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Figure 1: (Left) a faucet generating bubbles through air entrainment, (Center) a source seeding tiny bubbles which merge and grow as
they rise, as well as interact with a moving armadillo illustrating complex object interaction, (Right) a cavitating propeller generates the
characteristic helical pattern in its wake.

Abstract
We present a hybrid Lagrangian-Eulerian framework for simulat-
ing both small and large scale bubble dynamics, where the bubbles
can grow or shrink in volume as dictated by pressure forces in the
surrounding fluid. Small under-resolved bubbles are evolved using
Lagrangian particles that are monolithically two-way coupled to the
surrounding flow in a manner that closely approximates the analytic
bubble oscillation frequency while converging to the analytic vol-
ume as predicted by the well-known Rayleigh-Plesset equation. We
present a novel scheme for interconverting between these under-
resolved Lagrangian bubbles and larger well-resolved bubbles that
are modeled with a traditional Eulerian level set approach. We also
present a novel seeding mechanism to realistically generate bub-
bles when simulating fluid structure interaction with complex ob-
jects such as ship propellers. Moreover, our framework for bubble
generation is general enough to be incorporated into all grid-based
as well as particle-based fluid simulation methods.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling;
Keywords: bubbles, entrainment, cavitation, water

1 Introduction
Bubbles are ubiquitous in most underwater scenes and embellish
the otherwise lifeless water by providing visual cues to the virtu-
ally imperceptible velocity field. They also provide a mechanism
for sound generation [Zheng and James 2009; Moss et al. 2010].
These sounds are a consequence of the volumetric changes that bub-
bles undergo during their temporal evolution - volumetric changes
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which can be substantial when bubbles rise a significant distance, or
when fast moving objects such as ship propellers interact with wa-
ter. In such fluid structure interactions, lower pressure regions are
generated near the objects causing some of the water to instantly va-
porize through the compressible phenomena of cavitation [Brennen
1995]. Since the density of water is a thousand times larger than
that of air, the vaporized water forms bubbles that quickly expand
in size becoming visible to the naked eye. Thus, to realistically
simulate both bubble sounds and dynamics, it is important to de-
sign numerical methods that allow bubbles to change in volume -
contrary to the traditional approach of treating the air inside bub-
bles as incompressible flow, e.g. [Hong and Kim 2003; Hong and
Kim 2005; Mihalef et al. 2006; Losasso et al. 2006b; Zheng et al.
2006; Boyd and Bridson 2012].

An early approach to particle-based bubble simulation was pro-
posed by [Greenwood and House 2004] who generated bubbles
based on escaped particles from the particle level set method of [En-
right et al. 2002] similar to the approach for spray in [Foster and
Fedkiw 2001] (see also [Geiger et al. 2006]). Later, a number of
authors proposed additional Lagrangian techniques including [Kim
et al. 2010; Busaryev et al. 2012; Kim et al. 2012; Ihmsen et al.
2012]. Although [Kim et al. 2010] did propose using a vari-
able density Poisson solver for approximating the average bubble
motion, this only gives very limited two-way interactions and ig-
nores changes in the bubble’s volume. We instead derive a mono-
lithic (strongly coupled) approach to simulating under-resolved La-
grangian bubbles submerged in an incompressible fluid, motivated
by the fully Eulerian level set work of [Aanjaneya et al. 2013]. Our
sub-grid bubble model faithfully approximates the analytic bubble
oscillation frequency, converges to the analytic volume predicted
by the well-known Rayleigh-Plesset equation, and remains stable
for large time steps.

Instead of representing each bubble as a single particle, one can
use a collection of particles to model a single bubble. SPH-based
methods are good candidates for such an approach [Müller et al.
2005; Cleary et al. 2007; Thürey et al. 2007]. This can aid in mod-
eling a bigger range of bubble dynamics obtaining a wider vari-
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Figure 2: A single level set bubble rises in a tall domain, un-
dergoing topological deformations and generating smaller level
set as well as sub-grid bubbles during its temporal evolution
(150×500×150 grid in a 1.5m×5m×1.5m domain); about 1,200
sub-grid bubbles.

ety of topological shapes that real bubbles exhibit. However, fully
Eulerian grid-based methods still seem preferable for these larger
bubbles. Moreover, some of the most compelling methods for sim-
ulating fluids tie together multiple scales as can be seen in [Losasso
et al. 2008; Hong et al. 2008; Lee et al. 2009; Mihalef et al. 2009].
Therefore, we provide a mechanism to model both bubble merg-
ing and bubble growth as well as the ability to convert these larger
bubbles into an Eulerian level set representation on a background
grid.

