CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Nuclear Sciences and Physical Engineering Department of Physics

Bachelor thesis

Methods of optimalization of charm hadrons reconstruction

Zuzana Moravcová

Supervisor: Mgr. Jaroslav Bielčík, Ph.D.

Prague, 2017

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta Jaderná a Fyzikálně Inženýrská Katedra Fyziky

Bakalářská práce

Metody optimalizace rekonstrukce půvabných hadronů

Zuzana Moravcová

Supervisor: Mgr. Jaroslav Bielčík, Ph.D.

Praha, 2017

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA JADERNÁ A FYZIKÁLNĚ INŽENÝRSKÁ PRAHA 1 - STARÉ MĚSTO, BŘEHOVÁ 7 - PSČ 115 19

Katedra: fyziky

Akademický rok: 2016/2017

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

Student:	Zuzana Moravcová
Studijní program:	Aplikace přírodních věd
Obor:	Experimentální jaderná a částicová fyzika
Název práce: (česky)	Metody optimalizace rekonstrukce půvabných hadronů
Název práce: (anglicky)	Methods of optimalization of charm hadrons reconstruction

Pokyny pro vypracování:

- 1. Jádro-jaderné srážky
- 2. Experiment STAR na urychlovači RHIC
- 3. Aktuální výsledky v měření půvabních hadronů na RHIC a LHC
- 4. Metody optimalizace rekonstrukce vícečasticových rozpadů: TMVA metoda, Boosted Decision Trees metoda, neuronové sítě
- 5. Aplikace na experimentální data

6. Diskuze

Doporučená literatura:

[1] K. Yagi et al., Quark-Gluon Plasma, Cambridge University Press, 2005.

[2] W. Florkowski, Phenomenology of Ultra-Relativistic Heavy Ion Collisions, World Scientific Publishing, 2010.

[3] A. Hocker, TMVA - Toolkit for Multivariate Data Analysis, PoS ACAT (2007) 040.

[4] Y. Coadou, Boosted Decision Trees and Applications, EPJ Web of Conferences 55, 02004 (2013).

[5] J. Therhaag, Introduction to neural networks in high energy physics, EPJ Web of Conferences 55, 02003 (2013).

Jméno a pracoviště vedoucího bakalářské práce:

Mgr. Jaroslav Bielčík, Ph.D., Katedra fyziky, Fakulta jaderná a fyzikálně inženýrská, ČVUT v Praze

Datum zadání bakalářské práce: 20.10.2016 Termín odevzdání bakalářské práce: 10.07.2017 Doba platnosti zadání je dva roky od data zadání.

V Praze dne 20.10.2016

Prehlásenie:

Prehlasujem, že som svoju bakalársku prácu vypracovala samostatne a použila som len literatúru uvedenú v priloženom zozname.

Nemám závažný dôvod proti použitiu tohto školského diela v zmysle 60 Zákona č.121/2000 Sb., o práve autorskom, o právach súvisiacich s právom autorským a o zmene niektorých zákonov (autorský zákon).

V Prahe dňa

Název práce: Metody optimalizace rekonstrukce půvabných hadronů

Autor: Zuzana Moravcová

Obor: Experimentální jaderná a částicová fyzika *Druh práce:* Bakalářská práce

Vedoucí práce: Mgr. Jaroslav Bielčík, Ph.D. Katedra fyziky, Fakulta jaderná a fyzikálně inženýrská, České vysoké učení technické v Praze

Abstrakt: Na Relativistickom urýchľovači ťažkých jadier RHIC v Brookhanveskom národnom laboratóriu a na Veľkom hadrónovom urýchľovači LHC v CERN sa skúma stav hustej a horúcej jadrovej hmoty, tzv. kvark-gluónovej plazmy, pomocou rôznych metód. Medzi tie patrí napríklad rozbor jadrového modifikačného faktoru získaného z výťažkov pôvabných hadrónov. Na zlepšenie pomeru signálu k pozadiu je možné použiť alternatívne metódy pri analýze týchto častíc – napríklad pomocou viacrozmernej analýzy dát, ktorá je naimplementovaná v balíčku TMVA v programe ROOT. Tento program optimalizuje výberové kritéria a tým zlepší signál. V tejto práci je popísaný postup rekonštrukcie D[±] mezónov, pričom optimalizácia prebehla pomocou TMVA. Analyzované dáta pochádzajú zo zrážiek zlata Au+Au z detektoru STAR na urýchľovači RHIC z roku 2014 pri energii $\sqrt{s_{\rm NN}} = 200$ GeV.

Klíčová slova: kvark-gluónova plazma, pôvabné hadróny, TMVA, STAR, RHIC.

Title: Methods of optimalization of charm hadrons reconstruction

Author: Zuzana Moravcová

Abstract: The Relativistic Heavy Ion Collider RHIC at the Brookhaven National Laboratory and the Large Hadron Collider LHC at CERN study a state of matter of an extremely high temperature and density, the so-called Quark-Gluon Plasma. One of the methods of studying its properties is the analysis of Nuclear modification factor obtained from the charm hadrons production. To improve the signal-to-background ratio of these particles, it is possible to analyse them alternatively – for example with the multivariate data analysis techniques implemented in the TMVA package within the ROOT framework. This program optimalizes selection criteria and improves the signal. In this thesis, the reconstruction of D[±] mesons is described, with optimalization by the TMVA. Analysed data are from Au+Au collisions recorded by the STAR detector at RHIC from the year 2014 at $\sqrt{s_{\rm NN}} = 200$ GeV.

Key words: quark-gluon plasma, charm hadrons, TMVA, STAR, RHIC.

Poďakovanie

Chcela by som poďakovať Mgr. Jaroslavovi Bielčíkovi, Ph.D. za vedenie tejto práce, cenné rady a osobný prístup.

Ďalej by som chcela poďakovať Ing. Jakubovi Kvapilovi, Ing. Miroslavovi Šimkovi a Ing. Lukášovi Kramárikovi za ich ochotu trpezlivo odpovedať na otázky. Prvým dvom zmieňovaným takisto veľmi ďakujem za pomoc počas analyzovania dát.

V neposlednom rade chcem poďakovať mojej rodine, priateľovi a kamarátom za podporu pri písaní tejto práce.

Obsah

Ú	vod		13
1	Jadro	jadrové zrážky	15
	1.1 Z	áklady Štandardného modelu	15
	1.2 K	vark-gluónová plazma	16
	1.3 D	ôležité veličiny časticovej fyziky	18
	1.4 Š	údium kvark-gluónovej plazmy	$\frac{1}{23}$
	1.1	4.1 Produkcja QGP	$\frac{-9}{23}$
	1	4.2 Prejavy QGP	$\frac{-9}{23}$
	1	4.3 BES program	$\frac{-9}{25}$
	-	no blo program	-0
2	Exper	iment STAR na urýchľovači RHIC	28
	2.1 B	rookhavenské národné laboratórium	28
	2.2 U	rýchľovač RHIC	29
	2.3 E	xperiment STAR	33
	2.4 B	udúcnosť štúdia QGP na urýchľovači RHIC	37
3	Aktuá	lne výsledky meraní pôvabných hadrónov na urýchľovačou	ch
3	Aktuá RHIC	lne výsledky meraní pôvabných hadrónov na urýchľovačo a LHC	ch 40
3	Aktuá RHIC 3.1 D	lne výsledky meraní pôvabných hadrónov na urýchľovačo a LHC mezóny na experimente ALICE	ch 40 40
3	Aktuá RHIC 3.1 D 3.2 D	Ine výsledky meraní pôvabných hadrónov na urýchľovačo a LHC mezóny na experimente ALICE	ch 40 40 48
3	Aktuá RHIC 3.1 D 3.2 D 3.3 B	Ine výsledky meraní pôvabných hadrónov na urýchľovačov a LHC mezóny na experimente ALICE	ch 40 40 48 51
3	Aktuá RHIC 3.1 D 3.2 D 3.3 B 3.4 B	Ine výsledky meraní pôvabných hadrónov na urýchľovačov a LHC mezóny na experimente ALICE	ch 40 40 48 51 53
3	Aktuá RHIC 3.1 D 3.2 D 3.3 B 3.4 B 3.5 B	Ine výsledky meraní pôvabných hadrónov na urýchľovačov a LHC mezóny na experimente ALICE	ch 40 40 48 51 53 55
3	Aktuá RHIC 3.1 D 3.2 D 3.3 B 3.4 B 3.5 B	$\begin{array}{llllllllllllllllllllllllllllllllllll$	ch 40 48 51 53 55
3	Aktuá RHIC 3.1 D 3.2 D 3.3 B 3.4 B 3.5 B Metóo	Ine výsledky meraní pôvabných hadrónov na urýchľovačov a LHC mezóny na experimente ALICE mezóny na experimente STAR aryón Λ_c na experimente ALICE aryón Λ_c na experimente LHCb aryón Λ_c na experimente STAR aryón Λ_c na experimente LHCb aryón Λ_c na experimente STAR	ch 40 40 51 53 55 58
3	Aktuá RHIC 3.1 D 3.2 D 3.3 B 3.4 B 3.5 B Metod 4.1	Ine výsledky meraní pôvabných hadrónov na urýchľovačov a LHC mezóny na experimente ALICE mezóny na experimente STAR aryón Λ_c na experimente ALICE aryón Λ_c na experimente LHCb aryón Λ_c na experimente STAR aryón Λ_c na experimente LHCb aryón Λ_c na experimente STAR	ch 40 48 51 53 55 58 58
3	Aktuá RHIC 3.1 D 3.2 D 3.3 B 3.4 B 3.5 B Metóo 4.1 S 4.2 P	Ine výsledky meraní pôvabných hadrónov na urýchľovačov a LHC mezóny na experimente ALICE mezóny na experimente STAR aryón Λ_c na experimente ALICE aryón Λ_c na experimente ALICE aryón Λ_c na experimente ALICE aryón Λ_c na experimente STAR by optimalizácie rekonštrukcie viacčasticových rozpadov projové učenie oppulárne metódy vo fyzike vysokých energií	ch 40 48 51 53 55 58 58 58 59
3	Aktuá RHIC 3.1 D 3.2 D 3.3 B 3.4 B 3.5 B Metóc 4.1 4.2 P 4.3 V	Ine výsledky meraní pôvabných hadrónov na urýchľovačov a LHC mezóny na experimente ALICE mezóny na experimente STAR aryón Λ_c na experimente ALICE aryón Λ_c na experimente LHCb aryón Λ_c na experimente STAR	ch 40 48 51 53 55 58 58 58 58 59 63
3 4 5	Aktuá RHIC 3.1 D 3.2 D 3.3 B 3.4 B 3.5 B Metoc 4.1 4.2 P 4.3 V	Ine výsledky meraní pôvabných hadrónov na urýchľovačov a LHC mezóny na experimente ALICE mezóny na experimente STAR aryón Λ_c na experimente ALICE aryón Λ_c na experimente LHCb aryón Λ_c na experimente STAR uzyón Λ_c n	ch 40 48 51 53 55 58 58 58 59 63 70
3 4 5	Aktuá RHIC 3.1 D 3.2 D 3.3 B 3.4 B 3.5 B Metod 4.1 4.2 P 4.3 V Aplika 5	Ine výsledky meraní pôvabných hadrónov na urýchľovačov a LHC mezóny na experimente ALICE	ch 40 40 48 51 53 55 58 58 59 63 70 70
3 4 5	Aktuá RHIC 3.1 D 3.2 D 3.3 B 3.4 B 3.5 B Metóo 4.1 4.2 P 4.3 V Aplika 5.1 5.1 V	Ine výsledky meraní pôvabných hadrónov na urýchľovačov a LHC mezóny na experimente ALICE	ch 40 40 48 51 53 55 58 58 58 59 63 70 70 70
3 4	Aktuá RHIC 3.1 D 3.2 D 3.3 B 3.4 B 3.5 B Metóo 4.1 4.2 P 4.3 V Aplika 5.1 5.2 S	Ine výsledky meraní pôvabných hadrónov na urýchľovačov a LHC mezóny na experimente ALICE mezóny na experimente STAR aryón Λ_c na experimente ALICE aryón Λ_c na experimente LHCb aryón Λ_c na experimente STAR by optimalizácie rekonštrukcie viacčasticových rozpadov trojové učenie trojové učenie by optimalizácie rekonštrukcie viacčasticových rozpadov trojové učenie trojové platine trojové učenie tropinalizácie tropinalizácie tropinalizácie tropinalizácie tropinalizácie tropinalizácie tropinalizácie tropinalizácie tropinalizácie <	ch 40 40 48 51 53 55 58 58 59 63 70 72 74

 5.4 Diskusia k vstupným veličinám	81 81
Zhrnutie	84
Literatúra	85
Appendices	88
A Rozdelenia vstupných veličín	89
B Slovník termínov	94

Zoznam obrázkov

$1.1 \\ 1.2$	Fázový diagram jadrovej hmoty	17
	GeV	18
1.3	Zrážkový parameter	19
1.4	Centralita zrážky	20
1.5	Pseudorapidita a azimutálny uhol	$\frac{-}{22}$
1.6	Časový vývoj zrážky ťažkých jadjer	${22}$
1.0	Eliptický tok	25
1.1	BES program	$\frac{20}{26}$
1.0		20
2.1	Časový vývoj luminozity hadrónových urýchľovačov	31
2.2	Schéma RHICu a jeho predurýchľovačov	33
2.3	Triggrovacie subdetektory detektoru STAR	35
2.4	Rozlíšenie detektoru HFT	36
2.5	Schéma detektoru STAR	37
2.6	Schéma detektoru STAR - bočný pohľad	38
		00
3.1	Distribúcia výťažku D mezónov pre zrážky Pb–Pb pri $\sqrt{s_{\rm NN}}=$	
	2,76 TeV pre dve rôzne centrality	43
3.2	R_{AA} D mezónov pre zrážky Pb–Pb pri $\sqrt{s_{NN}} = 2,76$ TeV pre dve	
	rôzne centrality	44
3.3	R_{AA} D mezónov pre zrážky Pb–Pb pri $\sqrt{s_{NN}} = 2.76$ TeV pre dva	
	rôzne intervaly $p_{\rm T}$.	44
3.4	R_{AA} D mezónov zo zrážok Pb–Pb pri $\sqrt{s_{NN}} = 2.76$ TeV a zo	
	zrážok p-Pb pri $\sqrt{s_{\rm NN}} = 5.02 \text{ TeV}$	45
3.5	Porovnanie RAA D mezónov pre zrážky Pb–Pb pri $\sqrt{s_{NN}} = 2.76$	-
	TeV s teoretickými modelmi	45
3.6	Porovnanie B_{AA} D mezónov pre zrážky Pb–Pb pri $\sqrt{s_{NN}} = 2.76$	10
0.0	TeV s nabitými časticami	46
37	Distribucia výťažku D^+ mezónov v závislosti na priečnej hybrosti	10
0.1	pre zrážky Pb_Ph pri $\sqrt{s_{\rm NN}} = 2.76$ TeV pre dve rôzne centrality	47
38	$P_{\rm A}$ D ⁺ mezónu pre zrážky Ph-Ph pri $\sqrt{s_{\rm NN}} = 2.70$ rev pre uve rozne centranty	18
3.0	Distribucia wirazina D mozónov pro grážky $\Lambda u - \Lambda v$ pri	40
9.9	Distributia vytazku D mežonov pre zrazky Au-Au pri $\sqrt{s_{\rm NN}} =$	50
	200 GeV a centralite 0-10/0	50

3.10	Distribúcia hmotnosti tripletov K $\pi\pi$ pre zrážky Au–Au pri $\sqrt{s_{\rm NN}}$	
	= 200 GeV a centralite 0-10%.	50
3.11	R_{AA} D mezónov pre zrážky Au–Au pri $\sqrt{s_{NN}} = 200 \text{ GeV}$ a centralite 0-10%	51
3 1 2	B. D mezónov pre zrážky $Au = Au pri \sqrt{spx} = 200 \text{ GeV}$ a zrážky	91
0.12	Ph-Ph pri $\sqrt{s_{NN}} = 2.00 \text{ GeV}$ a ziazky	52
3 1 3	Distribucia invariantných výťažkov D^+ a D^0 mezónov v závislosti	02
0.10	na priečnej hybrosti pre zrážky $Au-Au$ pri $\sqrt{syn} = 200 \text{ GeV}$	52
3.14	Distribucia invariantnei hmotnosti $\Lambda^+ \rightarrow p K^- \pi^+ v$ zrážkach pr	02
0.14	Distributed invariantic finiteties M_c / pr // v zrazkach pp pri $\sqrt{s} = 7$ TeV	54
3 15	Distribucia invariantnei hmotnosti $\Lambda^+ \rightarrow pK^-\pi^+$ v zrážkach p-	01
0.10	Ph pri $\sqrt{s_{\text{NN}}} = 5.02 \text{ TeV}$	54
3 16	Distribucia invariantnei hmotnosti $\Lambda^+ \rightarrow pK^0$ v zrážkach pp pri	01
0.10	$\sqrt{s} = 7 \text{ TeV}$	55
317	Distribucia invariantnei hmotnosti $\Lambda^+ \rightarrow p K^- \pi^+ v$ zrážkach p-	00
0.11	Ar pri $\sqrt{s_{\rm NN}} = 110 {\rm GeV}$	56
3 18	Distribúcia invariantnej hmotnosti $\Lambda_{a} \rightarrow pK\pi v zrážkach Au+Au$	00
0.10	pri $\sqrt{s_{\rm NN}} = 200 {\rm GeV}$	57
319	Pomer výťažku barvónov a mezónov	57
0.10		01
4.1	Neurónová sieť	61
4.2	Rozhodovací strom	62
4.3	Rozdelenie vstupných premenných pri rekonštrukci i $\Lambda_{\rm c}$ pomocou	
	BDT	65
4.4	Testovanie pretrénovania BDT pri rekonštrukci i $\Lambda_{\rm c}$	66
4.5	Odozva BDT pri rekonštrukci i $\Lambda_{\rm c}$	67
4.6	Rozdelenie invariantnej hmotnosti $\Lambda_{\rm c}$ pred aplikovaním BDT cutov	69
4.7	Rozdelenie invariantnej h motnosti $\Lambda_{\rm c}$ po aplikovaní BDT cutov $% \lambda_{\rm c}$.	69
5.1	Grafické znázornenie vybraných premenných použitých na analýzu	
	D^{\pm} mezónov	71
5.2	Ilustrácia k použitému značeniu pri trojčasticových rozpadoch.	72
5.3	Porovnanie priečnej hybnosti $p_{\rm T}$ kaonov zo simulácií signálu z	
- .	rozpadov D^{\perp} mezónu v závislosti na efektoch detektoru	73
5.4	Porovnanie DCA kaonov zo simulácii signálu z rozpadov D^{\perp} mezónu	- 4
	v zavislosti na efektoch detektoru	74
5.5	Schematicke zakresienie postupu vytvarania signalu zo simulacii	75
5.0	Schematicke zakreslenie postupu vytvarania pozadia z nameranych	
		((
ə.7	Porovnanie rozdeleni vybranych vencin signalu zo simulach a po-	00
БO	Zaula z uat	00
9.8 5.0	Prilipid automoného porhodovnojeho stromu	02
0.9 5 10	Poromonio utialadkou tráningoutich a tactovacích PDT mi ra	03
9.10	rotovname vysleukov tremngových a testovacích BD1 při ře- konětrukcji D^{\pm}	ço
		00

Porovnanie priečnej hybnosti $p_{\rm T}$ piónov zo simulácií signálu z	
rozpadov D [±] mezónu v závislosti na efektoch detektoru	90
Porovnanie DCA piónov zo simulácií signálu z rozpadov D^\pm mezónu	
v závislosti na efektoch detektoru	90
Porovnanie rozdelení vybraných veličín signálu zo simulácii a po-	
zadia z dát \ldots \ldots	93
	Porovnanie priečnej hybnosti p_T piónov zo simulácií signálu z rozpadov D^{\pm} mezónu v závislosti na efektoch detektoru Porovnanie DCA piónov zo simulácií signálu z rozpadov D^{\pm} mezónu v závislosti na efektoch detektoru

Úvod

V jadro-jadrových zrážkach pri ultrarelativistických energiách dosahujeme extrémne vysoké teploty a hustoty. V takýchto podmienkach, ktoré boli tesne po Veľkom tresku, vzniká kvark-gluónová plazma, stav hmoty, kedy kvarky a gluóny nie sú viazané v hadrónoch. Dnes ich vieme vytvoriť napríklad vo Veľkom hadrónovom urýchľovači LHC v Európskom centre pre jadrový výskum CERNe alebo v Relativistickom urýchľovači ťažkých jadier RHIC v Brookhavenskom národnom laboratóriu BNL. Kvôli jej veľmi krátkej dobe živote nevieme kvark-gluónovú plazmu merať priamo, je však možné merať viaceré jej prejavy, napríklad potlačenie produkcie častíc, ktoré obsahujú ťažké kvarky, napríklad pôvabný kvark.

Táto práca je venovaná hadrónom (časticiam zloženým z kvarkov) obsahujúcim pôvabný kvark. Študované D mezóny a baryón Λ_c majú pri bežných metódach analýzy dát veľmi malý pomer signálu a pozadia. Kvôli ich krátkej dobe života sa rozpadajú blízko primárnemu vrcholu. Z tohto dôvodu nedoletia až do detektora a musíme ich rekonštruovať pomocou ich dcérskych častíc, pričom však vzniká veľké kombinatorické pozadie. Preto v tejto práci skúmame nové metódy, ktorými by sa výberové kritéria pri rekonštrukcii optimalizovali s cieľom tento zväčšiť spomínaný pomer signálu a pozadia. Možným prístupom, ktorý sa stáva čoraz populárnejším aj v časticovej fyzike, je využitie strojového učenia. Výhodou je, že môžeme použiť predpripravené algoritmy, ktoré využívajú rôzne metódy strojového učenia. Tieto sa nachádzajú v knižnici TMVA, ktorá je naimplementovaná v programe ROOT, ktorý sa v časticovej fyzike používa.

V prvej kapitole tejto práce je predstavený fázový diagram jadrovej hmoty, ktorý zobrazuje kvark-gluonovú plazmu a hadrónový plyn v závislosti na teplote a baryo-chemickom potenciáli. Ďalej sú v tejto kapitole predstavené veličiny, ktoré sa používajú pri jej skúmaní (a všeobecne v časticovej fyzike). Následne je uvedené, ako sa tento stav hmoty študuje a aké sú príslušné merateľné prejavy.

V druhej kapitole je predstavené Brookhavenské národné laboratórium a Relativistický urýchľovač ťažkých jadier, ktorý je jeho súčasťou. Experiment STAR je jediný detektor na tomto urýchľovači, ktorý v súčasnosti naberá dáta. Postupne sú predstavené jeho subdetektory, pričom dôraz sa kladie najmä na subdetektory dôležité pre uvedenú analýzu, konkrétne detektory HFT (*Heavy Flavor Tracker*), TPC (*Time Projection Chamber*) a TOF (*Time Of Flight*). Na konci kapitoly sú uvedené plánované vylepšenia tohto experimentu do najbližších rokov. Tretia kapitola je venovaná akutálnym výsledkom meraní pôvabných hadrónov, a to ako z urýchľovača LHC, tak z RHICu. Na analýzy, uvedené v tejto kapitole, boli použité konvenčné metódy. Podrobne je predstavená analýzy D mezónov a baryónu Λ_c z experimentov STAR (RHIC), ALICE (LHC) a LHCb (LHC).

Ďalšia kapitola predstavuje strojové učenie a jeho využitie v časticovej fyzike. Sú predstavené viaceré metódy a následne je uvedené konkrétne použitie vybranej metódy – podrobne je opísaná analýza baryónu Λ_c za použitia vylepšených rozhodovacích stromov.

