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1. Introduction

In practice, mathematicians have long distinguished proofs that explain why a
given theorem holds from proofs that merely establish that it holds. For instance,
in the Port-Royal Logic of 1662, Pierre Nicole and Antoine Arnauld characterized
indirect proof (that is, proof of p by showing that ~p implies a contradiction) as
“useful” but non-explanatory:

such Demonstrations constrain us indeed to give our Consent, but no way clear our
Understandings, which ought to be the principal End of Sciences: for our Under-
standing is not satisfied if it does not know not only that a thing is, but why it is?
which cannot be obtain’d by a Demonstration reducing to Impossibility. (Nicole
and Arnauld 1717, 422 (Part IV, chapter ix))

Nicole and Arnauld took explanation (“divining into the true reason of things”
(1717, 427)) to be as important in mathematics as it is in natural science. More
recently, the mathematician William Byers (2007, 337) has characterized a “good”
proof as “one that brings out clearly the reason why the result is valid”. Likewise,
empirical researchers on mathematics education have recently argued that students
who have proved and are convinced of a mathematical result often still want to
know why the result is true (Mudaly and de Villiers 2000), that students assess
alternative proofs for their “explanatory power” (Healy and Hoyles 2000, 399),
and that students expect a “good” proof “to convey an insight into why the
proposition is true” even though explanatory power “does not affect the validity
of a proof” (Bell 1976, 24). However, none of this work investigates what it is that
makes certain proofs but not others explanatory.

Recently, as Mancosu (2008) and Tappenden (2008a) note, philosophers have
renewed their interest in mathematical explanation, which has received
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considerably less philosophical attention than scientific explanation.2 With this
renewed interest in mathematical explanation have come frequent calls for case
studies that are attentive to the details of mathematical research. This paper
presents such a case study and extracts from it some general morals regarding
mathematical explanation, unification, coincidence, existence and natural
properties.3

It is relatively easy to find suggestive toy examples of these ideas.4 Take an
ordinary calculator keyboard:

2 Notable among the few earlier papers that investigated mathematical explanation are Steiner
(1978a), Kitcher (1984, esp. 208–209, 227; 1989, esp. 423–426, 437), and Resnik and Kushner (1987).
More recent work includes Hafner and Mancosu (2005), Tappenden (2005), Baker (2009) along with
Lange (2010; 2014). I am concerned here with explanations of mathematical theorems rather than with
explanations of natural phenomena where mathematical theorems do the heavy lifting; the latter has
been explored recently by Colyvan (2001; 2002), Melia (2002), Baker (2005) and Lange (2013), and
earlier by Steiner (1978b) and Nerlich (1979).

In a conversation, we might ‘explain’ why (or how) some mathematical proof works (either by
giving its overall strategy or by making more explicit the transitions between steps), or we might
‘explain’ how to carry out some mathematical process. A textbook might ‘explain’ how to multiply
matrices, for example, or a mathematics popularizer might ‘explain’ an obscure theorem by clarifying
it or making it more accessible. However, none of these is the kind of ‘mathematical explanation’ with
which I am concerned here, since none involves explaining why some result holds – just as Hempel
(2001, 80) pointed out that an account of scientific explanation does not aim to account for what he
does when he uses gestures to explain to a Yugoslav garage mechanic how his car has been
misbehaving. By the same token, I shall not appeal to ‘understanding’, ‘insight’ or ‘enlightenment’
in order to capture mathematical explanation, just as these notions are too psychological and too im-
precise to figure in an account of scientific explanation. It is also important to distinguish my project
from the historical, sociological and psychological project of explaining why mathematicians hold var-
ious beliefs or how a given mathematician managed to make a certain discovery. Finally, questions
asking for good reasons for some belief (e.g., ‘Why do you think that this strategy for proving the the-
orem is going to work?’, ‘Why do you think that this mathematical claim is true?’) are sometimes
expressed as why questions, but these questions are not answered by mathematical explanations of
the sort I am investigating.

3 By focusing on proofs that mathematicians themselves recognize as explanatory, I do not
mean to suggest that philosophers must unquestioningly accept the verdicts of mathematicians. But
just as an explication of scientific explanation should do justice to scientific practice (without having
to fit every judgment of explanatory value made by every scientist), so an explication of mathematical
explanation should do justice to mathematical practice. Regarding the examples I shall discuss, I have
found that working mathematicians’ judgments of which proofs explain, and which do not, are widely
shared and relatively easily appreciated by mathematicians and non-mathematicians alike. Accord-
ingly, it is especially important that an account of mathematical explanation fit such cases.

4 This example appears in Roy Sorensen’s unpublished manuscript “Mathematical Coinci-
dences”. I discuss it further in Lange (2014), where I give a host of other cases, drawn from math-
ematical practice, where mathematicians have distinguished proofs that explain from proofs that do
not. What I have to say in the present paper may well be deemed insufficient to fully justify my
claim that this distinction plays an important role in mathematical practice and is worthy of
philosophical investigation. For additional arguments and examples, readers may consult Lange
(2010; 2014; forthcoming).
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We can form a six-digit number by taking the three digits on any row, column, or
main diagonal on the keyboard in forward and then in reverse order. For instance,
the bottom row taken from left to right, and then right to left, yields 123321. There
are 16 such numbers: 123321, 321123, 456654, 654456, 789987, 987789, 147741,
741147, 258852, 852258, 369963, 963369, 159951, 951159, 357753, and 753357.
By checking each of these ‘calculator numbers’ separately, we can prove that all of
the calculator numbers are divisible by 37, but we have not explained why this is so.
As far as this brute-force proof tells us, there might be no explanation; it might be
just a coincidence. However, there is another proof that, as Nummela (1987) says,
shows it to be no coincidence; it explains why they are all divisible by 37:

Consider any three integers a, a+d, and a+2d. Then 105a+104(a+d) + 103(a+2d)
+102(a+2d) + 10(a+d) +a=a(105 +104+103+102+10+1)+d(104+2x103+2x102+
10)= 111111a+12210d=1221(91a+10d). So the number is divisible by 37, since
1221=3 x 11 x 37.

Crucial to this proof’s explanatory power, I suspect, is the way it identifies a property
common to each calculator number, unifying them rather than treating each number
separately (in the manner of the brute-force proof). Every calculator number can be
expressed as 105a+104(a+d)+103(a+2d) +102(a+2d)+10(a+d)+a; the three digits
on the calculator keypad that are used to form it are a, a+d, and a+2d. The proof that
explains why they are all divisible by 37 treats all of the calculator numbers uniformly.

I will ultimately work out these thoughts in connection with an example in which
mathematical explanation, existence and naturalness have played more important
roles: Desargues’ theorem, which I will introduce in section 2. There I will present
three proofs of the theorem in Euclidean geometry, only one of which mathemati-
cians regard as explaining why it is true. We will see that the explanatory power
or impotence of these various proofs is not well accounted for either by Mark
Steiner’s (1978a) or by Philip Kitcher’s (1984; 1989) accounts of explanation in
mathematics. In section 3, I will argue that the details of this example suggest an
account of why this proof alone is explanatory. This proof explains Desargues’
theorem only because a certain feature of the theorem strikes us as remarkable.5

In this context, what it means to ask for an explanation over and above a proof of

5 There may be other proofs that also explain why Desargues’ theorem holds – especially in
contexts where different features of the theorem are salient. Desargues’ theorem has many rich connec-
tions to other parts of mathematics.
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Desargues’ theorem is to ask for a proof that exploits some other feature of the given
case that is similar to the remarkable feature of the theorem. Outside of such a con-
text, there is no sense in which one proof is privileged over another as explanatory.
As in the calculator-number example, the proof that explains Desargues’ theorem in
Euclidean geometry reveals the theorem to be no mathematical coincidence.

However, mathematicians say that Desargues’ theorem naturally belongs to
projective rather than to Euclidean geometry. In section 4, I show how an expla-
nation of Desargues’ theorem in projective geometry unifies what Euclidean
geometry portrays as a motley collection of special cases. Euclidean geometry is
mistaken in portraying as coincidental certain results about Euclidean points, lines
and planes that in fact have a common, unified explanation. Our study of
Desargues’ theorem will suggest that projective geometry’s talk of ‘points at
infinity’ is not a mere façon de parler; rather, features of those points explain facts
about Euclidean points, lines and planes. Points at infinity exist in Euclidean
geometry by virtue of their playing such an explanatory role.6

This common, unified explanation of Desargues’ theorem in projective geome-
try strongly suggests that a proof’s explanatory power is independent of its purity.
However, this explanation presupposes that various properties (such as the prop-
erty of being a point, whether a Euclidean point or a ‘point at infinity’) are natural
rather than disjunctive. Here we seem to be caught in a vicious circle: the proof’s
explanatory power (indeed, even the ‘Why?’ question demanding an explanation
of the theorem) presupposes that certain properties are natural, but presumably,
they are natural purely in virtue of their role in such explanations. In section 5, I
argue that the naturalness of these properties and the explanatory power of these
proofs arise together; neither is prior to the other. The case of Desargues’ theorem
also illustrates how mathematicians discover that the properties in a given family
are natural by finding them in many, diverse proofs that (mathematicians

6 Admittedly, this is a radical view. Perhaps the idea that Euclidean geometry is in this respect
mistaken about Euclidean points, lines and planes – and that projective geometry uncovers the truth
about the explanation of certain facts about Euclidean entities – is part of what Cassirer is driving at
in passages such as the following, which concern “new elements” in mathematics such as points at in-
finity: “For it is not enough that the new elements should prove equally justified with the old, in the
sense that the two can enter into a connection that is free from contradiction – it is not enough that
the new should take their place beside the old and assert themselves in this juxtaposition. This merely
formal combinability would not in itself provide a guarantee for a true inner conjunction, for a homo-
geneous logical structure of mathematics. Such a structure is secured only if we show that the new el-
ements are not simply adjoined to the old ones as elements of a different kind and origin, but the new
are a systematically necessary unfolding of the old. And this requires that we demonstrate a primary
logical kinship between the two. Then the new elements will bring nothing to the old, other than what
was implicit in their original meaning. If this is so, we may expect that the new elements, instead of
fundamentally changing this meaning and replacing it by another, will first bring it to its full develop-
ment and clarification. And when we survey the history of the ideal elements in mathematics, this
expectation is never disappointed.” (Cassirer 1957, 392)
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recognize) would be explanatory, if those properties were natural. In section 6,
I draw conclusions about explanations’ mathematical importance.

Mathematical explanation, existence and naturalness constitute tremendously
exciting and generally underexplored topics. But I will generally avoid pursuing
them beyond the limits of this particular case study. I will stick to elaborating
the lessons that (I argue) are suggested by some mathematical work on Desargues’
theorem. Although this focus will not allow me to argue fully for my proposals,
I hope that by delving fairly deeply into one example of mathematical explanation,
I can do some justice to the roles that mathematical explanation, existence and
natural properties have actually played in one sliver of mathematics.