Our system pipeline uses the particle level set method of [Enright
et al. 2002] for tracking the interface and incompressible flow for
the liquid. Small under-resolved bubbles are tracked using La-
grangian particles that are monolithically two-way coupled to the
surrounding fluid. Various bubble-bubble interactions are also sim-
ulated and overlapping bubbles are merged together. Once these
bubbles grow large enough to be resolved on the Eulerian grid,
they are converted to their corresponding level set representation
and subsequently solved for using a fully coupled monolithic Pois-
son solve for modeling the compressibility of these bubbles as pro-
posed in [Aanjaneya et al. 2013]. Additionally, we convert back to
the Lagrangian bubble representation whenever the level set loses
air mass due to under-resolved features on the Eulerian grid. A
vorticity-based seeding mechanism is also proposed to realistically
model bubble generation for simulating air entrainment and com-
plex fluid-structure interactions.

In summary, our main contributions are: 1) a monolithically two-
way coupled sub-grid model for under-resolved bubbles that con-
verges to the correct volume and matches the analytic oscillation
frequency as predicted by the Rayleigh-Plesset equation; 2) an in-
terconversion mechanism to seamlessly transition between sub-grid
and level set bubbles; 3) a novel method to render the sub-grid bub-
bles as time-evolving level set functions to achieve visually pleasing
results, and 4) a novel vorticity-based seeding mechanism for sim-
ulating bubble generation through cavitation and air-entrainment.

2 Semi-Implicit Compressible Flow

To understand the monolithically coupled Poisson solve for bub-
bles as proposed in [Aanjaneya et al. 2013], we first review the
semi-implicit formulation for compressible flow proposed in [Kwa-
tra et al. 2009]. The multi-dimensional Euler equations are given
by,

0@ ρ
ρ~u
E

1A
t

+

0@ ∇ · ρ~u
∇ · (ρ~u)~u
∇ · (E~u)

1A +

0@ 0
∇p

∇ · (p~u)

1A = ~0 (1)

where ρ is the density, ρ~u is the momentum, E is the total energy
per unit volume and p is the pressure. For a system with internal
energy per unit mass given by e, the total energy E can be written
as E = ρe + ρ‖~u‖2/2. After providing an equation of state that
defines p as a function of ρ and e, the above set of equations form a
closed system. The flux terms in equation (1) have been expressed
as a sum of advection and non-advection components. Note that
the more prohibitive time step restriction of |u| ± c required by
a fully explicit scheme is avoided by the explicit advection step
which imposes a restriction only based on |u|. We denote the post-
advected quantities as ρ?, ρ~u? and E?. Note that pressure does not
affect the continuity equation, so ρn+1 = ρ?.

The time tn+1 velocities can be found by solving for the pressure
component of the flux vector implicitly using a Poisson equation
very similar to that for incompressible flow. Using a forward Euler
discretization in time on the first two rows of equation (1) gives

~un+1 − ~u? = ∆t
∇p

ρn+1
. (2)

Unlike incompressible flow where one would set∇·~un+1 = 0, for
compressible flow one can get an estimate of ∇ · ~un+1 using the
pressure evolution equation [Fedkiw et al. 2002],

pt + ~u · ∇p = −ρc2∇ · ~u. (3)

Discretizing pt+~u·∇p explicitly using a forward Euler scheme and
computing the post-advected pressure p? = p(ρ, e), as proposed
in [Grétarsson and Fedkiw 2013] gives

∇ · ~un+1 =
p? − pn+1

∆tρc2
. (4)

where∇·~u is fixed at time tn+1. By taking the divergence of equa-
tion (2) and substituting the value of ∇ · ~un+1 from equation (4),
the following implicit system for pressure is obtained after some
rearrangement,

pn+1

ρn(c2)n
−∆t2∇ ·

„
∇pn+1

ρn+1

«
=

p?

ρn(c2)n
−∆t∇ · ~u?. (5)

Discretizing the gradient and divergence operators in equation (5)
to G and −GT gives»

I

ρn(c2)n∆t2
+ GT 1

ρ̂n+1
G

–
p̃n+1 =

p̃?

ρn(c2)n∆t2
+ GT û?,

(6)
where ρ̂ and û denote density and velocity values interpolated to
cell faces, and p̃, p̃? denote pressure values scaled by ∆t. Note that
equation (6) reduces to the standard Poisson equation for incom-
pressible flow in the limit as c →∞.