Záver tejto práce je venovaný aplikácii metód z predchádzajúcej kapitoly na experimentálne dáta – použitie balíčka TMVA na viacrozmernú analýzu dát pri skúmaní D mezónov. Postupne je uvedená príprava signálu zo simulácii a pozadia z dát, ktoré potrebujeme na trénovanie a testovanie algoritmov. Experimentálne dáta, ktoré sú analyzované v tejto práci, pochádzajú z experimentu STAR z roku 2014. Presnejšie ide o zrážky jadier zlata Au+Au pri $\sqrt{s_{\rm NN}} = 200$ GeV.

Kapitola 1

Jadro-jadrové zrážky

1.1 Základy Štandardného modelu

V dávnej minulosti ľudia verili, že hmota okolo nás sa skladá zo štyroch základných elementov, čo sú voda, oheň, zem a vzduch. V starom Grécku skupina filozofov, tzv. atomisti, poupravili túto predstavu a tvrdili, že všetko sa skladá z atómov, nedeliteľných častíc. Trvalo viac ako dvetisíc rokov, kým bolo objavené, že atóm v skutočnosti nie je nedeliteľný, ale má vnútornú štruktúru. Jadro atómu sa skladá z kladne nabitých protónov a neutrálnych neutrónov, okolo ktorých obiehajú záporne nabité elektróny.

Dnes, po ďalších desiatkach rokov výskumu vieme, že ani protóny a neutróny (súhrnne nukleóny) nie sú elementárne častice, ale skladajú sa z kvarkov a gluónov. Kvarky spolu s ich hmotnosťami a nábojmi sa nachádzajú v Tab. 1.1. Tieto kvarky vieme rozdeliť do troch generácii (v Tab. 1.1 predstavujú jednotlivé generácie stĺpce), pričom rozdiel medzi jednotlivými generáciami je v hmotnostiach daných častíc a podľa ich kvantových čísel.

Okrem kvarkov medzi elementárne častice radíme aj leptóny, čiže elektrón, mión, taón a ich príslušné neutrína. Tak isto ich delíme podľa hmotnosti na tri generácie, sú uvedené vzostupne s hmotnosťou elektrónu 0,511 MeV/ c^2 , čo odpovedá 9,11×10⁻³¹ kg [1].¹ Majú náboj -1, neutrína majú náboj 0. Kvarky aj leptóny majú spin² 1/2 a súhrnne ich nazývame fermióny

Ďalším typom častíc sú bozóny, ktoré majú na rozdiel od fermiónov celočíselný spin, pričom jednotlivé bozóny sprostredkovávajú interakcie medzi časticami. Elektromagnetickú interakciu sprostredkuje fotón, s nulovým elektrickým náboj a nulovou hmotnosťou. Gravitačná sila je v mikrosvete zanedbateľná, sprostredkuje je tzv. gravitón, hypotetická častica, ktorá zatiaľ nebola experimentálne

¹Medzi energiou častice *E* a jej hmotnosťou *m* platí slávny Einsteinov vzťah, $E = mc^2$, kde *c* predstavuje rýchlosť svetla vo vákuu. Jednotka elektrónvolt predstavuje energiu, ktorú musí mať jeden elektrón na prekonanie potenciálového rozdielu jeden volt a zavádza sa vzťahom 1 eV = $1,6021 \times 10^{-26}$ J.

 $^{^2}$ Veľkosť spinu sa uvádza v násobkoch
 $\hbar,$ kde \hbar je redukovaná Planckova konštanta,
 $\hbar=h/\pi=1,054\times10^{-34}~\rm J\cdot s=6,582\times10^{-22}~MeV\cdot s.$

u	с	\mathbf{t}
up	charm	top
horný	pôvabný	pravdivý
$2,4 \cdot 10^{6}$	$1,\!27\cdot 10^9$	$171,2 \cdot 10^{9}$
2/3	2/3	2/3
d	S	b
down	strange	bottom
dolný	podivný	krásny
$4,8 \cdot 10^{6}$	$104 \cdot 10^{6}$	$4,2 \cdot 10^{9}$
-1/3	-1/3	-1/3
	u up horný $2,4 \cdot 10^{6}$ 2/3 d down dolný $4,8 \cdot 10^{6}$ -1/3	u c up charm horný pôvabný $2,4 \cdot 10^6$ $1,27 \cdot 10^9$ 2/3 $2/3d sdown strangedolný podivný4,8 \cdot 10^6 104 \cdot 10^6-1/3$ $-1/3$

Tabuľka 1.1: Základné vlastnosti kvarkov. Náboj je uvedený v násobkoch elementárneho náboja e, ktorého hodnota je $e = 1,602 \cdot 10^{-19}$ C [1].

potvrdená. Ďalej máme jadrové sily, čiže sily, ktoré z makrosveta nepoznáme, ale ktoré sú veľmi významné práve na jadrovej a subjadrovej úrovni. Ide o slabú silu, ktorú sprostredkujú ťažké bozóny Z (s nulovým elektrickým nábojom) a W (s nábojom \pm 1). Táto sila je zodpovedná napríklad za rozpady alebo premeny jadier (napr. β rozpad). Silnú silu sprostredkuje gluón, nehmotný a s nulovým elektrickým nábojom, avšak s tzv. farebným nábojom. Gluóny (z anglického glue) držia pohromade kvarky a tak tvoria hadróny. Tie sa ďalej delia na baryóny (zložené z troch kvarkov) a mezóny (zložené z kvarku a antikvarku). Kvarky majú okrem elektrického aj farebný náboj (červený R, zelený G alebo modrý B, a ich príslušné antifarby), pričom výsledný hadrón musí byť farebne neutrálny.³ Interakciou s gluónmi sa farebný náboj častice mení.

Štandardný model je súhrnná teória, ktorá popisuje elementárne častice (fermióny a bozóny) a interakcie medzi nimi. Do tohto modelu ešte patrí Higgsov bozón, častica objevená v roku 2012 [2]. Je prejavom Higgsovho mechanizmu, ktorý popisuje, ako niektoré veľmi hmotné častice (napríklad bozóny Z a W) získavajú svoju hmotnosť.

1.2 Kvark-gluónová plazma

Za bežných podmienok sú kvarky a gluóny uväznené v hadrónoch ⁴. Je však tiež známe, že veľmi hustá hmota, ktorá sa nachádza napríklad v jadrách neutrónových hviezd alebo ktorá sa nachádzala vo veľmi rannom vesmíre, hneď po Veľkom Tresku, sa však neskladá z hadrónov, ale z voľných tzv. dekonfinovaných kvarkov [3]. Tento hustý a horúci stav hmoty bol nazvaný kvarkgluónová plazma QGP (*Quark-Gluon Plasma*). V súčasnosti ho vieme rovnako vytvoriť aj v laboratórnych podmienkach, konkrétne pri ultrarelativistických

³Farebný náboj majú kvarky ako ďalší stupeň voľnosti, totiž keby sa v jednom baryóne nachádzali tri identické kvarky s rovnako orientovaným spinom, došlo by k porušeniu Pauliho vylučovacieho princípu.

⁴Baryóny sú zložené z troch kvarkov, mezóny z kvarku a antikvarku.

Obr. 1.1: Fázový diagram jadrovej hmoty. Na osi x sa nachádza baryochemický potenciál μ_B , na osi y teplota T. Jednotlivé osi nie sú presne škálované, znázornenie je len schematické. Hmota sa pri bežných podmienkach nachádza v oblasti $\mu_B \approx 1$ a nízkych teplotách. Obrázok vytvorený na základe [4].

jadro-jadrových zrážkach v Relativistickom urýchľovači ťažkých jadier RHIC (*Relativistic Heavy-Ion Collider*) a Veľkom hadrónovom urýchľovači LHC (*Large Hadron Collider*).

Podmienky vzniku QGP sú zobrazené na fázovom diagrame jadrovej hmoty na Obr. 1.1. Na x-ovej osi sa nachádza baryochemický potenciál μ_B v GeV. Táto veličina vyjadruje koľko energie je potrebné na pridanie jedného baryónu do systému [4]. Na y-ovej osi je teplota T v MeV, pričom uvedená hodnota kritickej teploty $T_c \approx 175$ MeV je približne rovná 2×10^{12} K. Pri nižších hodnotách ako teploty T, tak baryochemického potenciálu μ_B , hovoríme o hadrónovom plyne, kedy sú kvarky a gluóny viazané v hadrónoch. Pri nízkom baryochemickom potenciáli ($\mu_b \lesssim 350 \text{ MeV}$) a zvyšujúcej sa teplote nepozorujeme fázový prechod prvého, resp. druhého druhu, ale veľmi rýchly prechod, tzv. crossover transition na Obr. 1.1 je znázornený čiarkovanou čiarou. Plnou čiarou je zobrazený fázový prechod prvého druhu, ktorý sa deje pri vyšších hodnotách baryochemického potenciálu. Efekty ďalšieho zvyšovania μ_B možno pozorovať v neutrónových hviezdach, avšak nie je možné ich reprodukovať v laboratórnych podmienakch. Čo naopak možné je, je skúmanie QGP pri nízkom baryochemickom potenciáli a vysokých teplotách, ako sa to deje na urýchľovačoch - na Obr. 1.1 sú rovnako znázornené približné hodnoty teploty T a baryochemického potenciálu μ_B , ktoré vieme dosiahnúť na urýchľovačoch LHC (CERN) a RHIC (BNL).

Na záver je k tomuto diagramu nutné podotknúť, že kvark-gluónová plazma

Obr. 1.2: Účinný prierez D⁰ a D^{*+} mezónov v závislosti na priečnej hybnosti $p_{\rm T}$ v pp zrážkach pri $\sqrt{s} = 200$ GeV porovnaný s teoretickými výpočtami FONLL. Prevzaté z [5].

je stále predmetom skúmania a niektoré časti nie sú založené na experimentálnych dátach, len na teoretických poznatkoch a výpočtoch. V súčasnosti existuje na urýchľovači RHIC program s názvom BES (*Beam Energy Scan*), ktorého hlavným cieľom je práve podrobné štúdium tohto fázového diagramu a nájdenie presnej hodnoty kritického bodu. Viac o tomto programe možno nájsť v kapitole 1.4.3.

1.3 Dôležité veličiny časticovej fyziky

V nasledujúcej kapitole budú predstavené veličiny, ktoré sú potrebné na analýzu dát nielen pri skúmaní kvark-gluónovej plazmy, ale obecne v časticovej fyzike. Táto oblasť fyziky sa dnes primárne deje na urýchľovačoch častíc, kde sa môžu zrážať dva protóny (pp zrážka) alebo dve jadrá (AA, jadro-jadrová zrážka). Taktiež je možné zrážať protón s jadrom (pA zrážka).

Účinný prierez σ (cross section) je úmerný pravdepodobnosti reakcie za určitých podmienok. Vyjadruje sa v jednotkách plochy. Na Obr. 1.2 je znázornený účinný priezer produkcie D⁰ a D^{*+} mezónov v závislosti na priečnej hybnosti $p_{\rm T}$ v pp zrážkach pri $\sqrt{s} = 200$ GeV z experimentu STAR na urýchľovači RHIC [5]. Účinné prierezy týchto mezónov boli vydelené fragmentačnými pomermi pôvabného kvarku, 0.565 ± 0.032 ($c \rightarrow D^0$) a 0.224 ± 0.028 ($c \rightarrow D^{*+}$). Následne môžme dostať diferenciálny účinný prierez produkcie $c\bar{c}$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}y}\Big|_{y=0}^{c\bar{c}} = 170 \pm 45 \text{ (stat.) }^{+38}_{-59} \text{ (sys.) } \mu\mathrm{b},$$

kde 1 b $=10^{-28}~{\rm m}^2.$ Celkový pôvabný účinný prierez pri $\sqrt{s}=200~{\rm GeV}$ je

$$\sigma_{c\bar{c}} = 797 \pm 210 \text{ (stat.)}^{+208}_{-295} \text{ (sys.) } \mu \text{b.}$$

Luminozita L predstavuje istú vlastnosť urýchľovača, resp. jeho jednotlivého behu. Možno povedať, že je to schopnosť dodať určitý počet zrážok. Pre

Obr. 1.3: Vľavo: Stav pred zrážkou jadier, *b* predstavuje zrážkový parameter. Vpravo: Stav po zrážke, pozorovatelia (*spectators*) nie sú ovplyvnení zrážkou, v zóne účastníkov (*participants*) dochádza k zrážke a následnej produkcii častíc. Prevzaté z [6].

každý beh (run)ju možno považovať za konštantu. Luminozitu Lv kruhových urýchľovačoch možno zaviesť vzťahom

$$L = \frac{1}{4\pi} \frac{f_u N_1 N_2}{\sigma_x \sigma_y} \quad [m^{-2} s^{-1}],$$
(1.1)

kde f_u je počet obehov častice v urýchľovači po dobu jednej sekundy, N_1 a N_2 predstavujú počet častíc v zväzkoch a $\sigma_x \sigma_y$ je šírka zväzku v bode interakcie. Je možné taktiež zaviesť **integrovanú luminozitu**

$$\mathcal{L} = \int L \mathrm{d}t, \qquad (1.2)$$

pričom integrácia prebieha cez zvolený meraný čas. Celková integrovaná luminozita pri zrážkach jadier zlata Au na urýchľovači RHIC v roku 2016 bola 52,2 nb⁻¹ (1 b = 10^{-28} m²), pre ďalšie urýchľované častice sa nachádza v Tab. 2.2. Luminozita je dôležitá na vyjadrenie **početnosti** zrážok (produkcie častice) R, pričom platí $R = L\sigma$, kde σ je účinný prierez zrážok (produkcie častice).

Multiplicita zrážky predstavuje priemerný počet častíc vyprodukovaných v zrážke za daných podmienok.

Veľkosť vektoru kolmého na smer pohybu zhlukov častíc, ktorý spája stredy dvoch zrážajúcich sa jadier, nazývame **zrážkový parameter** b (*impact parameter*). V jadrovej a časticovej fyzike je zaužívaná konvencia, že zatiaľ čo smer zväzku častíc v urýchľovačí sa pohybuje v smere osi z, os x je rovnobežná so zrážkovým parametrom b. Znázornenie sa nachádza na Obr. 1.3.

So zrážkovým parametrom b úzko súvisí veličina **centralita zrážky**, ktorú na rozdiel od zrážkového parametra b vieme merať. Pre najnižšie možné hodnoty b hovoríme o centrálnych zrážkach (*head-on collisions*). V ultrarelativistických zrážkach je možné centralitu c zadefinovať ako percentil udalostí s čo najväčšou multiplicitou zrážky, príp. s čo najväčším počtom účastníkov. Následne je možné zrážky zaradiť do tried podľa centrality. Týmto triedam (ozn. 0-c, napr. 0-10%) prináleží hodnota parametra b. Pri najnižších hodnotách b nazývame zrážky centrálne (0-10%), potom nasledujú zrážky semicentrálne (40-50%) a pre b >> 0, avšak stále b < 2R, kde R je polomer jadra, hovoríme o periferálnych

Obr. 1.4: Centralita zrážky vyjadrená v závislosti na počte účastníkov – multiplicite. Rovnako je možné pozorovať vzťah k zrážkovému parametru *b*. Prevzaté z [7].

zrážkach (70-80%). S triedou centrality teda rastie zrážkový parameter b, avšak klesá počet účastníkov. Grafické znázornenie závislosti centrality na zrážkovom parametri b a multiplicite sa nachádza na Obr. 1.4.

Signifikancia S predstavuje význačnosť nejakej udalosti. Jej hodnota je zadefinovaná ako

$$S = \frac{s}{\sqrt{s+b}},\tag{1.3}$$

kde s predstavuje signál a b pozadie, resp. ich plochy. Podľa konvencie v časticovej fyzike konštatujeme, že pozorujeme signál v prípade, že pre signifikanciu platí S > 3.

Dôležitou veličinou je taktiež hybnosť \vec{p} . Častice v urýchľovačoch sa pohybujú rýchlosťami blízkymi rýchlosti svetla vo vákuu c, a teda hybnosť nemožno rozhodne považovať za veličinu, ktorá je Lorenzovsky invariantná. Z týchto dôvodov sa používa len priečna zložka hybnosti $\vec{p}_{\rm T}$, resp. jej veľkosť $p_{\rm T}$.⁵ V konvencii časticovej fyziky vyjadrenej vyššie (os z je rovnobežná so zväzkom častíc) ju možno vyjadriť ako

$$p_{\rm T} = \sqrt{p_x^2 + p_y^2}.$$
 (1.4)

Priečna hybnosť $p_{\rm T}$ už je Lorenzovsky invariantná – urýchlený zväzok sa pohybuje len v smere osi z – nepodlieha žiadnym relativistickým dejom.

 $^{^5}$ Ďalší z dôvodov, prečo nás zaujíma len priečna zložka hybnosti je, že hydrodynamický tok vyjadrujeme vzhľadom k invariantu d $p_{\rm T} {\rm d}y$ - viď. vzťah 1.10, kde y je rapidita zadefinovaná v nasledujúcom odstavci.

Ako bolo spomínané, častice v urýchľovačoch sa pohybujú rýchlosťami blízkymi c a teda sa na nich uplatňujú relativistické efekty. Preto sa na miesto klasickej rýchlosti v definuje bezrozmerná veličina zvaná **rapidita** y, ktorá je zadefinovaná nasledovne:

$$y = \frac{1}{2} \ln \frac{(E+p_z)}{(E-p_z)}.$$
 (1.5)

Je možné odvodiť (napr. v [7]) vzťah medzi rapiditou v ťažiskovej a laboratórnej sústave, $y = y^* + y_{cm}$. Z tohto vzťahu je zrejmé, že rapidita častice v laboratórnej sústave y je súčtom rapidity častice v ťažiskovej sústave y^* a rapidity ťažiska v laboratórnom systéme y_{cm} .

Problém rapidity je, že ju obvykle nevieme experimentálne zmerať. Z tohto dôvodu sa zavádza veličina **pseudorapidita** η , ktorá je definovaná vzťahom

$$\eta = -\ln \tan \frac{\theta}{2},\tag{1.6}$$

kde θ predstavuje uhol medzi vektorom hybnosti častice \vec{p} a pôvodným smerom letu častice, čiže voči osi z. Grafické znázornenie závislosti pseudorapidity η na uhle θ sa nachádza na Obr. 1.5. Zo vzťahov 1.5 a 1.6 je zrejmé, že v prípade vysokých energií (a teda p >> m) sa rapidita y rovná pseudorapidite η a možno ukázať, že platí

$$\eta = \frac{1}{2} \ln \frac{(p + p \cos \theta)}{(p - p \cos \theta)}.$$
(1.7)

Na porovnanie produkcie vyprodukovaných častíc v zrážkach protónov (pp) alebo jadier (AA) zavádzame veličinu **jadrový modifikačný faktor**. Definujeme ho ako

$$R_{AA} = \frac{1}{\langle N_{bin} \rangle} \frac{\frac{dN}{dp_T}|_{AA}}{\frac{dN}{dp_T}|_{pp}},$$
(1.8)

kde $\langle N_{bin} \rangle$ je stredná hodnota binárneho počtu zrážok v zrážke dvoch jadier (AA), $\frac{dN}{dp_{\rm T}}|_{\rm AA}$, resp. $\frac{dN}{dp_{\rm T}}|_{\rm pp}$ je výťažok (*yield*), teda počet vyprodukovaných častíc N v závislosti na priečnej hybnosti $p_{\rm T}$ pri zrážkach jadier (AA) alebo protónov (pp).

Posledná veličina, ktorú uvedieme, je **energia** zrážky \sqrt{s} , konkrétne teda ide o celkovú energiu v ťažiskovej sústave. V prípade zrážiek rovnakých jadier, kde A je atómové číslo zrážajúcich sa jadier, možno vypočítať energiu ako [7]

$$\sqrt{s} = A \cdot \sqrt{s_{\rm NN}},\tag{1.9}$$

kde $\sqrt{s_{\rm NN}}$ predstavuje energiu na jeden nukleón-nukleónový pár. Na urýchľovači RHIC pri zrážkach jadier zlata (Au+Au) majú nukleóny v každom zväzku energiu 100 GeV, čo dá eneriu zrážky na nukleónový pár $\sqrt{s_{\rm NN}} = 200$ GeV.

Obr. 1.5: Znázornenie závislosti pseudorapidity η na uhle θ , z je pôvodný smer letu zväzku, ϕ predstavuje azimutálny uhol. Prevzaté z [8].

Obr. 1.6: Schématický časovo-priestorový vývoj zrážky ultrarelativistických ťažkých jadier. Prevzaté z [9].

1.4 Stúdium kvark-gluónovej plazmy

1.4.1 Produkcia QGP

Zrážaním ťažkých jadier pri ultrarelativistických⁶ energiách je možné študovať kvark-gluónovú plazmu, i keď len nepriamo, keď že tento stav trvá veľmi krátko (rádovo fm/c). V laboratórnom systéme sú ťažké jadrá vplyvom relativistických rýchlostí (a teda vplyvom kontrakcie dĺžok) sploštené v smere letu, čiže v smere osi z, a teda majú približne tvar placky.

Časovo-priestorový vývoj takýchto zrážok, aké sa dejú na urýchľovačoch RHIC a LHC, je schématicky znázornený na Obr. 1.6. Po zrážke sa jadrá od seba vzdaľujú oveľa rýchlejšie v smere pôvodného letu (čiže v smere osi z) ako v priečnom smere (kolmo na os z).

V mieste zrážky vznikne veľmi hustá a veľmi teplá ohnivá guľa (fire ball), stav, ktorý je veľmi nerovnovážny. Po veľmi krátkom čase (približne 1 fm/c) nastáva proces, ktorý sa nazýva termalizácia a následne vzniká kvark-gluónová plazma. Tá však veľmi rýchlo expanduje a taktiež sa ochladzuje, až kým dosiahne kritickú teplotu T_C a nastáva hadronizácia (kvarky sa viažu do hadrónov).

Posledným krokom v evolúcii tohto systéme je vymrznutie (*freeze out*), najprv chemické a následne kinetické. Chemické vymrznutie znamená koniec nepružných zrážkok (tj. zachováva sa počet častíc), kinetické zase zrážok pružných (tj. zachováva sa hybnosť). Hadróny teda už navzájom neinteragujú a ich energia ostáva konštantná. Následne pokračujú do systému subdetektorov, kde môžeme merať niektoré ich vlastnosti, ako napríklad hybnosť, energiu alebo náboj.

1.4.2 Prejavy QGP

Ako je zrejmé z predchádzajúcej sekcie, kvark-gluónovú plazmu nevieme merať priamo. Našťastie však máme viaceré možnosti, ako zistiť jej prítomnosť a vlastnosti. V nasledujúcom texte budú predstavené viaceré metódy, ako v nameraných dátach nájsť prejavy QGP.

Pri tvrdej zrážke⁷ dvoch energetických partónov vidíme v detektore výtrysk častíc (*jet*), ktoré vznikli rozpadom týchto partónov. Pokiaľ sme zrážali dva protóny (a teda kvark-gluónová plazma nebola prítomná), detekujeme spŕšky častíc s opačnou orientáciou (hybnosťou). Keď však tieto partóny pochádzajú zo zrážky ťakých jadier, bez újmy na obecnosti môžeme predpokladať, keď že letia opačným smerom, že jeden z nich preletí väčšiu vzdialenosť vo vnútri QGP ako ten druhý. Keď že QGP je silne interagujúce médium, tento partón v nej stratí nezanedbateľnú časť svojej energie. Následne detekujeme rovnako ako v predcháduajúcom prípade dve spŕšky častíc opačnej orientácie, avšak jedna z nich má výrazne nižšiu energiu. Tento jav nazývame **zhášanie výtryskov** (*jet quenching*).

 $^{^{6}}$ Ultra
relativistické častice sa pohybujú rýchlosťami veľmi blízkymi rýchlosti svetla vo
 vákuuc.

