HEMIDESMUS INDICUS: A REVIEW

Gaurav A. Panchal, Shital J. Panchal*, Jagruti A. Patel

Department of Pharmacology Institute of Pharmacy, Nirma University of Science and Technology, Sarkhej-Gandhinagar Highway, Ahmedabad- 382481, India

Summary

Natural products have served as a major source of drugs for centuries and about half of the pharmaceuticals in use today are derived from natural products. *Hemidesmus indicus,* also popularly known as 'Anantmul' is a semi erect shrub belonging to family Asclepiadaceae is widely distributed throughout India. It is traditionally used in dysentery, diarhhoea, skin diseases, syphilis, dyspepsia, leucoderma, diuretic, blood purifier, burning of body, chronic fever and asthma. Pharmacological studies carried out with its extract and purified compounds indicate that this plant possess antioxidant, hepatoprotective, anti-ulcer, antimicrobial, anticancer, hypoglycemic, antithrombotic, antihyperlipidemic, otoprotective, analgesic, anti-inflammatory and immunomodulatory activities. It has been reported to possess various phytoconstituents such as hydrocarbons, glycosides, oligoglycosides, terpenoids and steroids. In the present review attempts have been made to bring in light the potential benefits and uses of this plant.

Key words: *Hemidesmus indicus*, Asclepiadaceae, Anantmul, Saarivaa, Phytochemical Constituents, Pharmacological Actions.

Running Title: Effects of Hemidesmus indicus

* Address for Correspondence and Reprint Requests: Dr. Shital Panchal Assistant Professor, Department of Pharmacology, Institute of Pharmacy, Nirma University of Science and Technology, Sarkhej-Gandhinagar Highway, Ahmedabad- 382481.
Phone No. +91 (2717) 241900
Fax No : +91 (2717) 241917
Email : shital_panchal22@yahoo.co.in

Introduction

Hemidesmus indicus is a semi-erect shrub found throughout India from upper Gangetic plain eastwards to Assam and throughout central, western and southern India [1]. The name "Hemidesmus" is derived from Latin word "Hemidesmos" which means 'half bond'. It is so named in allusion to sub connate filaments at their base – joint pods and connected stamens. Word "indicus" stands for 'of India'. Hemidesmus indicus belongs to family Asclepiadaceae which is derived from word "Askleplos" – means 'God of Medicine' [2]. Vernacular name "Anantmul" is a Sanskrit word which means 'endless root' [3]. Plant has two varieties namely black variety, also called as 'Krishna Saarivaa' and white variety which is called as 'Saarivaa' [2]. Hemidesmus indicus is accepted by Ayurvedic formulary as white variety whereas, Cryptolepis buchananii Roem. and Schytt as black variety. Ichnocarpus fruitescens is also used as black variety by the people of West Bengal and Kerala [4].

It is a slender, laticiferous twining shrub distributed to greater part of India. Leaves are opposite, shortly petioled, elliptically oblong to linear lanceolate. Flowers are greenish outside but purplish inside. Seeds are black, flattened with a silvery white coma [5]. Pictures of entire plant as well as roots are as shown in Figure 1 and Figure 2 [6, 7].

Figure 1. *Hemidesmus indicus* plant

Figure 2. Roots of Hemidesmus indicus

Pharmacognostical Studies

Macroscopy - Dark brown roots are 30cm long and 3-8mm in diameter, cylindrical, thick, hard, sparsely branched and are provided with few thick rootlets along with secondary roots. Bark is brownish and shows transverse cracks and longitudinal fissures.

Microscopy - Transverse section of roots shows periderm consisting of three layers of tissues, cork, cork cambium and secondary cortex. Cork cells are radially flattened, rectangular and filled with dark brown contents. Cork cambium is 2 or 3 layered, compressed and is filled with deep brown contents. Secondary cortex consists of 3-4 layers of cells and contains little or no dark brown contents. Secondary phloem consist of sieve elements, parenchyma, phloem ray cells along with several scattered laticiferous ducts.

Parenchyma cells are filled with starch grain and occasionally show presence of prismatic crystal of calcium oxalate. Cambium is very narrow. Xylem is transverse by narrow medullary rays. Vessels and trachieds show pitted marking. Pith is absent and central region is occupied by woody tissues [1].