The values of pn+1 and (p~u)n+1 at cell faces are computed using
a density-weighted average of pressure from the cell centers and
setting ûn+1

i+1/2 = û?
i+1/2 −∆t(∇pn+1/ρ̂n+1

i+1/2). These values are
used to update the time tn+1 momentum and energy as,

(ρ~u)n+1 = (ρ~u)? −∆t
pn+1

i+1/2 − pn+1
i−1/2

∆x
(7)

and
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En+1 = E? −∆t
(pû)n+1

i+1/2 − (pû)n+1
i−1/2

∆x
(8)

3 Simplifications to the air flow
Equation (6) can be used to simulate fully non-linear compressible
flow with shocks and rarefactions. As suggested in [Aanjaneya
et al. 2013], a number of simplifications can be made for bubbles.
First, an isothermal assumption can be made by choosing a sim-
plified equation of state p = Bρ, decoupling the energy equation
and making the first two rows of equation (1) form a closed system.
This simplifies c2 = B and p? = Bρ? = Bρn+1, and equation (6)
can be rewritten as

»
I

ρnB∆t2
+ GT 1

ρ̂n+1
G

–
p̃n+1 =

1

∆t2
+ GT û?, (9)

The spatial variations in the bubble density can also be removed by
uniformly redistributing the density field to be constant inside each
bubble. Furthermore, one can assume that the pressure inside the
bubble is spatially constant as well, although time-varying. To get
an equation for this single bubble pressure degree of freedom, one
can sum up the equations corresponding to all cells that belong to
a single bubble. This is equivalent to collapsing all the rows and
columns that belong to a bubble into a single (albeit a long) row
and column in the Poisson matrix. Summing equation (9) over all
grid cells Ω that belong to a bubble gives

"
N

ρnB∆t2
+

X
Ω

GT 1

ρ̂n+1
G

#
p̃n+1 =

N

∆t2
+

X
Ω

GT û?, (10)

for a single bubble occupying N grid cells. By using Green’s theo-
rem, the second terms on both sides can be converted from a volume
sum to a surface sum which is equal to the average of the quan-
tity over the boundary multiplied by the surface area of the bound-
ary. For a well-resolved Eulerian level set bubble occupying N grid
cells, this gives the following equation

N

∆t2Bρb
pn+1 −

„
∇pn+1

ρ

«
Pn

Vc
=

N

∆t2
− ūnPn

Vc∆t
(11)

where ∆t is the size of the time step, Vc is the volume of a grid
cell, ūn is the average radial velocity of the bubble, Pn is the sur-

face area of the bubble, and
“
∇p
ρ

”
is the average density-weighted

pressure gradient across the bubble-water interface. Surface tension
can be included as a jump condition as shown in [Aanjaneya et al.
2013].

4 Sub-grid bubbles
We use the equation of state Pb = Bρb for the sub-grid bubbles
with the constant B chosen such that a density ρb = 1.226 kg/m3

gives a pressure Pb = 101,325 Pa. Since small bubbles tend to
remain spherical due to surface tension effects we assume that the
sub-grid bubbles are spherical in shape with radius r, have a single
radial velocity degree of freedom vr , and a single pressure degree
of freedom Pb which is coupled to all the surrounding fluid degrees
of freedom in a monolithic fashion.

When solving for the bubble volumes, monolithic approaches such
as [Aanjaneya et al. 2013] are preferable to partitioned approaches
because they do not require additional relaxation techniques for
stability and robustness (see e.g. [Zheng et al. 2006; Kim et al.

2007]). Therefore for stability reasons, we follow an approach sim-
ilar to [Aanjaneya et al. 2013]. We would like to use a similar equa-
tion for the sub-grid bubbles as well so that they have the same
qualitative behavior as the level set bubbles and seamlessly convert
into them when they grow large enough. A brute force approach for
achieving this by creating a mesh for each sub-grid bubble would
result in increased complexity and poor conditioning due to small
control volumes. Instead, we make some approximations noting
that our resulting scheme gives adequate results as illustrated in
Figure 3.

First, we substitute ūn = vn
r and N = V n

b /Vc, where V n
b is the

volume of the bubble, and rewrite equation (11) as,

V n
b

Vc∆t2Bρb
Pb −

„
∇p

ρ

«
Pn

Vc
=

V n
b

Vc∆t2
− vn

r Pn

Vc∆t
(12)

Notice as ∆t → 0, the first term on each side of the equation must
balance indicating that the bubble pressure equals the equation of
state pressure. Moreover, when the bubble pressure is identical to
the equation of state pressure these terms cancel, and in order to

remain at equilibrium with vn
r = 0 the term

“
∇p
ρ

”
Pn

Vc
must also

vanish. This means that the bubble pressure tries to match the av-
erage external pressure from the fluid when it is near radial equi-

librium (n.b. equation (14)). Note that
“
∇p
ρ

”
is an area-weighted

average where the weights are computed based on the fraction of
the bubble’s surface area visible to a neighboring fluid cell and that
cell’s pressure degree of freedom pi. We estimate these weights wi

as the weights each of the neighboring eight cells would have in
a tri-linear interpolation formula for the location of the center of a
bubble. Then„