 $^{^7 {\}rm Tvrdé}$ procesy zahŕňajú veľké prenosy hybností, spojené s nízkymi hodnotami väzbovej konštanty. [3] Priečne hybnosti produkovaných piónov sú $p_{\rm T} \geq 2~{\rm GeV}.$

Teplotu kvark-gluónovej plazmy môžeme zisťovať pomocou **kvarkónia**, čo je špeciálny typ mezónov zložený z ťažkého kvarku (c, b) a príslušného antikvarku (\bar{c}, \bar{b}) – napríklad J/ψ $(c\bar{c})$ alebo Υ $(b\bar{b})$. Kvôli ich veľmi veľkej väzbovej energii sú výrazne menšie ako bežné hadróny.⁸ Z toho dôvodu môžu prežiť nad hodnotami kritickej teploty T_c , teda vo vnútri QGP. Pre rôzne druhy kvarkónie sa tieto teploty líšia v závislosti na ich polomere – častica nevie prežiť vo vnútri QGP, ak je jej polomer väčší ako kritický r_D , pričom ten sa mení v závislosti na teplote, tj. $r_D = r_D(T)$. Inak povedané, keď má častica väčší polomer ako kritický, dochádza k tieneniu farebnej väzby kvarkónia (*color screening*), v dôsledku čoho sa táto väzba uvoľní a kvarkónium zanikne.[10] Sledovaním, ktoré častice prejdú skrz QGP dostaneme interval teploty, ktorý sa nachádza vo vnútri média.

V prípade necentrálnej zrážky (zrážkový parameter $b \neq 0$) má prekryv jadier ("zrazená"časť) v priečnej rovine mandľový tvar. Kvôli tejto asymetrii hovoríme o anizotropii systému – fyzikálne vlastnosti sa menia podľa meraného smeru. Vzniká nerovnomerné rozloženie tlakov, systém bude expandovať a pritom vytvárať hydrodynamický tok. Ten závisí od počiatočných podmienok (najmä od centrality), a teda sférickej symetrie systému. Popis tohto toku dostaneme z Fourierovho rozvoja výťažku častíc vzhľadom ku reakčnej rovine:

$$E\frac{\mathrm{d}^{3}N}{\mathrm{d}p^{3}} = \frac{\mathrm{d}^{3}N}{p_{\mathrm{T}}\mathrm{d}p_{\mathrm{T}}\mathrm{d}y\mathrm{d}\phi} = \frac{\mathrm{d}^{2}N}{p_{\mathrm{T}}\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}\frac{1}{2\pi} \left[1 + \sum_{n=1}^{\infty} 2v_{n}\cos n(\phi - \Phi_{R})\right], \quad (1.10)$$

kde Φ_R je uhol smeru pohybu častice k reakčnej rovine. Koeficienty tohto rozvoja v_k charakterizujú anizotropiu hybnosti, všeobecne sú to funkcie rapidity a priečnej hybnosti, $v_k = v_k(y, p_T)$. Prvý z nich, v_1 , nazývame priamy tok (*di*rected flow), druhý, v_2 , eliptický tok (*elliptic flow*) a tretí, v_3 , trojhranný tok (*triangular flow*). **Anizotropický tok** teda používame na určenie stupňa termalizácie QGP vyprodukovanej v necentrálnych zrážkach ťažkých jadier. Keď že taktiež záleží na počiatočných podmienok, vieme vď aka nemu mnohé informácie o prvých fázach systému po zrážke. Príklad merania eliptického toku v závilosti na priečnej hybnosti p_T sa nachádza na Obr. 1.7. Meranie pochádza zo zrážiek jadier zlata na experimente STAR pri $\sqrt{s_{NN}} = 200$ GeV [11].

Posledným spôsobom skúmania QGP, ktorý uvedieme, je **elektromagne**tické žiarenie. Po zrážke interakciou kvarkov q a/alebo gluónov g, prípadne anihiláciou páru kvark-antikvark $q - \bar{q}$, vznikajú fotóny γ a dileptóny (elektrónpozitrónové e^-e^+ alebo miónové $\mu^-\mu^+$ páry). Nakoľko tieto častice interagujú len elektromagneticky, opustia QGP bez nejakej ďalšej modifikácie. Meraním ich spektra možno zistiť informácie o mieste ich vzniku, čo môže byť hlboko vo vnútri QGP alebo veľmi krátku dobu po samotnej zrážke. Negatívom je, že musíme rozlišovať tepelné žiarenie (*thermal radiation*) od pozadia, ktoré skutočne vzniklo v kvark-gluónovej plazme, nakoľko fotóny a dileptóny môžu vzniknúť v podstate kedykoľvek a kdekoľvek.

⁸Polomer typického hadrónu je ~ 1 fm, pričom polomer kvarkónie je rádovo menší, napr. r = 0,25 fm pre J/ ψ a r = 0,14 fm pre Υ [7].

Obr. 1.7: Eliptický tok v_2 v závislosti na priečnej hybnosti p_T pre D⁰ mezóny v triede centrality 10-40% v zrážkach Au+Au pri $\sqrt{s_{\rm NN}} = 200$ GeV. Prevzaté z [11].

$\sqrt{s_{\rm NN}} [{\rm GeV}]$	$\mu_B \; [\text{MeV}]$
$19,\! 6$	585
15	625
11,5	670
7,7	720
5	775

Tabuľka 1.2: Energia na nukleónový pár $\sqrt{s_{\rm NN}}$ a príslušný baryochemický potenciál. Prevzaté z [12].

1.4.3 BES program

Ako už bolo spomenuté, program BES (*Beam Energy Scan*) na urýchľovači RHIC sa venuje skúmaniu fázového diagramu jadrovej hmoty (nachádza sa na Obr. 1.1). Jeho prvá fáza, ktorá prebiehala v rokoch 2010 až 2014, bola úspešne ukončená. I keď vo fázovom diagrame jadrovej hmoty na Obr. 1.1 je nejako naznačený kritický bod (plný kruh v grafe pri hodnote teploty $T_C \approx 175$ MeV), kde sa mení rýchly prechod na fázový prechod prvého druhu, poloha tohto bodu, rovnako ako presný tvar krivky fázového prechodu nie sú známe. Práve tieto dve veci patria medzi hlavné ciele programu BES. Pomocou rôznych energií zrážky je postupne mapovaný fázový diagram, od vysokých hodnôt energií RHICu, ktoré korešpondujú nízkemu μ_B až po najnižšie možné energie (vyššie μ_B) – konkrétne hodnoty pre jednotlivé dvojice sa nachádzajú v Tab. 1.2.

Dáta z prvej fázy programu BES pochádzali zo zrážiek jadier zlata (Au+Au) pri energiách ($\sqrt{s_{\text{NN}}}$) 7,7; 11,5; 19,6; 27 a 39 GeV, pričom tieto dáta boli vybrané s minimálnym počtom podmienok (*minimum bias data*). Pri daných energiách

Obr. 1.8: Fázový diagram jadrovej hmoty s výsledkami prvej fázy programu BES. Prevzané z [12].

bolo možné na experimente STAR dosiahnuť širokú škálu baryochemického potenciálu (100 – 400 MeV). Dané merania sú ilustračne zakreslené v Obr. 1.8. Prvá fáza programu BES priniesla značné úspechy, dokázal sa napríklad fázový prechod prvého druhu pri energiách 11,5-19,6 GeV. Merala sa tiež závislosť jadrového modifikačného faktora R_{AA} na energii zrážky, pričom sa ukázalo, že nedochádza k potlačeniu produkcie pre hodnoty energie zrážky nižšie ako približne 27 GeV. K "vypnutiu" potlačenia dochádza niekde medzi energiami 27–39 GeV.

Celkovo sa ukazuje, že najzaujímavejšie výsledky sa namerali pri nízkych energiách. Napriek úspechom dáta nazbierané v tejto fáze nemali dostatočnú štatistiku, s klesajúcou energiou výrazne rástla štatistická chyba. Preto je naplánovaná druhá fáza programu BES, konkrétne v rokoch 2019 až 2020. Bude sa zamieravať na energie pod hodnotou $\sqrt{s_{\rm NN}} = 20$ GeV, kde sa ukazuje, že prejavy QGP sa menia alebo dokonca úplne vymiznú [13]. Pre tieto energie je možné v RHICu dosiahnúť baryochemický potenciál μ_B v rozmedzí 205 – 420 MeV.

Chirálny magnetický a vírivý jav

Chiralita je kvantovo-mechanická vlastnosť častice (podobne ako spin), pričom je merateľná napríklad na základe slabej interakcie a môže byť ľavotočivá (*left-handed*) alebo pravotočivá (*righthanded*). Jej presné zadefinovanie prebieha v rámci kvantovej teórie poľa.

Porušenie rovnováhy chirality je bežnou súčasťou QGP. Vďaka prítomnosti

silného magnetického poľa $(B \sim 10^{15} \text{T})$,⁹ ktoré vzniká v necentrálnych zrážkach vysokoenergetických ťažkých jadier, pozorujeme nedisipatívne javy, konkrétne **chirálny magnetický jav** CME (*chiral magnetic effect*) a **chirálny vírivý jav** CVE (*chiral vorticity effect*).

V rámci programu BES experimentu STAR na urýchľovači RHIC sa skúmajú aj prejavy týchto javov - odlúčenie elektrických nábojov pre CME a odlúčenie baryónových nábojov pre CVE. Pre zrážky jadier zlata (Au+Au) pri energiách $\sqrt{s_{\rm NN}} = 19.6$; 39 a 200 GeV bol pozorovaný jasný signál pre stredne centrálne a periferálne zrážky. Meranie prebiehalo pomocou meraní korelácií párov p- π pre CME a p- Λ pre CMV, vždy s porovnaním na páry hadrónov h-h [14].

 $^{^{9}}$ Magnetické pole vzniká najmä vplyvom častíc-pozorovateľov (spectators). Tieto častice sa nezúčastňujú zrážky.

Kapitola 2

Experiment STAR na urýchľovači RHIC

2.1 Brookhavenské národné laboratórium

Brookhavenské národné laboratórium BNL (*Brookhaven National Laboratory*), ktoré sa nachádza v štáte New York, USA, vzniklo po druhej svetovej vojne v roku 1947. S cieľom venovať sa mierovým využitiam jadrovej energie tam vznikol prvý veľký prístroj, konkrétne výskumný reaktor BGRR (*Brookhaven Graphite Research Reactor*). Po prvých úspechoch k nemu pribudli dva ďalšie reaktory, HFBR (*High Flux Beam Reactor*) a BMRR (*Brookhaven Medical Research Reactor*), pričom druhý z uvedených mal značné úspechy čo sa týka skúmania liečby rakoviny neutrónovou terapiou.

Po piatich rokoch fungovania BGRR, v roku 1952, pribudlo v BNL ďalšie veľké zariadenie, urýchľovač Cosmotron, prvý urýchľovač na svete, ktorý presahoval hranicu energie 1 GeV. V roku 1960 k nemu pribudol urýchľovač AGS (*Alternating Gradient Synchrotron*), ktorý bol so svojou maximálnou energiou 33 GeV osem rokov najvýkonnejší urýchľovač na svete. ¹ AGS funguje do dnešného dňa, pričom slúži ako injektor urýchľovača RHIC.

Ďalší z urýchľovačov, ktoré sa nachádzajú v BNL, bol uvedený do prevádzky v roku 1982. Ide o urýchľovač NSLS (*National Synchrotron Light Source*), ktorý pomocou synchrotrónneho žiarenia môže skúmať rôzne látky. Výskum na NSLS úzko súvisí s chémiou, štúdiom materiálov a vývojom nových technológií – od supravodičov po malé a rýchle počítačové čipy. Momentálne je v prevádzke jeho novšia a vylepšená verzia, NSLS-II, ktorá dokáže zachytiť röntgenové lúče s výrazne lepším rozlíšením.

Posledným urýchľovačom, ktorý bude uvedený, je Relativistický urýchľovač ťažkých jadier RHIC (*Relativistic Heavy Ion Collider*), ktorému je venovaná kapitola 2.2.

 $^{^1\}mathrm{Proton}$ Synchrotron, ktorý v tej dobe fungoval v CERNe, dosahoval 28 GeV.

S urýchľovačmi v BNL úzko spolupracuje aj americký Národný úrad pre vesmír a letectvo NASA (*National Aeronautics and Space Administration*), ktorý sa tu zaoberá kozmickým žiarením a jeho dopadom na človeka mimo zemskej atmosféry.

Ako vyplýva z predchádzajúceho textu, dnes sa BNL venuje naozaj širokému spektru tém – okrem fyziky vysokých energií HEP (*High Energy Physics*) je to napríklad biológia, medicína, výpočtová technika či štúdium materiálov.

V neposlednom rade nemožno nespomenúť značný úspech ľudí, ktorí pracovali priamo v BNL, alebo s týmto laboratóriom úzko spolupracovali. Napríklad Nobelova cena za fyziku bola udelené päť krát vedcom, ktorí tam v tej dobe pôsobili, konkrétne ide o:

- Tsung-Dao Lee a Chen Ning Yang (1957) narušenie rovnováhy v slabých interakciách,
- Samuel C.C. Ting (1976) objav častice J/ψ ,
- James W. Cronin a Val L. Fitch (1980) narušenie CP symetrie,
- Leon Lederman, Melvin Schwartz a Jack Steinberger (1988) objav miónového neutrína ν_{μ} ,
- Raymond Davis Jr. (2002) meranie kozmických neutrín.

Úspechy nezbierajú len fyzici, ale aj chemici (Nobelova cena 2003 a 2009), lekári a technici. Až šestnásť zamestnancov BNL získalo najvyššie ocenenie pre amerického vedca, a to zvolenie do Národnej akadémie vied (*National Academy* of Sciences).

2.2 Urýchľovač RHIC

Spustený v roku 2000, Relativistický urýchľovač ťažkých jadier RHIC(*Relativistic Heavy Ion Collider*) vie okrem jadier urýchľovať polarizované protóny. V čase spustenia to bol najvýkonnejší urýchľovač jadier na svete, následne ho prekonal Veľký hadrónový urýchľovač LHC (*Large Hadron Collider*), ktorý sa nachádza v CERNe. Porovnanie vybraných vlastností týchto dvoch zariadení sa nachádza v Tabuľke 2.1.

	RHIC	LHC
obvod [m]	3834	26 659
urýchľované jadrá	Au	Pb
$\sqrt{s_{\rm NN}}$ pri ťažkých jadrách [TeV]	$_{0,2}$	$5,\!02$

Tabuľka 2.1: Porovnanie vybraných vlastností urýchľovačov RHIC a LHC.

Jednou z hlavných príčin vybudovania tohto urchľovača bol záujem o štúdium vzniku a existencie kvark-gluónovej plazmy. Táto sa na RHICu vytvára pomocou zrážiek jadier zlata Au s energiou $\sqrt{s_{\rm NN}} = 200$ GeV. Okrem Au je možné

		celková energia	dosiahnutá luminozita
beh	urýchľované častice	[Gev/nukleón]	$\cdot 10^{-9} [b^{-1}]$
Run-14	Au + Au	7,3 + 7,3	44 200
	Au + Au	100,0 + 100,0	43,9
	He + Au	103,5 + 100,0	134
Run-15	p + p	100,2 + 100,2	0,382
	p + Au	103,9 + 98,6	0,001
	p + Al	103,9 + 98,7	0,003
Run-16	Au + Au	100,0 + 100,0	52,2
	d + Au	100,7 + 100	289
	d + Au	31,3 + 31,1	44,0
	d + Au	9,9 + 9,8	$7,\!2$
	d + Au	19,6 + 19,4	19,5
Run-17	p + p	254,9 + 254,9	

Tabuľka 2.2: Prehľad behov urýchľovača RHIC. Au je zlato, He hélium, Al hliník, *p* značí polarizované protóny a d deutérium. Prevzaté z [15].

na RHICu zrážať protóny p, meď Cu alebo urán U, ale taktiež dva rôzne druhy častíc, napríklad deutérium d so zlatom Au. Prehľad behov (druh častíc, celková energia na nukleón a dosiahnutá luminozita) urýchľovača RHIC pre roky 2015 – 2017 sa nachádza v Tabuľke 2.2. Tabuľka s údajmi za celú dobu behu tohto urýchľovača je uvedená v [15]. Časový vývoj dosiahnutých luminozít pre jednotlivé hadrónové urýchľovače sa nachádza na Obr. 2.1. V Tab. 2.3 sa nachádzajú plánované behy tohto urýchľovača na roky 2018 – 2020, pričom tieto behy budú patriť do programu BES.

Urýchľované častice v RHICu, či už jadrá alebo protóny, obiehajú približne kruhovú dráhu dĺžky 3834 m v opačných smeroch. Schéma tohto urýchľovača sa nachádza na Obr. 2.2. Jadrá pochádzajú z EBIS (*Electron Beam Ion Source*), ktorý poskytne ťažkým jadrám aj prvú energiu. EBIS slúži nielen ako predurýchľovač RHICu, ale aj ako zdroj kozmického žiarenia pre NASA pri experimente NSRL (*NASA Space Radiation Laboratory*).² Protóny naopak dostanú prvé urýchlenie v lineárnom urýchľovači *Linac*. Odtiaľ častice (protóny i jadrá) pokračujú do Boostera (*Booster Synchrotron*), ktorý ďalej zväzok urýchľuje a následne ho vpustí do AGS (*Alternating Gradient Synchrotron*). Častice sú v ňom ďalej urýchlované, napríklad jadrá do neho vstupujú z Boostera s rýchlosťou približne 37% c, kde c je rýchlosť svetla vo vákuu, a sú vstrekované do RHICu s rýchlosťou 99,7% c [17]. Po urýchlení v AGS teda častice putujú už priamo do RHICu, a to pomocou trubice AtR (*AGS-to-RHIC*), pričom na jej konci sú delené do jedného z dvoch okruhov RHICu, podľa zvoleného okruhu následne cirkulujú v smere, resp. v protismere hodinových ručičiek.

Okruhy urýchľovača RHIC sú nezávislé a pretnú sa na šiestich miestach, pričom na štyroch z nich boli umiestnené detektory - STAR, PHENIX, PHO-

²Pred tým, ako bol EBIS nainštalovaný, sa ako prvé predurýchľovače používali tzv. Tandem Van de Graaffove urýchľovače.

		$\sqrt{s_{ m NN}}$	
beh	urýchľované častice	[Gev]	skúmaná fyzika
Run-17	p + p	500	spin
Run-18	Zr + Zr, Ru + Ru	200	dileptóny, CME
	Au + Au	27	CVE
Run-19	Au + Au	14,5 - 20	kritický bod QCD
	Au + Au	14,5 - 20	fázový prechod 1. druhu
	pevný terčík		CVE, CME,
Run-20	Au + Au	7 - 11	kritický bod QCD
	Au + Au	7 - 11	fázový prechod 1. druhu
	pevný terčík		CVE, CME,

Tabuľka 2.3: Prehľad plánovaných behov urýchľovača RHIC pre roky 2018 – 2020. Au je zlato, p protóny, Zr zirkónium a Ru ruténium. Prevzaté z [16].

BOS a BRAHMS. V súčasnosti zber dát prebieha už len na detektore STAR. Každý z týchto detektorov bol postavený s iným cieľom, čo je dôvod, prečo je ich stavba a zloženie subdetektorov rozdielne. V nasledujúcej časti budú stručne opísané detektory PHENIX, PHOBOS a BRAHMS, detektoru STAR je venovaná kapitola 2.3.

Medzi hlavné ciele detektoru PHENIX (*Pioneering High Energy Nuclear Interaction eXperiment*) patrilo hľadanie a študovanie kvark-gluónovej plazmy, ale taktiež aj štúdium spinu protónov. QGP študuoval pomocou fotónov a leptónov (elektrónov a miónov), keďže tieto častice vedia nezmenené prejsť z centra QGP až do detektora, a teda nám poskytujú informácie o tom, čo sa deje tesne po zrážke. Na rozdiel od experimentu STAR, ktorý sa snaží pozbierať informácie o všetkých časticiach, ktoré sa objavia po zrážke, PHENIX sa zamieraval len na úzku škálu častíc alebo priestoru, avšak s vyššou presnosťou. Ďalším rozdielom bolo zameranie PHENIXu na mióny. Dáta prestal naberať v roku 2016. V súčasnosti sa tento detektor demontuje a na jeho mieste je naplánovaní konštrukcia detektoru sPHENIX.

PHOBOS sa zameriaval na novú fyziku, konkrétne tak, že detekoval všetky nabité častice v celej škále priečnej hybnosti $p_{\rm T}$, pseudorapidity η a priestorových uhlov, čiže meral základné vlastnosti zrážky ťažkých jadier. Jeho design bol špeciálne upravený, keďže sa predpokladalo, že nová fyzika sa môže "ukázať" len vo veľmi zriedkavých prípadoch. Detektor PHOBOS ukončil zber dát v roku 2005.

Len o rok neskôr, teda v roku 2006, ukončil svoje pôsobenie d'alší detektor na urýchľovači RHIC, a to BRAHMS (*Broad Range Hadron Magnetic Spectrometer*). Na rozdiel od PHOBOSu, BRAHMS sa zameriaval na meranie nabitých hadrónov, pričom ich vlastnosti boli merané s vysokou presnosťou.

Obr. 2.2: Schéma Relativistického urýchľovača ťažkých jadier RHIC a jeho predurýchľovačov. Prevzané z [18].

2.3 Experiment STAR

STAR (*Solenoidal Tracker At RHIC*) je momentálne jediný bežiaci detektor na urýchľovači RHIC. Svoje meno dostal podľa solenoidu (magnetu), ktorý ho obkolesuje, a ktorý pri plnom výkone vytvára v detektore homogénne magnetické pole s indukciou 0,5 T. Jeho vonkajší polomer je 5 m a dĺžka 6,9 m. [19]

Podobne ako detektor PHENIX, aj STAR sa zameriava na štúdium kvarkgluónovej plazmy, konkrétne pomocou sledovania a zaznamenávania dráh všetkých častíc, ktoré doletia to detektoru. Tisícky častíc sú vyprodukované v každej zrážke ťažkých jadier, a tak musia jednotlivé komponenty tohto detektoru byť veľmi rýchle a výkonné, aby vedeli zaznamenať tak veľké množstvo dát v tak krátkom čase. STAR je dizajnovaný tak, aby detekoval primárne hadrónovú produkciu pod veľkým priestorovým uhlom.