Phytochemistry

Phytoconstituents of *Hemidesmus indicus* ranges from hydrocarbons, glycosides, oligoglycosides, and terpenoids to steroids [8, 9]. The phytoconstituents isolated so far from different parts of *Hemidesmus indicus* is presented in Table 1.

Table1. Phytoconstituents reported from different parts of Hemidesmus indicus. [8, 9]

Sr.	Parts	Constituents
No.		
1.	Roots	Pregnane glycoside viz. Hemindicusin.
		Coumarinolignoids viz. Hemidesmin-1 and Hemidesmin-2.
		Others - β -amyrin acetate, α -amyrin, β -amyrin, lupeol acetate,
		β -sitosterol, hexadecanoic acid, hexatriacontane, lupeol
		Oil contains 80% crystalline matter glucose hemidesmol
		hemidesterol, 2-hydroxy-4-methoxy benzaldehyde, resin acid,
		glucoside, α -amyrin triterpene, β -amyrin triterpene, and
		benzaldehyde.
2.	Stem	Glycosides such as Indicine and Hemidine.
		Pregnane glycoside such as Hemidescine and Emidine.
		Pregnane oligoglycosides viz. demicunine and heminine.
		Desinine, Indicusin, Medidesmine, Hemisine and Demicine.
		Steroidal compounds viz. Calogenin-3-o-β-D-
		digitoxopyranosteroid, desminine steroid, hemisine steroid.
		Triterpenoids viz. 3-keto-lup-12-ene-21->28 olide triterpene,
		lup-12-ene-3-β-ol acetate triterpene.
3.	Leaves	Coumarinolignoids viz. hemidesminine, hemidesmin-1,
		hemidesmin-2. Flavonoids viz. hyperoside and rutin.
		2.50% tannins.
4.	Flowers	Flavanoid glycosides viz. Hyperoside, Isoquercetin and Rutin

Also the structures of pharmacologically active constituents are mentioned below [10].

Newsletter

Traditional uses

Decoction of leaves of Saarivaa i.e. white variety of *H. indicus* was prescribed by Charaka in sallow complexion, loss of voice, cough, menstrual disorders and dysentery whereas entire plant is prescribed for treating asthma, cough, abdominal swelling and aching limbs. Krishna Saarivaa i.e. black variety has been indicated by Sushruta in respiratory infection and wasting diseases [4]. Traditionally medicated ghee containing Hemidesmus indicus along with few other plants is used in chronic fever, asthma, cough, hiccup, headache, burning of body and vitiation of digestive fire [3]. Syrup prepared from root of Hemidesmus indicus was made official in British Pharmacopoeia (BP) of 1864 and is also included in Indian Pharmacopoeia. In Ayurvedic system this syrup is prescribed in dyspepsia, loss of appetite, fever, skin diseases and ulceration due to syphilis, chronic rheumatism, and leucorrhoea. It also has demulcent and diuretic properties. Infusion of root powder is used as blood purifier and possesses sudorific properties. This infusion along with milk and sugar is used in children as tonic in cases of chronic cough and diarhhoea. Parts of Anantmul, roots of Bala (Pavonia odorata), tubers of mustaka (Cyperus rotundus), ginger and kutki root (Picrorhiza kurroa) are prescribed by Ayurvedic experts to clear bowels and relieve fever [11]. According to Unani system of medicine, roots and stems of *H. indicus* act as laxative, diaphoretic, diuretic and are useful in treatment of syphilis and leucoderma. In central India, a special "Herbal Mala" is made from the root pieces of Anantmul and Semal (Bombax ceiba) which is used in the treatment of Marasmus. The roots are used by the tribal India to cure gonorrhea, leucoderma, bleeding piles, jaundice and dysentery. Powdered root is used in pre and postnatal care. The tribals of Rajasthan use the paste of roots in scorpion sting. Syrup prepared from roots is used for flavoring medicinal mixtures and it is often called 'Sugandha' because of the wonderful fragrance [12].

