</sub> resistance R90 1,0 2,1 3,9 5,7 R120 0,5 1,3 2,7 4,0 Steel failure with lever arm Steel zinc plated R30 0,5 5,7 1,4 3,3 1,2 R60 0,4 2,6 4,6 Characteristic $M^0{}_{\mathsf{Rk},\mathsf{s},\mathsf{fi}}$ [Nm] resistance R90 0.4 0.9 2.0 3.4 R120 0,8 2,8 0,3 1,6 Stainless steel A4, HCR R30 2,2 5.5 11.219.6 14,3 R60 1,5 3,9 8,1 Characteristic $M^0{}_{\mathsf{Rk},\mathsf{s},\mathsf{fi}}$ [Nm] resistance R90 0,7 2,2 5,1 8,9 R120 1,3 6,2 0,4 3,5

# Wedge Anchor SMART S-BZ IG

#### Performance

Characteristic values for **tension** and **shear loads** under **fire exposure**, **SMART S-BZ IG** cracked and uncracked concrete C20/25 to C50/60



| Table C15: Displacements under tension load, S | <b>SMART S-BZ IG</b> |
|------------------------------------------------|----------------------|
|------------------------------------------------|----------------------|

| Fastener size                         |                 |      | M6  | M8  | M10 | M12  |  |
|---------------------------------------|-----------------|------|-----|-----|-----|------|--|
| Tension load in<br>cracked concrete   | Ν               | [kN] | 2,0 | 3,6 | 4,8 | 8,0  |  |
| Displacements                         | δνο             | [mm] | 0,6 | 0,6 | 0,8 | 1,0  |  |
|                                       | δ <sub>N∞</sub> | [mm] | 0,8 | 0,8 | 1,2 | 1,4  |  |
| Tension load in<br>uncracked concrete | Ν               | [kN] | 4,8 | 6,4 | 8,0 | 12,0 |  |
| Displacements                         | δνο             | [mm] | 0,4 | 0,5 | 0,7 | 0,8  |  |
|                                       | δ <sub>N∞</sub> | [mm] | 0,8 | 0,8 | 1,2 | 1,4  |  |

# Table C16: Displacements under shear load, SMART S-BZ IG

| Fastener size                                   |     | M6   | M8  | M10 | M12 |      |
|-------------------------------------------------|-----|------|-----|-----|-----|------|
| Shear load in<br>cracked and uncracked concrete | V   | [kN] | 4,2 | 5,3 | 6,2 | 16,9 |
| Displacements                                   | δνο | [mm] | 2,8 | 2,9 | 2,5 | 3,6  |
|                                                 | δv∞ | [mm] | 4,2 | 4,4 | 3,8 | 5,3  |

# Wedge Anchor SMART S-BZ IG

Performance Displacements under tension load and under shear load SMART S-BZ IG