Obecne sú detektory veľmi komplikované zariadenia zložené z množstva subdetektorov, pričom každý z nich má rozdielnu úlohu a zároveň musia nejako fungovať ako celok. Veľká časť subdetektorov, ktoré zberajú dáta, sú pomerne pomalé - na STARe ide napríklad o veľmi dôležité detektory ako časovo-projekčná komora TPC (*Time Projection Chamber*), ktorej reakčný čas je $t_R \sim ms$, alebo HFT (*Heavy Flavour Tracker*) s $t_R \sim \mu s.^3$ Preto je potrebné inštalovať tzv. spúšťacie detektory (*triggers*), ktoré veľmi rýchlo rozhodnú, či bude daná udalosť (*event*) zaznamenaná a zároveň dajú signál tým pomalším detektorom, aby

 $^{^3}$ Je nutné podotknúť, že nie všetky subdetektory sú pomaly, napríklad TOF má $t_R \sim$ ps.

začali zbierať dáta. Spúšťacie detektory na STARe sú:

- VPD (Vertex Position Detector) sú dva (východný a západný) dopredné detektory vzdialené 5,7 m od stredu detektoru STAR, čo predstavuje rozsah pseudorapidity 4,24 ≤ η ≤ 5,1. [20] Oba tieto detektory sú zložené z 19 poddetektorov, ktoré sú umiestnené tesne okolo zväzku v dvoch radoch. Každý tento detektor je zložený z oloveného konvertora, po ktorom nasleduje rýchly plastový scintilátor, z ktorého čítame signál pomocou fotonásobiča. Okrem toho, že je to triggrovací detektor, má VPD ďalšiu dôležitú úlohu, a to identifikovať a lokalizovať primárny vrchol (vertex) v danej udalosti, konkrétne pomocou fotónov. Na STAR boli nainštalované v roku 2007.
- ZDC (Zero-Degree Calorimeters) sú taktiež dva dopredné detektory umiestnené približne 18 metrov v pôvodnom smere letu urýchľovaných častíc, a to v oboch smeroch - máme teda východný (east) a západný (west) ZDC. Okrem toho, že je to triggrovací detektor (s časovým rozlíšením lepsím ako 200 ps), detekuje neutróny a určuje ich presnú energiu, z čoho vieme určiť multiplicitu a taktiež luminozitu zväzku. Je to teda hadrónový kalorimeter, energiu častíc meria pomocou Čerenkovho žiarenia. Ďalej môžeme pomocou ZDC určovať centralitu zrážky, pričom platí, že čím viac častíc doletí do detektoru, tým bola centralita menšia (a zrážkový parameter b väčší).
- BBC (Beam-Beam Counters) sú dva scintilátory šesťuholníkového tvaru umiestnené po stranách TPC. Zameriavajú sa na pseudorapiditu η od 3,3 do 5,0. Zároveň je možné pomocou týchto subdetektorov určiť polohu primárneho vrcholu zrážky. Opäť rozlišujeme východný a západný.
- BEMC (Barrel Electromagnetic Calorimeter) sa zameriava na pseudorapiditu v rozmedzí od -1 do 1, tj. $|\eta| < 1$, nachádza sa približne 220 cm od zväzku. Obsahuje BSMD (Barrel Shower Maximum detector), ktorý sa zameriava na fotóny, ktoré pochádzajú z rozpadov π^0 . BEMS ďalej detekuje priamo produkované fotóny, elektróny a výtrysky častíc. Je rozdelený do tzv. veží, pričom každá veža sa následne skladá zo scintilátorov a olovených vrstiev.
- EEMC (*Endcap Electromagnetic Calorimeter*) je nesymetrický subdetektor, nachádza sa na západnej strane TPC. Zahŕňa pseudorapiditu $1 < \eta < 2$.

Grafické znázornenie triggrovacích detektorov sa nachádza na Obr. 2.3.

Ako bolo spomínané, okrem triggrovacích, rýchlych subdetektorov sa na detektore STAR nachádzajú aj ďalšie subdetektory, konkrétne:

• HFT (*Heavy Flavor Tracker*), ktorý pribudol na STAR v roku 2014,⁴ je detektor, ktorý je najbližšie k rúre so zväzkom (*beampipe*) - vystriedal

 $^{^{4}}$ HFT bol odinštalovaný zo STARu v roku 2016, avšak pre nasledujúcu analýzu je potrebný a v čase zberu dát, ktoré budú použité, sa tam ešte nachádzal.

Obr. 2.3: Schéma triggrovacích subdetektorov detektoru STAR. V súčasnosti sa na STARe už nevyskytuje detektor FPD (*Forward Pion Detector*), avšak nachádzajú sa tam dva (east a west) dopredné detektory VPD. Prevzané z [18].

tak driftový detektor SVT (Silicon Vertex Tracker), ktorý bol na tomto mieste skôr, avšak ukázalo sa, že bol nedostatočný a nepresný. Rozlíšenie HFT, ktoré sa nachádza na Obr. 2.4, umožňuje merať s vysokou presnosťou dráhy častíc a presné polohy primárneho a sekundárneho vrcholu. HFT je kremíkový detektor vrcholov (silicon vertex detector) zložený z troch častí - subdetektorov. Najbližšie k zväzku sa nachádza PXL (Pixel detector), ktorý má dve vrsty, 2,8 a 8 cm od zväzku. Druhý subdetektor, IST (Intermediate Silicon Tracker) sa nachádza 14 cm od zväzku, tretí, SSD (Silicon Strip Detector), zas 22 cm.[21] HFT pokrýva pseudorapiditu $|\eta| \leq 1$ a celý azimutálny uhol $0 < \phi < 2 \pi$. Umožňuje s vysokou presnosťou detekovať dráhy častíc a následne používať topologické výberové kritéria, pomocou ktorých môžeme potlačiť pozadie o niekoľko rádov a tým zlepšiť pomer signálu k pozadiu. Jeho hlavnými cieľmi je zvýšenie presnosti merania jadrového modifikačného faktoru R_{AA} a eliptického toku, ale tiež aj rekonštrukcia otvorene pôvabných (open charm) hadrónov alebo elektrónov či leptónov, ktoré pochádzajú z dvojleptónového rozpadu z nejakého hadrónu s otvorene ťažkou vôňou. Keďže sú ťažké, rozpadávajú sa po krátkej vzdialenosti, preto potrebujeme tak dobré rozlíšenie. Kvôli štúdiu týchto hadrónov s ťažkou vôňou (heavy flavor) dostal HFT svoje meno.

• TPC (*Time Projection Chamber*) je často nazývaný aj srdce STARu, keďže je to jeho hlavný subdetektor. Jeho hlavnou úlohou je záznam trajektórií jednotlivých častíc a identifikácia týchto častíc pomocou straty energie. TPC je valcového tvaru, je dlhý 4 m, má vnútorný polomer 0,5 m a vonkajší 2 m, čo predstavuje rozsah pseudorapidity $|\eta| < 1,8$ a celý azimutálny uhol, teda $0 < \phi < 2 \pi$. [22] Vo vnútri TPC je homogénne elektrické pole veľkosti 135V/cm, vnútro je vyplnené zme-

Obr. 2.4: Rozlíšenie detektoru HFT – určenie prenosti polohy v rovine kolmej na smer zväzku v závislosti na celkovej hybnosti častice. Dáta pochádzajú z experimentu STAR pri zrážkach jadier zlata Au+Au pri $\sqrt{s_{\rm NN}} = 200$ GeV a centralite 0-80%. Prevzané z [11].

sou plynu tzv. P10 - 10% metán, 90% argón. [23] Častice, ktoré prelietavajú cez TPC, ionizujú plyn a vytvárajú elektrón-iónové páry. Detekovaním ionizácie môžeme spätne rekonštruovať dráhu jednotlivých častíc. Ionizáciou častice taktiež strácajú energiu. Podľa veľkosti straty energie možno nabité častice následne identifikovať, konkrétne pomocou Bethe-Blochovej formule [1]

$$-\left\langle \frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle = 2\pi N_A r_e^2 m_e c^2 \frac{Z}{A} \frac{z^2}{\beta^2} \left[\ln \frac{2m_e c^2 \beta^2 \gamma^2 W_{\mathrm{max}}}{I^2} - 2\beta^2 - \delta(\beta\gamma) \right],\tag{2.1}$$

kde N_A je Avogadrova konštanta ($N_A = 6,022 \cdot 10^{23} \text{ mol}^{-1}$), r_e klasický polomer elektrónu ($c = 2,81 \cdot 10^{-15} \text{ m}$), m_e hmotnosť elektrónu ($m_e = 0,511 \text{ MeV}/c^2$), c rýchlosť svetla vo vákuu ($c = 299792458 \text{ m} \cdot \text{s}^{-1}$), Z atómové číslo média, A hmotnosté číslo média, z náboj interagujúcej častice, $\beta = \frac{v}{c}$, kde v je rýchlosť interagujúcej častice, $\gamma^{-1} = \sqrt{1 - \beta^2}$ Lorenzov faktor, I ionizujúca energia, W_{max} maximálna prenesená energia v jednej zrážke a δ korekcia hustoty. Priečna hybnosť (p_T) a náboj (q) častíc sa meria pomocou zakrivenia dráhy častice v tomto detektore.

• TOF (*Time-of-Flight*) slúži taktiež na identifikáciu častíc, avšak pomocou doby ich letu Δt . Počiatočný čas sa získava pomocou detektoru VPD. Keď že z TPC máme informáciu o dráhe častice Δs , môžeme vypočítať jej rýchlosť v, resp. β , kde $\beta = \frac{v}{c}$, ako $\beta = \frac{\Delta s}{\Delta t} \frac{1}{c}$. Následne vieme pomocou vzťahov pre relativistickú energiu a hybrosť častice vypočítať jej hmotnosť

Obr. 2.5: Schéma detektoru STAR. Prevzané z [24].

ako

$$m = \frac{p}{c}\sqrt{\left(\frac{1}{\beta}\right)^2 - 1},\tag{2.2}$$

pričom hybnosť p je získaná z detektoru TPC. Na STAR bol nainštalovaný až dodatočne (v roku 2010), keď že sa ukázalo, že TPC nestačí na identifikovanie niektorých častíc s nízkou priečnou hybnosťou $p_{\rm T}$ (π a K s priečnou hybnosťou $p_{\rm T} < 0.7$ GeV/c, protóny s $p_{\rm T} < 1$ GeV/c). Rovnako ako HFT a TPC, aj TOF pokrýva pseudorapiditu $|\eta| \leq 1$ a celý azimutálny uhol $0 < \phi < 2 \pi$.

MTD (Muon Telescope Detector) bol rovnako ako HFT prvý krát použitý v roku 2014.⁵ Jeho veľkým prínosom na STARe je možnosť zaznamenávať mióny s vysokou hybnosťou, čo umožňuje napríklad podrobnejšie študovať kvarkóniu – meria mezóny J/ψ a Υ v dvojmiónových rozpadoch. Na kalibráciu tohto detektora boli použité mióny z kozmického žiarenia. Z vonkajšej strany obaľuje solenoidálny magnet, nachádza sa 400 cm od zväzku.

Grafické znázornenie tohto detektoru sa nachádza na Obr. 2.5, bočný pohľad na STAR sa nachádza na Obr. 2.6. Z obrázku je zrejmé, že všetky subdetektory valcového tvaru (napr. TPC, TOF alebo BEMC) pokrývajú celý azimutálny uhol, teda $0 < \phi < 2\pi$.

2.4 Budúcnosť štúdia QGP na urýchľovači RHIC

Ako bolo spomínané v časti 1.4.3, v rokoch 2010 až 2014 prebehla prvá fáza programu BES. Tento program sa venoval skúmaniu kvark-gluónovej plazmy

 $^{^5}$ Nainštalovaných bolo postupne 10%, 63% a 100% v rokoch 2012, 2013 a 2014.

Obr. 2.6: Schéma detektoru STAR - bočný pohľad. Prevzané z [18].

na urýchľovači RHIC. V blízkej budúcnosti je na detektore STAR na tomto urýchľovači plánovaná séria vylepšení, ktorá umožní získavať presnejšie výsledky v druhej fázi programu BES, ktorá je naplánovaná na roky 2019 až 2020. Tieto vylepšenia začali v roku 2014 na subdetektoroch HFT (*Heavy Flavor Tracker*) a MTD (*Muon Telescope Detector*), ktoré slúžia na detekovanie ťažkých kvarkov (c, b) a kvarkónie. Pred spustením fázy dva programu BES sú ďalej naplánované:

- Vylepšenie vnútornej časti časovo-projekčnej komory TPC (*Time Projection Chamber*), nový názov bude iTPC. Okrem zlepšenia rekonštrukcie jednotlivých dráh a hybností bude rozšírený interval meranej pseudorapidity η , čo umožní lepšie preskúmanie jednotlivých fáz časovo-priestorového vývoja QGP (plazma, hadronizácia, vymrznutie).
- Nahradenie detektora BBC (*Beam Beam Counter*) detektorom EPD (*Event Plane Detector*), ktorý umožní presnejšie meranie centrality.
- Nahradenie časti detektoru TOF (*Time-Of-Flight*) detektorom ETOF (*End-cap Time-Of-Flight*), ktorý vie lepšie identifikovať častice pri vyššej rapidite.

Spomínané vylepšenia sa nepoužijú len v programe BES, ale slúžia aj ako predpríprava na nasledujúce, kde sú pre STAR naplánované zrážky protónov (pp) a protónov s jadrom (pA), čím sa budú primárne skúmať spŕšky častíc. Pre tieto behy urýchľovača sú naplánované taktiež ďalšie vylepšenia HFT, čím

vznikne detektor HTF+, ktorý by mal byť výrazne rýchlejší ako jeho predchodca.

V rokoch 2019–2020 bude prebiehať druhá fáza programu BES, ktorá sa bude zaoberať skúmaním fázového diagramu jadrovej hmoty a hľadaniu presnej hodnoty kritickej teploty T_C . Po týchto rokoch by mal na urýchľovač RHIC pribudnúť nový detektor, sPHENIX, ktorý bude skúmať mikroskopické vlastnosti QGP. Pripravený na zber dát by mal byť do roku 2022. [25]

Po tejto fáze by mal urýchľovač RHIC (a teda aj jeho detektory) prejsť významnou zmenou, a to transormáciou na eRHIC – elektrón-iónový urýchľovač (*Electron-Ion Collider*), ktorý bude pokračovať v študovaní kvantovej chromodynamiky QCD, avšak pri výrazne vyššej luminozite a pri vyššej energii urýchlovaných častíc. Tento urýchľovač sa zameria na štúdium spinu protónov.

Kapitola 3

Aktuálne výsledky meraní pôvabných hadrónov na urýchľovačoch RHIC a LHC

Nasledujúce kapitola je venovaná rekonštrukcii hadrónov, ktoré obsahujú pôvabný c (*charm*) kvark, skúmaním týchto častíc sa totiž vieme dozvedieť viac o kvarkgluónovej plazme. Táto kapitola bude zameraná na hadróny, ktoré sú otvorene pôvabné (*open charm*), teda pôvab majú nenulový.¹

Postupne budú predstavené výsledky viacerých analýz, ktoré sa venovali či už D mezónom, alebo baryónu Λ_c , ktoré boli vypracované na základe experimentálnych dát zozbieraných na experimente STAR (urýchľovač RHIC, BNL) alebo na experimentoch ALICE a LHCb (urýchľovač LHC, CERN). Nasledujúci text vyplýva z analýzy D mezónov na experimente ALICE [26], [27] a [28] a na experimente STAR [29], [24] a [30]. Text o baryóne Λ_c vychádza z analýzy na experimente ALICE [31], experimente LHCb [32] a z experimentu STAR [33]. Nakoľko rekonštrukcia Λ_c na týchto experimentoch len začína, text je na rozdiel od analýzy D mezónov stručnejší.

3.1 D mezóny na experimente ALICE

Na rekonštrukciu D mezónov na experimente ALICE (A Large Ion Collider Experiment) pri zrážkach jadier olova Pb–Pb s energiou $\sqrt{s_{\rm NN}} = 2.76$ TeV bol použitý ich hadrónový rozpad. Konkrétne kanály a ich rozpadové pomery BR (branching ratio) sa nachádzajú v Tabuľke 3.1, rovnako ako sa tam nachádza i kvarkové zloženie týchto častíc. V prípade D⁰, D⁺ a D_s⁺ ide o slabé rozpady

¹Opakom je skrytý pôvab (hidden charm), kde je pôvab nulový. Príkladom je napríklad častíca J/ψ , ktorá je žložená z $c\bar{c}$, teda pôvab $C = N(c) - N(\bar{c})$, kde N(c), resp. $N(\bar{c})$ je počet kvarkov, resp. antikvarkov.

Р	D^{0}	D^+	D^{*+}	D_s^+
$m \; [MeV]$	$1864{,}83\pm0{,}05$	$1869{,}58\pm0{,}09$	$1869{,}58\pm0{,}09$	$1968,27 \pm 0,10$
Q	$c ar{u}$	$c ar{d}$	$car{d}$	$c\bar{s}$
DC	$\mathrm{D}^0 \to \mathrm{K}^- \pi^+$	$\mathrm{D^+} \rightarrow \mathrm{K^-} \pi^+ \pi^+$	$\mathrm{D}^{*+} \to \mathrm{D}^0 \pi^+$	$D_s^+ \to \phi \pi^+$
BR [%]	$3,88 \pm 0,05$	$9,13 \pm 0,19$	$67,7 \pm 0,05$	$2,24 \pm 0,10$

Tabuľka 3.1: Rozpadové kanály a pomery vybraných D mezónov. P značí časticu, Q kvarkové zloženie, DC (*decay channel*) rozpadový kanál a BR (*branching ratio*) rozpadový pomer. ϕ v rozpade D_s^+ sa následne rozpadá $\phi \rightarrow K^+K^-$. Prevzané z [1]

(mení sa kvarkové zloženie ², preto je BR pomerne malé), rozpad D^{*+} prebieha silnou iterakciou. Rozpadové pomery boli prevzané z [1].

Identifikácia častíc v detektore ALICE prebieha pomocou detektorov TPC a TOF rovnako v detektore STAR, čiže v TPC ide o identifikáciu pomocou straty energie dE/dx a v TOF pomocou doby letu tejto častice. Môže sa však stať (primárne v dvojčasticových rozpadoch), že identifikácia častíc prebehne naopak, t.j. K je identifikované ako π a naopak. Na experimente ALICE sa takýto jav nazýva zrkadlenie (*reflections*), na STARe zlé priradenie (*mismatch*).

Nasledujúci text bude venovaný rekonštrukcii mezónov D^0 , D^+ a D^{*+} . Text o mezóne D_s^+ je uvedený hneď po ňom.

Na výber jednotlivých udalostí, ktoré boli použité v analýze, sa použili nasledujúce kritéria (cuts) [26]

- $v_z \pm 10~{\rm cm},$ t.j. vzdialenosť primárneho vrcholu od stredu detektora v smere osizmusí byť menšie ako 10 cm
- $\eta < 0.8$; táto podmienka na pseudorapiditu η rozpadových častíc spolu s predchádzajúcou podmienkou zaručujú, že rozpadové častice preletia cez požadované detektory
- priečna hybnosť dcérskych častíc $p_{\rm T} > 0.4 \ {\rm GeV}/c$
- počet zásahov časovo-projekčnej komory TPC > 70, tzn. aby bolo možné s dostatočnou presnosťou rekonštruovať dráhu tejto častice
- minimálne 2 (3 pre D^{*+}) zásahy vo vnútornom dráhovom detektore IST

Po týchto cutoch dostaneme tzv. surový výťažok (*raw yield*), čiže naplnené histogramy hmotnosoťami dvojíc kaónov a piónov $M(K\pi)$ (pre D^0), trojíc kaónu a dvoch piónov $M(K\pi\pi)$ (D^+) alebo rozdielom hmotností $\Delta M = M(K\pi\pi) - M(K\pi)$ (pre D^{*+}). Následne je možné tieto dáta fitovať funkciami pre signál (väčšinou Gaussova funkcia) a pre pozadie (mení sa v závislosti na analýze, môže to byť napríklad polynóm či exponenciála). Tento výťažok sa nazýva surový, pretože výsledné histogramy nie je možné porovnávať medzi dvoma rôznymi

 $^{^2 {\}rm Kvarkové}$ zloženie dcérskych častíc je: $\pi^+ = u \bar{d}, \, {\rm K}^+ = u \bar{s}.$ [1]

analýzami a ani detektorami. Uvedený výťažok je teda potrebné opraviť, v tejto analýze bol použitý korekčný vzťah

$$\frac{\mathrm{d}N^{\mathrm{D}}}{\mathrm{d}p_{\mathrm{T}}}\Big|_{|y|<0.5} = \frac{f_{\mathrm{prompt}}(p_{\mathrm{T}}) \cdot \frac{1}{2}N_{\mathrm{raw}}^{\mathrm{D}+\mathrm{D}}(p_{\mathrm{T}})\Big|_{|y|< y_{\mathrm{fid}}}}{\Delta p_{\mathrm{T}} \cdot \alpha_{y} \cdot (\mathrm{Acc} \times \epsilon)_{\mathrm{prompt}}(p_{\mathrm{T}}) \cdot \mathrm{BR} \cdot N_{\mathrm{events}}} , \qquad (3.1)$$

kde jednotlivé členy sú:

- $f_{\text{prompt}} = 1 \frac{N_{\text{raw}}^{\text{D}+\overline{\text{D}} \text{ feed-down}}}{N_{\text{raw}}^{\text{D}+\overline{\text{D}}}}$, kde $N_{\text{raw}}^{\text{D}+\overline{\text{D}} \text{ feed-down}}$ predstavuje odhadovaný výťažok, ktorý nepochádza z priamo vzniknutých D mezónov, ale z mezónov, ktoré vznikli z rozpadu B mezónov a $N_{\text{raw}}^{\text{D}+\overline{\text{D}}}$ predstavuje celkový výťažok, čiže člen f_{prompt} závisí od počtu priamych D mezónov,
- $\frac{1}{2}N_{\rm raw}^{\rm D+\overline{D}}(p_{\rm T})$ vyjadruje, že výťažok musí byť vydelený faktorom 2 kvôli tomu, že sa v ňom nachádzajú častice a antičastice,
- $\Delta p_{\rm T}$ vyjadruje šírku jedného intervalu histogramu priečnych hybnosti $(p_{\rm T} \ bin)$,
- $\alpha_y \sim y_{fid}/0.5$, čiže faktor úmerný jednotke rapidity,
- (Acc × ε)_{prompt} je člen, ktorý hovorí o akceptancii (geometrických vlastnostiach) a efektivite daného detektoru,
- BR je rozpadový pomer (pre jednotlivé D mezóny uvedený v Tab. 3.1),
- N_{events} je počet udalostí, ktoré sa používali pre danú analýzu (pre túto analýzu to bolo pre centralitu 0-10% 16,4 × 10⁶ a pre centalitu 30-50% 9 × 10⁶).

Po takejto korekcii možno obdržať distribúciu už invariantného výťažku pre uvedené D mezóny, a to pre pre intervaly priečnej hybnosti $0 < p_{\rm T} < 24 \text{ GeV}/c$ pre D⁰ a $3 < p_{\rm T} < 36 \text{ GeV}/c$ pre D⁺ a D^{*+}. Histogramy pre tieto výťažky sa nachádzajú na Obr. 3.1, a to pre centralitu 0-10% (Obr. 3.1a) a pre centralitu 30-50% (Obr. 3.1b). V tomto obrázku sú taktiež zakreslené aj chyby (štatistické pomocou čiar a systematické pomocou prázdnych obdĺžnikov). Podrobný rozbor chýb sa nachádza v [26].

Následne sa pomocou týchto výťažkov a taktiež pomocou výťažkov zo zrážiek protónov spočítal jadrový modifikačný faktor R_{AA} , konkrétne pomocou vzťahu 1.8, resp. pomocou jeho ekvivalentu uvedeného v [26]. Výťažky protónov sa získali zo zrážania protónov pri energii $\sqrt{s} = 7$ TeV a následneho fitovania pomocou tzv. FONLL (*fixed-order-next-to-leading-log*) výpočtov. Jadrový modifikačný faktor R_{AA} sa následne vyniesol do grafov uvedených na Obr. 3.2 pre dve centrality (0-10% a 30-50%). Na uvedených obrázkov vidno výrazné potlačenie produkcie D mezónov pri zrážiek jadier olova, a to pre obe uvedené centrality. Potlačenie pre centralitu 0-10% dosahuje maximum pre $p_T = 10$ GeV/*c*, kde je produkcia častíc päť- až šesťkrát nižšia než v zrážkach protónov. Pre centralitu 30-50% je maximum tak isto pre $p_T = 10$ GeV/*c*, avšak produkcia

Obr. 3.1: Distribúcia výťažku priamych D mezónov (D⁰, D⁺ a D^{*+}) pre jednotlivé $p_{\rm T}$ biny pre zrážky Pb–Pb pri $\sqrt{s_{\rm NN}} = 2,76$ TeV pre dve rôzne centrality. Prevzaté z [26].

je nižšia približne trikrát. Toto potlačenie sa vysvetľuje prítomnosťou kvarkgluónovej plazmy, to, že je silnejšie pre prípad 10% najcentrálnejších zrážok zas tým, že hustota a veľkosť tohto média rastie od periferálnych po centrálne zrážky. Ďalšie zrovnania R_{AA} napríklad s viacerými teoretickými modelmi alebo nabitými časticami možno nájsť v [26].