2. Three proofs – but only one explanation – of Desargues’ theorem in two-
dimensional Euclidean geometry

Here is Desargues’ theorem in two-dimensional Euclidean geometry:

If two triangles are so situated that the three lines joining their corresponding vertices
all meet at a single point, then the points of intersection of the two triangles’ corre-
sponding sides – if those intersection points exist – all lie on one line.

This is easier to understand with a figure (see Figure 1).
Triangles ABC and A′B′C′ lie on the same Euclidean plane and their corre-

sponding vertices (point A corresponding to point A′, B to B′, and C to C′) are
connected by lines that all meet at a single point (O). The two triangles are said
to be ‘in perspective from O’. Desargues’ theorem concerns pairs of correspond-
ing sides of the two triangles, where side CA corresponds to C′A′, for example.
Line CA may intersect line C′A′ (remembering that each of these lines extends
infinitely beyond the segment forming a side of one of the two triangles in

Figure 1. Desargues’ theorem in two-dimensional Euclidean geometry.
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perspective); unless CA and C′A′ are parallel, they will intersect somewhere on
the plane. In the figure, M is their point of intersection. Likewise, N lies at the in-
tersection of AB and A′B′, and L lies at the intersection of CB and C′B′. The the-
orem says that these three points of intersection, if they exist, are collinear. (In
Figure 1, they all lie on the dashed line.)

There are various ways of proving Desargues’ theorem. For example, Girard
Desargues (who first discovered the theorem in the early 1600s) used Menelaus’
theorem (discovered by Menelaus of Alexandria, c. 100AD), which says:

Consider triangle RST, and let R1, S1, and T1 be points on lines ST, TR, and RS, re-
spectively. Then R1, S1, and T1 are collinear iff (RT1/ST1)(SR1/TR1)(TS1/RS1) = 1.

Here is Desargues’ proof of his theorem, first published in 1648 (Field and Gray
1987, 161–164).

Consider triangle OBC (from Figure 1): L lies on BC, B′ lies on OB, and C′ lies on
OC. From the collinearity of L, B′, and C′, Menelaus’ theorem in the left-to-right
direction entails that

CL=BLð Þ BB′=OB′ð Þ OC′=CC′ð Þ ¼ 1:

Likewise, from triangle OAB and line NA′B′, Menelaus’ theorem entails that

BN=ANð Þ AA′=OA′ð Þ OB′=BB′ð Þ ¼ 1:

Similarly, from triangle OAC and line MA′C′, Menelaus’ theorem entails that

AM=CMð Þ CC′=OC′ð Þ OA′=AA′ð Þ ¼ 1:

By multiplying all of the left sides together and all of the right sides together, we
find

CL=BLð Þ BB′=OB′ð Þ OC′=CC′ð Þ BN=ANð Þ AA′=OA′ð Þ OB′=BB′ð Þ
AM=CMð Þ CC′=OC′ð Þ OA′=AA′ð Þ ¼ 1:

Three fortuitous cancellations (e.g., BB′/OB′ with OB′/BB′) produce

CL=BLð Þ BN=ANð Þ AM=CMð Þ ¼ 1:

By the right-to-left direction of Menelaus’ theorem applied to triangle ABC, it follows
that L, N and M are collinear.

This argument, though successful at proving Desargues’ theorem, is typically
characterized by mathematicians as failing to explain why it is true. For example,
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Zvezdelina Stankova says, “A serious drawback of this solution is that it doesn’t
give us a clue really why Desargues’ Theorem works” (Stankova 2004, 175).
What is missing from the proof, depriving it of explanatory power? A general
answer to this question would reveal to us what it is (at least in a certain class
of cases) to give a mathematical explanation.

One clue to this proof’s shortcomings is that mathematicians typically describe
this proof (and others like it) “as ingenious exercises in Euclidean geometry”
(Gray 2007, 28), where ‘ingenious’ here means ‘clever’ (in the pejorative sense
of ‘merely clever’). What is clever about this proof is the way that the three equa-
tions ‘magically’ cancel one another’s inconvenient terms. This cancellation
appears out of nowhere, and the theorem arises from it. This proof thus makes it
seem like an accident of algebra, as it were, that everything cancels out so nicely,
leaving us with just the terms needed for Menelaus’ theorem to yield the collinear-
ity of L, M and N.

Of course, nothing in mathematics is genuinely accidental; the result is mathe-
matically necessary. Nevertheless, I think that many of us, after working through
the above proof, are inclined to suspect that there is some reason why everything
works out (and has to work out) so neatly in the end – that is, a reason why all of
the terms with primes ultimately disappear from the calculation. This reason
eludes the above proof and must somehow explain why Desargues’ theorem
holds. Similarly, after checking each ‘calculator number’ individually and finding
them all to be divisible by 37, we might well suspect that there is a reason why
they are all alike in this respect, this suspicion motivating us to search for this
reason. (Of course, our evidence does not guarantee that such a reason exists,
and in some examples, it does not; see the discussion of ‘mathematical coincidences’
in Lange (2010; 2014).)

To try to understand why this proof fails to explain, we can compare it to an-
other proof of Desargues’ theorem. This proof introduces a third dimension above
and below the Euclidean plane on which the two triangles lie in perspective. One
way to picture this third dimension is to imagine pulling line OCC′ below the
plane of the paper. Then the two shaded regions in Figure 1 slice up through the
paper’s plane at AB and A′B′, respectively, and from there rise above the plane
of the paper to meet along a peak at line LM. The dotted line is then envisioned
as slanting from N in the paper’s plane up through L above the paper’s plane,
ultimately rising further to M. (Picture the dotted line as like the line along which
the two sides of a pitched roof meet.) Suitably positioned light sources below the
paper’s plane would project the shadows of triangles CAB and C′A′B′ onto the
corresponding triangles lying on the plane.

For any arrangement of coplanar triangles in perspective from O, there is such
an arrangement (indeed, there are many such arrangements) of corresponding
triangles jutting into the third dimension. To construct one (see Figure 2, which
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includes Figure 1 on a plane seen edge-on), select any point S outside the plane of
the two triangles in perspective from O. (S in Figure 2 is drawn below that plane.)
Draw lines SC and SC′. Choose any line from O that intersects SC; let D be their
point of intersection. Likewise, choose any line from O that intersects SC′; let D′
be their point of intersection. Now triangle BAD (outlined in bold in Figure 2), ex-
tending below the original plane, projects onto triangle BAC lying on that plane,
and likewise B′A′D′ projects onto B′A′C′. (Figure 2 is obviously busy; Figure 3
shows how two classic textbooks attempt to represent this proof.) Any such pro-
jection preserves collinearity, so to show that L, M and N are collinear, it suffices
to show that the corresponding points in the three-dimensional figure are collinear.
This is easily done. Let’s return to Figure 1, now thinking of the two shaded trian-
gles as jutting into the third dimension above and below the plane of the page.
Each of them lies on its own plane slanting through the plane of the page. These
two planes meet, and any two planes that intersect meet at exactly one line. Since
L, M and N lie on this line, they are collinear. In other words (switching to
Figure 2, where the two shaded triangles from Figure 1 are lying on the original
plane): M′ (floating above the original plane, at the intersection of DA and D′A′) is
common to the plane containing triangle DAB and the plane containing triangle
D′A′B′ (since DA lies on the former plane, D′A′ lies on the latter, and any point
on one of these lines is on that line’s plane). Likewise, L′ (at the intersection of
DB and D′B′) is common to the two triangles’ planes, and the same for N
(on the original plane – where BA and B′A′ intersect). Since the same pair of
planes is involved in all three cases, and since any two planes that intersect meet
at exactly one line, the three points (L′, M′ and N) are collinear – and so are their
projections onto the original plane (L, M and once again N).

Figure 2. A three-dimensional proof of Desargues’ theorem.
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This proof of Desargues’ theorem is generally recognized by mathematicians as
explaining why Desargues’ theorem holds. It holds in Euclidean geometry because
the two triangles in perspective from O are projections of triangles jutting into the
third dimension, and since the planes of those triangles must meet at a line, their
projections must, too. Of course, we can appreciate this proof’s explanatory power
(especially by contrasting it with the proof using Menelaus’ theorem) without
seeing precisely what makes this proof explanatory. For instance, Jeremy Gray says:

How do we feel about this proof? We’ve changed the subject, of course, from two
dimensions to three. We need to convince ourselves that any two-dimensional figure
can be drawn in three dimensions. That’s easy enough if the triangles don’t cross, but
what if they do? Still, this ability to see the figure and see the truth of the theorem is a
very powerful guide to understanding it. It conveys what a lengthy calculation may
not always manage, a sense of the inevitability of the result. (Gray 2007, 29)

The proof using Menelaus’ theorem employs just such a “lengthy calculation”,
where the three crucial cancellations seem fortuitous – coincidental rather than

Figure 3. Two illustrations of the proof exiting to the third dimension – from (Courant et al.
1996, 171) and (Hilbert and Cohn-Vóssen 1952, 122).
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“inevitable”. Yet Gray’s attempt to contrast these proofs obviously remains unsat-
isfactory since, as I just mentioned, everything here (including these cancellations)
is inevitable in being mathematically necessary.

In the next section, I will return to Gray’s remark.7 But for now, let’s try to im-
prove our grip on the contrast between the two preceding proofs of Desargues’
theorem by looking briefly at another route to proving it – namely, by using coor-
dinate geometry. The textbook technique (e.g., McLeod and Baart 1998, 149–150)
is to use ‘homogeneous coordinates’.8 That is (briefly), three coordinates (x,y,z)
rather than the usual two are used to represent each point on a plane figure; the
third coordinate supplies some redundancy so that (x,y,z) and (nx,ny,nz) are the
same point. Then for two arbitrary distinct points H (x1,y1,z1) and J (x2,y2,z2), line
HJ consists of all points (x,y,z) such that for some real numbers a and b that are not
both zero

x ¼ ax1 þ bx2; y ¼ ay1 þ by2; z ¼ az1 þ bz2

and so the equation for the line HJ is

y1z2 – y2z1ð Þ x þ z1x2 – z2x1ð Þ y þ x1y2 – x2y1ð Þ z ¼ 0:

In Figure 1, we can let

A be (1,0,0)
B be (0,1,0)
C be (0,0,1)
O be (α,β,γ)

By the above, line OA consists of all points (x,y,z) such that for some real
numbers a and b that are not both zero,

x ¼ aα þ b1; y ¼ aβ þ b0; z ¼ aγ þ b0:

If a = 0, then y= z=0 and so any point A′ on line OA is (b,0,0), which (by the re-
dundancy in representing points) is the same point as A. Since A and A′ in the

7 Sawyer (1955, 148–149) and Stankova (2004, 175–178) contrast the proof exiting to the
third dimension with Euclid-style proofs. I think it is fair to read both authors as seeing the former proof
as possessing explanatory power absent from the latter. (See the passage from Stankova quoted above
and notes 9 and 12.)