Pharmacological Activity

Antioxidant activity

In the study conducted by Ravishankara and coworkers methanolic extract of Hemidesmus indicus roots showed a concentration/dose dependent inhibition of 1, 1-diphenyl-2-picryl hydrazyl (DPPH) radical, superoxide radicals and moderate nitric oxide scavenging activity due to the presence of polar components. Lipid peroxidation induced by Ferric-ADP and ascorbate in rat liver homogenate was also inhibited. Haemolysis of erythrocytes by phenylhydrazine was also effectively inhibited [13]. Similar effects were reported by Mohana and coworkers by using 50% aqueous ethanolic extract of Hemidesmus indicus along with hepatoprotective effect [14]. Topical application of cumene hydroperoxide in rats caused depletion of cutaneous glutathione and activities of antioxidant enzyme viz. glutathione reductase (GR), glutathione peroxidase (GPx), glucose 6-phosphate dehydrogenase, and catalase leading to enhanced cutaneous microsomal lipid peroxidation. Topical application of ethanolic extract of Hemidesmus indicus in acetone prior to application of cumene hydroperoxide showed significant inhibition of cutaneous oxidative stress and increased level of above antioxidant enzymes by an unknown mechanism [15]. Nadana and coworkers postulated that in rats with ethanol induced nephrotoxicity, ethanolic extract of Hemidesmus indicus showed potent antioxidant effect and provided protection against free radicalmediated oxidative stress in kidney. Administration of 500mg extract/kg of body weight/day for last 30 days of experiment significantly reduced the level of serum-urea, uric acid, creatinine and kidney-thiobarbituric acid reacting substances (TBARS), lipid peroxides and conjugated dienes. H. indicus extract also increased level of kidney superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and reduced glutathione (GSH) [16].

Kumar and coworker reported that the terpenoidal fraction obtained from successive extraction of *Hemidesmus indicus* roots possess potent free radical scavenging activity [17]. In another study Mahalingam and coworkers showed that in streptozotocin induced diabetic rats, administration of aqueous extract of *Hemidesmus indicus* roots (500mg/kg/day) for a period of 12 weeks decreased lipid peroxidation index which is attributed to its antioxidant action [18].

Hepatoprotective activity

Mookan and coworkers reported that the ethanolic extract of Hemidesmus indicus roots has protective effect against Rifampicin and Isoniazid (INH) induced liver toxicity. Extract (100mg/kg body weight/day, for 15 days) prevented alteration in activities of isocitrate α-ketoglutarate dehydrogenase, dehvdrogenase. succinate dehvdrogenase. malate dehydrogenase, cytochrome C oxidase and NADH dehydrogenase. The authors postulated that these effects were probably due to presence of coumarino lignoids viz. hemidesmin-I and hemidesmin-II which has free radical scavenging activity [19]. Mohana and coworkers have demonstrated that 50% aqueous ethanolic extract of Hemidesmus indicus (400mg/kg, per orally) showed similar effects against carbon tetrachloride (CCl₄) induced liver damage. These effects were attributed to its free radical scavenging and antilipid peroxidative activities [14]. Similar effects were reported by Baheti and coworkers with methanolic extract of roots of *H. indicus* against carbon tetrachloride (CCl₄) and paracetamol induced liver damage. H. indicus extract decreased elevated level of serum glutamate pyruvate transaminase (SGPT), serum glutamate oxaloacetate transaminase (SGOT), alkaline phosphatase (ALP), total and direct bilirubin in rats with hepatic damage [20]. Nadana and coworkers reported that the ethanolic extract of Hemidesmus indicus also showed protective effect against ethanol induced liver injury. H. indicus extract significantly decreased level of liver collagen and hydroxyproline content, lipid peroxidation and increases solubility of liver collagen and ascorbic acid level. The extract also decreased activities of matrix metalloproteinase-2 and matrix metalloproteinase-9 which are implicated in extracellular matrix degradation during ethanol intoxication [21].

Antimicrobial activity

Hiremath and coworkers showed that chloroform and 95% ethanolic extracts of roots of H. *indicus* possess antifungal activity against *Aspergillus niger* [22]. Das and coworkers reported potent invitro antimicrobial activity of methanolic extract of H.indicus roots against Salmonella typhimurium, Escherichia-coli and Shigella Flexneri. The extract decreased colony forming unit (CFU)/ml in extract treated broth culture. Further the extract also inhibited castor oil induced diarrhoea in rats which was evidenced by decrease in amount of wet faeces when rats were pretreated with extract at a dose of 500-1500mg/kg. The effect might be due to inhibition of intestinal motility and by its bactericidal activity [23]. Das and coworkers further studied the antienterobacterial activity of both methanolic and chloroform extracts of *H.indicus*. Both the extracts inhibited growth in dose dependent manner and were found to be most effective against S. *flexneri*, moderately effective against other strains and least effective against S. dysenteries. This antienterobacterial activity was attributed to the presence of antimicrobial trace elements such as copper and zinc [24]. Das and coworkers demonstrated that glycosides obtained from Hemidesmus indicus inhibited adherence of S.typhimurium to host cell and hence reduced its pathological effect. Glycoside showed this action by mimicking host cell receptor saccharide and blocks bacterial ligands from binding to the host cell. Further, glycosides also reduced bacterial surface hydrophobicity [25]. Khanna and coworkers demonstrated that the aqueous extract of *H. indicus* showed larvicidal effect against Culex quinquefasciatus mosquito larvae which was responsible for

