

# Best Practice Isolator Sizing and Installation

## Contents

| Definitions                                                                     | 2 |
|---------------------------------------------------------------------------------|---|
| Isolator Rating Requirements According to AS/NZS5033: 2014 Amendment 2          | 3 |
| Examples of Applying the Standard and Selecting the Isolator Configuration      | 4 |
| Calculating PV array maximum voltage                                            | 4 |
| Example One                                                                     | 5 |
| Example Two                                                                     | 6 |
| Example Three                                                                   | 7 |
| Interpreting the PGK Manufacturer Data Sheets                                   | 9 |
| SE030A Isolator Data Sheet and Wiring Configurations1                           | 1 |
| SE030C Switch Disconnector Data Sheet and Wiring Configurations                 | 5 |
| SE030G Isolator Data Sheet and Wiring Configurations1                           | 8 |
| Australian Standard and CEC Guideline Compliant PGK Isolator Installation Guide | 1 |
| SE030A 1000V 32A                                                                | 1 |
| SE030C 1200V 32A 2                                                              | 5 |
| SE030G 1500V 32A                                                                | 7 |

This document has been written to provide CitiSolar contractors with a best practice interpretation of the PGK isolator data sheets in order to install the correct isolator configuration that will meet the Australian Standards. This document is not an accreditation or certification of the PGK isolator brand or product.





## Definitions

The term '**poles**' have been commonly used to refer to the positive and negative terminals of an electrical device. For PV systems, this term is used to describe both the isolator terminals and, according to AS/NZS 5033:2014, the array poles, i.e. the PV string conductors. To remove confusion, in this document the term **pole** (or **poles**) is used to describe one switching contact on the isolator, whereas the positive and negative sides of the PV string are referred to as the '**positive circuit**' and '**negative circuit**'. This means that there can be one or a number of **poles** connected together (in series or parallel configuration) that make up the **positive circuit** at the isolator. The same can be said on the negative connection at the isolator. In Figure 1, this terminology is used to explain the internal connections of a common DC isolator. The bottom diagram indicates the wiring configuration and how each pole is wired within the positive or negative circuit. The diagram on the top shows the physical layout within the actual switch.

According to Clause 1.4.74 AS/NZS 5033: 2014 "**Switch disconnector**" means a "mechanical switching device capable of making, carrying and breaking currents in normal circuit conditions and, when specified, in given operating overload conditions." For the purpose of this document the term **isolator** will refer to **switch disconnector**.

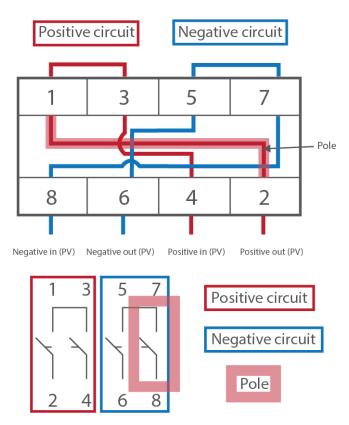



Figure 1. Circuit and Pole Terminology: This is an example of a common isolator configuration of two poles in series for both the positive circuit and the negative circuit.



## **Isolator Rating Requirements According to AS/NZS5033: 2014**

## Amendment 2

The required isolator rating will be determined by the type of inverter installed and whether functional earthing is present. For an explanation as to why the isolator requirement is determined this way, please see the GSES document <u>AS/NZS 5033:2014 Amendment 2 Changes to Isolator Sizing</u>, which is available on the GSES website <u>https://www.gses.com.au/technical-articles/a-guide-to-as-nzs-50332014-amendment-2-changes-to-isolator-sizing/</u>.

AS/NZS 5033:2014 Amendment 2 applies from 28<sup>th</sup> June 2019. This means that the applicable isolator utilisation category is now DC-PV2.

Isolators should be rated such that at a voltage rating equal or greater than PV array maximum voltage:

- The thermal current rating corresponding to the isolator's installation location (indoors/outdoors shaded/ outdoors under sun) is greater than the string/array *I*<sub>sc</sub> × 1.25 (and any other requirement called up by Table 4.2)
- The  $I_e$  current rating for the overall circuit configuration is greater than the string/array  $I_{SC} \times 1.25$  (and any other requirement called up by Table 4.2)
- For isolators connected to non-isolated (transformerless) inverters, the  $I_{(make)}$  and  $I_{c(break)}$  current rating for the positive and negative circuit configuration is greater than string/array  $I_{SC} \times 1.25$  (and any other requirement called up by Table 4.2)

This document refers to non-isolated (transformerless) PV systems unless otherwise stated.

Table 1. A summary of DC isolator rating requirements under current standards (AS/NZS 5033:2014 + A2).

| Array configuration                      | Non-isolated PV system*                                                                          | Isolated PV system <sup>†</sup> |  |  |  |
|------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------|--|--|--|
| Isolator rated voltage (U <sub>e</sub> ) | Equal to or greater than PV array maximum voltage <sup>‡</sup>                                   |                                 |  |  |  |
| Isolator rated current (I <sub>e</sub> ) | Equal to or greater than $I_{SC} \times 1.25^{\circ}$ , for the whole circuit (i.e. positive and |                                 |  |  |  |
|                                          | negative circuit combined)                                                                       |                                 |  |  |  |
| Isolator rated I <sub>(make)</sub>       | Equal to or greater than $I_{sc} \times 1.25^{\circ}$ , Not applicab                             |                                 |  |  |  |
| and $I_{c(break)}$ current               | for the positive circuit and the                                                                 |                                 |  |  |  |
|                                          | negative circuit individually                                                                    |                                 |  |  |  |

\*A non-isolated PV system is a system that has a transformerless (non-separated) inverter.

<sup>+</sup>An isolated PV system is a system using a transformer (separated) inverter.

<sup>+</sup>PV array maximum voltage is the maximum system V<sub>oc</sub> at minimum temperature. Clause 4.2 AS/NZS 5033:2014

<sup>§</sup>Applicable for the majority of systems, but not all. Clause 4.3.5.1 and Table 4.2 AS/NZS 5033:2014

NOTE: Systems with functional earthing require the same isolator ratings as non-isolated PV systems.



## Examples of Applying the Standard and Selecting the Isolator

## Configuration

This document covers the application of the standard once the PV Array maximum voltage and maximum current have been calculated. The PV array maximum voltage and maximum short circuit voltage values will be assumed to be the following:

| Example | PV Array Maximum Voltage<br>(Voc x 1.1, or calculate using<br>local minimum condition) | Maximum Short Circuit Current<br>(Isc × 1.25) |
|---------|----------------------------------------------------------------------------------------|-----------------------------------------------|
| One     | 450V                                                                                   | 14.8A                                         |
| Тwo     | 935V                                                                                   | 22.5A                                         |
| Three   | 550V                                                                                   | 12.25A                                        |

Please note that there is more than one correct solution for each example. The primary purpose of these examples is to highlight the methodology that must be applied to determine the appropriate isolator model and configuration for safe operation in fault conditions.