V článku [27] popisujú rovnakú analýzu, avšak jadrový modifikačný faktor R_{AA} nevyhodnocovali v závislosti na p_T , ale na centralite, pričom táto je kvantifikovaná ako priemerný počet nukleónov $\langle N_{part} \rangle$, ktoré sa zúčastňujú v zrážke pre jednotlivé triedy centrality. Ich hodnoty boli stanovené pomocou tzv. Monte Carlo Glauber výpočtov. Distribúcia R_{AA} sa nachádza na Obr. 3.3, a to pre dva rôzne intervaly p_T D mezónov. Potlačenie produkcie je pozorované už pre triedu centrality 50-80% a rastie smerom k centrálnym zrážkam pre oba intervaly priečnej hybnosti p_T . Maximum dosahuje pre najcentrálnejšie zrážky, pričom výťažok vyškálovaný na jednu nukleón-nukleónovú zrážku je približne päť- až šesťkrát nižší v porovnaní s výťažkom zo zrážok protónov.

Na záver časti o pôvabných, no nepodivných D mezónov budú ešte uvedené viaceré porovnania. Prvé sa nachádza na Obr. 3.4, kde sa okrem R_{AA} priemeru D⁰, D⁺ a D^{*+} zo zrážok Pb-Pb pri $\sqrt{s_{NN}} = 2,76$ TeV pre dve rôzne triedy centralít (0-10% a 30-50%) nachádza aj jadrový modifikačný faktor R_{AA} , ktorý sme získali zo zrážok protónov s jadrami olova pri energii $\sqrt{s_{NN}} = 5,02$ TeV. Pre tieto zrážky nemožno hovoriť o potlačení. Pri nízkom p_T je malé obohatenie, avšak v rámci chyby je $R_{AA} = 1$.

Na Obr. 3.5 sa nachádza porovnanie R_{AA} zo zrážok b-Pb pri $\sqrt{s_{NN}} = 2,76$ TeV pre centralitu 0-10% s viacerými teoretickými modelmi. Viaceré modely dávajú dobrý popis R_{AA} pre danú centralitu.

Obr. 3.2: Jadrový modifikačný faktor R_{AA} priamych D mezónov (D⁰, D⁺ a D^{*+}) pre jednotlivé $p_{\rm T}$ biny pre zrážky Pb–Pb pri $\sqrt{s_{\rm NN}} = 2,76$ TeV pre dve rôzne centrality. Prevzaté z [26].

Obr. 3.3: Jadrový modifikačný faktor *RAA* priamych D mezónov (D⁰, D⁺ a D^{*+}) pre jednotlivé centrality pre zrážky Pb–Pb pri $\sqrt{s_{\rm NN}} = 2,76$ TeV pre dva rôzne intervaly $p_{\rm T}$. Prevzaté z [27].

Obr. 3.4: Jadrový modifikačný faktor R_{AA} priamych D mezónov (priemer D⁰, D⁺ a D^{*+}) pre jednotlivé p_T biny zo zrážok Pb–Pb pri $\sqrt{s_{NN}} = 2,76$ TeV pre dve rôzne triedy centrality a zo zrážok p-Pb pri $\sqrt{s_{NN}} = 5,02$ TeV. Prevzaté z [26].

Obr. 3.5: Porovnanie jadrového modifikačného faktoru R_{AA} priamych D mezónov (priemer D⁰, D⁺ a D^{*+}) v závislosti na p_T pre centralitu 0-10% zrážok Pb–Pb pri $\sqrt{s_{NN}} = 2,76$ TeV. Znázornenie modelu dvoma čiarami reprezentuje jeho nejasnosť. Prevzaté z [26].

Obr. 3.6: Porovnanie jadrového modifikačného faktoru R_{AA} priamych D mezónov (priemer D⁰, D⁺ a D^{*+}) s nabitými časticami v zrážkach Pb–Pb pri $\sqrt{s_{\rm NN}} = 2,76$ TeV. Vľavo: v závislosti na $p_{\rm T}$ pre centralitu 0-10%. Porovnávajúce častice sú pióny. Prevzaté z [26]. Vpravo: v závislosti na centralite pre $p_{\rm T}$ D mezónov v intervale $8 < p_{\rm T} < 16$ GeV/*c*. Porovnávajúca častica je J/ ψ meraná experimentom CMS na LHC. Prevzaté z [27].

Na Obr. 3.6 sa nachádza porovnanie R_{AA} s nabitými časticami zo zrážok Pb–Pb pri $\sqrt{s_{NN}} = 2,76$ TeV. Na obrázku vpravo sa nachádza porovnanie s nabitými piónmi pre centralitu 0-10%. Rozdelenie R_{AA} v závislosti na p_T má veľmi podobný tvar ako priemer R_{AA} D mezónov D⁰, D⁺ a D^{*+}. Na obrázku vpravo sa nachádza porovnanie s R_{AA} častice J/ ψ , ktorá bola meraná na experimente CMS na urýchľovači LHC. Do úvahy sa brali len tie častice J/ ψ , ktoré vznikli *b*-rozpadom. Toto rozdelenie je v závislosti na centralite zrážky, resp. na počte zúčastnených častíc. Pre 20% najcentrálnejších zrážok má J/ ψ výrazne menšie potlačenie ako D mezóny.

Mezóny D_s^+ boli rekonštruované pomocou trojčasticového rozpadu, teda rekonštruovali sa triplety so správnou kombináciou znamienok. Na analýzu boli použité tieto cuty:

- pseudorapidita $|\eta| < 0.8$,
- priečna hybnosť častíc $p_{\rm T}>0.6~(0.4)~{\rm GeV}/c$ pre centralitu 0-10% (20-50%),
- počet zásahov v TPC > 70,
- cos $(\theta)>0,94,$ kde θ je ukazovací uhol medzi medzi spojnicou primárneho a sekundárneho vrcholu.

Dáta boli rozdelené do 3 intervalov podľa priečnej hybnosti kandádátov $p_{\rm T}(D_s^+)$, konkrétne hodnoty sú: 4–6, 6–8, 8–12 GeV/c.

Obr. 3.7: Distribúcia invariantného výťažku priamych D_s^+ v závislosti na priečnej hybnosti p_T pre zrážky Pb–Pb pri $\sqrt{s_{NN}} = 2,76$ TeV pre dve rôzne centrality. Prevzaté z [28].

Po aplikovaní týchto cutov dostaneme surový výťažok, takže ako v predchádzajúcom prípade, aby sme dostali invariantný, je potrebné aplikovať korekčný vzťah 3.1. Distribúcia týchto invariantných výťažkov sa nachádza na Obr. 3.7 pre dve rôzne centrality (0–10% a 20–50%). Na tomto obrázku je uvedená distribúcia častíc, ktoré boli vypočítané ako priemer častíc a antičastíc, keďže sa predpokladá, že účinný priezer produkcie D_s^+ a D_s^- je rovnaký. Horizontálne čiary predstavujú šírku jednotlivých p_T binov, vertikálne čiary predstavujú štatistickú chybu. Systematická chyba je znázornená obdĺžnikmi okolo vyznačených nameraných hodnôt. Výťažok zo zrážiek jadier olova Pb–Pb je porovnaný so zrážkami protónov pp, ktoré boli merané pri $\sqrt{s} = 7$ TeV a pomocou teórie FONLL naškálované na $\sqrt{s} = 2,76$ TeV.

Pomocou tejto distribúcie sa obdobne ako v predchádzajúcom prípade vypočítal jadrový modifikačný faktor R_{AA} . Jeho výsledky pre dve rôzne triedy centrality (0–10% a 20–50%) sa nachádza na Obr. 3.8 vľavo. Najväčšie potlačenie produkcie častíc v zrážkach jadier je pri najvyššej priečnej hybnosti, teda v intervale $8 < p_T < 12 \text{ GeV}/c$ pre 10% najcentrálnejších zrážok. Pre nižšie p_T a zrážky s centralitou 20–50% bol nameraný vyšší jadrový modifikačný faktor R_{AA} , avšak toto meranie je zaťažené veľmi veľkými štatistckými aj systematickými chybami, preto z neho nemožno nič dedukovať.

Jadrový modifikačný faktor R_{AA} 10% najcentrálnejších zrážok bol následne porovnaný s priemerom R_{AA} nepodivných (*non-strange*) D mezónov (D⁰, D⁺ a D^{*+}) pochádzajúcich z analýzy [26]. Toto porovnanie sa nachádza na Obr. 3.8 vpravo.

Obr. 3.8: Vľavo: Jadrový modifikačný faktor R_{AA} priameho mezónu D_s^+ pre jednotlivé p_T biny pre zrážky Pb–Pb pri $\sqrt{s_{NN}} = 2,76$ TeV pre dve rôzne triedy centralít (0–10% a 20–50%). Vpravo: Porovnanie R_{AA} priamych D mezónov. Priemer nepodivných (*non-strange*) mezónov (D⁰, D⁺ a D^{*+}) pochádza z analýzy [26]. Prevzaté z [28].

3.2 D mezóny na experimente STAR

Na rozdiel od experimentu ALICE, STAR zráža jadrá zlata Au–Au pri energii $\sqrt{s_{\rm NN}} = 200$ GeV, no rovnako sa pozeral na hadrónové rozpady D⁰ [29], D⁺ [24] a D_s⁺ [30]. Pre nasledujúce analýzy bolo použité 8,2×10⁸ tzv. minimum bias dát z rokov 2010 a 2011 pre D⁰, 9×10⁸ z roku 2014 pre D⁺ a 7,5×10⁸ taktiež z roku 2014 pre D_s⁺. Ako v predchádzajúcom prípade, i tu rozlíšime analýzu pôvabných mezónov podľa toho, či sú zároveň aj podivné.

Analýza D^0 a D^+ na STARe prebiehala obdobne ako na ALICE. Ako prvé sa vybrali podľa základných kritérii udalosti, ktoré sa podrobnejšie preskúmajú. V oboch týchto analýzach to bolo:

- $v_z \pm 6$ cm,
- $|v_z(\text{VPD}) v_z| < 3 \text{ cm},$
- $|\eta| < 1$,
- priečna hybnosť dcérsky častíc $p_{\rm T} > 0.2 \text{ GeV}/c \text{ (D}^0)$, resp. 0.5 GeV/c (D⁺),
- počet zásahov v TPC > 20.

Presné výberové kritéria z analýzy $\mathrm{D^+}$ z [24] sa nachádzajú v Tab. 3.2.

Obdobne po týchto cutoch môžme naplniť histogram dvojicami (D^0), resp. trojicami (D^+) a dostaneme surový výťažok, z ktorého vieme odčítať hmotnosť daných častíc. Aby sme dostali invariatný výťažok, ktorý možno porovnať s

Vzdialenosť v urýchľovacej trubici	$ v_z < 6$	
Odchýlka medzi VPD a TPC	$ v_z(VPD) - v_z < 3$	
Zásah HFT	PXL1, PXL2, IST	
Počet zásahov TPC	$N_{TPC} > 20$	
DCA medzi dvojicami $\pi\pi$, πK , $K\pi$	$DCA_{XY} < 80 \ \mu \mathrm{m}$	
D^\pm rozpadová dĺžka	$30~\mu\mathrm{m} < \lambda < 2000~\mu\mathrm{m}$	
Ukazovací uhol	$\cos \theta > 0.998$	
Maximálna vzdialenosť vrcholov	$\Delta_{max} < 200 \ \mu m$	
DCA dcérskych častíc	$DCA_{\pi 0} > 100 \ \mu m$	
DOM deelskyen easte	$DCA_{K0} > 80 \ \mu m$	
Priečna hybnosť z TPC	$p_{\mathrm{T}}^{\pi} > 0.5 \ \mathrm{GeV/c}$	
1 ficena ny bhost 2 11 C	$p_{\mathrm{T}}^{K} > 0.5 \ \mathrm{GeV/c}$	
Ionizácia v TPC, štatistická odchylka	$n\sigma_{\pi} < 3$	
	$n\sigma_K < 2$	
Priečna hybnosť z TOF	$p_{\mathrm{T}}^{\pi} > 0.5 \ \mathrm{GeV/c}$	
	$p_{\mathrm{T}}^{K} > 0.5 \; \mathrm{GeV/c}$	
Inverzná rýchlosť z TOF	$\left \frac{1}{\beta} - \frac{1}{\beta_{\pi}}\right < 0.03$	
	$\left \frac{1}{\beta} - \frac{1}{\beta_K}\right < 0.03$	
	Vzdialenosť v urýchľovacej trubici Odchýlka medzi VPD a TPC Zásah HFT Počet zásahov TPC DCA medzi dvojicami ππ, πK, Kπ D [±] rozpadová dĺžka Ukazovací uhol Maximálna vzdialenosť vrcholov DCA dcérskych častíc Priečna hybnosť z TPC Ionizácia v TPC, štatistická odchylka Priečna hybnosť z TOF Inverzná rýchlosť z TOF	

Tabuľka 3.2: Zhrnutie použitých výberových kritérii pri rekonštrukcii D⁺ mezónov na experimente STAR. Prevzate z [24].

dátami z experimentu ALICE, je potrebné opäť previesť korekcie. Na tieto boli použité vzťahy analogické 3.1. Takto vypočítané výťažky pre jednotlivé $p_{\rm T}$ biny sa nachádzajú na Obr. 3.9.

Distribúcia hmotnosti tripetov K $\pi\pi$ zo zrážok jadier zlata Au–Au pri $\sqrt{s_{\rm NN}} = 200 \text{ GeV}$ a centralite 0-10% sa nachádzajú na Obr. 3.10. Tieto distribúcie sú uvedené pre dve rôzne priečne hybnosti $p_{\rm T}$ kandidáta D[±], konkrétne pre 3 < $p_{\rm T}$ < 3,5 GeV (vľavo) a 6 < $p_{\rm T}$ < 7 GeV (vpravo). V hornom riadku je čiernou farbou znázornená správna znamienková kombinácia, K[∓] $\pi^{\pm}\pi^{\pm}$, ktorá pri rekonštrukcii rozpadov D[±] predstavuje signál. Všetky ostatné kombinácie sú považované za pozadie. Po odčítaní pozadia môžeme tieto distribúcie preložiť Gaussovou funkciou a dostaneme hmotnosť kandidáta D[±]. Taktiež vieme pre jednotlivé $p_{\rm T}$ intervaly získať signifikanciu.

Následne je možné pomocou referenčného výťažku zo zrážiek protónov vypočítať zo vzťahu 1.8 jadrový modifikačný faktor R_{AA} . Pre uvedené D mezóny sa nachádzajú na Obr. 3.11. Zároveň sú na tomto obrázku uvedené aj viaceré teoretické modely. Pre priečne hybnosti D mezónov $p_T > 2 \text{ GeV}/c$ je vývoj R_{AA} monotónny a vidno potlačenie produkcie pre zrážky jadier, čo súhlasí aj s dátami nameranými na experimente ALICE v zrážkach Pb–Pb pri $\sqrt{s_{NN}} = 2,76$ TeV. Porovnanie R_{AA} z týchto dvoch experimentov sa nachádza na Obr. 3.12, pričom R_{AA} pre D mezóny z experimentu ALICE nie sú uvedené jednotlivo pre D⁰, D⁺ a D^{*+}, ale pre ich spriemerovanú hodnotu (ich jednotlivé R_{AA} boli uvedené na Obr. 3.2). Čo však nesúhlasí medzi týmito dvoma experimentami, je R_{AA} pre

Obr. 3.9: Invariantný výťažok vybranách D mezónov pre jednotlivé $p_{\rm T}$ biny na experimente STAR v zrážkach Au–Au pri $\sqrt{s_{\rm NN}} = 200$ GeV a centralite 0-10%. Prevzaté z [24].

Obr. 3.10: Distribúcia hmotnosti tripletov K $\pi\pi$ pre zrážky Au–Au pri $\sqrt{s_{\rm NN}}$ = 200 GeV a centralite 0-10%. Vľavo: distribúcia pre $p_{\rm T}$ kandidáta D[±] v intervale 3 < $p_{\rm T}$ < 3,5 GeV. Vpravo: 6 < $p_{\rm T}$ < 7 GeV. V hornom riadku sa nachádzajú triplety rozlášené triplety so správnou (*correct-sign*) a nesprávnou (*wrong-sign*) znamienkovou kombináciou. Nesprávna kombinácia predstavuje pozadie. Po jeho odčítaní dostanem distribúcie v spodnom riadku. Prevzaté z [24].

Obr. 3.11: Jadrový modifikačný faktor R_{AA} vybraných D mezónov pre jednotlivé $p_{\rm T}$ biny na experimente STAR v zrážkach Au–Au pri $\sqrt{s_{\rm NN}} = 200$ GeV a centralite 0-10%. Pre porovnanie sú uvedené viaceré teoretické modely. Prevzaté z [34].

 $p_{\rm T} < 2~{\rm GeV}/c.$ Produkcia D mezónov v experimente STAR pre tieto priečne hybrosti nie je potlačená, naopak, je obohatená. Nakoľko sú tieto dáta v rozpore s pozorovaniami na experimente ALICE, budú ešte preskúmavané.

Analýza podivného D_s^+ prebehla obdobne. Najprv boli aplikované viaceré topologické a kinematické cuty, aby sa redukovalo kombinatorické pozadie. Následne je možné dostať výťažok, ktorý sa pomocou známej funkcie upraví tak, aby bol invariantný. Distribúcia invariantného výťažku mezónu D_s^+ v závislosti na priečnej hybnosti pre zrážky Au–Au pri $\sqrt{s_{\rm NN}} = 200$ GeV pri centalite 10-40% sa nachádza na Obr. 3.13 vpravo. V tom istom obrázku je tak isto pre porovnanie znázornený výťažok mezónu D⁰. Aby bolo možné vypočítať pomer medzi týmito výťažkami, výťažok mezónu D⁰ bol fitovaný tzv. Leviho funkciou, ktorá je znázornená čiarkovanou čiarou v spomínanom obrázku. Pomer D_s^+/D^0 je znázornené dáta z experimentu STAR zo zrážok Au–Au pri $\sqrt{s_{\rm NN}} = 200$ GeV pri centalite 10-40%, vpravo ide o experiment ALICE a zrážky Pb–Pb pri $\sqrt{s_{\rm NN}} = 2,76$ Tev a centralite 0-10%. Fialovou farbou je znázornený pomer D_s^+/D^0 v zrážkach protónov pp, ktoré boli získané pomocou simulácií z programu PYT-HIA 6.4.

3.3 Baryón Λ_c na experimente ALICE

Baryón Λ_c je zložený z kvarkov u, d a c, pričom s jeho hmotnosťou $m(\Lambda_c) = (2286, 46 \pm 0, 14) \text{ MeV}/c^2$ [1] je to najľahší pôvabný baryón. Jeho stredná doba života je rádovo 10^{-15} s, čo dá rozpadová dĺžku $c\tau = 59,9 \ \mu\text{m}$. Z tohto dôvodu

Obr. 3.12: Jadrový modifikačný faktor R_{AA} vybraných D mezónov pre jednotlivé p_T biny pri centralite 0-10% na experimente STAR v zrážkach Au–Au pri $\sqrt{s_{NN}}$ = 200 GeV a na experimente ALICE pri $\sqrt{s_{NN}}$ = 2,76 TeV. Prevzaté z [26].

Obr. 3.13: Vľavo: Distribúcia invariantných výťažkov D_s^+ a D^0 mezónov v závislosti na priečnej hybnosti pre zrážky Au–Au pri $\sqrt{s_{\rm NN}} = 200$ GeV pri centalite 10-40%. Vpravo: Porovnanie pomeru výťažkov D_s^+ ku D^0 pre zrážky Au–Au pri $\sqrt{s_{\rm NN}} = 200$ GeV a centralite 10-40% na experimente STAR a zrážky Pb–Pb pri $\sqrt{s_{\rm NN}} = 2,76$ Tev a centralite 0-10% na experimente ALICE. Prevzaté z [30].

ho, obdobne ako D mezóny z predchádzajúcich sekcí, nepozorujeme priamo. Analýza tohto baryónu na experimente ALICE [31] sa zamerala na hadrónový rozpad
 $\Lambda_{\rm c}^+ \rightarrow {\rm pK}^-\pi^+$ s rozpadovým pomerom BR = (6,35 ± 0,33) % a na kanál
 $\Lambda_{\rm c}^+ \rightarrow {\rm pK}_{\rm s}^{\rm s}$ s rozpadovým pomerom BR = (1,093 ± 0,055) %.

Na analýzu bolo použitých 3×10^8 zrážok protónov p
p pri energii $\sqrt{s}=7~{\rm TeV}$ z behu urýchľovača LHC z roku 2010
a 10^8 zrážok protónov s jadrami olova p-P
b pri $\sqrt{s_{\rm NN}}=5.02~{\rm TeV}$ z roku 2013.

Detektor ALICE sa skladá z viacerých subdetektorov, pre nasledujúcu analýzu boli kľúčove ITS (*Inner Tracking System*) na rekonštrukciu vrcholov a na určovanie dráh, TPC na určovanie dráh a identifikáciu častic PID (*particle identification*) a TOF na identifikáciu častíc. Na triggrovanie boli použité detektory SPD a VZERO.

Na všetky eventy boli použité výberové kritéria, ktoré vybrali, ktoré zrážky budú použité na analýzu, a to na základe priečnej hybnosti $p_{\rm T}$ všetkých rozpadových produktov. V rozpadovom kanáli $\Lambda_{\rm c}^+ \to p {\rm K}_{\rm s}^0$ sa ${\rm K}_{\rm s}^0$ nedetekoval priamo, ale pomocou jeho dcérskych častíc, páru $\pi^+\pi^-$. V kanáli $\Lambda_{\rm c}^+ \to p {\rm K}^-\pi^+$ sa najprv našiel pár ${\rm K}^-\pi^+$ a následne sa k nemu pridala dráha protónu-samotára, pričom vznikol kandidát na $\Lambda_{\rm c}$. Z týchto kandidátov sa následne určovali samotné $\Lambda_{\rm c}$ podľa kvality rekonštruovaných vrcholov a podľa vzdialenosti medzi primárnym a sekundárnym vrcholom.

Signál Λ_c bol pozorovaný ako v zrážkach pp, tak v p-Pb. Distribúcie invariantných hmotností sa nachádzajú na Obr. 3.14 ($\Lambda_c^+ \to pK^-\pi^+$, pp zrážky), na Obr. 3.15 ($\Lambda_c^+ \to pK^-\pi^+$, p-Pb zrážky) a na Obr 3.16 ($\Lambda_c^+ \to pK_s^0$, pp zrážky). Dáta v rozpadovom kanáli $\Lambda_c^+ \to pK^-\pi^+$ boli rozdelené do štyroch (pp), resp. šiestich (p-Pb) intervalov podľa prečnej hybnosti $p_T(\Lambda_c)$. Dáta boli fitované Gaussovou funkciou, pozadie polynómom druhého stupňa. Z fitu sa následne určila daná invariantná hmotnosť $m(\Lambda_c)$, pre jednotlivé biny je uvedená priamo v obrázkoch.

Aby sme dostali účinné prierezy produkcie baryónu Λ_c , je potrebné na dátach z predchádzajúcej analýzy predviesť viaceré korekcie, obdobne, ako tomu bolo pri rekonštrukcii D mezónov (efektivita detektora a jeho akceptancia, atď). To majú podľa [31] v pláne ako ďalší krok analýzy. Medzi ďalšie plány nepochybne patrí rekonštrukcia Λ_c v zrážkach Pb-Pb, čo v súčasnosti nie je možné kvôli rozlíšeniu detektora. V rokoch 2018-2019 je plánovaný upgrade subdetektora ITS, ktorý by však túto analýzu mal umožniť.