transmission of lymphatic filariasis caused by *Wuchereria bancrofti*. Aqueous extracts showed 100% mortality at concentration of 5% on 2nd day [26].

Antiacne activity

Most common skin disorder of pilosebaceous unit is Acne vulgaris, which is caused by bacteria *Propionibacterium acnes*, *Staphylococcus epidermis* and *Malassezia furfue*. Most of antiacne drugs target *Propionibacterium acnes*, *Staphylococcus epidermis* as they are the main culprit. In a study conducted by Kumar and coworkers, the roots of *Hemidesmus indicus* showed strong inhibitory effect on *P.acne* and *S.epidermis*. Minimum inhibitory concentration for *P.acne* and *S.epidermis* was found to be 0.051mg/ml and 1.25mg/ml. But high concentrations were required to act as bactericidal agent [27]. In another study conducted by Kumar and coworkers, terpenoidal fraction obtained during successive extraction of *Hemidesmus indicus* was evaluated for antiacne activity. This terpenoidal fraction showed potent antiacne activity and minimum inhibitory concentrations determined by broth dilution assay was found to be 38ug/ml for both *P. acne* and *S. epidermis* and minimum bactericidal concentrations were 38ug/ml and 46ug/ml respectively [17].

Anticarcinogenic activity

Studies conducted by Sultana and coworkers showed that treatment of mouse skin with extract prior to application of cumene hydroxide prevented induction of ornithine decarboxylase activity and DNA synthesis which is considered to be a biochemical marker to evaluate tumor promoting potential of an agent. Thus extract inhibited tumor growth in mouse skin and hence can be considered as a potent chemopreventive agent [15]. Iddamaldeniya and coworkers evaluated the decoction of Hemidesmus indicus, Nigella sativa and Smilax glabra for its effect on diethylnitrosamine (DEN)-induced hepatocarcinogenesis. Carcinogenic potential was scored by comparing number, area and staining intensity of glutathione S-transferase placental form (GST-P) positive foci and number of cell/cm² of the positive foci in livers of rats. The decoction significantly inhibited DEN-mediated GST-P expression in rat liver and hence inhibited early DEN initiated phase of hepatocarcinogenesis. Mechanism of action of decoction was not clear but the authors hypothesized it to be either by detoxification of carcinogen, antioxidant activity, immunomodulatory action or cytotoxicity [28]. In another study using same decoction Iddamaldeniya and coworkers found that long term treatment of rats with decoction not only inhibited DEN induced GST-P expression but also the carcinogen mediated development of overt tumor and histopathological changes leading to tumor development. Also a marked reduction of angiogenesis was observed in rats treated with DEN and decoction, but mechanism by which decoction inhibit angiogenesis was not clear [29]. Chloroform fraction containing phytosterol and fatty acid obtain from crude methanolic extract of roots of *H. indicus* was investigated by Das and coworkers for protective effect against cytotoxicity induced by Salmonella typhimurium in human intestinal cell lines (Int 407). Int 407 cells infected with S. typhimurium treated with 100ug/ml of chloroform fraction had 10 times less cytotoxicity compared to those cells which were infected by wild type bacteria. Adherence and invasive ability of S. typhimurium when treated with chloroform fraction to Int 407 cells was decreased by 40 times and 10-15 times respectively. Further, Int 407 cells infected with chloroform fraction treated S.typhimurium showed almost normal morphology with normal mitochondrial cristae. But few cells had one or two invaded bacteria and cells with altered morphology were rarely observed [30]. Shetty and coworkers have shown that *Hemidesmus* indicus (HI) root extract protect microsomal membranes by reducing lipid peroxidation and also protect DNA from radiation induced strand breaks [31].