## **Calculating PV array maximum voltage**

To calculate PV array maximum voltage, apply the site-specific voltage correction factor to the array open circuit voltage (Voc). AS5033:2014 Table 4.1 can be used to calculate the PV array maximum voltage. An extract of the table is reproduced below.

| Lowest expected operating temperature °C | Correction factor |  |  |
|------------------------------------------|-------------------|--|--|
| 19 to 15                                 | 1.04              |  |  |
| 14 to 10                                 | 1.06              |  |  |
| 9 to 5                                   | 1.08              |  |  |
| 4 to 0                                   | 1.10              |  |  |
| -1 to -5                                 | 1.12              |  |  |
| -6 to -10                                | 1.14              |  |  |
| -11 to -15                               | 1.16              |  |  |
| -16 to -20                               | 1.18              |  |  |

### VOLTAGE CORRECTION FACTORS FOR CRYSTALLINE AND MULTI-CRYSTALLINE SILICON PV MODULES

Calculating PV array maximum voltage using AS5033:2014 Table 4.1

If an array comprises a string of 22 modules, each having a nameplate Voc of 38.64V and Isc of 9.6A at STC, and the lowest temperature of the site is 3°C, the PV array maximum voltage is calculated as follows:

From the table provided, the derating factor of 1.1 is appropriate.

PV array maximum voltage =  $22 \times 38.64V \times 1.1 = 935.09V$ 

PV array maximum short circuit current =  $9.6 \times 1.25 = 12A$ 



# For this array, the calculated array maximum voltage and short circuit current values are 450V and 14.8A. The isolator at the specified configuration must have a minimum rating larger than these values.

This is an example of a residential system. A single string of modules is connected to the rooftop isolator, the ground isolator and the transformerless inverter. The PGK SE030A isolator, which is rated up to 1000V, is considered for the rooftop isolator. The installer intends to use all four poles of the isolator.

From the datasheet:

| <i>Ithe</i> solar current value outdoors at 60°C<br>shade ambient air temperature (see<br>D.8.3.11,table D3), with solar effects in a<br>specific dedicated enclosure rated IP66NW | Step 1                                                        | 29 amps                                                                   |                                                                                          |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------|
|                                                                                                                                                                                    | U <sub>e</sub><br>rated<br>operational<br>voltage<br>DC Volts | <i>I</i> <sub>e</sub> ; DC-PV2<br>rated<br>operational<br>current<br>Amps | I <sub>(make)</sub> and<br>I <sub>c(break)</sub><br>DC-PV2<br>4 x I <sub>e</sub><br>Amps | _      |
|                                                                                                                                                                                    | ≤500                                                          | 32                                                                        | 128                                                                                      | Step 3 |
| 2 pole                                                                                                                                                                             | 600                                                           | 13                                                                        | 52                                                                                       |        |
| <u>(1/2/_)</u>                                                                                                                                                                     | 800                                                           | 9                                                                         | 36                                                                                       |        |
|                                                                                                                                                                                    | 1000                                                          | 9                                                                         | 36                                                                                       |        |
| Ste                                                                                                                                                                                | p 2 <b>≤500</b>                                               | 32                                                                        | 128                                                                                      |        |
| 4 pole                                                                                                                                                                             | 600                                                           | 32                                                                        | 128                                                                                      |        |
| $(\underline{1} \underline{2} \underline{3} \underline{4} \underline{)}$                                                                                                           | 800                                                           | 32                                                                        | 128                                                                                      |        |
|                                                                                                                                                                                    | 1000                                                          | 32                                                                        | 128                                                                                      |        |

*Step 1: Check current carrying capacity against the appropriate thermal current rating.* 

As the rooftop isolator will be in the sun, use the  $I_{the}$  value rated at 60°C with solar effects (note: the isolator is shaded by its enclosure and a metallic shroud, which is why the rating is for 'shade ambient air temperature). This value is 29A, which is greater than the required 14.8A.

Step 2: Check the overall current rating is below the rated operational current.

The system voltage is below 500V. When arranged **four poles in series**, the isolator is capable of breaking 32A, which is greater than the required 14.8A.

Step 3: Check the I<sub>(make)</sub> and I<sub>c(break)</sub> current rating for the positive and negative circuits individually.

The intended arrangement is to wire **two poles of the isolator in series** for the positive circuit and **two poles of the isolator in series** for the negative circuit. This means that under fault conditions, only two poles of the isolator would be used to break the fault current and voltage.

At 500V, when two of the isolator poles are wired in series, they are capable of breaking 128A under  $I_{(make)}$  and  $I_{c(break)}$  conditions. This is greater than the required 14.8A.

All three requirements are satisfied. Therefore a 4-pole in series configuration can be used for the proposed array.



## **Example Two**

This example is a large commercial PV system where there are two strings of modules connected in parallel to a transformerless inverter. The calculated maximum voltage and current of this system is 935V and 22.5A. The isolator at the specified configuration must have a minimum rating larger than these values.

The PGK SE030C which is rated up to 1200V, is considered for the isolator adjacent to the array. The installer intends to use all four poles of the isolator.

From the datasheet:

| <i>I</i> <sub>the</sub> solar current value outdoors at 60°C shade ambient air temperature (see D.8.3.11,table D3), with solar effects in a specific dedicated enclosure rated IP66NW | Step 1                                            | 29 amps                                                                   |                                                                                          |        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------|
|                                                                                                                                                                                       | U₌<br>rated<br>operational<br>voltage<br>DC Volts | <i>I</i> <sub>e</sub> ; DC-PV2<br>rated<br>operational<br>current<br>Amps | I <sub>(make)</sub> and<br>I <sub>c(break)</sub><br>DC-PV2<br>4 x I <sub>e</sub><br>Amps |        |
|                                                                                                                                                                                       | ≤600                                              | 32                                                                        | 128                                                                                      |        |
| 2 pole                                                                                                                                                                                | 800                                               | 13                                                                        | 52                                                                                       |        |
| (_1/_2/)                                                                                                                                                                              | 1000                                              | 9                                                                         | 36                                                                                       | Step 3 |
|                                                                                                                                                                                       | 1200                                              | 9                                                                         | 36                                                                                       |        |
|                                                                                                                                                                                       | ≤600                                              | 32                                                                        | 128                                                                                      |        |
| 4 pole                                                                                                                                                                                | 800                                               | 32                                                                        | 128                                                                                      |        |
| ( <u>1/2/3/4/</u> ) Step                                                                                                                                                              | 2 1000                                            | 32                                                                        | 128                                                                                      |        |
|                                                                                                                                                                                       | 1200                                              | 32                                                                        | 128                                                                                      |        |

*Step 1: Check current carrying capacity against the appropriate thermal current rating.* 

As the isolator will be in the sun, use the  $I_{the}$  value rated at 60°C with solar effects (note: the isolator is shaded by its enclosure, which is why the rating is for 'shade ambient air temperature). This value is 29A, which is greater than the required 22.5A

Step 2: Check the overall current rating is below the rated operational current.