8 Homogeneous coordinates are standardly used because textbook authors are anticipating the
fact that (as we will see) the theorem’s ‘natural setting’ is projective rather than Euclidean geometry,
and homogeneous coordinates assign finite coordinates to the points at infinity figuring in projective
geometry. (My thanks to Jamie Tappenden for discussion of this point and others in the vicinity and
for calling my attention to the passages I cite in note 10.)
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configuration with which Desargues’ theorem is concerned (Figure 1) are distinct
points, a≠ 0 and A′ is (aα+b,aβ,aγ), which (by the redundancy) is the same point
as (α+d,β,γ) for some real number d. By analogous reasoning, B′ is (α,β+ e,γ) and
C′ is (α,β,γ+ f ) for some real numbers e and f. The above equation for line HJ
yields

For line BC: 1·1 � 0·0ð Þxþ 0·0� 1·0ð Þyþ 0·0 � 0·1ð Þz ¼ 0; i:e:; x ¼ 0

For line B′C′: βþ eð Þ γþ fð Þ � βγ½ �xþ γα� γþ fð Þα½ �yþ αβ� α βþ eð Þ½ �z ¼ 0;

i:e:; ef þ βf þ eγ½ �x –fαy –αez ¼ 0:

These two lines meet at x = 0 and

–fαy –αez ¼ 0; i:e:; α fy þ ezð Þ ¼ 0:

If α=0, then BC and B′C′ are the same line, but they are distinct in the configura-
tion with which Desargues’ theorem is concerned (Figure 1). So the intersection
L of BC and B′C′ is where x=0 and fy+ ez=0, i.e., the point (0,e,–f). By
analogous reasoning, lines CA and C′A′ meet at M= (–d,0,f) and lines AB and
A′B′ meet at N= (d,–e,0). Again using the above equation for line HJ, we find

For line NM: �ef � 0·0ð Þxþ 0 �dð Þ � fd½ �yþ d·0� �dð Þ �eð Þ½ �z ¼ 0; i:e:;

efx þ fdy þ dez ¼ 0:

For line NL: �eð Þ �fð Þ � e·0½ �xþ 0·0 � �fð Þd½ �yþ de� 0 �eð Þ½ �z ¼ 0; i:e:;

efx þ fdy þ dez ¼ 0:

So NM and NL are the same line; L, M and N are collinear.
This proof is widely regarded as failing to explain why Desargues’ theorem

holds. For example, in contrasting the proof exiting to the third dimension with
a proof using homogeneous coordinates, the mathematicians Robin McLeod and
Louisa Baart (1998, 125) say that “synthetic proofs [such as the former] tend to
give more insight than algebraic ones [such as the latter]”.9 The coordinate-
geometry proof seems to depend on another ‘algebraic miracle’ at the end, where
everything fortuitously turns out so nicely.

9 I read McLeod and Baart as using “insight” here to refer to explanatory power, but admit-
tedly, one might try to argue that they have something else in mind.
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The coordinate-geometry proof is a perfect example of what mathematicians
call a ‘brute-force’ approach. That is, it simply calculates everything directly,
plugging in everything we know and then grinding out the result.10 Mathemati-
cians generally agree on whether or not a proof is aptly characterized as ‘brute
force’, just as they do on whether or not a proof is explanatory. I suggest that
no ‘brute-force’ proof is explanatory. A brute-force approach is not selective; it
sets aside no features of the problem as irrelevant. Rather, it just “ploughs ahead”
like a “bulldozer” (Atiyah 1988, 215), plugging everything in and calculating
everything out. In contrast, an explanation must be selective; it must identify a
particular feature of the set up as responsible for (and other features as failing to
account for) the result being explained. The proof that proceeds by exiting to
the third dimension identifies the key feature as the fact that the two coplanar
triangles in perspective are the projections of triangles on different planes (which
perforce intersect in a line).11

The proof using coordinate geometry proceeds directly from the essential fea-
tures of the set up: that the two triangles are in perspective is encoded directly into
the coordinates of the various points, and the rest is mere algebra. One might well
have supposed that to explain why a given geometric theorem holds, it suffices to
deduce the theorem directly from the ‘natures’ or ‘essences’ of the elements in the
figure, just as the proof using coordinate geometry does (with the assistance of the
1:1 correspondence between real numbers and points on a line). This idea is the core
of Mark Steiner’s (1978a) account of the difference between mathematical proofs
that explain and proofs that fail to explain what they prove. According to Steiner,
a proof that all S1’s are P1 (e.g., that all triangles in perspective have a given property)
explains why the theorem holds if and only if it reveals how the theorem depends on

10 Actually, matters are somewhat more complicated. Although the coordinate-geometry
proof that I gave is plug-and-chug brute force, there are more elegant analytic arguments. (See, for in-
stance, Lord 2013, 34–36 and Borceux 2014, 215–217.) Dieudonné (1985, 9) writes that “by the use of
homogeneous coordinates accompanied by a harmonious choice of indexing notation” we can maintain
“a symmetry and a clarity in the calculations so that they closely follow the geometric argument”.
Perhaps, then, a coordinate-geometry proof, despite its metric character, can allow a sufficiently proficient
mathematician to see through the calculations to the non-metric, explanatory proof. (For a similar point,
see note 28 of Lange (2014).) In that event, a coordinate-geometry proof would possess explanatory
power for the same reason (to be elaborated in section 3) as the proof exiting to the third dimension.

11 In the following passage, Ruelle (2007, 18) seems to be expressing the idea that a plug-and-
chug coordinate-geometry proof is brute force and therefore is seen by at least some mathematicians as
not explanatory. He describes one method of proof as follows: “Use brute force. In fact, for problems of
elementary geometry one can always (as we shall see) introduce coordinates, write equations for the
lines that occur, and reduce the problem to checking some algebra. This method is due to Descartes.
It is effective but cumbersome. It is often long and inelegant and some mathematicians will say that
it teaches you nothing: you don’t get a real understanding of the problem you have solved”. Mathema-
ticians commonly say that a brute-force solution supplies “little understanding” and fails to show
“what’s going on” (e.g., Levi 2009, 29–30).
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S1’s ‘characterizing property’– that is, on the property essential to being S1 that is just
sufficient to distinguish S1’s from other entities S2, S3,… in the same ‘family’ (for
example, to distinguish triangles in perspective from other kinds of triangles or from
other kinds of polygons in perspective). Nevertheless, the proof using coordinate
geometry is not respected as explaining why Desargues’ theorem holds. Indeed,
whereas the proof from coordinate geometry fails to explain despite merely
unpacking the definitions of the elements in the theorem’s set up, the explanatory
proof invokes considerations exogenous to the defining features of those elements.
It introduces a third dimension that is not mentioned by the two-dimensional
theorem. Here we have a potentially important and perhaps surprising lesson about
mathematical explanation (though, of course, this single case study may not suffice
to fully demonstrate the point).

The great practical advantage of a brute-force proof (such as the coordinate-
geometry proof of Desargues’ theorem) is that the same plug-and-chug approach
can be used to prove an enormously wide range of theorems (see note 11). We
could, for instance, use the strategy of unpacking the set up in terms of coordinate
geometry, and then working through the algebra, to prove not only Desargues’
theorem, but also (say) that that the midpoints of any quadrilateral are the vertices
of a parallelogram. A proof instantiating this argument scheme operates by brute
force. Philip Kitcher (1984, esp. 208–209, 227; 1989, esp. 423–426, 437)
proposes that arguments (whether in mathematics or science) are explanatory
precisely when they instantiate argument schemes in the optimal collection (“the
explanatory store”) – optimal in that arguments instantiating these schemes
manage to cover the most facts with the fewest different argument schemes
placing the most stringent constraints upon arguments. An argument instantiating
an argument scheme excluded from the explanatory store fails to explain. Not
every brute-force proof instantiates the same scheme; there isn’t a unique
‘brute-force’ scheme. But a given brute-force proof instantiates a very widely
applicable scheme – a particular ‘plug and chug’ approach that can be used to
prove a great many theorems. Any of the brute-force proof-schemes is likely to
belong to Kitcher’s “explanatory store”. Nevertheless, proofs instantiating a
brute-force scheme tend to lack explanatory power. The coordinate-geometry
proof of Desargues’ theorem is unilluminating because it begins by expressing
the entire set up in terms of coordinate geometry and never goes on to privilege
certain features of triangles in perspective (such as their being projections of trian-
gles on different planes) as responsible for the theorem. The meat-grinder of a
brute-force approach is not capable of drawing these distinctions.

But why is Desargues’ theorem in two-dimensional Euclidean geometry
explained by the fact that two coplanar triangles in perspective are projections
of two triangles in perspective on different planes jutting into the third dimension?
Why is the proof that exits to the third dimension explanatory – despite
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introducing auxiliary lines and, for that matter, an entire dimension extraneous to a
statement of Desargues’ theorem in two-dimensional Euclidean geometry?

3. Why Desargues’ theorem in two-dimensional Euclidean geometry is explained
by an exit to the third dimension

Desargues’ theorem strikes us as remarkable because it identifies something
common to the three points L, M and N – namely, that they lie on the same line.
(Of course, any two points are collinear, but here we have three points on the same
line.) This commonality impresses us; it prompts us to ask why the theorem holds.
In view of the salience of this feature of Desargues’ theorem, an explanation of the
theorem must (I suggest) reveal something else given as common to these three
points from which their collinearity follows. Now each of the three points is spec-
ified in the theorem’s set up as the intersection of two lines that form correspond-
ing sides of the two triangles in perspective. (For instance, L is where CB and C′B′
intersect.) So to reveal a feature common to each of the three points is to reveal a
feature common to each of the three pairs of lines (CB and C′B′; BA and B′A′; AC
and A′C′) joining corresponding vertices.

Of course, each is a pair of lines that form corresponding sides of two triangles
in perspective; that is obviously a feature common to each of these pairs of lines.
But this feature is just the set up of the theorem. To explain why the theorem
holds, a proof must pick out from this set up some particular feature from which
the result follows. As we have seen, a brute-force proof fails to do that. It fails
to isolate any particular feature of the triangles in perspective as responsible for
the theorem. Our task now is to understand the explanatory power of the feature
isolated by the proof exiting to the third dimension, namely, that the two triangles
in perspective are projections of triangles on different planes.