3.4 Baryón Λ_c na experimente LHCb

Druhý experiment, ktorý sa nachádza v laboratóriach CERN a venuje sa analýze baryónu Λ_c , je LHCb. Je to dvadsať metrový jednoramenný spektrometer v doprednom smere, pričom pokrýva pseudorapiditu v intervale $2 < \eta < 5$. [35] Na rekonštrukciu Λ_c sa používajú primárne dáta v detektoru VELO (*Vertex Locator*), pomocou ktorého sa určuje vrchol zrážky. Ďalej sa používa detektor RICH (*Ring Imaging Cherenkov*), konkrétne na identifikáciu častíc pomocou emisie Čerenkovho žiarenia.

Obr. 3.14: Distribúcia invariantnej hmotnosti $\Lambda_{\rm c}^+ \to {\rm pK}^-\pi^+$ v zrážkach pp pri $\sqrt{s}=7$ TeV. Dáta sú rozdelené na 4 intervaly podľa priečnej hybnosti $p_{\rm T}(\Lambda_{\rm c})$. Prevzaté z [31].

Obr. 3.15: Distribúcia invariantnej hmotnosti $\Lambda_c^+ \to p K^- \pi^+$ v zrážkach p-Pb pri $\sqrt{s_{\rm NN}} = 5,02$ TeV. Dáta sú rozdelené na 6 intervalov podľa priečnej hybnosti $p_{\rm T}(\Lambda_c)$. Prevzaté z [31].

Obr. 3.16: Distribúcia invariantnej hmotnosti $\Lambda_c^+ \to pK_s^0$ v zrážkach pp pri
 $\sqrt{s} = 7$ TeV. Prevzaté z [31].

V tomto experimente nešlo o zrážky dvoch protónov, ale o zrážky s pevným terčíkom (*fixed-target*). Na tomto experimente vstreknú do trubice zväzku (*beampipe*) jeden zo vzácnych plynov (hélium He, neón Ne, argón Ar, kryptón Kr alebo xenón Xe). Rekonštrukcia baryónu Λ_c teda prebiehala zo zrážok p-Ar pri energii $\sqrt{s_{\rm NN}} = 110$ GeV.

Keďže LHCb len nedávno vstúpilo do programu, ktorý sa venuje fyzike ťažkých jadier, podrobná rekonštrukcia Λ_c je práve v procese. [32] Zatiaľ máme k dispozícii len rozdelenie invariantnej hmotnosti $m(\Lambda_c)$, konkrétne triplety pK π , keďže analýzy pochádza z rozpadového kanála $\Lambda_c^+ \to pK^-\pi^+$. Dané rozdelenie sa nachádza na Obr. 3.17. Je možné konštatovať, že Λ_c bola na tomto experimente pozorovaná s veľkou signifikanciou.

3.5 Baryón Λ_c na experimente STAR

Rekonštrukcia baryónu Λ_c na experimente STAR začala byť možná po pridaní detektora HFT (*Heavy Flavor Tracker*), ktorý fungoval v rokoch 2014–2016. Zatiaľ prebehla len analýza dát z roku 2014, a preto je štatistika značne obmedzená – Λ_c bola analyzovaná len pre priečne hybnosti $3 < p_T(\Lambda_c) < 6 \text{ GeV}/c$ a pre centrality 10-60%. [33]

Na analýzu bolo použitých 9×10^8 eventov zo zrážiek zlata. Podmienkou na výber týchto udalostí bolo, aby sa primárny vrchol po zrážke nachádzal do vzdialenosti 6 cm od stredu detektora STAR. Rovnako ako na LHCb, aj na experimente STAR sa zamerali na hadrónový kanál, avšak v tomto prípade merali Λ_c^+ aj Λ_c^- (súhrnne označené ako Λ_c). Kaóny, protóny a pióny, ktoré tvoria triplety, boli identifikované pomocou subdetektorov TPC (pomocou straty energie) a TOF (pomocou doby letu).

Distribúcia invariantnej hmotnosti baryónu $\Lambda_{\rm c}$ sa nachádza na Obr. 3.18.

Obr. 3.17: Distribúcia invariantnej hmotnosti $\Lambda_{\rm c}^+ \to {\rm pK}^-\pi^+$ v zrážkach p-Ar pri $\sqrt{s_{\rm NN}}=110$ GeV. Prevzaté z [32].

Červenou farbou je znázornený signál Λ_c rekonštruovaný pomocou tripletov, ktoré majú správnu kombináciu náboja (*right-sign*). Šedou je znázornená nesprávna kombinácia znamienok (*wrong-sign*), ide teda o distribúciu pozadia.

Na Obr. 3.19 sa nachádza porovnanie výťažku baryónov a mezónov, konkrétne porovnanie výťakžkov protóno s piónmi, častíc Λ s K_s^0 a Λ_c s D^0 . Posledný spomínaný pomer je zároveň porovnaný s dvoma modelmi "Ko". Pre centrálne zrážky je tento pomer v prvých dvoch prípadoch vyšší ako pre zrážky periferálne.

Experiment STAR nazbieral v roku 2016 približne dvakrát viac dát v porovnaní s rokom 2014, navyše s lepším výkonom detektoru HFT. To nám umožní nielen rekonštruovať baryón Λ_c s vyššou signifikanciou, ale aj s vysokou presnosťou pozorovať pomer produkcie Λ_c a D mezónov a jeho dôkladné porovnanie s teoretickými modelmi.

Keďže s klasickým prístupom má $\Lambda_{\rm c}$ veľmi malý pomer signálu k pozadiu, na jej analýzu sa čoraz častejšie používajú viacrozmerné metódy analýzy dát, o ktorých hovorí nasledujúca kapitola.

Obr. 3.18: Distribúcia invariantnej hmotnosti $\Lambda_c \rightarrow pK\pi$ v zrážkach Au+Au pri $\sqrt{s_{\rm NN}} = 200 \text{ GeV}$ pri centralite 10-60% a priečnej hybnosti 3 < $p_{\rm T}(\Lambda_c) < 6$ GeV/c. Prevzaté z [33].

Obr. 3.19: Pomer výťažku baryónov a mezónov v závislosti na priečnej hybnosti $p_{\rm T}$. Vľavo: pomer výťažku protónov a antiprotón s výťažkom piónov π^+ a π^- pre dve rôzne triedy centralít. Stred: Pomer výťažku Λ a $\bar{\Lambda}$ s výťažkom 2K⁰_s pre dve rôzne triedy centralít. Vpravo: Pomer výťažku Λ_c a $\bar{\Lambda}_c$ s výťažkom D⁰ a \bar{D}^0 v zrážkach jadier zlata Au+Au pri $\sqrt{s_{\rm NN}} = 200$ GeV. Prevzaté z [36].

Kapitola 4

Metódy optimalizácie rekonštrukcie viacčasticových rozpadov

Nasledujúca kapitola bude venovaná metódam rekonštrukcie viacčasticových rozpadov a návrhom na ich optimalizáciu s cieľom dosiahnúť lepšie a presnejšie výsledky. Vo všeobecnosti bude predstavené strojové učenie a následne jeho konkrétne využitie v časticovej fyzike.

4.1 Strojové učenie

Strojové učenie (machine learning) je metóda na spracovanie dát, ktorá má veľmi veľký potenciál naprieč mnohými vedeckými i nevedeckými disciplínami. Dnešný človek sa s jeho aplikáciami stretáva takmer denne - z bežného života možno spomenúť napríklad rozpoznávanie tváre alebo rozhodovanie o elektronickej pošte, či patrí alebo nepatrí do SPAMu. V časticovej fyzike siahajú po týchto tzv. viacrozmerných metódach analýzy dát v prípade, že pomer signálu k pozadiu je veľmi malý. Tieto metódy boli použité napríklad pri určovaní hmotnosti t kvarku alebo hľadaní Higgsovho bozónu.

Na základe viacerých premenných a pomocou rôznych typov algoritmov sa počítač učí z poskytnutých dát, pričom primárny cieľ tohto učenia je práve schopnost počítača reagovať na dáta rovnakého typu v budúcnosti a prípadne predpovedať ich vývoj. Základné delenie strojového učenia je možné podľa spôsobu samotnej výuky, teda podľa toho, či učenie prebieha s dozorom (*supervised*) alebo bez neho (*unsupervised*). Kým pri učení s dozorom poznáme žiadané výstupy ku korešpondujúcim vstupom, u učenia bez dozoru to tak nie je. Učenie s dozorom vieme použiť napríklad na klasifikáciu častíc, to bez dozoru je naopak veľmi užitočný nástroj pri hľadaní spoločných čŕt v dátach a taktiež na vyhodnocovanie väzieb medzi vstupmi. Ako bolo spomínané, učenie s dozorom je možné použiť napríklad na klasifikáciu, ktorá má diskrétny výstup, pri ktorej triedime dáta na základe vybraných vlastností do určitých diskrétnych skupín (pre nás najbežnejšie ide o rozhodovanie, či sú dáta podobné signálu alebo pozadiu). Taktiež ho možno použiť aj na regresiu, ktorá má naopak spojitý výstup. Regresia je proces, pri ktorom odhadujeme parametre funkcie, ktorá predpovedá hodnotu premennej, ktorú chceme dostať, na základe vstupných premenných [37]. Oba tieto algoritmy možno riešiť viacerými metódami, od najľahších lineárnych metód až po veľmi komplikované neurónové siete. Pre použitie v časticovej fyzike sú tieto algoritmy implementované v balíku TMVA (*Toolkit for Multivariate Data Analysis*) v rámci programu ROOT.

4.2 Populárne metódy vo fyzike vysokých energií

Našim cieľom (bez ohľadu na metódu) je zostrojiť funkciu $f : \mathbb{R}^d \to \mathbb{R}^N$, kde N je v ideálnom prípade výrazne menšie ako d ($N \ll d$). Nech $\vec{x} \in \mathbb{R}^d$ sú vstupné parametre (premenné), $\vec{y} \in \mathbb{R}^N$ sú výstupy a f je funkcia odozvy (*response function*). V praxi na miesto $\vec{y} = f(\vec{x})$ často approximujeme funkciou $\vec{y} = f(\vec{x}, \vec{w})$, kde \vec{w} sú nastaviteľné parametre. V strojovom učení s dozorom pri učení dodávam dvojice $\{\vec{y}, \vec{x}\}$.

V nasledujúcom texte sa zameriame na prípad, kedy funkcia odozvy zobrazuje do jednorozmerného priestoru, čiže na prípad N = 1. Pre klasifikáciu je táto funkcia diskrétna, pričom y naberá v závislosti na \vec{x} hodnoty 1 (pre signál) a -1 (pre pozadie).

Jeden z najbežnejších prístupov k oddeľovaniu signálu a pozadia vo fyzike vysokých energií HEP (*high energy physics*) je nepochybne tzv. **mriežkové vyhľadávanie** (*grid search*). V tejto metóde sú nastavené selektívne kritéria (*cuts*). Majme *d*-rozmerný priestor, kde každá vlastnosť, ktorú získame z detektoru, prináleží jednému rozmeru¹ a bod ($z_1, z_2, ..., z_d$) je hraničný bod týchto kritérií (*cut-point*). Potom skúmaný priestor obmedzíme na $x_1 > z_1$, $x_2 > z_2, ...,$ s tým, že tieto rezy sú kolmé na pôvodné osy. Body, udalosti či merané častice, ktoré neprejdú týmito kritériami, neanalyzujem. Táto metóda sa používa napríklad na ušetrenie času, nech sa neprehľadáva oblasť, kde je málo signálu a veľa pozadia. Na druhej strane, trénovanie tejto metódy je zaťažené "prekliatím rozmerov" (*curse of dimensionality*), počet rôznych hraničných bodov mriežky rastie exponenciálne s *d*. Niekedy je teda vhodné použiť náhodný hraničný bod, potom túto metódu nazývame RGS (*random grid search*). Optimálny rez maximalizuje pomer signálu ku pozadiu.

Na podobnom princípe funguje **lineárna metóda**, s tým rozdielom, že osi sú natočené. Lineárny diskriminant nazveme funkciu, ktoré oddeľuje časti priestoru

 $^{^1 {\}rm Medzi}$ premennými môže existovať závislosť, v takom prípade nás zaujíma efektívna dimenzia < d.

a má tvar

$$y(\vec{x}) = \sum_{i=1}^{d} w_i x_i + w_0, \qquad (4.1)$$

kde \vec{w} je vektor parametrov, teda váha v jednotlivých rozmeroch. Konštanta w_0 je nastavená tak, aby $y(\vec{x}) \ge 0$ pre signál a $y(\vec{x}) < 0$ pre pozadie.

Pred tým, ako bude predstavená ďalšia metóda, je potrebné zadefinovať niekoľko pojmov zo štatistiky a teórie pravdepodobnosti, keďže pri učení z dát sa tieto disciplíny často používajú. Existujú viaceré možnosti pozerania sa na pravdepodobnosť, nasledujúci text bude zameraný len na tú Bayesovu. Bayesovská pravdepodobnosť je subjektívna a založená na stupňoch viery, pričom tie sú následne pozmeňované dátami. Veľmi dôležitým pojmom je podmienená pravdepodobnosť (conditional probability), ktorá je zadefinovaná ako [38]

$$p(A|B) = \frac{p(A \cap B)}{p(B)},\tag{4.2}$$

kde p(A|B) je pravdepodobnosť javu A za predpokladu, že prebehol jav B, $p(A \cap B)$ je pravdepodobnosť, že javy A a B prebehli zároveň a p(B) je pravdepodobnosť javu B s dodatočnou podmienkou, že jav B nesmie byť neuskutočniteľný, tj. $p(B) \neq 0$. S podmienenou pravdepodobnosťou ďalej súvisí Bavesov teorém,

$$p(B|A) = \frac{p(A|B)p(B)}{p(A)}.$$
(4.3)

Nech A predstavuje dáta a B hypotézu. Potom pravdepodobnosť p(A|B) je nazývaná vierohodnosť (*likelihood*) a dáva nám informáciu o tom, s akou pravdepodobnosťou by sme pozorovali dáta A, teda tie dáta, ktoré pozorujeme, keby bola hypotéza B správna. Apriórna pravdepodobnosť (*prior probability*) p(B) vyjadruje, čo vieme, resp. čo si myslíme ešte pred meraním (napríklad na základe predchádzajúcich experimentov alebo teoretického modelu). V menovateli sa nachádza p(A), teda celková pravdepodobnosť namerania dát A. Tú dostaneme ako $\int p(A|B)p(B)dB$, resp. ak je B diskrétne, tak pomocou sumy. Aposteriórna pravdepodobnosť p(B|A) (*posterior probability*) je výsledok, a teda pravdepodobnosť hypotézy v závislosti na predchádzajúcich znalostiach a zároveň v závislosti na nových dátach.

Keď máme v HEP binárny problém, teda rozdeľovanie dát podľa toho, či ich považujeme za signál (s) alebo pozadie (b), viem si zaviesť pomer pravdepodobností týchto dvoch tried ako

$$r(\vec{x}) = \frac{p(\vec{s}|\vec{x})}{p(\vec{b}|\vec{x})} = \frac{p(\vec{x}|\vec{s})p(\vec{s})}{p(\vec{x}|\vec{b})p(\vec{b})}.$$
(4.4)

Hranicu nášho *d*-rozmerného priestoru dostanem pre $r(\vec{x}) = const$. Niekedy však nemáme informácie o apriórnej pravdepodobnosti signálu a pozadia $p(\vec{s})$ a $p(\vec{b})$, a tak sa zavádza funkcia diskriminant

$$D(\vec{x}) = \frac{s(\vec{x})}{s(\vec{x}) + b(\vec{x})},$$
(4.5)

Obr. 4.1: Príklad trojvrstvovej neurónovej siete. Prevzaté z [38].

kde $s(\vec{x}) = p(\vec{x}|\vec{s})$ a $b(\vec{x}) = p(\vec{x}|\vec{b})$.

Viacrozmernú analýzú dát v HEP s využitým predchádzajúcej teórie pravdepodobnosti možno robiť pomocou metódy maximálnej vierohodnosti (*maximum likelihood*). Považujeme všetky premenné za štatisticky nezávislé, a diskriminant zo vzťahu 4.5 prejde na tvar

$$D(\vec{x}) = \frac{\prod_i s_i(x_i)}{\prod_i s_i(x_i) + \prod_i b_i(x_i)}.$$
(4.6)

Keďže ignorujeme korelácie medzi premennými, táto metóda sa nazýva aj naivný Bayes. I keď nie vždy sú v skutočnosti premenné naozaj nezávislé, daný algoritmus pracuje veľmi dobre a spoľahlivo bez veľkej straty informácií. Tejto metóde sa nebudeme podrobne venovať, má však v praxi mnohé uplatnenia, napríklad aj z toho dôvodu, že na jej trénovanie nie je potrebné veľké množstvo dát.

Jednou z najpoužívnajších metód sú **neurónové siete** (*neural networks*). Vznikli vďaka inšpirácii v biológii, keďže neurón je nervová bunka a základná jednotka centrálneho nervového systému. Neurónové siete sa teda skladajú z navzájom prepojených vrstiev neurónov, pričom prepojenia existujú medzi každou dvojicou neurónou v susedných vrstvách, no nikdy nie medzi neurónmi v rámci jednej vrsty. Prepojenia sú jednosmerné, a to z toho dôvodu, aby sa zabránilo vzniknutiu nejakej slučky. Grafické znázornenie neurónovej siete sa nachádza na Obr. 4.1. Prvá vrsta (*input layer*) prijíma premenné. Po nej nasleduje n skrytých vrstiev (*hidden layers*) a algoritmus končí vo výstupnej vrstve (*output layer*). Jednotlivé prepojenia majú váhu, ktorá sa určuje pri trénovaní. Keď má daná neurónová sieť n skrytých vrstiev, potom ju nazveme n + 1-vrstvová.

Neurónové siete sú veľmi univerzálna metóda, ich veľkou nevýhodou je, že to, čo sa deje v skrytých vrstvách, je pre človeka v podstate nepochopiteľné a veľmi náročné na interpretáciu. Existujú však algoritmy, pomocou ktorých je možné pretransformovať neurónové siete na rozhodovacie stromy.

Je teda zrejmé, že prvou výhodou **rozhodovacích stromov** DT (*decision trees*) je ich transparentnosť, pochopiteľnosť a jednoduchá interpretácia. Ich

Obr. 4.2: Príklad rozhodovacieho stromu. Prevzaté z [39].

logika je podobná mriežkovému vyhľadávaniu, s tým rozdielom, že pri klasických selektívnych kritériach (cutoch) viem z nášho *d*-rozmerného priestoru vybrať len jednu hyperkocku a pri DT rozdelím celý priestor na tieto kocky, ktoré prehlásim za podobné signálu (*signal-like*) alebo podobné pozadiu (*background-like*).

Logika rozhodovacích stromov bude vysvetlená na príklade z Obr. 4.2. Na začiatku sa všetky dáta (pacienti) nachádzajú v koreni (root). Následne tieto dáta (pacientov) rozdelím podľa istého kritéria (teploty) do disjunktných množín. Keďže teplota je spojitá veličina, je potrebné ju rozdeliť do konečného počtu intervalov. K disjunktným skupinám pacientov už pristupujem samostatne a nezávisle na ostatných skupinách. Prvú skupinu, teda pacientov, ktorých telesná teplota $T < 37^{\circ}$ C prehlásim za zdravých a ďalej ich nerozdeľujem, čiže tieto dáta sa dostali do listu (*leaf*). Ďalších pacientov, s teplotou $37 < T < 38^{\circ}$ C budem rozdeľovať na základe farby ich hrdla. V prípade, že ho majú normálne prehlásim, že sú nachladnutí a ďalej ich neskúmam, dostali sa do listu. Obdobne postupujem s červeným hrdlom. Pacientov s telesnou teplotou nad 38°C sa budem pýtať na kašeľ a podľa tohto kritéria ich rozdelím do listov. Bod, v ktorom podľa nejakého kritéria delím pacientov, sa nazýva uzol (node). Maximálna dlžka stromu sa určí ako maximálna vzdialenosť medzi koreňom a nejakým listom, na príklade z Obr. 4.2 je rovná dvom. Súčet pacientov v listoch je rovný celkovému počtu pacientov z koreňa, teda žiadne dáta nie sú stratené.

V jazyku predchádzajúcich metód, pri DT robím cuty, ale vo viacerých krokoch a rekurzívne. Na začiatku sa všetky tréningové dáta nachádzajú v koreni. Následne iterujem algoritmus a dáta delím podľa určitých kritérií. Delenie skončím, keď už sú dáta čisté – považujem ich za príslušné jednej z kategérií, v našom prípade ich prehlásim za podobné signálu alebo pozadiu. Na vyčíslenie nečistoty (*impurity*) sa používa naprklad *Gini* index, ktorý je zadefinovaný ako

$$Gini = (s+b)D(1-D) = \frac{sb}{s+b},$$
 (4.7)

kde D je čistota signálu, diskriminant zo vzťahu 4.5. Dáta považujem za čisté, keď sa už ich nečistota nezmenšuje. *Gini* index je predvolený na počítanie nečistoty v knižnici TMVA.

Rozhodovacie stromy však majú aj nezanedbateľné nedostatky. Jeden z najväčších mínusov je rozhodne ich obrovská nestabilita voči trénovacím dátam. Malá zmena týchto dát môže vytvoriť úplne odlišný strom. Našťastie však existujú algoritmy, ktorými sa dajú nedostatky DT odstrániť. Jedna z nich je boosting, a teda vzniknú **vylepšené rozhodovacie stromy** BDT (*boosted decision trees*).

Pri boostingu nemáme jeden silný triedič (*classifier*), ale celú množinu slabých triedičov. Predpoveď celkového triedenia dostanem ako vážený súčet jednotlivých triedičov, a teda [38]

$$\widetilde{y}(\vec{x}) = \sum_{m=1}^{M} \alpha_m y_m(\vec{x}, \vec{w}_m), \qquad (4.8)$$

kde M je počet triedičov, \vec{w}_m parametre m-tého triediča. Koeficient α_m je rôzny pre rôzne typy algoritmov. Napríklad pre AdaBoost, predvolený algoritmus pre boosting v knižnici TMVA, sú tieto koeficienty definované ako

$$\alpha_m = \ln\left(\frac{1-\varepsilon_m}{\varepsilon_m}\right),\tag{4.9}$$

kde ε_m je chyba *m*-tého stromu.

Výhodami BDT je napríklad odolnosť voči preučeniu (*over-fitting*) alebo to, že korelácia medzi vstupnými dátami neovplyvňuje kvalitu a presnosť triediaceho algoritmu. Tak isto sa ukazuje, že je efektívnejšie použiť veľké množstvo stromov s veľmi malou hĺbkou na miesto pár veľmi hlbokých.

BDT (a iné aplikácie viacrozmenej analýzy dát pomocou balíka TMVA) sa stávajú čoraz viac súčasťou analýzy dát z experimentov časticovej fyziky. V nasledujúcej časti budú ukázané aplikácie tohto algoritmu, konkrétne na experimente ALICE v CERNe.