Antithrombotic activity

Mary and coworkers have demonstrated that the methanolic extract of roots of *H. indicus* inhibit platelet aggregation. Intravenous administration of root extract of *H. indicus* delayed the plasma recalcification time. Further, authors also reported that the extract of *H. indicus* increased release and activation of enzymes which results in metabolic degradation of lipids [32]. In another study Mary and coworkers investigated the antiatherogenic effect of a polyherbal formulation called Caps HT2 having *Hemidesmus indicus* as one of the ingredient. The putative mechanism of action for the said effect is proposed to be by inhibiting platelet aggregation, delaying plasma recalcification time in rabbits and enhancing lipoprotein lipase activity [33].

Antihyperlipidaemic activity

Bopanna and coworkers reported that in normal rats, cell culture extract of Hemidesmus indicus (CCH) administered at a dose of 16mg/kg decreased low density lipoproteins (LDL) and very low density lipoproteins (VLDL), Cholesterol and significantly increased high density lipoproteins (HDL): cholesterol ratio. In hypercholesterolemic rats, CCH administered at a dose of 2, 4 and 16 mg/kg showed significant reduction in total cholesterol, triglycerides, LDL cholesterol and phospholipids. The possible mechanism of action for the above effect can be an increase in liver LDL receptor activity with a concomitant decrease in hepatic triglyceride (TG) synthesis. Also faecal excretion of cholesterol and phospholipids were increased in hypercholesterolemic rats after administration of CCH (4 and 16 mg/kg) [34]. As mentioned above the polyherbal formulation Caps HT2 was also found to possess hypolipidemic activity as it raised HDL cholesterol level in hyperlipidemic rats [33]. In another invivo study Anoop and coworkers proposed that 2-hydroxy-4-methoxy benzoic acid (HMBA) present in Hemidesmus indicus may be responsible for its antihyperlipidemic action. Administration of HMBA 200ug/kg/day for 30days after oral administration of ethanol for 30days to rats decreased plasma total cholesterol, TG, lipoproteins, phospholipids, free fatty acids and increased plasma lipoprotein lipase concentration [35]. Few other reported biological investigations are presented in Table 2.

Activity	Observation	Mechanism	Reference
Anti ulcer	Aqueous ethanolic extracts	Probably by increasing	36
	decreased formation of	hexosamine and	
	gastric and duodenal ulcers	carbohydrate/protein ratio	
	by various ulcerogenic	and decrease in pepsin	
	procedure and	content which result in	
	cytodestructing agent.	increase in mucous secretion.	
		It also selectively increases	
		prostaglandin and shows	
		mucoprotective activity.	
Otoprotective	Eighty percent ethanolic	Due to specific inhibition of	37
	extract (25 and 50µg/ml)	Gentamicin induced	
	significantly counteract	apoptosis as well as	
	toxic effect of Gentamicin	antioxidant action of extract.	
	on hair cells i.e. decreased		
	apoptosis of hair cells.		
Hypoglycemic	Aqueous extract	May be due to stimulation of	18
	(500mg/kg) decreased	β -cells to produce more	

Table 2. Other	r Biological	Investigations	of Hen	nidesmus	indicus
----------------	--------------	----------------	--------	----------	---------

	blood glucose level within 5hr. in Streptozotocin induced diabetic rats. Also restored decreased level of metabolic enzymes of glucose as well as hepatic metabolizing enzymes to normal level.	insulin as well as increase in peripheral glucose utilization.	
Antinociceptive	Ethanolic extract dose dependently counteract both neurogenic and inflammatory pain.	Not clear	38
Anti- inflammatory and anti pyretic	Methanolic extract showed dose dependent reduction in volume of paw odema and in body temperature up to 4hr.	Not clear	39
Renoprotective	Protects against aminoglycosides induced nephrotoxicity.	Not clear	40
Immuno- modulatory	Enhances both cellular and humoral immunity	Increases production of immunoglobulin-G and increases activity of adenine deaminase which in turn increases lymphocyte proliferation.	41
Venom neutralization	Lupeol acetate isolated from methanolic extract reversed lethal effect induced by venom of <i>Daboia russelli</i> and <i>Naja</i> <i>kaouthia</i> .	Not clear but might be related to antioxidant action of lupeol acetate.	42
Miscellaneous action	Aqueous suspension enhanced absorption of water, sodium ion and potassium ion. But ethanolic extract decreased the same.	Not clear	43