As I said, the striking feature of Desargues’ theorem is that it reveals a property
common to each of the three pairs of lines that form corresponding sides of two
triangles in perspective. Hence (I have just suggested), in order for a proof to
explain why Desargues’ theorem holds, it must trace the result to some other
property common to each of these pairs of lines. If a proof fails to trace the salient
feature shared by these three pairs of lines to some other feature they share, then
the proof treats it as coincidental that the three pairs of lines share the feature
identified by Desargues’ theorem. By contrast, a mathematical explanation of
Desargues’ theorem would show it to be no coincidence. Thus, Gray was on to
something: there is a sense in which an explanation of Desargues’ theorem
conveys the result’s ‘inevitability’. In contrast, a proof that first deduces the
equation of NM and then separately deduces the equation of NL, ‘miraculously’
finding them to be the same, portrays this fact as coincidental – though nevertheless
mathematically necessary. (I will shortly return to this idea.)
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In the proof that exits to the third dimension, each of the three pairs of lines
forming corresponding sides of the triangles in perspective is the projection onto
the original plane of a pair of lines, one line joining a pair of points on one plane
jutting into the third dimension, and the other line joining another pair of points on
another such plane. Crucially, it is the same two planes for all three pairs. By this
proof, points L, M and N have a line in common because the three pairs of lines that
give rise to them have two planes in common. That the proof traces the salient com-
monality to another commonality is, I suggest, the source of its explanatory power.

This proof explains Desargues’ theorem only because a certain feature of the
theorem strikes us as remarkable: its identification of a property common to each
of the three points at which lines forming corresponding sides of the triangles in-
tersect. (This commonality strikes us forcibly as soon as we understand the theo-
rem, but it seems even more remarkable in light of the ‘magical’ way it emerges
from the proof using Menelaus’ theorem and the brute-force proof using coordi-
nate geometry.) In this context, what it means to ask for an explanation over
and above a proof of Desargues’ theorem is to ask for a proof that exploits some
other feature common to the three points (or, equivalently, to the three pairs of
lines from which they arise). Outside such a context, there is no sense in which
one proof is privileged over another as explanatory.

The calculator-number result has a different striking feature: that it identifies
a property that is common to every one of the 16 ‘calculator numbers’. The
proof we saw earlier that explains this theorem derives it by exploiting another
feature that all of the calculator numbers have in common: that each can be
expressed in the form 105a+104(a+ d) + 103(a+2d) +102(a+2d) + 10(a+ d) + a.
(Of course, other numbers besides the ‘calculator numbers’, such as 630036,
also possess this feature – and hence they, too, are divisible by 37.) Another
mathematical result may exhibit a remarkable symmetry, for example (see Lange
2014). In that event, a mathematical proof that traces the result to a similar
symmetry in the problem would count as explaining why the result holds.
I (Lange 2014) have proposed that what it means to ask for a mathematical
proof that explains why some result holds is to ask for a proof that exploits a
certain kind of feature in the ‘given’ – the same kind of feature that captured
our attention in the result. There is no distinction between proofs that explain
and proofs that merely prove except in a context where some feature of the
result being proved is salient. That feature’s salience in that context may make
some proof(s) explanatory there.

This is the general conception of mathematical explanation that seems to me to be
suggested by the explanation of Desargues’ theorem. To elaborate and defend this
conception further would require us to look at a variety of other mathematical
explanations, diverting us from our focus onDesargues’ theorem. (I pursue this project
and elaborate this account ofmathematical explanation in Lange (2014; forthcoming).)
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Fortunately, I will not need to argue for this general conception of mathematical
explanation in order to extract further lessons about explanation, existence and
natural properties in mathematics from our case study of the explanation of
Desargues’ theorem.

Desargues’ theorem in two-dimensional Euclidean geometry is explained by a
proof that exits to the third dimension. This proof proceeds by first proving Desargues’
theorem in three-dimensional Euclidean geometry – that is, as a theorem concerning
two triangles that are not coplanar (but are in perspective from O). This explanation
of Desargues’ two-dimensional theorem is prompted by that theorem’s having
revealed a feature common to the three pairs of lines forming corresponding sides
of two coplanar triangles in perspective (namely, that each pair’s point of intersec-
tion is on the same line). Accordingly, I have suggested, the explanation works by
tracing Desargues’ theorem to another feature common to these three pairs of lines
– but requiring three dimensions: that if the two triangles are pulled out of their
original plane onto intersecting planes (as in Figure 2), then each pair of lines
forming corresponding sides involves the same two planes – namely, the planes
of the two triangles. These planes must meet along a line. The proof thus explains
not only why Desargues’ two-dimensional theorem holds, but also why Desargues’
three-dimensional theorem holds.

We can now better appreciate why it is helpful to introduce the third dimension:
because it supplies a second way to pick out the line LMN. If we stick to two di-
mensions, then the only way to pick out this line is as the line that runs through a
given pair of points. (Through any two points, there is exactly one line.) But with
the third dimension, we can also identify the line as where two given planes inter-
sect. Those two planes, in turn, are picked out as those containing one or the other
of the two triangles in perspective, once those triangles have been pulled out of
their original plane. (Any plane is individuated by three non-collinear points on
it.) The two planes, then, unite the three pairs of lines forming corresponding
sides, since the same two planes are common to each pair. Without the third
dimension, there is no such unity and so (considering the salient feature of
Desargues’ result) no explanation.

Thus, the third dimension is not actually artificial to Desargues’ theorem in
two-dimensional Euclidean geometry. Rather, because the third dimension pro-
vides an alternate means of picking out a line, it supplies the resources for speci-
fying another feature common to points L, M and N. A proof that proceeds
entirely in two dimensions can compare lines NM and NL only by computing
their equations (whether by coordinate geometry, as we have seen, or by using
vectors or in some other way) and concluding that they are identical. More
broadly, a proof confined to two dimensions must use metrical considerations
(such as the ratios in Menelaus’ theorem). As we have seen, these considerations
end up depriving the proof of explanatory power. In contrast, when the third
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dimension is introduced, Desargues’ theorem regarding non-coplanar triangles in
perspective follows entirely from axioms of incidence (that two points determine a
line, three noncollinear points determine a plane, two intersecting planes
determine a line, two intersecting lines determine a point, a line lies entirely in a
given plane if two points on that line do), without any appeal to metrical consid-
erations. The three-dimensional theorem’s projection onto a plane yields the
two-dimensional theorem. By appealing only to the axioms of incidence, the proof
that exits to the third dimension avoids the ‘algebraic coincidences’ on which
metrical proofs depend and explains why Desargues’ theorem holds in
two-dimensional Euclidean geometry.12

I have just now again invoked the notion of a mathematical ‘coincidence’. Like
mathematical explanation, mathematical coincidence is a puzzling feature of
mathematical practice. How can a mathematical necessity nevertheless be
coincidental? How, for instance, can a cancellation in the derivation of Desargues’
theorem from Menelaus’ theorem really be ‘fortuitous’?

Some mathematical necessities are indeed commonly termed ‘coincidental’ –
for example, as Davis (1981, 312) says, that 9 is both the thirteenth digit of the
decimal representation of π (=3.14 159 265 358 979 3…) and the thirteenth digit
of the decimal representation of e (=2.71 828 182 845 904 5…). To appreciate that
the necessity of these mathematical facts (and hence of their conjunction) is com-
patible with their conjunction being coincidental, consider that some natural
necessities are standardly characterized as coincidences. For instance, nineteenth-
century chemists believed it naturally necessary that all noncyclic alkane hydrocar-
bons differ in molecular weight by integral multiples of 14 ‘atomic mass units’
(amu) – since they differ by multiples of one carbon atom (12 amu) and two

12 Without exiting to three dimensions, the axioms of incidence do not suffice to prove
Desargues’ theorem in two dimensions. There are non-Euclidean geometries where Desargues’
theorem in two dimensions fails, but the axioms of incidence regarding two dimensions hold. See
Baker (1922, 120) and Arana and Mancosu (2012). The latter presents a passage where “the
eminent algebraist” Marshall Hall (1943) says that the explanatory contribution made by exiting
to three dimensions is to supply another way of picking out line LMN – namely, as the intersection
of two planes. Hall writes that “the kernel of the proof” exiting to three dimensions “lies in the
identification of [LM, LN, and MN] with [the two planes’ line of intersection] and hence with each
other” (1943, 233). He says that these “forced identifications” explain “why” Desargues’ theorem
holds in three-dimensional projective geometry but not in two-dimensional projective geometry.
(I shall say more about projective geometry in the following sections.) Hall (Ib, 232) elaborates:
“One way of answering this fundamental question is the following: In a space configuration of three
or more dimensions the identification of a line, constructed as the intersection of two planes, with a
line, constructed as the union of two points forces the identification of further constructed elements
and the establishment of non-trivial configurations such as the Desargues configuration, while in the
plane a line may be constructed only as a union of two points, a point as the intersection of two lines
and there are no forced identifications”.
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hydrogen atoms (1 amu each).13 These chemists also believed it naturally necessary
that the atomic weight of nitrogen is 14 amu. But they termed it ‘coincidental’
(albeit naturally necessary) that all noncyclic alkanes differ in molecular weight
by integral multiples of the atomic weight of nitrogen. (See, for instance, van
Spronsen 1969, 73–74.)

It is easy to see roughly what makes this fact coincidental: alkane hydrocarbons
contain no nitrogen. In other words, that 14 amu is nitrogen’s atomic weight does
not explain why alkane hydrocarbons differ by integral multiples of 14 amu, nor
does any explanation run in the other direction, nor is there a common explana-
tion. Though each of these two facts is naturally necessary, the two are not united
in explanation, and that is the sense in which it just happens to be the case that the
same quantity, 14 amu, figures in both of them. In somewhat the same way, the
components of a mathematical coincidence, though mathematically necessary,
have no common explanation in that there is no single, unified proof that explains
both. Roughly speaking, any proof of both is nothing but a cobbling together of
separate proofs of each. The steps needed to prove one do not suffice for proving
the other. For instance, there is no common explanation of the values of π and e.

Likewise, it is just a coincidence that these two Diophantine equations (that is,
equations where the variables can take only integer values)

2x2 x2– 1
� � ¼ 3 y2– 1

� �

and

x x� 1ð Þ=2 ¼ 2n– 1

have exactly the same five positive solutions (namely, x = 1, 2, 3, 6, and 91) (Guy
1988, 704). The two equations have nothing to do with each other. Of course, we
could take separate procedures for solving the two equations and cobble them
together into one proof. But the steps of the procedure for solving one equation
could always be omitted without impeding the proof from solving the other
equation.