The system voltage is below 1000V. When arranged **four poles in series**, the isolator is capable of breaking 32A at 1000V, which is greater than the required 22.5A.

Step 3: Check the I<sub>(make)</sub> and I<sub>c(break)</sub> current rating for the positive and negative circuits individually.

The intended arrangement is to wire **two poles of the isolator in series** for the positive circuit and **two poles of the isolator in series** for the negative circuit. This means that under fault conditions, only two poles of the isolator would be used to break the fault current and voltage.

At 1000V, when two of the isolator poles are wired in series, they are capable of breaking 36A under  $I_{(make)}$  and  $I_{c(break)}$  conditions. This is greater than the required 22.5A.

All three requirements are satisfied. Therefore a 4-pole in series configuration can be used for the proposed array.



## **Example Three**

A residential sub-array has a calculated maximum array voltage of 550V and a calculated maximum current of 12.25A (adjustment factors applied).

The PGK SE030A which is rated up to 1000V, is considered for use as the isolator adjacent to the inverter, located indoors within the garage and within its own enclosure. The installer intends to use only two poles of the isolator.

From the datasheet:

| In rated thermal current, unenclosed, at 40°C shade ambient air temperature                                                                                                        | Step                                                                 | 1 32 amps                                                                 |                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| <i>I</i> <sub>the</sub> rated thermal current, indoors, at 40°C shade ambient air temperature, in a specific dedicated enclosure                                                   |                                                                      | 32 amps                                                                   |                                                                                          |
| <i>Ithe</i> rated thermal current <u>outdoors</u> at 40°C shade ambient air temperature <u>without solar</u> <u>effects in</u> a specific dedicated enclosure rated IP66NW         |                                                                      | 32 amps                                                                   |                                                                                          |
| <i>Ithe</i> solar current value outdoors at 60°C<br>shade ambient air temperature (see<br>D.8.3.11,table D3), with solar effects in a<br>specific dedicated enclosure rated IP66NW |                                                                      | 29 amps                                                                   |                                                                                          |
|                                                                                                                                                                                    | <i>U</i> <sub>e</sub><br>rated<br>operational<br>voltage<br>DC Volts | <i>I</i> <sub>e</sub> ; DC-PV2<br>rated<br>operational<br>current<br>Amps | I <sub>(make)</sub> and<br>I <sub>c(break)</sub><br>DC-PV2<br>4 x I <sub>e</sub><br>Amps |
|                                                                                                                                                                                    | ≤500                                                                 | 32                                                                        | 128                                                                                      |
| 2 pole Ste                                                                                                                                                                         | o 2 600                                                              | 13                                                                        | 52                                                                                       |
| (_1/_2/)                                                                                                                                                                           | 800                                                                  | 9                                                                         | 36                                                                                       |
|                                                                                                                                                                                    | 1000                                                                 | 9                                                                         | 36                                                                                       |
|                                                                                                                                                                                    | ≤500                                                                 | 32                                                                        | 128                                                                                      |
| 4 pole                                                                                                                                                                             | 600                                                                  | 32                                                                        | 128                                                                                      |
| ( <u>1/2/3/4/</u> )                                                                                                                                                                | 800                                                                  | 32                                                                        | 128                                                                                      |
|                                                                                                                                                                                    | 1000                                                                 | 32                                                                        | 128                                                                                      |

| Main Contacts                           |              | Туре |      | Appendix B5 |        |
|-----------------------------------------|--------------|------|------|-------------|--------|
| Rated thermal current Ithe              |              | А    | 32   | Making &    |        |
| Rated insulation voltage U <sub>i</sub> |              | v    | 1200 | Breaking    |        |
| Distance of contacts (per pole)         |              | mm   | 8    | 5x          |        |
| Rated operational current le (DC-P      | <b>'V2</b> ) |      |      | operations  |        |
| 1 pole<br>1                             | 300V         | A    | 25   | 100         |        |
|                                         | 400V         | А    | 10   | 40          |        |
|                                         | 500V         | A    | 8    | 32          |        |
| _1⁄                                     | 600V         | А    | 8    | 32          | Step 3 |
|                                         | 800V         | A    | 3    | 12          |        |
|                                         | 1000V        | A    | 2    | 8           |        |



*Step 1: Check current carrying capacity against the appropriate thermal current rating.* 

As the isolator will be indoors, use the  $I_{the}$  value rated at 40°C with solar effects (note: the isolator is shaded by its enclosure, which is why the rating is for 'shade ambient air temperature). This value is 32A, which is greater than the required 12.25A

Step 2: Check the overall current rating is below the rated operational current.

The system voltage is below 600V. When arranged **two poles in series**, the isolator is capable of breaking 13A at 600V, which is greater than the required 12.25A.

Step 3: Check the I<sub>(make)</sub> and I<sub>c(break)</sub> current rating for the positive and negative circuits individually.

The intended arrangement is to wire a single pole of the isolator for the positive circuit and a single pole of the isolator for the negative circuit. This means that under fault conditions, only one pole of the isolator would be used to break the fault current and voltage.

At 600V, when only a single pole of the isolator is used, the isolator is capable of breaking 32A under  $I_{(make)}$  and  $I_{c(break)}$  conditions. This is greater than the required 12.25A.

Note that the single pole information is available on the last page of the datasheet in a separate table.

All three requirements are satisfied. Therefore a 2-pole in series configuration can be used for the proposed sub-array.



## **Interpreting the PGK Manufacturer Data Sheets**

Isolator best practice:

- 1. The positive and negative circuits of an array cannot be connected to separate switches, as switch-disconnectors shall interrupt all live conductors simultaneously. If the isolator selected does not meet the PV Array Max Voltage and Maximum current ratings of the array, a higher rated isolator is required. (reference: AS5033:2014 A2 Clause 4.3.5.2 (c))
- 2. AS/NZS 5033:2014 Clause 4.3.3.1 states "Cables and conduits shall not enter the top entry face of the enclosure." It is required that all cable entries are made through the bottom entry where practicable; side entry is only allowed where entry points are supplied by the enclosure and where bottom entry is not possible.

To maintain this IP rating, it is recommended that the supplied mounting brackets are used to avoid penetration of the isolator enclosure (Figure 2) and the isolator is mounted in an appropriate location. Stainless steel screws should be used to avoid corrosion of attachment points.