Toxicity Studies

The toxicity profile of *H. indicus* has been studied by Arseculeratne and coworkers. The plant was toxic to liver but no toxicity was observed in kidney and lungs. Dried stem administered at a dose of 25% showed hepatotoxic activity with diffuse hydropic degeneration and focal hepatocellular necrosis. Anoop and coworkers also reported occurrence of hepatomegaly and sclerosed glomeruli when aqueous alcoholic extract of *H. indicus* was administered. [9].

Marketed Formulations

Various polyherbal formulations containing *Hemidesmus indicus* as one of their major constituents are used in treatment of various ailments. Table 3 represents various formulations along with their reported use.

Table 3. Marketed Formulations

Sr. No.	Formulation	Marketed	Indications	Reference
		by		
1.	Praas	Komal Herbals, Inc., United States	Used as tonic, as restorative agents, prevent health stresses; helps enhance memory power, prolongation of antioxidant capabilities.	44
2.	Skinelle Tablets	Charak Pharma, India.	Used for treatment of <i>Acne vulgaris</i> and premenstrual acne.	45
3.	ELGER	Healing Power, Inc., New York.	To provide resistance against all airborne allergies.	46
4.	Renalka Syrup	Himalaya Herbal Healthcare, India.	Used in variety of urinary disorders viz. burning micturition, recurrent urinary tract infection and dysuria.	47
5.	Psorcure Oil and ointment	Clinic Psoriasis, Canada.	Treatment of Psoriasis.	48, 49
6.	Uriflow	Merazon Health Products, Inc., USA.	Used in kidney stone	50
7.	Pressure Control	Vadik Herbs, California.	In regulating the blood pressure.	51
8.	Stresnil	Naturalypure health products, California.	Relieves stress, anxiety, tension, fatigue, poor memory and disturbed sleep.	52

Conclusions

H.indicus is commonly found throughout India and is widely recognized in traditional system of medicine. Various pharmacological studies carried out have shown the potential of plant as an anti-inflammatory, antimicrobial, antiulcerogenic, otoprotective, anti-oxidant, anti-atherogenic and anti-carcinogenic agent. Roots of the plant are used in various herbal formulations that are available in market for treating various ailments.

However, not much information regarding the effect of this plant as an anti-fertility or antileprotic agent is available. Therefore, further studies may be carried out to explore the hidden potential of this plant. Further, the plant has become an endangered species now and hence one needs to focus on the agricultural and climatic needs of this plant, which favours its growth and survival.

References:

- 1. Anonymous. The Ayurvedic Pharmacopoeia of India, Part 1, Vol. I, 1st Edn, Government of India, Ministry of Health and Family Welfare, Dept. of ISM and Homoeopathy, New Delhi; 2001: 107-108.
- 2. Gogte VM. Ayurvedic Pharmacology and Therapeutic uses of Medicinal Plants, 1st Edn. Mumbai, Bhartiya Vidhya Bhavan, 2000: 512-513.
- 3. Gupta NS. The Ayurvedic System of Indian Medicine, Vol. I, New Delhi, Bharatiya Kala Prakashan, 2006: 96-97.
- 4. Khare CP. Encyclopedia of Indian Medicinal Plants, New York, Springer 2004: 245-247.
- 5. Sharma PC, Yelne MB, Dennis TJ. Database on medicinal plants used in Ayurveda, Vol. I, New Delhi, Central Council for Research in Ayurveda & Siddha, 2000: 394-403.
- 6. www.eco-magic.blogspot.com, accessed on 16th Sept. 2008.
- 7. www.kalyx.com, accessed on 16th Sept. 2008.
- 8. Sethi A, Srivastav SS, Srivastav S. Pregnane glycoside from Hemidesmus indicus. Indian J Heterocycl Chem 2006; 16:191-192.
- 9. Austin A. A review on Indian Sarsaparilla, Hemidesmus indicus (L.) R. Br. J Biol Sci 2008; 8(1):1-12.
- 10. Aneja V, Suthar A, Verma S, Kalkunte S. Phyto-pharmacology of Hemidesmus indicus. Pharmacognosy Reviews 2008; 2(3):143-150.
- 11. Gupta NS. The Avurvedic System of Indian Medicine, New Delhi, Bharativa Kala Prakashan, 2006: 309.
- 12. www.disabled-world.com, accessed on 12th August, 2008.
- 13. Ravishankara MN, Shrivastava N, Padh H, Rajani M. Evaluation of antioxidant properties of root bark of Hemidesmus indicus R. Br. (Anantmul). Phytomedicine 2002; 9:153-160.
- 14. Mohana Rao GM, Venkateswararao Ch, Rawat AKS, Pushpangadan P, Shirwaikar A. Antioxidant and Antihepatotoxic activities of Hemidesmus indicus R. Br. Acta Pharmaceutica Turcica 2005; 47:107–113.
- 15. Sultana S, Khan N, Sharma S, Alam A. Modulation of biochemical parameters by Hemidesmus indicus in cumene hydroperoxide-induced murine skin: possible role in protection against free radicals-induced cutaneous oxidatve stress and tumor promotion. J Ethnopharmacol 2003; 85:33-41.
- 16. Nadana S, Namasivayam N. Impact of Hemidesmus indicus R.Br. extract on ethanol-mediated oxidative damage in rat kidney. Redox Report 2007; 12(5):229-235.
- 17. Kumar GS, Javaveera KN, Kumar Ashok CK, et al. Evaluation of antioxidant and antiacne properties of terpenoidal fraction of Hemidesmus indicus (Indian sarsaparilla). The Internet Journal of Aesthetic and Antiaging Medicine 2008; 1 (1).
- 18. Mahalingam G, Krishnan K. Hypoglycemic activity of *Hemidesmus indicus* on streptozotocin induced diabetic rats. Int J Diab Dev Ctries 2008; 28(1):6-10.

- 19. Mookan P, Rangasamy A, Thiruvengadam D. Protective effect of Hemidesmus indicus against rifampicin and isoniazid-induced hepatotoxicity in rats. Fitoterapia 2000: 71:55-59.
- 20. Baheti JR, Goval RK, Shah GB. Hepatoprotective activity of Hemidesmus indicus R, br, in rats. Indian J. Exp. Biol. 2006; 44(5):399-402.
- 21. Nadana S, Namasivayam N. Inhibitory effect of Hemidesmus indicus and its active principle 2-hydroxy 4-methoxy benzoic acid on ethanol-induced liver injury. Fundam Clin Pharmacol 2007; 21(5):507-514.
- 22. Hiremath SP, Rudresh K, Badami S. Antimicrobial activity of various extracts of Striga sulphurea and Hemidesmus indicus. Indian J. Pharm. Sci. 1997; 59(3):145-147.
- 23. Das S, Devaraj SN. Antidiarrhoeal effect of methanolic extract of Hemidesmus indicus an invitro and invivo study. Indian J Exp Biol 2003; 41(4):363-366.
- 24. Das S, Devaraj SN. Antienterobacterial activity of Hemidesmus indicus R. Br. root extract. Phytother Res 2006; 20(5):416-421.
- 25. Das S, Devaraj SN. Glycosides Derived from Hemidesmus indicus R. Br. root inhibit adherence of Salmonella typhimurium to Host Cells: Receptor Mimicry. Phytother Res 2006; 20:784–793.
- 26. Gopiesh Khanna V, Kannabiran K. Larvicidal effect of Hemidesmus indicus, Gymnema sylvestre and Eclipta prostrata against Culex qinquifaciatus mosquito larvae. Afr J Biotechnol 2007; 6(3):307-311.
- 27. Kumar GS, Javaveera KN, Ashok Kumar CK, et al. Antimicrobial effects of Indian medicinal plants against acne-inducing bacteria. Trop J Pharm Res 2007; 6(2):717-723.
- Thabrew MI, Wickramasinghe SMDN, Ratnatunge N, 28. Iddamaldeniva SS, Thammitiyagodage Protection against diethylnitrosamine-induced MG. hepatocarcinogenesis by an indigenous medicine comprised of Nigella sativa, Hemidesmus indicus and Smilax glabra-a preliminary study. J Carcinogenesis 2003; 2:1-6.
- 29. Iddamaldeniya SS, Thabrew MI, Wickramasinghe SMDN, Ratnatunge N and Thammitiyagodage MG. A long term investigation of antihepatocarcinogenesi potential of an indigenous medicine comprised of Nigella sativa, Hemidesmus indicus and Smilax glabra. J Carcinogenesis 2006; 5:11.
- 30. Das S, Devaraj SN. Protective Role of Hemidesmus indicus R. Br. Root Extract against Salmonella typhimurium induced Cytotoxicity in Int 407 Cell Line. Phytother Res 2007; 21:1209–1216.
- 31. Shetty TK, Satav JG, Nair CK. Radiation protection of DNA and membrane in vitro by extract of Hemidesmus indicus. Phytother Res 2005; 19(5):387-90.
- 32. Mary NK, Achuthan CR, Babu BH, Padikkala J. In vitro antioxidant and antithrombotic activity of Hemidesmus indicus (L) R.Br. J Ethnopharmacol 2003; 87:187-191.
- 33. Mary NK, Achuthan CR, Babu BH, Padikkala J. Antiatherogenic effect of Caps HT2, a herbal Ayurvedic medicine formulation. Phytomedicine 2003; 10:474–482.
- 34. Bopanna KN, Bhagyalakshmi N, Rathod SP, Balaraman R, Kannan J. Cell culture derived *Hemidesmus indicus in* the prevention of Hypercholesterolemia in normal and hyperlipidemic rats. Indian J Pharmacol 1997; 29:105-109.
- 35. Anoop A, Jegadeesan M. Biochemical studies on the anti-ulcerogenic potential of Hemidesmus indicus R.Br. var. indicus. J Ethnopharmacol 2003; 84:149-156.
- 36. Nadana S, Namasivayam N. Effect of 2-hydroxy 4-methoxy benzoic acid on an experimental model of hyperlipidemia induced by chronic ethanol treatment. J Pharm Pharmacol 2007; 59(11):1537-1542.