In this light, let’s reconsider the proof of Desargues’ theorem using coordinate
geometry. It shows that lines NM and NL are the same by ascertaining NM’s equa-
tion, separately ascertaining NL’s equation, and then finding these equations to be
identical. This proof is similar to a proof regarding the above two Diophantine

13 My use of “atomic mass units” here is anachronistic; nineteenth-century chemists would
have denoted the same unit differently. Today, moreover, we realize that an element’s atomic weight
reflects the abundances that its various isotopes happen to have on earth and so is not a natural neces-
sity. But nineteenth-century chemists believed atomic weights (like other characteristic features of the
chemical elements) to be fixed by natural law. Despite being scientifically out of date, this example
nicely illustrates how science leaves room for plenty of naturally necessary coincidences.
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equations that proceeds by solving one equation, separately solving the other, and
finally noting that the two sets of solutions are exactly the same. Likewise, in
the derivation of Desargues’ theorem from Menelaus’ theorem, the cancellations
(e.g., of BB′/OB′ by OB′/BB′) are genuinely fortuitous in that the appearance of
a given term in one application of Menelaus’ theorem, and of its reciprocal in a
separate application of Menelaus’ theorem, is a mathematical coincidence. They
arise independently. (The same applies to the brute-force proof of the calculator-
number theorem, where each of the 16 calculator numbers is proved separately
to be divisible by 37.)

The proof of Desargues’ two-dimensional theorem that exits to the third dimen-
sion reveals the collinearity of L, M and N to be no mathematical coincidence.
Below we will see another example of a mathematical explanation of Desargues’
theorem that reveals its target to be no coincidence. This will lead to a better
understanding of mathematical coincidence.14

4. Desargues’ theorem in projective geometry: unification and existence in
mathematics

Here again is Desargues’ theorem in two-dimensional Euclidean geometry:

If two triangles are so situated that the three lines joining their corresponding vertices
all meet at a single point, then the points of intersection of the two triangles’ corre-
sponding sides – if those intersection points exist – all lie on one line.

The qualification “if those intersection points exist” is included to acknowledge
that there need not be three points of intersection (one for each pair of correspond-
ing sides); if two corresponding sides are parallel, then in Euclidean geometry,
they do not intersect. It may even be that each pair of corresponding sides consists
of parallel lines, so there are no points of intersection at all (see Figure 4).Hence,
in Euclidean geometry, we cannot refer to “the points of intersection” without

14 Tappenden (personal communication) suggests that part of Gray’s point in the passage I
quoted in section 2 is that it is the ability to visualize the proof that is responsible for giving us a sense
of the result’s inevitability. I interpret Gray’s point in terms of my view that ‘understanding’ the the-
orem (i.e., knowing its explanation, that is, why it is true) comes from recognizing that all three cases
involve the same pair of planes (and how that leads to their all involving the same line), which seeing
the figure greatly assists us in appreciating – but this does not mean that the proof’s explanatory power
derives primarily from its visualizability per se. More important is what is visualized: the common pair
of planes and how it produces the common line. The figure is a ‘powerful guide’ to understanding the
theorem because it helps us to appreciate how the common line comes from the common pair of
planes.
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giving the qualification “if they exist” (as given, for instance, by Whitehead 1971
[1907], 16; Stankova 2004, 173). Of course, if there are only two points of inter-
section, then they are necessarily collinear (since a line runs through any two
points), and if there are none or exactly one, then collinearity among the points
of intersection that exist is trivially achieved.15 These are ‘special cases’ of
Desargues’ theorem; the above proofs of Desargues’ two-dimensional theorem
in Euclidean geometry cover only the non-trivial case: where there are three
intersection points.

However, Desargues’ theorem is usually understood as a theorem of projective
rather than Euclidean geometry. In projective geometry, any two coplanar lines
meet. Parallel lines meet at a point infinitely far away in the lines’ direction (that
is, at a single point, which is infinitely far away in either direction, one and the
same point being reachable ‘either way’). This ‘point at infinity’ is not located
on the Euclidean plane (since for any two Euclidean points, there is some finite
distance between them). All of the members of a set of mutually parallel lines have
the same single point at infinity in common, and for each different orientation that
coplanar parallel lines can take, there is a distinct point at infinity. All (and only)
the points at infinity arising from lines on a given plane lie on a given ‘line at
infinity’. A ‘projective plane’ thus consists of a ‘finite plane’ (a.k.a. a Euclidean
plane) plus a line at infinity.

One way to think about a point at infinity is as the point where endless railroad
tracks on a Euclidean plane, viewed in perspective, are seen to meet (Figure 5).
Admittedly, this way of thinking merely heightens our inclination to pose the
question: ‘Of course, we can choose to speak in terms of “points (and lines) at in-
finity”, if we wish, but do they really exist? After all, railroad tracks never really
meet, no matter how far they run. Do parallel lines really meet, or do they only
“meet” inside inverted commas – that is, in the projective-geometry sense?’.
But as soon as we ask this question, we begin to worry that it is ill-posed. After

Figure 4. One arrangement of triangles in perspective.

15 But there cannot be exactly one – as I will show in a moment.
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all, mathematics is not concerned with whether Euclidean points (never mind points
at infinity) exist physically, and clearly (a familiar thought runs) they existmathemat-
ically – in Euclidean geometry (as when a Euclidean geometer says ‘There exists a
point at which the diagonals of a square meet’). In the same internal, purely mathe-
matical sense, then, ‘points at infinity’ exist in projective geometry.16 When doing
mathematics, we can choose to study Euclidean geometry or to study projective
geometry without any fear that our selection might be erroneous, since both are true;
the former accurately describes Euclidean planes and the latter accurately describes
projective planes. Considering the straightforward way that we just introduced the
notion of ‘points at infinity’, we might well doubt whether it could possibly make
any difference (other than to our convenience) whether we choose to say ‘Two
coplanar parallel lines meet at a point at infinity’ or ‘Two coplanar parallel lines
never meet’, since anything expressed in one way can be translated into the other.

This last thought suggests that it is merely for the sake of simplicity or conve-
nience that Desargues’ theorem is generally expressed in terms of projective
geometry rather than Euclidean geometry. Yet mathematicians generally say that

16 Here is a typical statement of this familiar view: ‘In the case of ordinary geometrical ele-
ments our intuition makes us feel at ease as far as their “existence” is concerned. But all we really need
in geometry, considered as a mathematical system, is the validity of certain rules by means of which we
can operate with these concepts, as in joining points, finding the intersection of lines, etc. … the math-
ematical existence of “points at infinity” will be assured as soon as we have stated in a clear and con-
sistent manner the mathematical properties of these new entities, i.e., their relations to “ordinary” points
and to each other’ (Courant et al. 1996, 181).

Figure 5. Railroad tracks viewed in perspective.
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projective geometry is where Desargues’ theorem really resides. This does not
sound like a mere matter of convenience. But then what does it mean?

Since any two coplanar lines intersect in projective geometry, Desargues’
theorem in two-dimensional projective geometry does not need the qualification
“if those intersection points exist”. It says simply:

If two triangles are so situated that the three lines joining their corresponding vertices
all meet at a single point, then the three points of intersection of the two triangles’
corresponding sides are collinear.

Let’s see how Desargues’ theorem in two-dimensional projective geometry ap-
plies to the case depicted in Figure 4, where each of the three pairs of correspond-
ing sides consists of a pair of parallel lines, so none of the intersection points L, M
or N exists on the Euclidean plane (so trivially in Euclidean geometry all of the
points of intersection lie on one line, as required by Desargues’ theorem in
Euclidean geometry). The lines in each pair do intersect on the projective plane:
at infinity. Since the three points of intersection are all on the same line at infinity,
they are collinear, as demanded by Desargues’ theorem in projective geometry.17

In projective geometry, this is not a ‘special case’ of Desargues’ theorem, requir-
ing separate treatment. Rather, it is proved automatically by the proof that exits to
the third dimension and explains why Desargues’ theorem holds in projective
geometry. Whether the intersection points are at infinity or on the Euclidean plane,
there are three intersection points, and so the case is covered by the proof in
projective geometry. The proof that exits to the third dimension proves
Desargues’ theorem in two-dimensional projective geometry without having to
treat any cases separately; they get proved automatically along with the rest, not
as special cases.

Now suppose that two of the three pairs of corresponding sides are pairs of par-
allel lines. As we will now see, it follows that the third pair must also consist of
parallel lines, so none of L, M or N exists on the Euclidean plane. Here is a proof
in Euclidean geometry (using the labels in Figure 4):

Suppose lines BC and B′C′ are parallel and that lines AB and A′B′ are parallel. Show
that lines AC and A′C′ are parallel:
Consider triangles OBC and OB′C′. They have the same angle O. Since BC and B′C′
are parallel lines cut by the transversal OB′, angles B and B′ are corresponding angles,
and so are equal. So two angles of triangle OBC are equal to two angles of triangle OB
′C′. Therefore, the triangles must be similar. For analogous reasons, triangles OAB
and OA′B′ are similar. Similar triangles have all of their corresponding sides in the

17 The theorem in projective geometry also allows O to be at infinity (so OA′, OB′ and OC′
are parallel) or some of the vertices (A, B, C, A′, B′, C′) of the two triangles to lie at infinity, whereas
Euclidean geometry does not.
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same ratio. From the similarity of OAB and OA′B′, OA/OA′=OB/OB′, and from the
similarity of OBC and OB′C′, OB/OB′=OC/OC′. Hence, OA/OA′=OC/OC′. Hence,
two sides of triangle OAC are in the same ratio as two sides of triangle OA′C′, and the
included angle O is the same. Hence, OAC and OA′C′ are similar, so their
corresponding angles A and A′must be equal. That is, lines AC and A′C′make equal
angles with transversal OA′, so AC and A′C′ must be parallel.

As we saw earlier, Desargues’ theorem in two-dimensional Euclidean geometry
does not entail the result we just proved, i.e., that it is impossible for exactly one
of the three pairs of corresponding sides to have a point of intersection on the
Euclidean plane. As far as that theorem is concerned, it could be that exactly one
of the three pairs of lines has an intersection point; in that case, it is trivial that all
of the intersection points are collinear. This is a ‘special case’ of Desargues’ theorem
in Euclidean geometry, since (whether there is one intersection point or none) the
theorem then holds trivially. By contrast, Desargues’ theorem in two-dimensional
projective geometry does entail this result. Suppose two of the three pairs of
corresponding sides are pairs of parallel lines. Then in projective geometry, the lines
in each of those pairs intersect at infinity and the unique line through those two
intersection points is the line at infinity associated with the given plane. By
Desargues’ theorem in projective geometry, all three points of intersection must be
collinear. The only way for the third point of intersection to lie on the same line as
the other two intersection points – namely, on the line at infinity – is for the third
point also to lie at infinity, and hence for the third pair of corresponding sides to
consist of two parallel lines.