∇p

ρ

«
≈

8X
i=1

wi
(pi − Pb)

∆xiρ
≈

8X
i=1

wi
(pi − Pb)

∆xρb
(13)

where ∆xi is the distance between the sub-grid bubble center and
the center of the ith incompressible cell. We have found that we
can make further approximations replacing ∆xi by a characteristic
length ∆x and replacing ρ by the bubble density ρb as seen in the
rightmost term in equation (13). Here ∆x is chosen as the length of
a grid cell in the case of our uniform grid. Although these approxi-
mations might appear aggressive, they allow us to treat the sub-grid
bubbles as point particles while keeping the equations well-defined
even for degenerate cases where the sub-grid bubbles overlap each
other or encompass a fluid degree of freedom. Note that

8X
i=1

wi
(pi − Pb)

∆xρb
=

pavg − Pb

∆xρb
(14)

Figure 3: Using equations (15) and (22), we solve the oscillating
bubble problem of [Aanjaneya et al. 2013] for a sub-grid bubble
(radius = .3∆x) on a 253 grid in a 1m3 domain with (Left) an initial
density of 1.1 kg/m3, where the bubble starts with an initial volume
of 7.238 cm3, converges to the predicted volume of 7.962 cm3, and
closely approximates the analytic bubble oscillation frequency as
the size of the time step is refined, and (Right) an initial density of
1,100 kg/m3, where the bubble starts with an initial volume of .268
cm3 and expands three orders of magnitude, remaining stable even
when it grows beyond its incompressible neighbors. Note that the
bubble remains stable at all time steps in both cases.
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Figure 4: A cylindrical source inside a tall domain seeding tiny bubbles which grow as they rise and merge together due to attraction
forces, ultimately forming large sub-grid and level set bubbles as they approach the surface (128×640×128 grid in a 50m×200m×50m
domain); about 500,000 sub-grid bubbles. (Far right) shows the sub-grid bubbles in red and blue, where red depicts the smaller spherical
ones (Figure 6 left), and blue depicts those rendered using the time evolving level set dictionary (Figure 6 right). Note that the domain size is
very large to accentuate the volume growth and the bubbles expand up to 10 times in volume.

where pavg is the incompressible flow pressure linearly interpolated
to the bubble’s center. This provides some intuition as to why these
approximations work. The term on the right is a reasonable ap-
proximation to the gradient between the incompressible flow pres-
sure and the bubble’s pressure using the same characteristic length
scale.

In summary, we use the following equation when solving for the
pressure of a sub-grid bubble,

V n
b

Vc∆t2Bρb
Pb −

8X
i=1

wi
(pi − Pb)Pn

∆xρbVc
=

V n
b

Vc∆t2
− vn

r Pn

Vc∆t
(15)

Even with these approximations, we converge to the analytic bub-
ble volume at sub-grid resolutions and the simulation remains stable
with large time steps. The denominator ρ in equation (13) controls
the bubble’s oscillation frequency. For any given radius, it can be
tuned such that the model closely matches the analytic bubble os-
cillation frequency. Most of our sub-grid bubbles are seeded with
radii in the interval (.2∆x, .3∆x), and setting ρ = ρb works quite
well in this case as shown in Figure 3(left). For more accuracy such
as when simulating fluid sounds, one could choose a better value
for ρ or even make it a function of the bubble’s radius. We leave
this as future work since all our examples use large time steps and
only rely on the sub-grid bubbles converging to the right volume
while remaining stable.

Note that we treat all sub-grid bubbles independently of each other
when coupling to the external fluid pressures. In addition, we set
weights to zero when a neighboring fluid degree of freedom is
inside a kinematic object or is subject to a free surface pressure
boundary condition. This means that both kinematic objects and
free air cannot see the pressure from the sub-grid bubble which is
fine. When a neighboring fluid degree of freedom is inside a level
set bubble, the level set pressure degree of freedom can be cou-
pled to the sub-grid bubble pressures, except that this increases the
density of the Poisson equation matrix repeatedly for every sub-
grid bubble adjacent to a single level set region - which we have

observed increases the number of iterations required by PCG for
convergence. Therefore, we set weights to zero in this case as well.