4.3 Využitie v časticovej fyzike

Viacrozmerná analýa je čoraz bežnejšia vo fyzike vysokých energií, pričom najčastejšie je využívaná buď na identifikáciu častíc, alebo na spomínané rozlišovanie signálu a pozadie. Prvé použitie viacrozmerných metód na dátach z hadrónových urýchľovačov bolo pri meraní hmotnosti t kvarku. Konkrétne išlo o analýzy z detektorov DØ a CDF (*Collider Detector at Fermilab*), ktoré sa nachádzali na urýchľovači Tevatron v laboratóriu Fermilab v USA. Kombináciou dvoch metód, naivného Bayesa a neurónových sietí, získali hmotnosť $m_t = 173, 3\pm 5, 6 \text{ (stat)} \pm 5, 6 \text{ (syst)} \text{ GeV}/c^2$, pričom táto hodnota bola výrazne presnejšia ako výsledky, ktoré získali z rovnakých dát pomocou konvenčných metód. [38] V súčasnosti sa udáva hodnota $m_t = 173, 21\pm 0, 51\pm 0, 71 \text{ GeV}/c^2$. [1]

Analýza, ktorá pochádza z [40], sa zameriava na rekonštrukciu rozpadov Λ_c v zrážkach protónov s olovom (p-Pb), konkrétne v kanáli $\Lambda_c \rightarrow K_s^0 + p$. Obvyklý prístup (pomocou cutov) má veľmi malý pomer signálu k pozadiu, keď že rozpadový pomer tohto konála je len 1,11 %.². Z tohto dôvodu sa autori rozhodli pre svoju analýzu použiť BDT z knižnice TMVA. Na tomto príklade bude ukázané, ako tieto metódy vyzerajú v praxi.

Pred tým, ako sa pristúpi k analýze, je potrebné nastaviť algoritmus a rovnako previesť trénovanie a testovanie. Celkovo bolo použitých 850 stromov s maximálnou hĺbkou 2, za boostovací typ algoritmu sa zvolil AdaBoost a čistota signálu sa počítala pomocou *Gini* indexu – viď. vzťah 4.7. Ďalej sa nasimulovali samostatne dáta pre signál a pozadie, obe pomocou metódy Monte Carlo.

V ďalšom kroku je potrebné vybrať selekčné kritéria, ktoré sa použili na vyberanie kandidátov pre rekonštrukciu Λ_c . Prvá sada premenných sa týka protónu-samotára (*bachelor*):

- $|\eta| < 1$,
- $p_{\rm T} > 0.3 \, {\rm GeV}/c$,
- počet zásahov v detektore TPC \geq 70,
- d_0 (vzdialenosť primárneho a sekundárneho vrcholu) < 0,5 cm.

Ďalšie kritéria sa týkajú dcérskych častíc zo sekundárneho vrcholu, teda rozpadových produktov kaónu ($\pi^+\pi^-$):

- $|\eta| < 0.8$,
- $p_{\rm T} > 0.1 \, {\rm GeV}/c$,
- počet zásahov v detektore TPC \geq 70.

Keďže sú známe aj hmotnosti ka
ónu $\mathrm{K}^0_{\mathrm{s}}$ a $\Lambda_{\mathrm{c}},$ ďalej aplikujeme podmienku na kandidátov:

- $|m(\pi^+\pi^-) m(\mathbf{K}_S^0)| < 0.01 \text{ GeV}/c^2$,
- $|m(K_s^0+p) m(\Lambda_c)| < 0.187 \text{ GeV}/c^2$.

Ďalšie, napríklad technické cuty, sú uvedené v [40].

Ukazuje sa, že zvolenie správnej sady premennej je dôležitejšie ako dokonalé vyladenie algoritmu. Na druhej strane neexistuje metóda, ako zvoliť optimálny počet premenných, ani ako vybrať tie správne. V spomínanej analýze boli teda ako vstupné dáta použité nasledujúce premenné:

- $d_{0,\text{bachelor}}$, vzdialenosť protónu-samotára od primárneho vrcholu,
- $p_{\mathrm{T,bachelor}}$, priečna hybnost protónu-samotára,
- PID, identifikácia častice,

 $^{{}^{2}\}Lambda_{c} \rightarrow p\bar{K}^{0}$, rozpadový pomer BR = $(3,21 \pm 0,30)\%$, $K_{S}^{0} \rightarrow \pi^{+}\pi^{-}$, BR = $(69,20 \pm 0,05)\%$

Obr. 4.3: Rozdelenie vstupných premenných pri rekonštrukcii Λ_c pomocou BDT. Dané dáta sú pre priečne hybnosti Λ_c v intervale $2 \leq p_T(\Lambda_c) \leq 3$ GeV. Prevzaté z [40].

- $m_{\text{inv}}(\pi^+\pi^-)$, invariantná hmotnosť K_S^0 (z rozpadu na π^+ a π^-),
- $d_{0,V0}$, vzdialenosť primárneho a sekundárneho vrcholu,
- $c\tau_{\rm V0}$, rozpadová dĺžka K⁰_S.

Identifikácia častíc PID bola vykonaná pomocou detektorov TPC a TOF. I keď sme v predchádzajúcom texte tvrdili, že pri BDT výsledok neovplyvňuje korelácia medzi vstupnými dátami, daná množina premenných bola vybraná tak, aby bola korelácia čo najmenšia.

Rozdelenie týchto vstupných premenných sa nachádza na Obr. 4.3, pričom signál pochádza zo simulácii a pozadie zo simulácii a reálnych dát. Dané rozdelenie je pre priečne hybnosti kandidátov Λ_c v intervale $2 \leq p_T(\Lambda_c) \leq 3 \text{ GeV}/c$, pre ostatné intervaly vyzerá obdobne a nachádza sa v [40]. Všetky rozdelenia zo simulácii sú v zhode s tými získanými z dát, jediný rozdiel je pri rozdelení priečnej hybnosti protónu-samotára $p_{T,\text{bachelor}}$, čo je pravdepodobne spôsobené len nedokonalosťou simulácií.

V ďalšom kroku sa natrénovali stromy, a to pomocou simulácii Monte Carlo samostatne pre signál a pozadie. Následne sa zobrala iná vzorka nasimulovaných dát, ktorá sa použila na testovanie už vzniknutých stromov. Porovnanie výsledkov BDT samostatne pre signál a pozadie sa nachádza na Obr. 4.4. Je zrejmé, že výsledok triedenia nebol ovplyvnený špecifickou vzorkou trénovacích dát, nakoľko sme dostali úplne analogický výsledok aj po tom, ako algoritmom prešli dáta určené na testovanie.

Obr. 4.4: Porovnanie výsledkov tréningových a testovacích BDT pri rekonštrukci
i $\Lambda_{\rm c}.$ Prevzaté z [40].

Ako bolo spomínané v predchádzajúcej kapitole, našim cieľom je zistiť, či je daná udalosť podobná signálu alebo pozadiu. Princípom BDT teda je dátam priradiť číslo medzi -1 a 1, podľa toho, či sa viac podobajú signálu alebo pozadiu. V ideálnom prípade by teda rozdelenie všade mimo -1 a 1 bolo nulové a v bode -1 by bol výrazný vrchol pre pozadie a v 1 pre signál. Keď sa vrátime do nášho *d*-rozmerného príkladu, kde *d* je počet vstupných premenných, podľa konkrétnych hodnôt premenných rozdelím celý priestor \mathbb{R}^d do hyperkociek, ktorým dám prívlastok signal-like alebo background-like.

Po otestovaní môžeme vzniknuté stromy použiť na analýzu – necháme namerané dáta, ktoré spĺňajú selektívne kritéria (cuty) prejsť práve vytvoreným algoritmom. Výsledok, teda odozva BDT, sa nachádza na Obr. 4.5, a to ako pre simulácie, tak pre reálne namerané dáta. Na danom obrázku sa rozdelenie BDT nachádza pre šesť rôznych intervalov priečnej hybnosti $\Lambda_c p_T(\Lambda_c)$, teda pôvodný interval kandidátov $\Lambda_c \ 2 \le p_T(\Lambda_c) \le 12$ GeV/c bol rozdelený na 2–3, 3–4, 4–5, 5–6, 6–8, 8–12 GeV/c. Následne je potrebné zvoliť hraničné hodnoty odozvy BDT, teda rozhodnúť, ktoré z reálnych dát si chceme ponechať pre analýzu a ktoré nebudeme brať do úvahy, pretože chceme dosiahnúť čo najlepší pomer signálu ku pozadiu. Hodnoty vybraných cutov sa nachádzajú v Tab. 4.1. Samotné tieto čísla nie sú veľmi veľavravné, no pomáhajú nám s tým, čo je cieľom analýzy pomocou viacrozmerných metód, a to je maximalizovanie čistoty signálu. Všetky udalosti, ktorých odozva BDT je menšia ako hodnota BDT cutu, následne môžem zahodiť a ponechám si len tie, ktorých hodnota je väčšia alebo rovná ako daná hraničná hodnota.

$p_{\rm T} (\Lambda_{\rm c}) \ [{\rm GeV}/c]$	BDT cut
2 - 3	-0.04
3-4	-0.08
4 - 5	-0.15
5 - 6	-0.07
6 - 8	0.04
8 - 12	-0.18

Tabuľka 4.1: Hodnoty hraničných hodnôt odozvy BDT pre jednotlivé intervaly $p_{\rm T}(\Lambda_{\rm c})$. Prevzaté z [40].

Obr. 4.5: Odozva BDT pri rekonštrukci
i $\Lambda_{\rm c}.$ Prevzaté z [40].

$p_T (\Lambda_c) [\text{GeV}/c]$	sig_1	sig_2
2-3	2.8 ± 2.1	3.5 ± 1.1
3 - 4	4.0 ± 1.0	4.5 ± 1.0
4 - 5	4.5 ± 2.1	3.8 ± 1.0
5-6	2.9 ± 1.1	4.2 ± 1.0
6-8	3.3 ± 1.0	4.8 ± 1.1
8 - 12	4.1 ± 1.1	4.2 ± 1.0

Tabuľka 4.2: Signifikancia pred (sig_1) a po (sig_2) aplikovaní BDT cutov. Prevzaté z [40].

Posledným krokom v spomínanej analýze je teda získanie invariantnej hmotnosti Λ_c , keď sa rozpadá na K_S^0 a protón. Dané rozdelenie sa nachádza na Obr. 4.7, pred týmito cutmi sa nachádza na Obr. 4.6. Namerané dáta sa fitovali polynómom druhého stupňa pre pozadie a Gaussovou funkciou pre signál. Z fitu Gaussovou funkciou následne dostávame hodnotu invariantnej hmotnosti Λ_c (na Obr. ako mean) a jej strednú kvadratickú odchylku (sigma). Údaje pre jednotlivé intervaly $p_{\rm T}$ sa taktiež nachádzajú na spomínaných obrázkoch.

Výsledok aplikovania BDT cutov je viditeľný na kvalite fitu. Tak isto sa zvyšujú hodnoty signifikancie (s výnimou intervalu $4 \leq p_T(\Lambda_c) \leq 5 \text{ GeV}/c$). Jednotlivé dvojice signifikancii pred a po aplikovaní BDT cutov sa nachádzajú v Tab. 4.2.

Spomínaný text bol len jeden z mnohých príkladov – v dnešnej dobe patrí viacrozmerná analýza nepochybne medzi obľúbené metódy. V laboratóriách CERN bola napríklad použitá na experimente CMS (hľadanie Higgsovho bozónu) alebo experimente LHCb (rozpady $B_s^0 \rightarrow \mu^+\mu^-$) [38]. V BNL, na experimente STAR, išlo o hľadanie spomínanej pôvabnej častice Λ_c [33].

Obr. 4.6: Rozdelenie invariantnej hmotnosti $\Lambda_{\rm c} \to {\rm K}^0_S + {\rm p}$ pre šesť $p_{\rm T}(\Lambda_{\rm c})$ binov pred aplikovaním BDT cutov. Prevzaté z [40].

Obr. 4.7: Rozdelenie invariantnej hmotnosti $\Lambda_c \to K_S^0 + p$ pre šesť $p_T(\Lambda_c)$ binov **po** aplikovaní BDT cutov. Prevzaté z [40].

Kapitola 5

Aplikácie na experimentálne dáta

Ako bolo uvedené v predchádzajúcej kapitole, na viacrozmernú analýzu potrebujeme mať k dispozícií signál zo simulácii a pozadie z dát a zvoliť si vhodnú sadu premenných. Následne sa nakonfiguruje zvolená metóda (pri BDT sa zvolí počet stromov, ich hĺbka a metóda určovania nečistoty), pomocou signálu a pozadia sa natrénuje a následne otestuje vytvorený algoritmus a v poslednom kroku sa do tohto algoritmu púšťajú reálne dáta, pri ktorých nevieme, či ide o signál alebo pozadie. V nasledujúcom texte budú postupne predstavené tieto kroky na konkrétnych príkladoch analýzy D^{\pm} .

5.1 Vybrané premenné

Mezón D[±] budeme študovať pomocou trojčasticového hadrónového rozpadu D[±] $\rightarrow K^{\mp}\pi^{\pm}\pi^{\pm}$. Je teda jasné, že je potrebné pozerať sa na priečne hybnosti $p_{\rm T}$ týchto častíc. Z nich sa následne spočíta priečna hybnosť kandidáta na D[±]. S hybnosťou spomínaného mezónu súvisí ukazovací uhol (*pointing angle*) θ , čo je uhol medzi spojnicou primárneho a sekundárneho vrcholu (*vertex*) a danou hybnosťou D[±]. Tento uhol je znázornený na Obr. 5.1. My sme ho však neskúmali priamo, ale skúmali sme $\cos(\theta)$.

Ďalšou veličinou, ktorú sme vybrali pre analýzu, bola rozpadová dĺžka (decay length) λ . Pokiaľ je častica v pokoji, resp. meriame λ v jej kľudovej sústave, rozpadovú dĺžku dostaneme zo strednej doby života τ len prenásobením konštantou c, kde c je rýchlosť svetla vo vákuu. Pre D[±] je tabuľková hodnota $\tau = (1040 \pm 7) \cdot 10^{-15}$ s, čo dá $\lambda = c\tau = 311, 8 \ \mu m$. [1] Keďže my meriame dobu letu v sústave, v ktorej sa častica pohybuje, musíme započítať relativistické efekty. Rozpadová dĺžka bude $\lambda = c\gamma\beta\tau$, kde $\beta = v/c$ a $\gamma^{-2} = 1 - \beta^2$. V praxi predstavuje táto vzdialenosť vzdialenosť primárneho a sekundárneho vrcholu, teda vzdialenosť, ktorú náš konkrétny mezón D[±] preletí po tom, ako

Obr. 5.1: Grafické znázornenie vybraných premenných použitých na analýzu D^{\pm} mezónov. Prevzaté z [24].

vznikne v primárnom vrchole a predtým, ako sa v sekundárnom vrchole rozpadne na triplet $K^{\mp}\pi^{\pm}\pi^{\pm}$.

Keď nabitá častica letí elektromagnetickým poľom kolmo na indukčné čiary, jej trajektória nie je priamka, ale špirála, tú však vieme priamkou aproximovať.¹ Keď túto priamku predĺžime a odmeriame jej vzdialenosť od primárneho vrcholu v najbližšom bode, teda najmenšiu možnú vzdialenosť tejto priamky od bodu, dostaneme veličinu vzdialenosť najbližšieho priblíženia DCA (*distance* of closest approach). Budeme sa pozerať na vzdialenosti všetkých troch častíc, teda DCA(K) a dvakrát DCA(π).

DCA sa uvadzá aj pre vzdialenosť medzi dvojicami trajektórii dcérskych častíc K π , K π a $\pi\pi$. Obecne majme častice A a B, ktoré nabité letia magnetickým poľom. Najprv aproximujem trajektóriu častice A priamkou a nájdem bod P_A, v ktorom je najbližšie k trajektórii častice B. Potom spravím to isté, avšak s časticou B voči častici A, a dostanem bod P_B na trajektórii B. Výsledka DCA je veľkosť vzdialenosti bodov P_A a P_B. V prípade rozpadu D[±] na triplet K $\pi\pi$ dostanem teda tri vzdialenosti. Z nich budem ukladať pre potreby analýzy len tú najväčšiu, a tú označím DCA_d.

Nech mám v triplete častice ABC, nájdem na nich body najbližšieho priblíženia medzi jednotlivými dvojicami a označím ich na trajektórii častice A: A_B a A_C , atď. Potom spravím spojnice jednotlivých dvojíc bodov A_B s B_A a obdobne. V strede týchto spojníc mi vzniknú body V_{AB} , V_{AC} a V_{BC} . Spojením vrcholov dostanem trojuholník. Jeho najdlhšiu stranu označím Δ_m , a to je veličina, ktorá bude taktiež používaná v nasledujúcej analýze. Toto značenie je pre ilustráciu

 $^{^1}$ Aproximácia niekoľkonásobne urých
ľuje rekonštrukciu trajektórie. Keď že je $c\tau$ malé, neov
plyvňuje kinematické veličiny.

Obr. 5.2: Ilustrácia k použitému značeniu pri trojčasticových rozpadoch

znázornené na Obr. 5.2. Zamenením písmen A, B a C za π , π a K dostaneme konkrétny prípad z rekonštrukcie mezónu D[±].

Posledné ukladané premenné sú trieda centrality danej zrážky a informácia o tom, či častica zasiahla jednotlivé detektory, pre danú analýzu boli podstatné najmä detektory HFT, TPC a TOF.

názov	označenie	iednotka
	(\mathbf{D})	$\left[O \cdot V / \cdot \right]$
priecha hydnost D mezonov	$p_{\rm T}({\rm D})$	[Gev/c]
priečna hybnosť kaónov	$p_{\rm T}({\rm K})$	[GeV/c]
priečna hybnosť piónov	$p_{\mathrm{T}}(\pi)$	[GeV/c]
kosínus ukazovacieho uhla	$\cos(\theta)$	
rozpadová dĺžka	λ	$[\mu m]$
vzdialenosť najbližišho priblíženia DCA		
častice X vzhľadom k primárnemu vrcholu	DCA(X)	$[\mu m]$
najväčšia DCA dvojíc	DCA_d	$[\mu m]$
najväčšia zo strán trojuholníka V_{AB} , V_{AC} a V_{BC}	Δ_m	$[\mu m]$

Na záver tejto časti uvediem zhrnutie vybraných veličín:

5.2 Signál zo simulácii

Simulácie signálu prebiehali pomocou programu PYTHIA 6, čo je počítačový program určený na Monte Carlo simulácie zrážok častíc vo fyzike vysokých energií. Vyprodukovali sme po 4×10^7 častíc D⁺ a D⁻, kódy týchto častíc sú 411 a -411.² Tieto častice sa v simulácii rozpadli pomocou rozpadového kanálu číslo 719, čo predstavuje požadovaný kanál D⁺ $\rightarrow K^-\pi^+\pi^+$. Dostali sme všetky

 $^{^2{\}rm K}{\rm \acute{o}d}$ antičastice je kód častice so znamienkom mínus.

Obr. 5.3: Porovnanie priečnej hybnosti $p_{\rm T}$ ka
ónov zo simulácií signálu z rozpadov D[±] mezónu v závislosti na efekto
ch detektoru. E označuje presnú hodnotu, ktorú sme dostali zo simulácie, a R
 hodnotu po započítaní efektov detektoru.

kinematické premenné týchto rozpadových produktov, pričom sme ich ukladali do histogramov na základe toho, či pochádzali z kaónu K⁻ (kód -321) alebo z piónov π^+ (211) a z ich príslušných antičastíc.

Keďže ide o simulácie, dostali sme presné hodnoty vybraných premenných. Tieto dáta predstavujú ideálny prípad, dané veličiny je potreba rozmazať o rozlíšenie detektoru. Na to bolo potrebné, aby sme do programu zahrnuli informácie o detektoroch z roku 2014, konkrétne o HFT, TPC a TOF. Rozmazávanie sa netýkalo všetkých veličín, len priečnych hybností $p_{\rm T}$ všetkých dcérskych častíc a DCA. Porovnanie priečnej hybnosti kaónu pred a po rozmazaní sa nachádza na Obr. 5.3 a na Obr. 5.4 sa nachádza jeho DCA. E označuje presnú hodnotu (*exact*), ktorú sme dostali zo simulácie, a R hodnotu po započítaní efektov detektoru, čiže častice po rekonštrukcii v detektore (*reconstructed*). Pre pióny sa tieto porovnania nachádzajú v prílohe na Obr. A.1 (priečna hybnosť) a na Obr. A.2 (DCA).

Na týchto obrázkoch možno pozorovať, že priečna hybnosť $p_{\rm T}$ dcérskych produktov nie je veľmi ovplyvnená efektami detektorov, a jej rozdelenie, ktoré získame z detektoru, je takmer identické skutočnému rozdeleniu. Na druhej strane, DCA, čiže vzdialenosť najbližšieho priblíženia, je pre nízke hodnoty výrazne ovplyvnená detektorom. Spôsobené je to pravdepodobne tým, že HFT má najlepšie rozlíženie pre 20–30 μ m, kde môžeme pri rozmazaných hodnotách pozorovať vrchol.

Jediným kritériom na výber eventov bol zásah detektoru HFT, a to všetkými troma dcérskymi produktami, čo výrazne zredukovalo simulácie signálu, s ktorým

Obr. 5.4: Porovnanie DCA kaónov zo simulácií signálu z rozpadov D^{\pm} mezónu v závislosti na efektoch detektoru. E označuje presnú hodnotu, ktorú sme dostali zo simulácie, a R hodnotu po započítaní efektov detektoru.

sme pracovali. Ako bolo spomínané, na začiatku bolo vyprodukovaných 8×10^7 trojíc, týmto kritériom prešlo $8,36 \times 10^6$ trojíc K $\pi\pi$.

Schématicky je celý opisovaný postup vytvárania histogramov so signálom, ktorý pochádza zo simulácii, zakreslený na Obr. 5.5.

5.3 Pozadie z dát

Ako pozadie sme použili dáta zozbierané experimentom STAR v roku 2014, konkrétne pochádzali zo zrážiek zlata Au+Au pri energii $\sqrt{s_{\rm NN}} = 200$ GeV. Konkrétne sme vychádzali z tzv. PicoDst súborov, ktoré sú určené na ukladanie informácii pre analýzu. Tá môže potom prebiehať rýchlejšie a efektívnejšie ako keby sme sa pozerali na pôvodné MuDst, a to aj pri veľkej štatistike.³ Táto štruktúra je založená na implementácií TTree v programe ROOT, pričom hlavný strom sa nazýva práve PicoDst.

Pôvodne bolo pozbieraných $1,3 \times 10^9$ eventov, avšak použili sme veľké množstvo kritérii, ktoré vybrané trojice K $\pi\pi$ výrazne obmedzili. Prvé kritérium, keďže nám išlo o výber pozadia, bol výber nesprávnej kombinácie znamienok náboja, teda z možných trojíc sme vylúčili tie, kedy z jedného vrcholu pochádzali K⁻ $\pi^+\pi^+$ (rozpad D⁺) alebo K⁺ $\pi^-\pi^-$ (rozpad D⁻). Zrážka taktiež musela prebehnúť vo vzdialenosti pod 6 cm od stredu detektora, teda $|v_z| < 6$.

 $^{^3{\}rm MuDst}$ neobsahujú žiadne kinematické veličiny (trajektórie, hybnosti), obsahujú len body zásahu jednotlivých detektorov.

Obr. 5.5: Schématické zakreslenie postupu vytvárania signálu zo simulácií.

Identifikácia týchto častíc prebiehala pomocou detektorov TPC a TOF – TPC identifikuje častice na základe ich stratenej energie s pomocou Bethe-Blochovej formule (rovnica 2.1), TOF na základe doby letu častíc. Aby častica bola identifikovaná ako kaón, resp. pión, musela v TPC splniť podmienku na štatistickú odchylku $n\sigma_{\rm K} < 2$, resp. $n\sigma_{\pi} < 3$, a v TOF podmienku zviazanú s inverznou hodnotou rýchlosti $|\frac{1}{\beta} - \frac{1}{\beta_{\rm K}}| < 0.03$, resp. $|\frac{1}{\beta} - \frac{1}{\beta_{\pi}}| < 0.03$, kde $\frac{1}{\beta}$ je inverzná rýchlosť nameraná detektorom TOF a $\frac{1}{\beta_{\rm X}}$ je inverzná hodnota rýchlosti vypočítaná z hybnosti a z tabuľkovej hodnoty hmotnostni danej častice X.