Thus, Desargues’ theorem in projective geometry has an implication regarding
the Euclidean plane that fails to follow at all from Desargues’ theorem in Euclid-
ean geometry. Furthermore, this additional implication is not arbitrarily tacked on
to the rest of the theorem, requiring a separate proof from the rest. Rather, in prov-
ing Desargues’ theorem in projective geometry by exiting to the third dimension,
one does not treat this case separately. Cases where one or more of the points of
intersection are at infinity are not ‘special cases’ of Desargues’ theorem in projec-
tive geometry. All of this stands in stark contrast to Euclidean geometry: a proof of
Desargues’ theorem in Euclidean geometry does not thereby prove the further re-
sult we just discovered. Rather, a Euclidean proof of that result (which I just gave)
is entirely separate from any proof of Desargues’ theorem in Euclidean geometry.

We could, of course, supplement Desargues’ theorem in Euclidean geometry so
that the strengthened theorem does imply that it is impossible for exactly one of
the three pairs of corresponding sides to have a point of intersection on the
Euclidean plane. Here is the strengthened theorem:

If two triangles are so situated that the three lines joining their corresponding vertices
all meet at a single point, then the three points of intersection of the two triangles’
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corresponding sides – if those intersection points exist – all lie on one line, and if two
pairs of corresponding sides are such that the two sides in each pair fail to intersect,
then the two sides in the third pair also fail to intersect.

However, in Euclidean geometry, this strengthened theorem is merely two theo-
rems cobbled together in that they have no common proof. Of course, we could
cobble together explanations of each into a single proof. But it would be no com-
mon proof since some of the steps needed to prove one could then be weakened or
omitted from the proof without compromising the derivation of the other – just
like solutions to the two Diophantine equations in the previous section. In terms
of the notion of a mathematical ‘coincidence’ that we encountered there, the
strengthened theorem constitutes a mathematical coincidence according to Euclid-
ean geometry. But Euclidean geometry is mistaken in so depicting it. Projective
geometry reveals the theorem to be in fact no coincidence; the two components
of the strengthened Euclidean theorem have a common proof in an explanation
of Desargues’ theorem in projective geometry.

It is not merely the case that Euclidean geometry and projective geometry differ
in whether or not they treat the strengthened Desargues’ theorem as a coincidence.
Rather, Euclidean geometry is mistaken; projective geometry reveals that these
various ‘special cases’ are actually no coincidence – in the same way as the com-
plex numbers reveal certain results involving real numbers alone to be no coinci-
dence (though they appear to be coincidental when considered in the context of
the real numbers alone). For instance (as I discussed in Lange 2010, 329–332),
it is no coincidence that the two Taylor series

1 = 1� x2
� � ¼ 1 þ x2 þ x4 þ x6 þ …

1 = 1þ x2
� � ¼ 1 � x2 þ x4 � x6 þ …

are alike in that, for real x, each converges when |x|< 1 but diverges when |x|> 1.
The reason why these functions both exhibit this convergence behavior is that
both of them (considered as functions of complex numbers) are undefined for
some z on the unit circle of the complex plane and because all of these cases
can be treated together in a proof of the ‘radius of convergence’ theorem:

For any power series ∑ anz
n (from n= 0 to ∞), either it converges for all complex

numbers z, or it converges only for z= 0, or there is a number R> 0 such that it
converges if |z|<R and diverges if |z|>R.

Just as considerations from the real numbers alone mischaracterize as coincidental
the common convergence behavior of the two Taylor series, so considerations
from Euclidean geometry alone fail to recognize that the various components of
the strengthened Desargues’ theorem are no coincidence.
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Desargues’ theorem nicely illustrates the fact that a proof’s explanatory power
is distinct from its ‘purity’ in the rough sense of making use of no concepts foreign
to the concepts in the theorem being proved (or in their definitions). Points at
infinity do not figure in Desargues’ theorem or its strengthened version above,
so an appeal to them in proving that theorem is a violation of purity. Despite its
foreign elements, the projective proof is explanatory. Explanatory power is just
one of the many respects in which one proof can be better or worse than another
proof of the same theorem; purity is another ideal, and beauty, brevity and acces-
sibility are still others. Explanatory power is distinct from these other virtues.

There are further respects in which Desargues’ theorem in projective geometry
unifies what Euclidean geometry treats as special cases, thereby revealing various
results depicted as coincidental by Euclidean geometry to be no coincidence at all.
Consider the case where exactly two of the three pairs of corresponding sides are
pairs of lines that intersect on the Euclidean plane. As we have seen, a proof of
Desargues’ theorem in Euclidean geometry must treat this as a special case; the
proofs in section 2 all concern only the case where there exist three points of in-
tersection. (For example, we cannot make all of the requisite fortuitous cancella-
tions with only two applications of Menelaus’ theorem.) To treat it as a special
case is no problem, of course, since when there are exactly two points of intersec-
tion, their collinearity is trivial. In projective geometry, by contrast, points at infin-
ity are just points like any other. The case of two intersection points on the finite
plane, but one at infinity, requires no special treatment; an explanatory proof does
not proceed by cases at all.

Furthermore, if exactly two of the intersection points lie on the Euclidean plane
(i.e., exactly one of the three pairs of corresponding sides consists of two parallel
lines), then the line through those two intersection points is parallel to the two par-
allel sides. (See Figure 6, where line NL is parallel to lines AC and A′C′.) Once
again, this result in Euclidean geometry does not follow from Desargues’ theorem
in Euclidean geometry. It can be proved in Euclidean geometry, but this proof is

Figure 6. A special case of Desargues’ theorem.
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separate from a proof of Desargues’ theorem. Once again, we could strengthen
Desargues’ theorem in Euclidean geometry by conjoining it with this result.
But the strengthened theorem would have no common, unified explanation in
Euclidean geometry. Its various cases would have to be proved separately. Accord-
ingly, mathematicians commonly refer to the strengthened theorem in Euclidean
geometry as a mere collection of special cases. (See, for example, Jones 1986, 556;
Silvester 2001, 251; Gray 2007, 29.) In contrast, this result follows from
Desargues’ theorem in projective geometry by negligible additional steps and with-
out having to be treated separately as concerning a special case: the intersection point
M at infinity is collinear with the two intersection points L and N on the finite
plane,18 as demanded by Desargues’ theorem in projective geometry, only if M lies
at the intersection of line LN and the line at infinity, so lines LN, AC, and A′C′meet
at a point at infinity and therefore must be parallel. Thus, an explanation of
Desargues’ theorem in projective geometry shows it to be no coincidence that this
result holds together with Desargues’ theorem in Euclidean geometry.

The phenomenon I have just described is not a peculiarity of Desargues’ theorem.
Projective geometry characteristically unifies what Euclidean geometry treats as sep-
arate theorems and special cases. This unification has long been recognized as among
projective geometry’s great achievements (Chasles 1837, 75–76, 87; Dieudonné
1985, 8; Lord 2013, 11). As Descartes wrote to Desargues on 19 June 1639:

Pour votre façon de considérer les lignes parallèles, comme si elles s’assemblaient à
un but à distance infinie, afin de les comprendre sous le même genre que celles qui
tendent à un point, elle est fort bonne … .19 (Descartes 1639, 555).

Indeed, the search for such unified explanations – the suspicion that Euclidean
geometry proves but fails to explain certain geometrical facts, that it incorrectly
characterizes them as coincidences – was one of the original motivations for
developing projective geometry. Consider Jean-Victor Poncelet, whose 1822 work
made the first contribution to projective geometry after Desargues:

The lesson Poncelet set about drawing … was that there should be a better way of
reasoning geometrically, one that did not pursue the argument down a maze of
bifurcating cases: one when there are four points, another when there are two, a third
when there are none, a fourth when two points coincide; one when this segment is
less than that one, another when it is greater … (Gray 2007, 46)

18 Using the labels from Figure 6 – though, of course, M does not appear anywhere on that
figure! M is the intersection of parallel lines AC and A′C′.

19 As regards your way of considering parallel lines as if they met at a point infinitely distant,
in order to include them in the same genus as those that go toward a point – it’s very good …
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We have here a nice example of the role that concepts such as mathematical expla-
nation, unification and coincidence play in mathematical practice.

This role is not merely heuristic and pragmatic. Projective geometry is not
merely a convenient way of proving theorems in Euclidean geometry – shortening
the proofs, making them more efficient, allowing more to be proved at once.
Rather, I have suggested that Euclidean geometry is mistaken in portraying certain
results as coincidental and certain theorems as mere collections of special cases.
Projective geometry reveals facts about Euclidean points, lines and planes that es-
cape Euclidean geometry – not because they are too difficult to prove in Euclidean
geometry, but because Euclidean geometry gets them wrong. These facts concern
whether certain results in Euclidean geometry have a common, unified explana-
tion. As Dieudonné (1985, 9) puts it: “the projective view exposes properties that
appear accidental” to be otherwise.

That Euclidean geometry can (in this respect) be incorrect regarding Euclidean
points, lines and planes runs contrary to the familiar thought I mentioned near the
start of this section: that when doing mathematics, we can choose to study Euclidean
geometry or to study projective geometry without any fear that our selection might
be erroneous, since both are true; the former accurately describes Euclidean planes
and the latter accurately describes projective planes. Although the theorems of
Euclidean geometry are true of Euclidean points, lines and planes, Euclidean geometry
taken more broadly (to include the proofs – and hence the explanations – that may
be given of these theorems) may nevertheless mischaracterize those objects.

Earlier I also mentioned the familiar thought that to ask whether points at infin-
ity really exist is to make a fundamental mistake. Trivially (this familiar thought
runs), they exist in projective geometry but do not exist in Euclidean geometry.
However, our case study of Desargues’ theorem suggests that points at infinity
are not a mere façon de parler. Rather, their features genuinely explain facts about
Euclidean points, lines, and planes. In other words, points and lines at infinity
exist in Euclidean geometry; mathematicians discovered that they do (via ‘inference
to the best mathematical explanation’) by working in projective geometry.

My argument can be put roughly as follows:

P1: Certain facts about points at infinity explain certain facts about Euclidean
points, lines and planes. (I have argued for this claim in the preceding
sections.)

P2: What explains a fact about some entities must be on an ontological par with
those entities. (Roughly: only facts about what exists can explain facts
about what exists.)

C: Points at infinity exist in Euclidean geometry.
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In arguing for P1, I have argued against the view that certain facts about
Euclidean points, lines and planes have an explanation in projective geometry
but have no explanation in Euclidean geometry. Rather, they have an explana-
tion, period; whether they have an explanation is not relative to some mathemat-
ical field. Of course, their explanation requires the resources of projective
geometry, but it does not follow that their explanation is relative to the geometry
in question – any more than whether a given empirical fact has an explanation is
relative to the scientific theory in question. For example, certain facts about the
observed motions of the planets in Earth’s night sky have an explanation, which
is supplied by the Copernican theory of the heavens. The Ptolemaic theory says
that these astronomical facts have no explanation. It is the case, of course, that
these astronomical facts have an explanation according to the Copernican theory
and no explanation according to the Ptolemaic theory. But what the two theories
say is not all there is to the matter; whether these astronomical facts do indeed
possess an explanation is not relative to the theory in question. Rather, it turns
out that the astronomical facts have an explanation, as the Copernican theory
correctly says; the Ptolemaic theory is mistaken in portraying them as brute.
Likewise, Euclidean geometry is mistaken in some of what it says about the
explanation of certain facts about Euclidean points, lines and planes. Perhaps
what it is for points at infinity to exist in Euclidean geometry is for them to play
an explanatory role there.