- 37. Maurizio Previati, Elisa Corbacella, Laura Astolfi, et al. Ethanolic extract from *Hemidesmus indicus* (Linn) displays otoprotectant activities on organotypic cultures without interfering on gentamicin uptake. J Chem Neuroanat 2007; 34:128–133.
- 38. Verma PR, Joharapurkar AA, Chatpalliwar VA, Asnani AJ. Antinociceptive activity of alcoholic extract of *Hemidesmus indicus* R.Br. in mice. J Ethnopharmacol 2005; 102:298–301.
- Lakshman K, Shivaprasad HN, Jaiprakash B, Mohan S. Anti-inflammatory and antipyretic activities of *Hemidesmus indicus* root extract. Afr J Trad CAM 2006; 3(1):90–94.
- 40. Kotnis MS., Patel P, Menon SN, Sane RT. Renoprotective effect of *Hemidesmus indicus*, a herbal drug used in gentamicin-induced renal toxicity. Nephrology (Carlton) 2004; 9(3):142-152.
- 41. Kainthla RP, Kashyap RS, Deopujari JY, et al. Effect of *Hemidesmus indicus* extract on IgG production and adenosine deaminaseactivity of human lymphocyte in vitro. Indian J Pharmacol. 2006; 38(3):190-193.
- 42. Ipshita Chatterjee, Chakravarty AK, Gomesa A. *Daboia russellii* and *Naja kaouthia* venom neutralization lupeol acetate isolated from the root extract of Indian sarsaparilla *Hemidesmus indicus* R.Br. J Ethnopharmacol 2006; 106:38–43.
- 43. Evans DA, Rajasekharan S, Subramoniam A. Enhancement in the absorption of water and electrolytes from rat intestine by *Hemidesmus indicus* R. Br.root (water extract). Phytother Res 2004; 18(7):511-515.
- 44. www.ayurbest.com, accessed on 9th Sept. 2008.
- 45. www.biogetica.com, accessed on 9th Sept. 2008.
- 46. www.dbcare.com, accessed on 9th Sept. 2008.
- 47. www.madanapalas.com, accessed on 9th Sept. 2008.
- 48. www.psorcure.com, accessed on 9th Sept. 2008.
- 49. www.psorcure.com, accessed on 9th Sept. 2008.
- 50. www.uriflow.biz, accessed on 9th Sept. 2008.
- 51. www.herbalhut.com, accessed on 9th Sept. 2008.
- 52. www.naturalypure.com, accessed on 9th Sept. 2008.