As shown in [Aanjaneya et al. 2013] and [Kwatra et al. 2009], the
divergence of the velocity field at time tn+1 is given by the sec-
ond and fourth terms in equations (11) and (12), and thus equation
(15). Since the volume-weighted divergence of a sub-grid spherical
bubble is given by vrP , we can write

vn+1
r Pn+1 = VcD

n+1 = vn
r Pn −∆tPn

8X
i=1

wi
(pi − Pb)

∆xρb
(16)

After solving a monolithically coupled Poisson equation for all the
fluid and bubble pressures, the right hand side of equation (16) is
known. Using the definition of surface area Pn+1 = 4π(rn+1)2

and writing vn+1
r = drn+1/dt, we analytically integrate equation

(16) from time tn to tn+1 to obtain rn+1. Once rn+1 is determined,
we use a backward Euler discretization of rn+1 − rn = ∆tvn+1

r

for computing vn+1
r .

5 Coupling to Incompressible Flow
Consider an incompressible fluid containing many sub-grid bubbles
with the inviscid Navier-Stokes equations given by

~ut + (~u · ∇)~u +
∇p

ρ̄
= ~g (17)

where ρ̄ is the average density, ~u is the velocity, and ~g is the net
body force acting on the fluid. We discretize these equations on a
MAC grid where we first explicitly update

~u? − ~un

∆t
+ (~u · ∇)~u = ~g (18)

with a semi-Lagrangian MacCormack method [Selle et al. 2008],
and then solve for the pressure via

∇ · ∇p

ρ̄
=
∇ · ~u?

∆t
− ∇ · ~un+1

∆t
(19)
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Figure 5: Same as Figure 4 except an armadillo moving up and down illustrating complex object interaction.

in order to update the intermediate velocity ~u? as follows
~un+1 − ~u?

∆t
+
∇p

ρ̄
= 0 (20)

We generally follow [Enright et al. 2002] using the semi-
Lagrangian level set advection of [Enright et al. 2005], a fast march-
ing method reinitialization of [Losasso et al. 2006a], and a second
order cut-cell pressure discretization of [Enright et al. 2003].

We lump the divergences of all the sub-grid bubbles into a column
vector ~Dn+1 so that they can affect the divergences of the individ-
ual fluid cells via W ~Dn+1, where W is a weight matrix with Wjk

corresponding to the fraction of the divergence of bubble k that is
added to the divergence of cell j. For simplicity of exposition, con-
sider a single bubble where we only consider one column of the
weight matrix which we index solely by the cell, i.e., for example
Wj . Then, equation (19) can be written as

−∇ · ∇p

ρ̄
= −∇ · ~u?

∆t
+

W ~Dn+1

∆t
(21)

With the aid of equation (16), we discretize equation (21) for cell j
with faces f as follows

−
6X

f=1

pf − pj

ρ̄∆x2
+ Wj

8X
i=1

wi
(pi − Pb)Pn

∆xρbVc

= −∇ · ~u?

∆t
+ Wj

vn
r Pn

Vc∆t
(22)

where pf refers to the pressure on the other side of the face f . For
multiple bubbles, the second and fourth terms in equation (22) must
be summed over all the influencing bubbles k with Wj replaced by
Wjk.

The weight matrix W can be chosen such that the resulting system
of equations (15) and (22) is symmetric positive definite allowing
for the use of fast solvers such as preconditioned conjugate gradi-
ent. In order to obtain symmetry, the coefficient of Pb in the second
term in equation (22) must be the same as the coefficient of pj in
equation (15), and the coefficient of pi (when i 6= j) must be the
same as that for pj in the corresponding equation for cell i. The first

condition means that wj = Wj

P8
i=1 wi or Wj = wj/

P8
i=1 wi.

Note that this relation automatically satisfies the second condition
for symmetry as well. Typically, since wi represents the interpo-
lation weight,

P8
i=1 wi = 1 and we are simply using the inter-

polation weights once again to define W . However, as pointed
out in Section 4, objects, level set bubbles and the free surface are
not directly coupled to the sub-grid bubble’s pressure discretization
yielding weight values of zero and

P8
i=1 wi 6= 1. Technically, this

means that our sub-grid bubbles are not directly coupled to objects,
level set bubbles, or free surface pressure boundary conditions but
are always assumed to be submerged in the neighboring fluid de-
grees of freedom that happen to be present.

Finally, after solving for the pressure and updating the fluid veloc-
ities in the usual manner, the translational velocity of the bubble is
set to be the interpolated average fluid velocity ~u at the center of the
bubble. One could make the bubble motion more lively by applying
additional forces such as buoyancy, vorticity confinement or a ran-
dom perturbation as done in [Kim et al. 2010]. We use buoyancy in
some of our examples since the lift from variable density Poisson
solve might not be enough if the bubble is too small compared to a
grid cell. For greater accuracy, this new velocity can then be sub-
tracted from the average velocities to conserve the fluid momentum,
although this step is not essential since the bubble momenta is very
small.