I conclude that it is not merely for the sake of simplicity or convenience that
Desargues’ theorem is generally expressed in terms of projective geometry rather
than Euclidean geometry. As mathematicians say, projective geometry is where
Desargues’ theorem naturally belongs.20

20 After completing this paper, I found that Wilson (1992) also argues that the points intro-
duced by projective geometry are not mere conveniences, prettifying Euclidean theorems, nor is it
the case that “any self consistent domain is equally worthy of mathematical investigation” (152).
Rather, those theorems “cry out for the extended, projective setting” (153). Although Wilson says that
nineteenth-century mathematicians compared appeal to ideal points to “physical explanations by appeal
to unseen molecular structures” (151), Wilson does not offer an account of a theorem’s ‘proper setting’,
much less unpack it in terms of mathematical explanation. His concerns lie elsewhere. Wilson, in turn,
notes that Manders (1987; 1989) has also argued that points at infinity “unify concepts, in a technical
sense which covers widely cited advantages of simplification and clarity” (1989, 554). But Manders
elaborates the conceptual unification and “more systematic understanding” (Ib., 561) provided by these
posits not fundamentally in terms of mathematical explanation, but rather through model-theoretic no-
tions such as “closure” and “completeness” (as when the addition of complex numbers allows all qua-
dratic equations in one unknown to have solutions) that need not bring any increased explanatory power
by my lights. Nevertheless, I agree with Manders that “we can have explicit epistemological grounds
for commitment to those domains of entities by which certain prior domains of inquiry are made more
understandable” (Ib., 562).
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5. Desargues’ theorem in projective geometry: explanation and natural properties
in mathematics

I have suggested that in projective geometry, the proof exiting to the third dimen-
sion explains Desargues’ theorem only because it exploits a feature common to the
three points at which pairs of corresponding sides of the two triangles intersect.
This feature gives the proof explanatory power, on my view, only because a cer-
tain feature of Desargues’ theorem strikes us as remarkable: its identification of
a property common to each of the three intersection points – or (equivalently) each
of the three pairs of corresponding sides of the two triangles. The salience of this
feature makes meaningful the why question demanding the theorem’s explanation
over and above its proof. But the content of Desargues’ theorem in projective ge-
ometry strikes us in this way (as identifying a property common to each of the
three intersection points) only if we already recognize points at infinity as just like
other points – as all “le même genre” (as Descartes said above). Otherwise,
Desargues’ theorem in projective geometry consists of Desargues’ theorem in
Euclidean geometry plus various other theorems (two of which I gave in the
previous section). So understood, the theorem is a motley collection of results.
It does not identify a property common to each of the three points of intersection.
Therefore, only in projective geometry does it make sense even to ask why
these results (the various components of Desargues’ theorem in projective
geometry) all hold.

I have just presumed that a genuine resemblance among the three intersection
points is distinguished from a difference among them – even though we could
paper over that difference by using the same specious term to describe them
all. I am thus invoking a familiar philosophical distinction between what
David Armstrong (1978, 38–41) and David Lewis (1999, 10–13) call “natural”
(i.e., ‘sparse’) properties – that is, respects in which things may genuinely resem-
ble each other – on the one hand, and mere shadows of predicates (i.e., ‘abundant’
properties), on the other hand. Consider some of the properties figuring in projec-
tive geometry. For example, take the property of being a point, which is instantiated
by both points on the finite plane and points at infinity. Or take the property of
being a line, which is instantiated by both Euclidean lines and lines at infinity.
These are genuine properties according to projective geometry. In fact, according
to projective geometry, they mark off natural kinds. In projective geometry “all
lines are ‘created’ equal, regardless of whether they are usual lines or the ‘lines
at infinity’” (Stankova 2004, 176; cf. Courant et al. 1996, 181). Explanatory proofs
in projective geometry treat all lines in the same way; lines at infinity are not
‘special cases’. For instance, in the proof explaining Desargues’ theorem in
projective geometry, we saw that the case where points L, M and N all lie on the
line at infinity does not require special treatment. Rather, that case is treated
together with the others as all constituting instances of collinearity.
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But any of these properties that is natural, according to projective geometry, is
instead a gerrymandered, artificial, wildly disjunctive, unnatural ‘property’ (all of
these pejorative terms being roughly synonymous) according to Euclidean
geometry – akin to Nelson Goodman’s (1983) famous example of being “grue”
(of being green and observed before the year 3000 [to update Goodman’s exam-
ple] or blue and unobserved before the year 3000). For instance, the projective
property of being collinear, as applying to the three intersection points according
to Desargues’ theorem in projective geometry, is understood in Euclidean geome-
try as the property of being collinear, if the three intersection points are on the
Euclidean plane, or of the third intersection point’s ‘existing at infinity’ (i.e., the
two corresponding sides being parallel), if the other two intersection points ‘exist
at infinity’, or… (with each disjunct corresponding to a separate theorem in
Euclidean geometry).

On my account, the proof exiting to the third dimension possesses the power
to explain why Desargues’ theorem in projective geometry holds partly by vir-
tue of the proof’s exploiting natural properties. Otherwise, the derivation would
not constitute a common, unified proof of Desargues’ theorem in projective
geometry. Instead, its unity would be specious; it would be using disjunctive
properties to cover (what Euclidean geometry portrays as) miscellaneous
‘special cases’. After all, if we could help ourselves to disjunctive properties
in our proofs, then we could always cobble together separate proofs into one,
and a proof of one component of a coincidence would then contain no steps dis-
pensable to proving the other component. The distinction I have tried to draw
between common, unified proofs and the mere cobbling together of two unre-
lated proofs would vanish. Accordingly (since I have used this distinction to
ground several others) no distinction would remain between the mathematical
explanations we have seen and mere proofs, or between mathematical coinci-
dences and joint results that are no coincidence. Whether the concept of a pro-
jective ‘point’ (covering both Euclidean points and points at infinity) picks out a
natural class or is an artificial device for shortening proofs without genuinely
unifying them makes a big difference to projective geometry’s explanatory
power.21

Thus, the why question regarding Desargues’ theorem in projective geometry
functions only in a context where the theorem is already appreciated as identifying

21 In creating a specious unity, the concept of a projective ‘point’ would then be like the prop-
erty F that applies to all and only things at worlds where a given deductive system of actual truths holds
– thereby threatening to undermine Lewis’s Best System Account of natural law by allowing a maxi-
mally simple formulation of a deductive system with maximal strength (Lewis 1999, 42). See also
the bogus explanation created by disjunctive properties in the notorious footnote 33 in (Hempel
1965, 273).
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something common to each of the three intersection points,22 and the proof exiting
to the third dimension succeeds in answering the why question only by virtue of
exploiting another feature those points share. But here we seem to be caught in
a vicious circle: the proof’s explanatory power (indeed, the demand for an expla-
nation) presupposes that certain properties are natural, but presumably, they are
natural purely in virtue of their role in such explanations. What makes the points
at infinity just more points is that they function in explanations no differently from
points on the finite plane; explanatory proofs do not treat them as special cases.
Two projective points behave in the same way for the same reasons, and this is
what makes the projective points form a natural class.23 A single term covering
not only pairs of lines intersecting at Euclidean points, but also pairs of parallel
lines (intersecting ‘at infinity’) could be stipulated within Euclidean geometry
and used to present proofs more compactly. But only by discovering projective
geometry’s explanatory power do mathematicians discover that this term is not a
mere façon de parler, but rather denotes a natural kind in mathematics.

22 Thus, it is misleading to say simply that in Euclidean geometry, there is no explanation of
the theorem that is ‘Desargues’ theorem in projective geometry’, since this simple formulation suggests
that the lack of any such explanation is felt in Euclidean geometry. Rather, in Euclidean geometry, we
cannot even ask the why question that the explanation answers. Projective geometry is the natural
habitat for Desargues’ theorem in Euclidean geometry because only there does the theorem have a com-
mon, unifying explanation with various other Euclidean results (equivalent all together to Desargues’
theorem in projective geometry), even though in Euclidean geometry, the lack of any such explanation
is not felt; there it would not even make sense to ask for such an explanation.Here is a related point. I
have understood a ‘mathematical coincidence’ to be two or more mathematical results with no com-
mon, unifying explanatory proof. In this sense, Desargues’ theorem in projective geometry is portrayed
as coincidental by Euclidean geometry because in Euclidean geometry, there is no such proof for
Desargues’ theorem in Euclidean geometry together with the additional content of the theorem in pro-
jective geometry. However, one might adopt a narrower understanding of ‘mathematical coincidence’
by also requiring, in order for two or more mathematical results to be a coincidence (or even to be
no coincidence – the title of (Nummela 1987)), that the various mathematical results specify that
various cases have something in common. On this reading, it is a mathematical coincidence that the
two Diophantine equations given at the end of section 3 have the same positive solutions, but it is
neither a mathematical coincidence nor no coincidence that there are five perfect solids and the two
equations have the same solutions (even though the components of this result have no common, unify-
ing explanatory proof). Euclidean geometry mistakenly depicts the components of Desargues’ theorem
in projective geometry as having no common, unifying explanatory proof – but does not mistakenly
depict them as coincidental, on this narrower reading, since in Euclidean geometry, those results fail
to show that various cases have something in common. Only if projective concepts denote natural prop-
erties do the results show that various cases have something in common. Therefore, on this narrower
reading, only in projective geometry does it make sense even to ask whether this combination of results
is coincidental or no coincidence.

23 As indirect support for this idea, I argue in Lange (forthcoming, ch. 11) that roughly the
same idea applies in science: many properties (such as having a given Reynolds number) become
natural by virtue of their roles in certain scientific explanations.
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How do mathematicians discover the explanatory power of some proof in pro-
jective geometry if they must already know that projective concepts denote natural
properties, yet this knowledge, in turn, arises from their discovering projective
geometry’s explanatory power? Here we have the epistemic version of the onto-
logical circularity I just mentioned. My suggestion is that (knowledge of) the
naturalness of projective properties and (knowledge of) the explanatory power
of proofs using those properties arise together; neither is prior to the other.