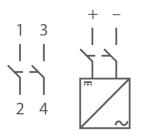
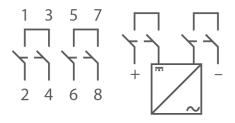



Figure 2. Rear photograph of the PGK isolator. The attachment points using the supplied bracket are clearly marked.

- 3. The maximum permissible PV system voltage for a residential solar system is 600V. Higher voltage is allowed for commercial systems, but there must now be adequate restricted access to the isolators (Reference: AS/NZS5033: 2014 Clause 3.1.)
- 4. Take note of the installation location of the isolator to determine the appropriate rated thermal current ( $I_{the}$ ) to use:
  - a. If installed indoors, use I<sub>the</sub> rated thermal current **indoor** at **40°C shade** ambient air temperature in a specific dedicated enclosure
  - b. If installed outdoors under shade, use I<sub>the</sub> rated thermal current **outdoor** at **40°C shade** ambient air temperature **without solar effects**, in a specific dedicated enclosure
  - c. If installed outdoors exposed to sunlight, use I<sub>the</sub> solar current value outdoor at 60°C shade ambient air temperature with solar effects in a specific dedicated enclosure.

Connection diagrams are provided by the manufacturers to illustrate the isolator's internal connections and isolator ratings for different configurations. However, these diagrams <u>should not</u> be used to determine the isolator rating, as **the description matching the connection diagrams do not describe all the cases that need to be considered for non-isolated PV systems.** This problem is explained with Figure 3 and Figure 4.






*Figure 3: A typical 'two poles in series' connection diagram provided by a manufacturer.* 

Manufacturers may provide the connection diagram shown in Figure 3 for two poles in series. When the isolator is connected to a non-isolated system, the **single pole** rating, <u>as well as the two poles in series</u> rating, must be used to meet the isolator rating requirements. This is because only one pole is being used per string conductor for the positive and negative circuit. The single pole ratings of the isolator must be used to assess the isolator's rating under fault condition.

Similarly, consider the typical manufacturer-provided connection diagram in Figure 4.



*Figure4: A typical 'four poles in series' connection diagram provided by a manufacturer.* 

When a non-isolated system is connected as shown in Figure 4, **the two poles in series** rating, <u>as well as the</u> <u>four poles in series rating</u>, must be considered because each string conductor uses two poles of the isolator.



## SE030A Isolator Data Sheet and Wiring Configurations

## **Technical Specifications**

| Туре                      |                                      | 1 SE030A, SE030B, SE030E, SE042E, SE042B, SE042H              |  |  |
|---------------------------|--------------------------------------|---------------------------------------------------------------|--|--|
| Function                  |                                      | Isolator, Control                                             |  |  |
| Standard                  |                                      | IEC60947-3, AS60947.3                                         |  |  |
| Utilization category      |                                      | 2 DC-PV2/DC-21B                                               |  |  |
| Pole                      |                                      | 4P                                                            |  |  |
| Rated frequency           |                                      | DC                                                            |  |  |
| Rated operational volta   | age ( <i>U</i> ,)                    | <sup>3</sup> 500V, 600V, 800V, 1000V                          |  |  |
| Rated operational curr    | ent (/,)                             | See the next page                                             |  |  |
| Rated insulation voltag   | je ( <i>U</i> ,)                     | 1200V                                                         |  |  |
| Conventional free air th  | nermal current(I <sub>m</sub> )      | 11                                                            |  |  |
| Conventional enclosed the | ermal current(Ine)                   | Same as /.                                                    |  |  |
| Rated short-time withs    | tand current (/)                     | 1kA,1s (4, 4S,4B); 1.7kA, 1s (2H)                             |  |  |
| Rated short-time making   | ng capacity (I <sub>on</sub> )       | 1.7kA (4, 4S,4B); 3kA (2H)                                    |  |  |
| Rated conditional shor    | t-circuit current (I <sub>at</sub> ) | 3kA                                                           |  |  |
| Rated impulsed withsta    | and voltage $(U_{inp})$              | 8.0kV                                                         |  |  |
| Overvoltage category      |                                      | II                                                            |  |  |
| Suitability for isolation |                                      | Yes                                                           |  |  |
| Polarity                  |                                      | No polarity, "+" and "-" polarities<br>could be interchanged. |  |  |
| Mechanical                |                                      | 15000                                                         |  |  |
| Electrical                |                                      | 1000                                                          |  |  |
| Ingress Protection        | Enclosure                            | IP66                                                          |  |  |
| ingroot rotoodoll         | Switch body                          | IP20                                                          |  |  |
| Storage Temperature       |                                      | -5°C ~ +85°C                                                  |  |  |
| Mounting Type             |                                      | Vertically or horizontally                                    |  |  |
| Pollution degree          |                                      | 3                                                             |  |  |
| Suitable environment      |                                      | Outdoor / Indoor                                              |  |  |

- 1. Isolator's catalogue number identification.
- 2. Utilization Category. All isolators must be rated DC-PV2 according to AS 60947.3
- 3. Rated Operational Voltage (U<sub>e</sub>).
  - This voltage refers to the voltage range the isolator is able to break. To size the isolator, the current rating corresponding to the required voltage rating must be met for normal operating condition and fault conditions.



## Switching Configurations

| Туре                     | 4-pole                                                | 4-pole with Input<br>and<br>Output bottom |  |  |
|--------------------------|-------------------------------------------------------|-------------------------------------------|--|--|
| 1                        | / 4B                                                  |                                           |  |  |
| Contacts<br>Wiring graph | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |                                           |  |  |
| Switching<br>example     |                                                       |                                           |  |  |

- 4. Single pole configuration for both positive and negative circuit
- 5. Overall configuration uses two-poles in series per inverter. the positive circuit passes through a single pole and the negative circuit also passes through a single pole. Note that while all four poles are utilised in this arrangement, the overall configuration for each inverter is **two poles in series**, and for each inverter entry, the positive circuit passes through a single pole and the negative circuit also passes through a single pole and the negative circuit also passes through a single pole.
- 6. Two poles in series configuration for both the positive and negative circuit.
- 7. Overall configuration uses **four-poles in series** per inverter. The positive circuit passes through two poles and the negative circuit also passes through two poles.



| Contacts wiring<br>diagram | 8  | 300V | 500V | 600V | 800V | 1000V | Poles in series | Number of<br>Strings | Type Number |
|----------------------------|----|------|------|------|------|-------|-----------------|----------------------|-------------|
| 1 3 5 7                    |    |      |      |      |      |       | 9               |                      |             |
|                            | 11 | 32A  | 32A  | 13A  | 9A   | 9A    | 2               | 2                    | 4           |
| 10 2 4 6 8                 |    |      |      |      |      |       |                 |                      |             |
| 1 3 5 7                    |    |      |      |      |      |       | _               |                      |             |
| <u> </u>                   | 13 | 32A  | 32A  | 32A  | 32A  | 32A   | 4               | 1                    | 4B          |
| 12                         |    |      |      |      |      |       |                 |                      |             |