6 Bubble-Bubble Interactions

When two sub-grid bubbles overlap, we merge them into a single
bubble adding their masses and volumes. The radial velocity of the
bubble is chosen such that the net divergence is equal to the sum of
the divergences of the original bubbles. Additionally, for increased
realism, similar to [Hong et al. 2008] we apply an attraction force
which is of the form fattract = Km1m2/r2, where K is a constant,
m1, m2 are the masses of the two bubbles and r is the distance be-
tween them. When a sub-grid bubble grows large enough such that
its radius covers more than two grid cells, we convert it to a level
set function as proposed in [Song et al. 2005]. This is accomplished
by rasterizing the sub-grid bubble onto the grid and adding its mass
to the level set region by computing the appropriate density. Note
that the divergence remains continuous during this process since the
background fluid velocity already contains the bubble’s divergence.
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Also, when a sub-grid bubble enters a level set bubble we delete the
sub-grid bubble and add its mass to the mass of the level set region
by modifying the density field.

If a level set bubble becomes smaller than a grid cell, it can lose
mass because of numerical errors during advection. However, the
bubble mass cannot disappear because it is advected conservatively
using the method of [Lentine et al. 2011]. This stray mass was
distributed to the nearby bubbles in [Aanjaneya et al. 2013]. How-
ever, such a scheme can sometimes move the bubble mass too far
away in a non-physical manner. Instead, we propose to track this
stray mass using sub-grid bubbles as shown in Figure 2. To achieve
this, we first run a greedy condensation procedure on the stray den-
sity field by moving it in the direction of the gradient vectors for a
few iterations. Then for every cell with density above some thresh-
old we seed a sub-grid bubble with the appropriate mass. To cor-
rectly choose its volume, we set the steady state pressure p = ρIgh
(where ρI is the density of the incompressible fluid and h is the
depth of the sub-grid bubble from the water surface) to be equal to
the equation of state pressure Pb = Bρb = BMb/Vb and solve
for Vb. Note that we do not use the incompressible pressure for
computing the bubble’s volume because it can oscillate wildly and
even go negative at times during the course of the simulation due
to small numerical errors in the velocity field - this is because of
the well-known fact that the fluid pressure in incompressible flow
is more of a Lagrange multiplier (see [Majda 2001]) than an actual
pressure. Finally note that even if our initial volume estimate has
some errors, the monolithic coupling keeps the scheme stable and
the bubble readily changes volume to an appropriate value.

In summary, starting from initial data containing level set and sub-
grid bubbles and a volumetric field that represents the bubble mass,
one loop of our pipeline runs as follows: the level set function is
advanced using the particle level set method of [Enright et al. 2002]
and the bubble mass is advected using the unconditionally stable,
fully conservative, semi-Lagrangian advection scheme of [Lentine
et al. 2011]. After advection, the bubble mass and the level set
function might be inconsistent as they are advanced using different
advection schemes and also because some small level set bubbles
might have disappeared due to numerical errors during advection.
To make them consistent, the mass surrounding a bubble is uni-
formly redistributed such that the bubble density is spatially con-
stant inside the bubble. Next, the sub-grid bubbles are advected
forward after applying forces such as buoyancy and attraction. Sub-
sequently, inter-conversions are handled by merging overlapping
bubbles, converting stray density to sub-grid bubbles and convert-
ing large sub-grid bubbles to their corresponding level set represen-
tation. Finally, a coupled system is solved where equation (11) is
written per level set bubble, equation (15) per sub-grid bubble and
the standard incompressible flow equations with the modification
for sub-grid bubbles, i.e., equation (22) in the rest of the fluid to
get a pressure at every grid cell center as well as at every sub-grid
bubble. This pressure is then used to update the fluid velocities and
the radial velocities of the sub-grid bubbles. To update the air ve-
locities, we perform a second projection step using fluid velocities
at the bubble-water interface as Neumann boundary conditions, as
described in [Aanjaneya et al. 2013].

7 Time-evolving proxy geometry

Although sub-grid bubbles are monolithically coupled to the sur-
rounding fluid, rendering them as oscillating spheres next to fully
deforming level set bubbles can look visually disturbing. To avoid
this, we render them as time-evolving level set functions which have
been pre-computed offline. This was achieved by maintaining a dic-
tionary of level sets acquired from a rising bubble simulated on a
coarse grid. During the rendering process these level sets are substi-

Simulation Loop
1: while time < endT ime do
2: Compute the time step size δt.
3: Advance the level set.
4: Advance bubble mass using [Lentine et al. 2011].
5: Redistribute the bubble mass.
6: Advance sub-grid bubbles after applying forces.
7: Handle bubble-bubble interactions.

a) Merge overlapping bubbles.
b) Convert stray density to sub-grid bubbles.
c) Convert large sub-grid bubbles to level set bubbles.