What makes a given proof in projective geometry explanatory is, in part, that it
uses natural properties, and what makes those properties natural, in turn, is that
they figure in other explanatory proofs. For each explanation, the existence of
others secures the naturalness of the properties it uses. Of course, each of those
others is beholden to others for the naturalness of the properties it uses. This
holism does not involve vicious circularity because a given proof’s status as an
explanation presupposes the naturalness of the properties it exploits but does
not also make those properties natural. An entire constellation of proofs that would
be explanatory, were certain properties natural, is needed to make those properties
natural. Insofar as those proofs are many and diverse (in that, e.g., one of these
proofs is not contained in each one of the others, so we are not getting a multiplic-
ity of proofs on the cheap), the properties qualify as natural and the proofs as ex-
planatory.24 This ontology is mirrored in epistemology. Mathematicians discover
that the properties in a given family are natural by finding them in many, diverse
proofs that (mathematicians recognize) would be explanatory, if those properties
were natural.

A disjunctive property fails to figure in such a wide constellation of proofs. We
could, of course, take two arbitrary theorems involving natural properties and
make them into a single combined theorem by using disjunctive properties. We
could likewise form a proof of the single combined theorem by taking a proof
explaining why one of the original theorems holds and combining it with a proof
explaining why the other holds – using further disjunctive properties to combine
the first steps of the two proofs, the second steps, and so forth. The disjunctive

24 By this “Insofar as …” formulation, I mean to recognize that a given mathematical
property’s naturalness and a given proof’s explanatoriness can be matters of degree. (Lewis likewise
regards naturalness as a matter of degree.) Also note that this view leaves room for a property to figure
in an explanatory proof without its role there contributing at all toward making the property natural. The
property must figure in the proof as a respect in which (if the property were natural) various things
would be alike so as to enable the proof to explain by revealing how one (salient) similarity arises from
another. Thus, the property cannot figure in the proof merely as the referent of a convenient notational
device, for example. Note also that since an entire constellation of proofs is needed to render certain
properties natural (and hence to make those proofs explanatory), the proof of Desargues’ theorem that
I have been examining is not enough by itself to make the property of being a projective point natural.
(Nor, of course, have I aimed to give a full account of the mathematical significance of Desargues’
theorem.)
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properties figuring in the single combined theorem must appear in many other
theorems: since the original two theorems involve natural properties, those prop-
erties figure in many other theorems as well, and so a given disjunctive property
in the single combined theorem will appear in various combinations of these other
theorems. However, although the disjunctive properties in the single combined
theorem are guaranteed to appear in other theorems, no such guarantee applies
to the other disjunctive properties in the steps of the combined proof of the single
combined theorem. Rather, those properties are not apt to figure in proofs of any
other theorems (apart from proofs of theorems logically related to the given
theorem). The two original proofs have little in common; the disjunctive combina-
tions created by the two proofs’ combination are too idiosyncratic to be likely to
arise in other proofs.

Now consider what happens when such seemingly disjunctive properties as
‘Euclidean point or point at infinity’ are used to combine various Euclidean
theorems into Desargues’ theorem in projective geometry.25 We could take vari-
ous proofs of these components individually (that exit to the third dimension)
and combine them by using disjunctive properties. Lo and behold, the same few
disjunctive properties (e.g., the properties in projective geometry of being a point,
being a line, being a plane) arise in all of the combined steps – and exactly the
same allegedly disjunctive properties appear in many other combinations of
Euclidean theorems dealing with other allegedly special cases. Being collinear
(whether the line is Euclidean plus a point at infinity or is a line at infinity), being
coplanar, and other projective properties that would be ways of being alike, if
these properties were natural, arise in many, otherwise diverse theorems and
proofs that would be explanatory, if these properties were natural. Thus, the
projective properties become natural. Epistemology mirrors this ontology: By
discovering that the same few projective properties recur in all of these proofs,
mathematicians discovered that they are natural and that these proofs explain
those projective-geometry theorems.

In contrast, the unnatural properties needed to combine two arbitrary proofs are
ad hoc. The combination of (e.g.) ‘All triangles have interior angles adding to a
straight angle’ and ‘All isosceles trapezoids have base angles that are congruent’
involves the property of being a triangle or an isosceles trapezoid, for instance,
which is guaranteed to figure in other theorems produced by similar combinations
(since there are many other theorems concerning triangles and many others
concerning isosceles trapezoids). But the combination of a step in a proof of the

25 I say “seemingly disjunctive” because although the expression “being a Euclidean point or
a point at infinity” appears to denote a genuinely disjunctive property, that appearance turns out to be
deceptive; the property to which this expression refers was discovered to be mathematically natural.
Whether a property is natural or disjunctive is not a matter of the syntax of the predicate picking it out.
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triangle theorem with a step in a proof of the trapezoid theorem will involve prop-
erties such as being alternate interior angles where the transversal and one of the
parallel lines are two sides of a triangle or being the foot of a perpendicular from a
vertex to an isosceles trapezoid’s base. There is no reason to expect this idio-
syncratic property to recur in other such proofs – and if, remarkably, it does appear
in some other proof, then the other disjunctive properties appearing there likely do
not recur. Thus, it and those other properties are not natural and the proofs are not
explanatory.

Among the few recent philosophical discussions of natural properties and kinds
in mathematics are Tappenden (2008a; 2008b).26 Both Tappenden and I take a
property’s naturalness as not determined by its contribution toward simplifying
theorems or making proofs more efficient. Rather, Tappenden says, natural prop-
erties are “fruitful” and one kind of fruitfulness, perhaps more easily understood
than other kinds, involves how a concept “contributes to addressing salient
‘why?’ questions” (2008a, 259). Though Tappenden offers no general account
of mathematical explanation, I agree with him that explanatoriness and natural-
ness “interact in ways that make them hard to surgically separate” (2008a, 259).
Discussing the function denoted by the Legendre symbol in number theory, he
gives nice examples where unification is closely related to explanation.

Tappenden recognizes that unification and explanation are not achieved when
gerrymandered properties are used. Therefore, Tappenden faces the task of speci-
fying how the Legendre symbol creates genuine rather than spurious unification of
what would otherwise constitute separate cases. Tappenden says that the unifica-
tion results from the fact that the concept is “fruitful”; its use leads to lots of good
mathematical theorems. But of course, unification is not supposed to be merely a
heuristic matter and (as in the case of Desargues’ theorem in projective geometry)
many of these further theorems could be expressed (in more cumbersome ways)
without the Legendre symbol. Moreover, if natural properties figure in lots of
good mathematical results, then as I just pointed out, even an arbitrary disjunction
of natural properties is guaranteed to figure in “grue”-some combinations of those
results. (For example, Euclidean geometry might use the concept of ‘points at
infinity’ to combine several theorems without purporting to unify them.) So an
appeal to “fruitfulness” has got to go on to specify the particular kinds of fruitful-
ness that contribute to a mathematical property’s naturalness. I agree with
Tappenden that we should be guided here by the features that mathematicians
themselves treat as significant in making a property natural (such as, he says,
the way that the function expressed by the Legendre symbol turns out to be a

26 Other discussions include Lakatos (1976) and Corfield (2003; 2005). I am grateful to
Professor Tappenden for discussions of his views; of course, I am responsible for any remaining mis-
understandings of them.
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special case of a function central to the study of quadratic reciprocity, which itself
turns out to connect to a wide variety of other mathematical domains). By getting
a better grip on the kinds of fruitfulness that contribute to a mathematical
property’s naturalness, we hope to understand eventually how the fact that
arbitrarily disjunctive properties figure in many mathematical results nevertheless
fails to make those properties “fruitful” in a way that produces unification.

I have approached this issue by focusing on fruitfulness in connection with ex-
planatory proofs. In particular, I have suggested that a given arbitrarily disjunctive
property fails to belong to a family of properties any given member of which
figures in proofs that would be explanatory, if the properties in the family were
all natural, where these proofs are sufficiently numerous and diverse to make
the given family member natural, if the proofs were all explanatory. But such
service in explanatory proofs may well turn out to be only one of the possible
contributors to a mathematical property’s naturalness.

6. Conclusion

On the account I have sketched, certain mathematical properties are natural be-
cause they figure in proofs that (if these properties are natural) constitute common,
unified explanations of various results that otherwise must describe a miscellany
of special cases – where these proofs are of sufficient number and diversity to
make these properties natural. Poincaré (1913, 375) nicely characterizes the unifi-
cation achieved by mathematical proofs using natural properties and kinds, citing
a host of examples including points at infinity:

[M]athematics is the art of giving the same name to different things. … When the
language has been well chosen, we are astonished to see that all the proofs made
for a certain object apply immediately to many new objects; there is nothing to
change, not even the words, since the names have become the same. A well-chosen
word usually suffices to do away with the exceptions from which the rules stated in
the old way suffer; this is why we have created negative quantities, imaginaries,
points at infinity, and what not.

This is exactly what we found in the case of the proof explaining why Desargues’
theorem holds in projective geometry; concerning Euclidean points and points at
infinity, “the names have become the same”. Poincaré regards these unifying
proofs as explaining why various previous results had been so alike, his example
here being groups and invariants:

[These concepts] have made us see the essence of many mathematical reasonings;
they have shown us in how many cases the old mathematicians considered groups
without knowing it, and how, believing themselves far from one another, they
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suddenly found themselves near without knowing why. Today we should say that
they had dealt with isomorphic groups. (1913, 375)

When we discover that the same natural property was instantiated in various,
apparently disparate cases, we want to know why those cases turned out to be
alike in so many ways. We may discover that it was no mathematical coincidence.

Our study of the explanatory contributions made by projective geometry allows
us to appreciate one important role that explanation plays in mathematics. It has
often been suggested (e.g., by Kitcher 2011) that mathematics consists of various
interrelated ‘games’ of symbolic manipulation and that pure mathematicians have
frequently extended their language and thereby begun to play new games that ap-
peared to them to be worthwhile on purely mathematical grounds. A given game
may be worth playing at least partly by virtue of its relations to other mathematical
games that are independently worthwhile (and so mathematicians may take a
given game to be worthwhile by virtue of its relation to other games that mathe-
maticians already take to be worth playing). One of the features that can make a
game mathematically worthwhile, I suggest, is its enabling mathematical explana-
tions to be given (or demanded) that could never be given (or demanded) before.
These new opportunities are especially worthwhile when the new explanations
unify results that have already been arrived at (separately) in games that are
already recognized as worthwhile. Projective geometry is a good example: part
of what makes it worthwhile is that (as we have seen) it allows us to answer
(and to ask) many why questions that could not be answered (or asked) in
Euclidean geometry. It gives common, unified explanations in cases where
Euclidean geometry gives none. Mathematical entities (such as points at infinity)
are discovered when mathematical practices involving them are discovered to be
worthwhile, and the explanations made possible by those practices often help to
make them worthwhile. This is one of the most important roles played by
explanations in mathematics.*
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