### Wiring Diagram for Rated operational voltage Ue (V) & Rated operational current le (A)

- 8. Selected operating voltages of the Isolator. Note the maximum is 1000V
- 9. "Poles in Series" represents the overall number of poles used in the "Contact Configuration", the round trip from the positive conductor at the inverter, through the isolator to the array, then from the negative conductor back through the isolator to the inverter. Note: the configuration that corresponds to manufacturer's description of four poles in series should also be rated to the two poles in series configuration under fault condition. Similarly, the configuration described as two poles in series should also be rated to the single pole rating under fault condition.
- 10. Two poles in series comprising a single pole in the positive circuit and a single pole in the negative circuit
- 11. Ie operation current rating of two poles in series for a range of voltage
- 12. Four poles in series comprising two poles in the positive circuit and two poles in the negative circuit
- 13. Ie operation current rating of four poles in series for a range of voltage



### **Rated Thermal Current**

| <i>I</i> <sub>th</sub> rated thermal current, unenclosed, at 40°C shade ambient air temperature                                                                                                | 32 amps       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| <i>I</i> the rated thermal current, indoors, at 40°C shade ambient air temperature, in a specific dedicated enclosure                                                                          | 32 amps       |
| <i>I</i> the rated thermal current <u>outdoors</u> at 40°C shade ambient air temperature <u>without solar</u> <u>effects in</u> a specific dedicated enclosure rated IP66NW                    | 32 amps       |
| <i>I</i> <sub>the</sub> solar current value outdoors at 60°C<br>shade ambient air temperature (see<br>D.8.3.11,table D3), with solar effects in a<br>specific dedicated enclosure rated IP66NW | 29 amps<br>17 |

The applicable rated thermal current differs depending on the condition.

- 14. The rated thermal current if the isolator is installed indoors and not within its own dedicated enclosure (e.g. sharing a switchboard with multiple other isolators)
- 15. The rated thermal current if the isolator is installed indoors and within its own dedicated enclosure (e.g. each isolator installed within its own case)
- 16. The rated thermal current if the isolator is installed outdoors within its own dedicated enclosure and not exposed to direct sunlight (e.g. Isolator installed on South-facing wall outdoors under eave)
- 17. The rated thermal current if the isolator is installed outdoors within its own dedicated enclosure and exposed to direct sunlight (e.g. Isolator installed on roof, isolator installed on east-facing wall outdoors which is exposed to direct sunlight until noon)

#### Main Contacts Type Appendix B5 Rated thermal current Ithe А 32 Making & V 1000 Rated insulation voltage Ui Breaking Distance of contacts (per pole) 8 5x mm Rated operational current le (DC-PV2) operations 300V 25 100 1 pole А 1 400V А 10 40 500V А 8 32 1/ 600V А 8 32 3 12 800V А 1000V А 2 8

Single Pole Rating for PGK SE030A

Note: The definition of  $I_{(make)}$  and  $I_{c(break)}$  for utilisation category DC- PV2 according to AS60947.3 is four times the  $I_e$  voltage rating



## SE030C Switch Disconnector Data Sheet and Wiring Configurations

### **Technical Specifications**

| Technical Specifica         | ations                              |                                                                    |  |  |
|-----------------------------|-------------------------------------|--------------------------------------------------------------------|--|--|
| Туре                        |                                     | 18 SE030C SE030D, SE030F, SE042F, SE042D, SE042I<br>SE030N, SE030M |  |  |
| Function                    |                                     | Isolator, Control                                                  |  |  |
| Standard                    |                                     | IEC60947-3, AS60947.3                                              |  |  |
| Utilization category        |                                     | 19 DC-PV2 / DC-21B                                                 |  |  |
| Pole                        |                                     | 4P                                                                 |  |  |
| Rated frequency             |                                     | DC                                                                 |  |  |
| Rated operational volta     | ge (U_)                             | 20 600V, 800V, 1000V, 1200V                                        |  |  |
| Rated operational curre     | ent (/_)                            | See the next page                                                  |  |  |
| Rated insulation voltag     | e (U,)                              | 1200V                                                              |  |  |
| Conventional free air th    | ermal current(I <sub>M</sub> )      | 11                                                                 |  |  |
| Convention al en closed the | mal current(In)                     | Same as I,                                                         |  |  |
| Rated short-time withst     | and current (/)                     | 1kA,1s (4, 4S,4B); 1.7kA, 1s (2H)                                  |  |  |
| Rated short-time makin      | g capacity (I <sub>on</sub> )       | 1.7kA (4, 4S,4B); 3kA (2H)                                         |  |  |
| Rated conditional short     | -circuit current (I <sub>at</sub> ) | 3kA                                                                |  |  |
| Rated impulsed withsta      | nd voltage (Ump)                    | 8.0kV                                                              |  |  |
| Overvoltage category        |                                     | П                                                                  |  |  |
| Suitability for isolation   |                                     | Yes                                                                |  |  |
| Polarity                    |                                     | No polarity, "+" and "-" polarities could be interchanged.         |  |  |
| Mechanical                  |                                     | 15000                                                              |  |  |
| Electrical                  |                                     | 1000                                                               |  |  |
| Ingress Protection          | Enclosure                           | IP66                                                               |  |  |
| ingrease rotection          | Switch body                         | IP20                                                               |  |  |
| Storage Temperature         |                                     | -5°C ~ +85°C                                                       |  |  |
| Mounting Type               |                                     | Vertically or horizontally                                         |  |  |
| Pollution degree            |                                     | 3                                                                  |  |  |
| Suitable environment        |                                     | Outdoor / Indoor                                                   |  |  |

18. Isolator's catalogue number identification.

- 19. Utilization Category. All isolators must be rated DC-PV2 according to AS 60947.3
- 20. Rated Operational Voltage (U<sub>e</sub>).
  - This voltage refers to the voltage range the isolator is able to break. To size the isolator, the current rating corresponding to the required voltage rating must be met for normal operating condition and fault conditions.



### Switching Configurations

| Туре                     | 4-pole | 4-pole wit<br>and<br>Output b |  |
|--------------------------|--------|-------------------------------|--|
| 1                        | 4      | 4B                            |  |
| Contacts<br>Wiring graph |        |                               |  |
| Switching<br>example     |        |                               |  |

Note: the SE030C isolator offers the same pole and leg configurations as the SE030A

| Contacts wiring<br>diagram | <mark>21</mark> | 300V | 600V | 800V | 1000V | 1200V |    | Poles in series | Number of<br>Strings | Type Number |
|----------------------------|-----------------|------|------|------|-------|-------|----|-----------------|----------------------|-------------|
|                            |                 | 32A  | 32A  | 13A  | 9A    | 9A    |    | 2               | 2                    | 4           |
|                            | 23              | 32A  | 32A  | 32A  | 32A   | 32A   | 22 | 4               | 1                    | 4B          |

- 21. Selected operating voltages of the isolator. Maximum voltage rating of the SE030C isolator is 1200V.
- 22. "Poles in Series" represents the overall number of poles used in the "Contact Configuration", the round trip from the positive conductor at the inverter, through the isolator to the array, then from the negative conductor back through the isolator to the inverter.
- 23. Ie operation current rating for the number of poles in series. Configuration and current rating for the SE030C at 1200V is similar to the 1000V SE030A isolator. Note that the isolator SE030C has improved current rating at higher voltages (e.g. 800V).