8: Convect both water and air velocities.
9: Solve the coupled system for the pressure.

10: Update water velocities using the pressure.
11: Update radial velocities for all sub-grid bubbles.
12: Solve another projection to update velocities inside level set

bubbles using water velocities as Neumann conditions.
13: time += δt.
14: end while

tuted within the bounding boxes of the sub-grid bubbles and inter-
sected with the rays, as shown in Figure 6. We used time as key for
choosing a level set from the dictionary, looping back after a certain
period of time and scaled these level sets based on the bubble radii.
Bubble shapes can also be handcrafted or created via superposition
of certain basis functions [Moss et al. 2010] for use during the ren-
dering process. Using this method for rendering a simulation with
hundreds of thousands of sub-grid bubbles can be computationally
quite expensive. However, we found that using this method on the
largest few thousand bubbles added negligible computational over-
head while drastically increasing the visual realism, see Figure 4(far
right). Note that in some cases we have rendered the sub-grid bub-
bles larger than their actual radii to increase the visual expression.

8 Solid object interaction

As described in [Aanjaneya et al. 2013], when advecting the fluid
velocities, the object velocity is set as a Dirichlet boundary condi-
tion at cell faces that lie inside the object. For level set advection,
objects are treated as water. i.e., the level set function φ is initial-
ized to be the value as if no objects were present and subsequently
also updated at grid cells that lie inside the object. For advecting
the air mass, the forward and backward advection rays are clamped
when they hit an object, as described in [Guendelman et al. 2005;
Lentine et al. 2011]. The surface point is used for computing the

Figure 6: To preserve visual realism, we render a sub-grid bubble
as a time-evolving level set function by maintaining a dictionary of
level sets acquired from a coarse simulation and intersecting rays
with them during the rendering process. Shown in the figure is
a sub-grid bubble rising on a 6×18×6 grid rendered (Left) as a
sphere, and (Right) at different points in time using our level set
dictionary.
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Figure 7: A fast moving hydrofoil generates the typical Von Karman vortex street in its wake through cavitation. The vortex street is generated
because of the two-dimensional cross-sectional nature of the hydrofoil (1024×128×128 grid in a 50m×200m×50m domain); about 600,000
sub-grid bubbles.

interpolation weights, where weights coming from cells inside the
object are discarded and the remaining weights are rescaled to sum
to 1. Similarly, when advecting the sub-grid bubbles we clamp the
advection rays to the object surface. During the pressure projection
step, we set Neumann boundary conditions at cell faces that lie in-
side thick objects, while for thin shells we use visibility information
as described in [Guendelman et al. 2005].

As discussed in Section 4, if a sub-grid bubble has a neighbor that
lies inside an object then the weight wi is set to zero. This means
that sub-grid bubble pressures do not directly couple with solid ob-
jects. Although this is fine for kinematically coupled objects, the
method should be modified in order to properly handle interactions
with two-way coupled objects, increasing the overall complexity.
We leave this as interesting future work. Figure 5 shows a kine-
matically coupled armadillo moving inside the underwater bubble
simulation of Figure 4. Note that the larger level set bubbles form
earlier in this example because of the merging of the sub-grid bub-
bles due to collisions with the armadillo.

Figure 8: Headforms with varying surface roughness to illustrate
different nuclei densities in water ranging from a large number of
small bubbles to a few large bubbles (512 × 256 × 256 grid in a
1m × .5m × .5m domain). Note that our results are qualitatively
similar to the experimental results on bubble cavitation shown in
Figure B.3 in [van Terwisga ].

9 Bubble seeding

When considering fluid structure interactions with fast moving ob-
jects such as ship propellers, lower pressure regions are generated
near the object and some of the water instantly vaporizes through
cavitation [Brennen 1995] and forms bubbles. Since the density
of water is a thousand times larger than that of air, these bubbles
quickly expand in size becoming visible. The problem of model-
ing bubble generation has been addressed by various authors for
phenomena such as boiling [Mihalef et al. 2006; Kim and Carl-
son 2007] or air entrainment [Greenwood and House 2004; Hong
et al. 2008; Mihalef et al. 2009]. While the former schemes predict
bubble seeding locations using temperature and objects, the latter
set of schemes use the escaped level set particles. As a result, all
these schemes are unsuitable for modeling cavitation. Note that it
is extremely difficult to vaporize pure water due to strong cohesion
forces between the water molecules. Thus, the major mechanism
for cavitation is through nuclei that are very tiny bubbles (of the
order of microns) already present in water, or which are generated
near rough surfaces. When these bubbles enter lower pressure re-
gions, they quickly grow in size becoming visible to the naked eye.