Ďalšie kritérium sa týka výberu dráh (*track selection*), rekonštruované boli tzv. globálne dráhy, teda pri ich rekonštrukcii sme nehľadeli na to, či išlo o dráhy z primárneho alebo sekundárneho vrcholu. Boli rekonštruované len tie častice, ktoré zasiahli detektor TPC aspoň pätnásťkrát, $N_{\rm TPC} > 15$, a to z toho dôvodu, aby bolo možné s dostatočnou presnosťou rekonštruovať dráhy týchto častíc. Zároveň sme požadovali, aby zasiahli každú (v tej dobe používanú) vrstvu detektora HFT, konkrétne teda išlo o PXL1, PXL2 a IST.

Akceptovali sme len tie dcérske častice, ktorých priečna hybnosť bola v intervale $0, 2 < p_{\rm T} < 50 \text{ GeV}/c$. Kritérium na DCA bolo ako pre pióny, tak pri kaóny, že jeho hodnota musela byť väčšia ako 30 μ m, teda DCA > 30 μ m. Najväčšia vzdialenosť medzi dvojicami K π , K π a $\pi\pi$ musela byť menšia ako 250 μ m, teda DCA_d < 250 μ m. Uhol θ medzi spojnicou primárneho vrcholu a vektorom hybnosti materskej častice musel spĺňať podmienku cos(θ) > 0,996. Na rozpadovú dĺžku ani na Δ_m neboli kladené žiadne kritéria.⁴

Po aplikovaní týchto kritérií je možné dostať výsledné histogramy. Analogicky ako pri vytváraní signálu zo simulácii, na Obr. 5.6 sa nachádza schéma vytvárania pozadia, ktoré pochádza z nameraných dát.

Na Obr. A.3 sa nachádzajú porovnania rozdelení jednotlivých veličín pre signál (červená) a pozadie (modrá). Postupne je tam rozdelenie centrality, $p_{\rm T}$ a DCA dcérskych častíc (K, π), najväčšia DCA z dvojích dcérskych častíc, označené ako DCA_d, rozpadová dĺžka $c\tau$, $\cos(\theta)$ a Δ_m .

 $^{^4{\}rm V}$ tom
to mieste je potrebné uviesť, že dané topologické výberové kritéria sú oproti bežnej analý
ze veľmi otvorené.

Obr. 5.6: Schématické zakreslenie postupu vytvárania pozadia z nameraných dát.

Obr. 5.7: Porovnanie rozdelení vybraných veličín signálu zo simulácii (modrá) a pozadia z dát (červená). Dáta pochádzajú zo zrážok Au+Au pri $\sqrt{s_{\rm NN}}=200$ GeV a sú uvedené pre priečnu hybnosť kandidáta na D[±] v rozsahu 2 < $p_{\rm T}<8$ GeV/c.

5.4 Diskusia k vstupným veličinám

Na Obr. 5.7 sa nachádzajú rozdelenia vstupných veličín do TMVA pre priečnu hybnosť kandidáta na D[±] v rozsahu 2 < $p_{\rm T}$ < 8 GeV/c. V nasledujúcom texte budeme diskutovať tieto výsledky.

Pre priečne hybnosti kaónov a piónov, ktoré sme brali z dát na vytváranie pozadia, sme používali kritérium $p_{\rm T} > 0,2 \text{ GeV}/c$. Keby chceme posunúť tento cut, aby sme dostali nižšie hybnosti, vytváranie pozadia by prebiehalo rádovo dlhšie a dostali by sme obrovské množstvá dát.⁵ Ďalším faktorom na tento cut je, že nakoľko sa v detektore nachádza magnetické pole, častice s príliš malou hybnosťou by už neboli schopné doletieť až do detektoru (keď že magnetické pole zahýba trajektórie nabitých častíc), primárne ide o detektor TOF, ktorý sa nachádza smerom od urýchľovacej trubice až za detektorom TPC.

DCA ako pre kaóny, tak pre pióny nie je od nuly kvôli cutu, ktorý sme nastavili na DCA > 30 μ m. Týmto kritériom potlačujeme produkciu týchto častíc z primárneho vrcholu (chceme, aby vznikali v sekundárnom vrchole z rozpadov D[±]). Kritériom na DCA sme tak isto posunuli Δ_m pozadia, z toho dôvodu má teda posunutý vrchol oproti signálu. DCA_d má väčší vrchol pre pozadie, čo je pravdepodobne spôsobené falošným signálom a tým, že sa líši od toho skutočného. Tento rozdiel nám však vyhovuje, keď že chceme, aby sa krivky zo skutočného signálu neprekrývali.

Na ukazovací uhol θ z pozadia bolo nastavené kritérium $\cos(\theta) > 0,996$, čím sa opatril zákon zachovania hybnosti pre kandidátov. Z rozdelenia je zrejmé, že pozadia na rozdiel od signálu nemá vrchol v jednotke.

5.5 Trénovanie a testovanie algoritmov

Po pripravení vstupov vo forme stromov TTree sme schopní použiť TMVA algoritmy. Strojové učenie s dozorom treba pred jeho aplikáciou natrénovať a následne otestovať. My sme si pre začiatok vybrali len tri algoritmy, a to optimalizáciu rektangulárnych cutov, ktorá je len vylepšením klasickej analýzy, metódu založenú na vierohodnosti a vylepšené rozhodovacie stromy.

Analýzu D[±] mezónov sme sa rozhodli rozdeliť do štyroch častí podľa priečnej hybnosti kandidáta, a to 0–1, 1–2, 2–8, 8–20 GeV/c. Keďže v intervale 2–8 GeV/c nachádza najviac týchto častíc s použitím bežnej analýzy, začali sme práve s týmto intervalom, aby sme mohli sledovať zvyšovanie signifikancie, ktoré očakávame od použitia viacrozmerných metód. Celý nasledujúci text sa týka len intervalu 2–8 GeV/c.

Pre vstupné veličiny, ktoré sme použili na trénovanie a testovanie, sme dostali korelačné matice, ktoré hovoria o závislosti jednotlivých veličín. Tieto matice sú zostavené pre jednotlivé dvojice veličín X, Y z korelačných koeficientov ρ_{XY} , pričom tie sú špeciálnym prípadom kovariancie ($\Delta X \Delta Y$), avšak pre normované

 $^{^5\}mathrm{Pre}$ bežnú analýzu D $^\pm$ s trojčasticovým rozpadom sa zvykne používať cut $p_\mathrm{T}>0.5~\mathrm{GeV}/c.$

veličiny XY [41]. Kovariancia veličín $X,\,Y$ je definovaná vzťahom

$$(\Delta X \Delta Y) = \langle XY \rangle - \langle X \rangle \langle Y \rangle, \tag{5.1}$$

z čoho zrejme platí ($\Delta X \Delta Y$) = ($\Delta Y \Delta X$). Ďalej platí ($\Delta X \Delta X$) = (ΔX)² = σ_X^2 , kde σ_X nazývame štatistická (smerodatná) odchylka veličiny X. Korelačný koeficient ρ_{XY} je potom

$$\rho_{XY} = \frac{(\Delta X \Delta Y)}{\sigma_X \sigma_Y}.$$
(5.2)

Ďalej pre tento koeficient platí $|\rho_{XY}| \leq 1$, pričom 1 dosahuje pre dokonalú lineárnu závislosť a -1 pre inverznú lineárnu závislosť. V našich korelačných maticiach na Obr. 5.8 sa tieto údajé nachádzajú v percentách.

Obr. 5.8: Korelačné matice vstupných veličín do TMVA. Vľavo pre signál, vpravo pre pozadie.

Pri tréningu sme použili pripravené algoritmy z knižnice TMVA, okrem iného na vytvorenie vylepšených binárnych rozhodovacích stromov. Jeden takýto strom je na ukážku zobrazený na Obr. 5.9, konkrétne ide o strom s číslom 250 (s číslovaním od 0, teda v poradí je 251.) z celkových 850 stromov s maximálnou hĺbkou 3.

Ako posledný krok pred aplikáciou týchto algoritmov je potrebné overiť, či nedošlo k pretrénovaniu, teda či bola testovacia vzorka správne klasifikovaná. Táto kontrola je zobrazená na Obr. 5.10. Pre vybraný interval priečnej hybnosti $2 < p_{\rm T} < 8 \ {\rm GeV}/c$ vidno jednoznačné oddelenie signálu od pozadia. Zároveň sa potvrdilo, že BDT nepodliehajú preučeniu, trénovacie a testovacie dáta ukazujú rovnaké výsledky.

Natrénované algoritmy môžeme následne aplikovať, čomu sa budeme venovať v blízkej dobe. Do budúcnosti taktiež vieme, že pre ešte kvalitnejšie výsledky budeme váhovať $p_{\rm T}({\rm D}^{\pm})$, keď že simulácie majú uniformné rozdelenie, čo neodpovedá reálnemu rozdeleniu v zrážkach.

Obr. 5.9: Príklad vytvoreného rozhodovacieho stromu, zobrazený strom je 251. z850vytvorených stromov

Obr. 5.10: Porovnanie výsledkov tréningových a testovacích BDT pri rekonštrukci
i ${\rm D}^\pm$ v intervale $2 < p_{\rm T} < 8~{\rm GeV}/c.$

Zhrnutie

Všeobecnými cieľmi tejto práce bolo zoznámiť sa s kvark-gluónovou plazmou a detektorom STAR na urýchľovači RHIC, o ktorých pojednávajú prvé dve kapitoly.

V ďalšom texte sme sa téme tejto práce venovali podrobnejšie – predstavili sme aktuálne výsledky meraní pôvabných hadrónov na urýchľovačoch RHIC a LHC. Väčšina uvedených výsledkov pochádzala z bežných metód analýzy. Keď že cieľom tejto práce je hľadať metódy na optimalizáciu rekonštrukcie viacčasticových rozpadov, v ďalšej kapitole je predstavené strojové učenie a jeho využitie v časticovej fyzike, keď že práve pomocou strojového učenia môžeme oprimalizovať tieto rekonštrukcie. Algoritmy strojového učenia sa vo fyzike vysokých energií môžu aplikovať pomocou balíka TMVA, ktorý sa nachádza v programe ROOT určenom na analýzu dát.

V závere tejto práce sa venujeme použitiu TMVA pri analýze D[±] mezónov. Prvé dve fázy, teda príprava signálu zo simulácii a pozadia z dát a trénovanie a testovanie algoritmov úspešne prebehli, ich podrobný postup je popísaný v tejto práci. Posledným krokom pri použití TMVA je aplikácia algoritmov, ktoré boli vytvorené počas trénovania, čomu sa budeme aktívne venovať v blízkej budúcnosti. Prvým krokom bude analýza v intervale priečnej hybnosti $2 < p_T <$ 8 GeV/c, pre ktorú prebiehal hore uvedený tréning. Táto analýza je podstatná, pretože práve v tomto intervale bolo nájdené najväčšie množstvo D[±] mezónov a poznáme signifikanciu, čiže ju vieme porovnať pred a po použití TMVA metód.

Následne, keď si týmto spôsobom overíme, či naše programy fungujú správne, sa pustíme do rekonštrukcie D[±] mezónov v ostatných intervaloch priečnej hybnosti $p_{\rm T}$, primárne v intervale $1 < p_{\rm T} < 2$ GeV/c.

Výsledky tejto práce boli prezentované na regionálnom stretnutí členov kolaborácie STAR, ktoré sa konalo 27. – 29.6.2017 vo Varšave.

Literatúra

- K. A. Olive et al. *Review of Particle Physics*, volume C38. 2014. 090001 pp.
- [2] G. Aad et al. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. *Phys. Lett.*, B716:1–29, 2012.
- [3] W. Florkowski. Phenomenology of Ultra-Relativistic Heavy-Ion Collisions. Singapore, Singapore: World Scientific (2010) 416 p, 2010.
- [4] C. Nattrass. The Quark Gluon Plasma. URL www.quantumdiaries.org.
- [5] S. LaPointe. D0 measurements in Au+Au Collisions at s(NN)**(1/2) = 200-GeV using the STAR Silicon Inner Tracker. Nucl. Phys., A830:627C– 628C, 2009.
- [6] R. Snellings. Elliptic Flow: A Brief Review. New J. Phys., 13:055008, 2011.
- [7] S. Sarkar, H. Satz, and B. Sinha. The Physics of the Quark-Gluon Plasma: Introductory Lectures. Lecture Notes in Physics. Springer Berlin Heidelberg, 2009. ISBN 9783642022852. LCCN 2009938884.
- [8] T. Lenzi. Development and Study of Different Muon Track Reconstruction Algorithms for the Level-1 Trigger for the CMS Muon Upgrade with GEM Detectors. 2013.
- [9] P. Rosnet. Quark-Gluon Plasma: from accelerator experiments to early universe. 2015.
- [10] T. Matsui and H. Satz. J/ψ Suppression by Quark-Gluon Plasma Formation. Phys. Lett., B178:416–422, 1986.
- [11] L. Adamczyk et al. Measurement of D^0 azimuthal anisotropy at midrapidity in Au+Au collisions at $\sqrt{s_{\rm NN}} = 200 \,{\rm GeV}$. 2017.
- [12] D. McDonald. Overview of results from phase I of the Beam Energy Scan program at RHIC. EPJ Web Conf., 95:01009, 2015.

- [13] G. Odyniec. Future of the beam energy scan program at RHIC. EPJ Web Conf., 95:03027, 2015.
- [14] L. Wen and STAR Collaboration. Systematic searches for the Chiral Magnetic Effect and the Chiral Vortical Effect using identi ed particles at RHIC/STAR. Journal of Physics: Conference Series, 779(1):012067, 2017.
- [15] W. Fischer. Run overview of the Relativistic Heavy Ion Collider. 2017. URL http://www.agsrhichome.bnl.gov/RHIC/Runs/.
- [16] A. Lipiec. Beam Energy Scan program in STAR selected highlights. STAR Regional meeting, 2017.
- [17] Brookhaven National Laboratory. *Relativistic Heavy Ion Collider*. URL https://www.bnl.gov/rhic/.
- [18] Brookhaven National Laboratory. *The STAR experiment*. URL https://www.star.bnl.gov.
- [19] STAR collaboration. Conceptual Design Report for the Solenoidal Tracker at RHIC (STAR). LBL document (29 May 1992), 1992.
- [20] W. J. Llope et al. The STAR Vertex Position Detector. Nucl. Instrum. Meth., A759:23–28, 2014.
- [21] Y. Wang and the STAR Collaboration. STAR upgrade program and future physics. Journal of Physics: Conference Series, 535(1):012022, 2014.
- [22] K.H. Ackermann et al. STAR detector overview. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 499(2–3):624 – 632, 2003. ISSN 0168-9002. The Relativistic Heavy Ion Collider Project: RHIC and its Detectors.
- [23] M. Anderson et al. The STAR Time Projection Chamber: a unique tool for studying high multiplicity events at RHIC. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 499(2):659–678, 2003.
- [24] J. Kvapil. D[±] meson production in Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$ measured by the STAR experiment. *Quark Matter Conference*, 2017.
- [25] R. Reed and sPHENIX Collaboration. A new detector at RHIC, sPHENIX goals and status. *Journal of Physics: Conference Series*, 779(1):012019, 2017.
- [26] J. Adam et al. Transverse momentum dependence of D-meson production in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV. *JHEP*, 03:081, 2016.
- [27] J. Adam et al. Centrality dependence of high-p_T D meson suppression in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV. *JHEP*, 11:205, 2015.

- [28] J. Adam et al. Measurement of D_s^+ production and nuclear modification factor in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV. *JHEP*, 03:082, 2016.
- [29] L. Adamczyk et al. Observation of D^0 Meson Nuclear Modifications in Au+Au Collisions at $\sqrt{s_{NN}} = 200$ GeV. *Phys. Rev. Lett.*, 113(14):142301, 2014.
- [30] M. Nasim. Measurements of D[±]_s-meson production in Au + Au collisions at √s_{NN}=200 GeV in STAR. Nuclear Physics A, 956:509 512, 2016. ISSN 0375-9474. URL http://www.sciencedirect.com/science/book/pii/S0375947416001457.
- [31] E. Meninno. Studies of Λ_C production in pp and p-Pb collisions 1 with ALICE at 2 the LHC. *EPJ Web Conf.*, 137:13011, 2017.
- [32] The LHCb Collaboration. Measurement of J/ψ and D^0 production in pAr collisions at $\sqrt{s_{NN}} = 110$ GeV. 2017.
- [33] G. Xie. Λ_C Production in Au+Au Collisions at $\sqrt{s_{NN}} = 200$ GeV at STAR. Quark Matter Conference, 2017.
- [34] L. Kramárik. Measurements of charm meson production in p+p and Au+Au collisions by the STAR experiment. European Physical Society Conference on High Energy Physics, 2017.
- [35] E. Maurice. New high resolution measurements of open and hidden charm production in proton-nucleus collisions at $\sqrt{s} = 110$ GeV with LHCb. *Quark Matter Conference*, 2017.
- [36] M. Šimko. Λ_c analysis in Run14. STAR Regional meeting, 2017.
- [37] A. Hoecker et al. TMVA 4: Toolkit for Multivariate Data Analysis with ROOT, Users Guide. 2013.
- [38] P. C. Bhat. Advanced analysis methods in high-energy physics. AIP Conf. Proc., 583:22–30, 2001.
- [39] J. Vaňo. Data mining a technika rozhodovacích stromov. URL http:// www2.fiit.stuba.sk/~kapustik/ZS/Clanky0708/vano/index.html.
- [40] A. Alici, P. Hristov, and C. Zampolli. $\Lambda_C \to K_S^0$ in p-Pb collisions with MVA techniques. *ALICE collaboration*, 2016.
- [41] J. Štěpán K. Zvára. Pravděpodobnost a matematická statistika. Matfyzpress, 2006.

Appendices

Dodatok A

Rozdelenia vstupných veličín

Na nasledujúcich obrázkoch sa nachádzajú rozdelenia vstupných veličín, ktoré sme používali pri analýze, a z dôvodu šetrenia miesta v texte sme ich neuvádzali priamo tam.

Na Obr. A.1 a A.2 sa nachádzajú porovnania presných E a rekonštruovaných R hodnôt priečnej hybnosti $p_{\rm T}$ a DCA pre pióny. Následne sú na Obr. A.3 uvedené rozdelenia všetkých veličín do TMVA pre interval kandidáta na D[±] v intervale $0 < p_{\rm T} < 1 \ {\rm GeV}/c$.

Obr. A.1: Porovnanie priečnej hybnosti $p_{\rm T}$ kaónov zo simulácií signálu z rozpadov D[±] mezónu v závislosti na efektoch detektoru. E označuje presnú hodnotu, ktorú sme dostali zo simulácie, a R hodnotu po započítaní efektov detektoru.

Obr. A.2: Porovnanie DCA kaónov zo simulácií signálu z rozpadov D^{\pm} mezónu v závislosti na efektoch detektoru. E označuje presnú hodnotu, ktorú sme dostali zo simulácie, a R hodnotu po započítaní efektov detektoru.

Obr. A.3: Porovnanie rozdelení vybraných veličín signálu zo simulácii (modrá) a pozadia z dát (červená). Dáta pochádzajú zo zrážok Au+Au pri $\sqrt{s_{\rm NN}} = 200$ GeV a sú uvedené pre priečnu hybnosť kandidáta na D[±] v rozsahu 0 < $p_{\rm T} < 1$ GeV/c.

Dodatok B

Slovník termínov

Väčšina prác či publikácii v časticovej fyzike je písaná v anglickom jazyku. Z toho dôvodu nadväzujem na tradíciu, ktorú založila Ing. Katarína Gajdošová vo svojej bakalárskej práci, a ako prílohu svojej práce uvádzam Slovník termínov. Týmto spôsobom sa snažíme zjednotiť slovenské názvoslovie v danom type prác. Uvedené preklady pochádzajú ako z práce Kataríny, tak z práce mojej a vznikli s pomocou Mgr. Jaroslava Bielčíka, Ph.D., školiteľa oboch uvedených prác. Je potrebné uviesť, že dané preklady neboli diskutované s Jazykovedným ústavom Ľudovíta Štúra Slovenskej akadémie vied.

slovensky
elektrón
mión
taón
horný kvark
dolný kvark
pôvabný kvark
podivný kvark
pravdivý kvark
krásny kvark
pôvab
podivnosť
pravda
krása
asymptotická voľnosť farebné uväznenie
lúč
ohnivá guľa

Pre prehľadnosť sú pôvodné anglické pojmy v tejto práci pri ich prvej zmienke v texte uvedené v zátvorke kurzívou.

impact parameter (b) zrážkový parameter beam pipe urýchľovacia trubica rýchly prechod crossover baryo-chemical potential (μ_b) baryo-chemický potenciál quark-gluon plasma (QGP) kvark-gluónová plazma pre-equilibrium phase pred-rovnovážna fáza thermal equilibrium tepelná rovnováha tepelné žiarenie thermal radiation critical temperature (T_c) kritická teplota chemické vymrznutie chemical freeze-out thermal freeze-out tepelné vymrznutie pozorovateľ spectator nuclear modification factor (R_{AA}) jadrový modifikačný faktor enhancement navýšenie supression potlačenie overlap function prelínacia funkcia minimum-bias events minimum-bias udalosti transverse momentum (p_T) priečna hybnosť elliptic flow eliptický tok directed flow priamy tok triangular flow trojhranný tok jet quenching zhášanie výtryskov trigger parton spúšťací partón high p_T supression potlačenie hadrónov s vysokým p_T open flavor otvorené vône quarkonia kvarkónia Debeve screening Debeyovo tienenie screening length (r_D) tieniaci polomer dissociation temperature (T_D) teplota rozpadu Relativistic Heavy Ion Collider Relativistický urýchľovač ťažkých jadier Brookhaven National Laboratory Brookhavenské národné laboratórium Large Hadron Collider Veľký hadrónový urýchľovač Time Projection Chamber Časovo projekčná komora Time of Flight Detektor doby letu Barrel Electromagnetic Calorimeter Valcový elektromagnetický detektor Čítač lúčov Beam-Beam Counter Vertex Position Detector Detektor pozície vrcholu Heavy Flavor Tracker Sledovač ťažkých vôní Muon Telescope Detector Miónový teleskopický detektor Inner Tracking System Vnútorný dráhový systém Multi-gap Resistive Plate Chamber komora s odporovými doskami s viac medzerami avalanche lavína endcap wire chamber koncová drôtová komora

DODATOK B. SLOVNÍK TERMÍNOV

cathode strip shower maximum detector lead-scintilator stack

perturbative QCD combinatorial backround unlike sign method like sign method rotation method mixed-event method yield raw yield bin branching ratio decay channel fixed-target collision fragmentation ratio power-law function

"tip-tip" collisions "body-body" collisions distance of closest approach (DCA) pointing angle (θ) cross section chiral magnetic effect chiral vorticity effect high energy physics

> supervised machine learning unsupervised machine learning response function grid search cut-point conditional probability prior probability posterior probability maximum likelihood neural network decision tree classifier over-fitting overtraining check bachelor proton

katódový prúžok maximálny spŕškový detektor oloveno-scintilátorový sendvič

poruchová QCD kombinatorické pozadie metóda nerovnakého znamienka metóda rovnakého znamienka rotačná metóda zmiešavacia metóda výťažok surový výťažok interval rozpadový pomer rozpadový kanál zrážka s pevným terčíkom fragmentačný pomer mocninná funkcia nefotonické elektróny

zrážky "špička na špičku" zrážky "telo na telo" vzdialenosť najbližšieho priblíženia ukazovací uhol účinný prierez chirálny magnetický jav chirálny vírivý jav fyzika vysokých energií

strojové učenie s dozorom strojové učenie bez dozoru funkcia odozvy mriežkové vyhľadávanie hraničný bod podmienená pravdepodobnosť aposteriórna pravdepodobnosť aposteriórna pravdepodobnosť maximálna vierohodnosť neurónová sieť rozhodovací strom triedič preučenie kontrola pretrénovanosti protón-samotár