### **Rated Thermal Current**

The SE030C isolator offers the same thermal current ratings as the SE030A.



## Single Pole Rating for PGK SE030C

| Main Contacts                           | Туре  |    | Appendix B5 |          |
|-----------------------------------------|-------|----|-------------|----------|
| Rated thermal current I <sub>the</sub>  |       | А  | 32          | Making & |
| Rated insulation voltage U <sub>i</sub> |       | V  | 1200        | Breaking |
| Distance of contacts (per pole)         |       | mm | 8           | 5x       |
| Rated operational current le (DC-PV     |       |    | operations  |          |
| 1 pole                                  | 300V  | А  | 25          | 100      |
| 1                                       | 400V  | А  | 10          | 40       |
| _1/                                     | 500V  | А  | 8           | 32       |
|                                         | 600V  | А  | 8           | 32       |
|                                         | 800V  | А  | 3           | 12       |
|                                         | 1000V | А  | 2           | 8        |

Note: The definition of  $I_{(make)}$  and  $I_{c(break)}$  for utilisation category DC- PV2 according to AS60947.3 is four times the  $I_e$  voltage rating



## SE030G Isolator Data Sheet and Wiring Configurations

## **Technical Specifications**

| Technical Specifica       | ations                              |                                                               |  |  |
|---------------------------|-------------------------------------|---------------------------------------------------------------|--|--|
| Туре                      |                                     | 24 SE030G, SE030L, SE030K                                     |  |  |
| Function                  |                                     | Isolator, Control                                             |  |  |
| Standard                  |                                     | IEC60947-3, AS60947.3                                         |  |  |
| Utilization category      |                                     | 25 DC-PV2 / DC-21B                                            |  |  |
| Pole                      |                                     | 4P                                                            |  |  |
| Rated frequency           |                                     | DC                                                            |  |  |
| Rated operational volta   | ige (U_)                            | 26 300V, 600V, 1000V, 1200V, 1500V                            |  |  |
| Rated operational curre   | ent (/")                            | See the next page                                             |  |  |
| Rated insulation voltag   | e (U,)                              | 1500V                                                         |  |  |
| Conventional free air th  | ermal current(Im)                   | 11                                                            |  |  |
| Conventional enclosed the | mal current(Im)                     | Same as I,                                                    |  |  |
| Rated short-time withst   | and current (/,,)                   | 1.5kA,1s                                                      |  |  |
| Rated short-time making   | ig capacity (I <sub>on</sub> )      | 2kA                                                           |  |  |
| Rated conditional short   | -circuit current (I <sub>at</sub> ) | 3kA                                                           |  |  |
| Rated impulsed withsta    | nd voltage (Ump)                    | 8.0kV                                                         |  |  |
| Overvoltage category      |                                     | II                                                            |  |  |
| Suitability for isolation |                                     | Yes                                                           |  |  |
| Polarity                  |                                     | No polarity, "+" and "-" polarities<br>could be interchanged. |  |  |
| Mechanical                |                                     | 10000                                                         |  |  |
| Electrical                |                                     | 1000                                                          |  |  |
| Ingress Protection        | Enclosure                           | IP66                                                          |  |  |
| Ingress Froteouon         | Switch body                         | IP20                                                          |  |  |
| Storage Temperature       |                                     | -5°C ~ +85°C                                                  |  |  |
| Mounting Type             |                                     | Vertically or horizontally                                    |  |  |
| Pollution degree          |                                     | 3                                                             |  |  |
| Suitable environment      |                                     | Outdoor / Indoor                                              |  |  |

- 24. Isolator's catalogue number identification.
- 25. Utilization Category. All isolators must be rated DC-PV2 according to AS 60947.3
- 26. Rated Operational Voltage (U<sub>e</sub>).
  - This voltage refers to the voltage range the isolator is able to break. To size the isolator, the current rating corresponding to the required voltage rating must be met for normal operating condition and fault conditions.



## Switching Configurations

| Туре                     | 4-pole                                                | 4-pole with Input<br>and<br>Output bottom |  |
|--------------------------|-------------------------------------------------------|-------------------------------------------|--|
| 1                        | 4                                                     | 4B                                        |  |
| Contacts<br>Wiring graph | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |                                           |  |
| Switching<br>example     |                                                       |                                           |  |

Note: the SE030G isolator offers the same pole and leg configurations as the SE030A and SE030C.

| Wiring Diagram for Rated operationa | al valtara Lla (\/) 9 Data | $\mathbf{A} = \mathbf{A} + \mathbf{A} + \mathbf{A}$ |
|-------------------------------------|----------------------------|-----------------------------------------------------|
| Wiring Diagram for Rated operationa | al voltade de (v) & Rateo  | 1 ODEFATIONAL CUFFENT IE (A)                        |
|                                     |                            |                                                     |

| Contacts wiring<br>diagram | 300V | 600V | 1000V | 1200V | 1500V | Poles in series | Number of<br>Strings | Type Number |
|----------------------------|------|------|-------|-------|-------|-----------------|----------------------|-------------|
| 1 3 5 7                    | 27   |      |       |       |       |                 |                      |             |
|                            | 50A  | 50 A | 50A   | 32A   | 16A   | 2               | 2                    | 4           |
|                            |      |      |       |       |       |                 |                      |             |
| 1 3 5 7                    |      |      |       |       |       |                 |                      |             |
|                            | 50A  | 50A  | 50A   | 50 A  | 35A   | 4               | 1                    | 4B          |
| רדד                        | 29   |      |       |       | 28    |                 |                      |             |
| 2468                       |      |      |       |       |       |                 |                      |             |

- 27. Selected operating voltages of the Isolator. Note the maximum voltage is 1500V
- 28. "Poles in Series" represents the overall number of poles used in the "Contact Configuration", the round trip from the positive conductor at the inverter, through the isolator to the array, then from the negative conductor back through the isolator to the inverter.

The configuration that corresponds to manufacturer's description of four poles in series should also be rated to the two poles in series configuration under fault condition. Similarly, the configuration described as two poles in series should also be rated to the single pole rating under fault condition.

29. I<sub>e</sub> operation current rating for the number of poles in series. Configuration for the SE030G is similar to the other models, however this isolator has a much higher current rating for the given range of rated operational voltages.