Although lower pressure regions might appear to be good candi-
dates for seeding bubbles, this idea does not work well in prac-
tice because the incompressible pressure behaves like a Lagrange
multiplier (see [Majda 2001]), as mentioned in Section 6. The in-
compressible flow velocities, on the other hand, are much more
reliable. We observed that the vorticity of the velocity field is a
very good predictor for cavitating regions and thus, we determine
such regions by thresholding the vorticity magnitude. Note that
one should be careful when computing vorticity at fluid cells bor-
dering objects because the vorticity magnitude can be erroneously
high due to Neumann boundary conditions. To avoid this, we first
extrapolate the fluid velocity inside objects and then compute vor-
ticity. We seed bubbles with small radii, zero radial velocity, and
use the steady state pressure for setting their mass, as described in
Section 6. Once seeded, these bubbles stably grow to their cor-
rect volume in a few time steps because of the monolithic coupling
scheme. Figure 1(far right) shows the characteristic helical pattern
generated by a cavitating propeller simulated on a 512×256×256
grid in a 2m× 1m× 1m domain, and Figure 7 shows a cavitating
hydrofoil generating the typical Von Karman vortex street.

A nucleus in a lower pressure region keeps growing until it becomes
large enough to affect the surrounding pressure. The number of cav-
itating bubbles and their size is determined by the nuclei density in
water, a high nuclei density implying that there are many cavitation
sites in lower pressure regions and so each nuclei can only grow by
a small amount before it starts affecting the surrounding pressure
- ultimately manifesting as a mist of small bubbles. Solid objects
affect the nuclei density in proportion to their surface roughness,
rougher surfaces generating more nuclei. Our method allows us to
emulate different nuclei densities by varying the magnitude of the
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Figure 9: A fully simulated water dispenser (200×300×200 grid in a 1m×1.5m×1m domain). As water exits the spout, the air pressure
above the free surface decreases and some air gets entrained from below to compensate for this pressure drop forming bubbles.

attraction forces between the sub-grid bubbles, a small magnitude
implying a higher nuclei density as less bubbles merge together and
vice-versa (see Figure 8).

Although initially designed for simulating cavitation, we found that
our vorticity-based seeding mechanism works well for simulating
air entrainment as well because of high vorticity at the boundary
between the faster impinging jet and the slower surrounding flow
(see [Ihmsen et al. 2012]). Figure 10 shows a faucet pouring water
into a container entraining bubbles. Figure 9 shows a fully simu-
lated water dispenser where the free air above the water surface ex-
pands whenever water pours out decreasing the air pressure. To bal-
ance this pressure drop, some air gets entrained from below forming
bubbles, and the process continues.

10 Performance

The constant pressure solver proposed by [Aanjaneya et al. 2013]
is about 6 times faster in the projection step than a standard two-
phase incompressible flow solver. Adding the sub-grid bubbles has
a negligible effect on the simulation time, since the new degrees of
freedom added (approximately 500,000 sub-grid bubbles) are still
only a small fraction of the grid-based degrees of freedom (approx-
imately 15 million). Memory-wise we need to store an additional
velocity field for the air phase and a density field for tracking the
bubble mass. Computation-wise we incur an additional cost for
advecting the bubble density and air velocities as well as for the
second projection step, but these costs are insignificant compared
to the speedup achieved by the coupled projection step.

11 Conclusion

We proposed a novel method for simulating bubbles at sub-grid res-
olution using Lagrangian particles that are monolithically coupled
to the surrounding fluid. We showed that despite the aggressive ap-
proximations made in Section 4, our sub-grid model still closely ap-
proximates the analytic bubble oscillation frequency and converges
to the analytic volume as predicted by the Rayleigh-Plesset equa-
tion while remaining stable even for large time steps. Moreover,

our method adds negligible computational overhead when simulat-
ing about 500,000 Lagrangian bubbles on a grid with roughly 15
million cells. Currently, rendering is the biggest limitation of our
system since we had hundreds of thousands of transparent/reflective
bubbles which were difficult to ray trace as the numbers of trans-
mitted/reflected rays were exponential in the ray depth. This is a
well-known problem as mentioned in [Jakob and Marschner 2012],

Figure 10: Faucet pouring water showing air entrainment
(200×400×200 grid in a 1m×2m×1m domain); about 300,000
sub-grid bubbles. Note that the size of the sub-grid bubbles was
accentuated to highlight the complex bubble interactions and the
dynamic flow field.
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and we would like to explore better methods to render them faster.
In addition, sub-grid bubbles are only coupled to the surrounding
water and not to each other, to level set bubbles or to objects, all of
which we would like to consider in future work.
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