### **Rated Thermal Current**

| <i>I</i> <sup>th</sup> rated thermal current, unenclosed, at 40°C shade ambient air temperature                                                                                                 | <b>50 amps</b> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| <i>I</i> <sub>the</sub> rated thermal current, indoors, at 40°C shade ambient air temperature, in a specific dedicated enclosure                                                                | 50 amps        |
| <i>I</i> <sub>the</sub> rated thermal current <u>outdoors</u> at 40°C<br>shade ambient air temperature <u>without solar</u><br><u>effects in</u> a specific dedicated enclosure<br>rated IP66NW | <b>50 amps</b> |
| <i>I</i> <sub>the</sub> solar current value outdoors at 60°C<br>shade ambient air temperature (see<br>D.8.3.11,table D3), with solar effects in a<br>specific dedicated enclosure rated IP66NW  | <b>50 amps</b> |

The applicable rated thermal current differs depending on the condition.

- 30. The rated thermal current if the isolator is installed indoors and not within its own dedicated enclosure (e.g. sharing a switchboard with multiple other isolators)
- 31. The rated thermal current if the isolator is installed indoors and within its own dedicated enclosure (e.g. each isolator installed within its own case)
- 32. The rated thermal current if the isolator is installed outdoors within its own dedicated enclosure and not exposed to direct sunlight (e.g. Isolator installed on South-facing wall outdoors under eave)
- 33. The rated thermal current if the isolator is installed outdoors within its own dedicated enclosure and exposed to direct sunlight (e.g. Isolator installed on roof, isolator installed on east-facing wall outdoors under eave which shades the inverter but not the isolator)

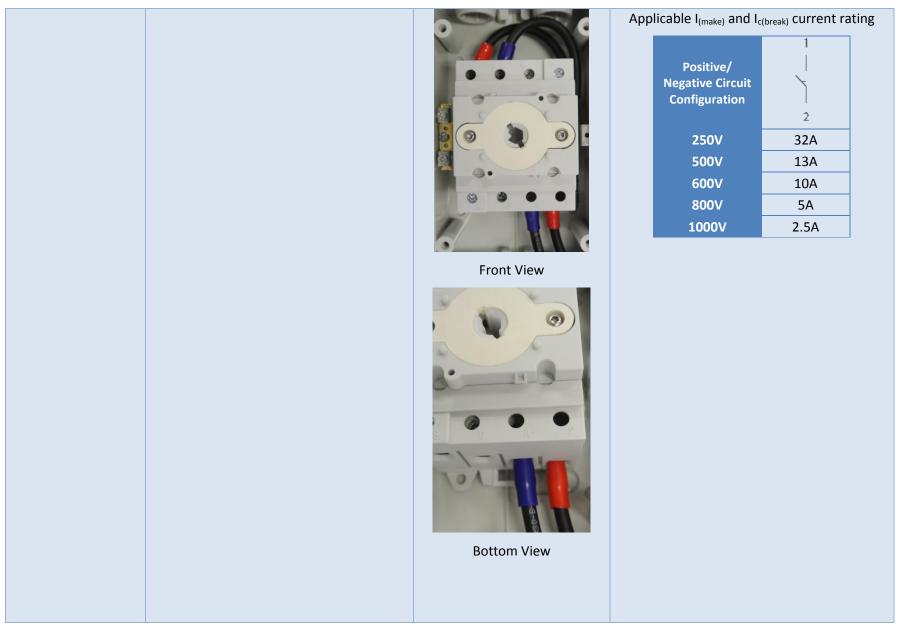
### Single Pole Rating for PGK SE030G

| Main Contacts                           | Туре  |    | Appendix B5 |          |
|-----------------------------------------|-------|----|-------------|----------|
| Rated thermal current I <sub>the</sub>  |       | А  | 32          | Making & |
| Rated insulation voltage U <sub>i</sub> |       | V  | 1200        | Breaking |
| Distance of contacts (per pole)         |       | mm | 8           | 5x       |
| Rated operational current le (DC-PV     |       |    | operations  |          |
| 1 pole                                  | 300V  | А  | 25          | 100      |
| 1                                       | 400V  | А  | 10          | 40       |
| 1 /                                     | 500V  | А  | 8           | 32       |
| _1/                                     | 600V  | А  | 8           | 32       |
|                                         | 800V  | А  | 3           | 12       |
|                                         | 1000V | А  | 2           | 8        |

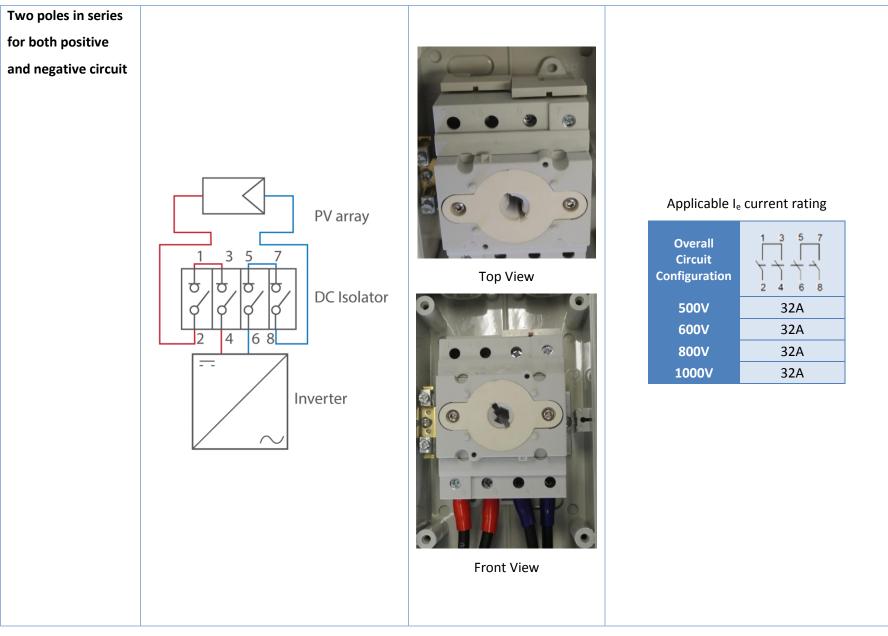
Note: The definition of  $I_{(make)}$  and  $I_{c(break)}$  for utilisation category DC- PV2 according to AS60947.3 is four times the  $I_e$  voltage rating.



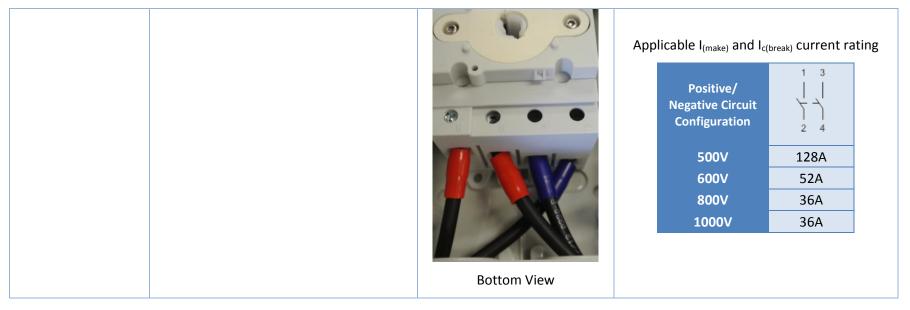
## Australian Standard and CEC Guideline Compliant PGK Isolator Installation Guide


\*Note The thermal current rating I<sub>the</sub> is not reproduced here. The system designer must refer to the I<sub>the</sub> which best fits the installation location of the isolator. These ratings should be used in conjunction with array voltage and current ratings outlined in AS5033:2014.

## SE030A 1000V 32A


| Configuration                                          | Electrical Wiring                                  | Isolator Wiring Picture | Configuration Voltage and Current Rating                                                                          |
|--------------------------------------------------------|----------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------|
| One pole used for<br>positive and<br>negative circuit. | PV array<br>DC Isolator<br>DC Isolator<br>Inverter | <image/>                | Applicable Ie current ratingOverall Circuit<br>Configuration $1$<br>$2$<br>$4$ 250V32A500V32A600V13A800V9A1000V9A |



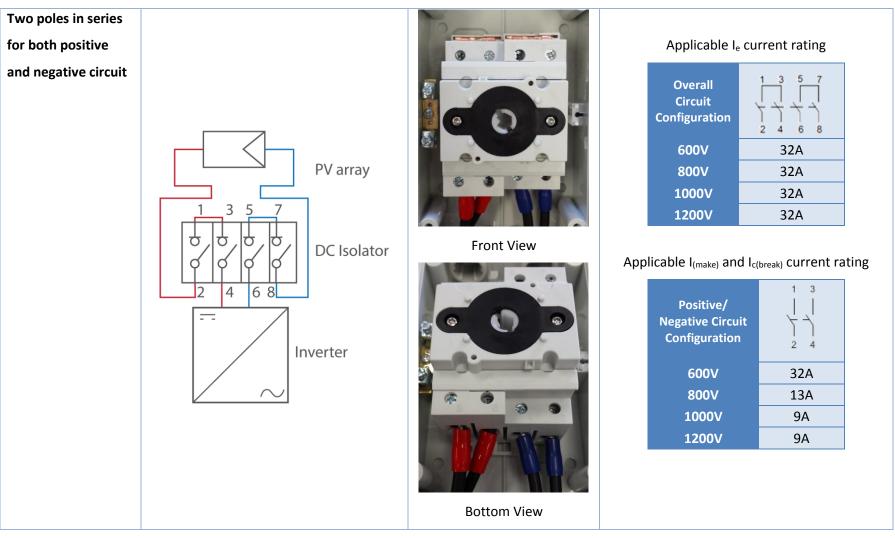










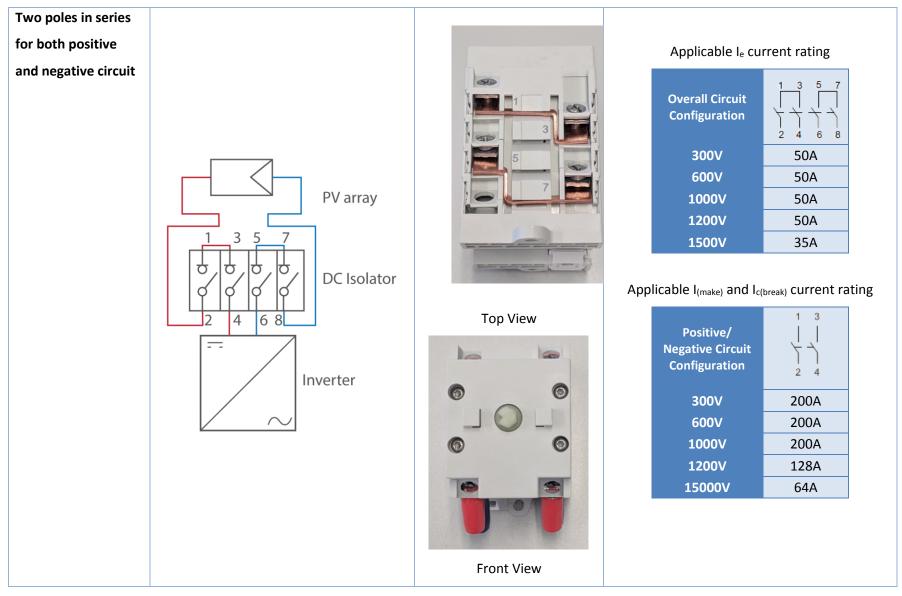






## SE030C 1200V 32A

| Configuration                                          | Electrical Wiring                      | Isolator Wiring Picture | Configuration Voltage and Current Rating                                                                                                                                                                                                                         |
|--------------------------------------------------------|----------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| One pole used for<br>positive and<br>negative circuit. | PV array<br>DC Isolator<br>Dr Isolator | <image/>                | Applicable Ie current ratingOverall Circuit<br>Configuration1<br>2<br>2<br>4600V32A800V13A1000V9A1200V9A1200V9A2600VSepticable I(make) and Ic(break) current ratingPositive/<br>Negative Circuit<br>Configuration1<br>2<br>4<br>2<br>600V600V32A<br>32A<br>2<br> |








## SE030G 1500V 32A

| Configuration                  | Electrical Wiring | Isolator Wiring Picture | Configuration Voltage and Current Rating                        |
|--------------------------------|-------------------|-------------------------|-----------------------------------------------------------------|
| One pole used for              |                   |                         | Applicable I <sub>e</sub> current rating                        |
| positive and negative circuit. |                   |                         | Overall Circuit<br>Configuration                                |
|                                |                   |                         |                                                                 |
|                                |                   |                         | 300V 50A                                                        |
|                                | PV array          |                         | 600V <u>50A</u>                                                 |
|                                |                   |                         | 1000V <u>50A</u>                                                |
|                                | 1 3 5 7           | 6 6                     | 1200V <u>32A</u>                                                |
|                                | DC Isolator       |                         | 1500V16AApplicable I<br>(make) and I<br>c(break) current rating |
|                                | Inverter          |                         | Positive/<br>Negative Circuit<br>Configuration<br>2             |
|                                |                   | Front View              | 300V 100A                                                       |
|                                |                   |                         | 600V <u>32A</u>                                                 |
|                                |                   |                         | 1000V <u>8A</u>                                                 |
|                                |                   |                         | 1200V Not<br>available                                          |
|                                |                   |                         | 15000V Not<br>available                                         |











